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An advanced spectral analysis of a mis-matched charged particle beam propagating 

through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is 

found that the betatron frequency distribution function of a mismatched space-charge-dominated 

beam has a bump-on-tail structure attributed to the beam halo particles. Based on this 

observation, a new spectral method for halo particle definition is proposed that provides the 

opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. 

In addition, it is shown that the spectral analysis of the mismatch relaxation process provides 

important insights into the emittance growth attributed to the halo formation and the core 

relaxation processes. Finally, the spectral method is applied to the problem of space-charge 

transport limits. 

 

I. INTRODUCTION 

The production and control of high energy halo particles ejected from the beam core is a 

critical problem in intense charge particle beam propagation through a periodic focusing lattice 

[1]. One of the typical mechanisms of the halo particle production is a mechanism in which halo 

particles gain energy by means of parametric resonant interaction with the collective self-field 

perturbations produced by a beam mismatch (mismatch oscillations) [2-11]. More specifically, 

due to the nonlinear transverse dependence of the beam self-fields near and beyond the beam 

edge, individual beam particles can oscillate about and through the beam core with energy-

dependent betatron frequency. Collective self-field mismatch perturbations produce modulation 

 1



of the betatron frequency, and therefore parametric resonant interaction between the edge beam 

particles and the collective modes may occur. In particular, beam particles, which are close to the 

fundamental 2:1 resonance with the collective mismatch oscillation, can gain transverse energy 

and populate the halo region [2].  

Although, the presence of a beam halo is typically evident by visual inspection of the 

mismatched beam distribution, it is of particular interest to obtain a more quantitative measure of 

this phenomena [9-11]. In Ref. [10], the beam profile parameter constructed from the second and 

forth spatial moments of the beam distribution,  
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has been proposed as a characterization of the halo in a 1D spatial projection. Here, qi is the 

transverse particle coordinate, and ⋅⋅⋅  denotes the average over the particle distribution 

function. This formalism for calculating dimensionless halo parameters, based upon moments of 

the beam distribution function, has been then extended to quantify halo formation in 2D phase-

space [11]. The phase-space halo parameter [11], 
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is a generalization of the spatial-profile parameter h, using kinematic invariants of the particle 

distribution in phase space. Here, pi corresponds to the transverse particle momentum. These 

halo parameters can be efficiently used for comparing the ‘halo intensity’ for different beam 

distributions. For instance, it follows that h=H=0 for the Kapchinskij-Vladimirskij distribution, 

and h=H=1 for a Gaussian distribution in phase-space coordinates.  
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Although the evolution of the halo parameters (h, H) can provide important insights into 

the halo production process, no guidelines have been provided on how to quantitatively 

distinguish halo particles from core particles. Therefore, the actual ‘halo fraction’ of all beam 

particles for a given distribution cannot be readily estimated. Attempts to distinguish halo 

particles from the beam core particles were made in Refs. [7-8]. However, those studies were 

based on a “visual analysis” of the transverse phase space, and no rigorous mathematical criteria 

were applied.  

A simple quantitative definition of halo particles based on an analysis of the beam 

betatron frequency distribution has been outlined in Ref. [9], where it was demonstrated that the 

betatron frequency distribution function of an intense mismatched space-charge-dominated beam 

has a well-defined bump-on-tail structure attributed to the beam halo particles. In this paper we 

develop a detailed framework for this spectral method. In addition, we extend the definition of 

halo particles to a broad range of beam intensities. Finally, we show that the spectral analysis can 

also provide important insights into other critical problems in intense beam transport, e.g., 

mismatch relaxation processes, and space-charge transport limits [12-14].  

This paper is organized as follows. The theoretical model describing the transverse beam 

dynamics is summarized in Sec. II. In Sec. III, we describe the spectral method, making use of 

the smooth-focusing approximation, and in Sec. IV we take into account the effects of an 

alternating-gradient quadrupole field. Finally, in Sec. V, the spectral method is applied to an 

analysis of the mismatch relaxation process, and space-charge transport limits.  
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II. THEORETICAL MODEL 

In this section, we summarize the general theoretical models used to describe the 

nonlinear transverse dynamics of a charged particle beam propagating through an alternating-

gradient quadrupole lattice. We consider a long coasting beam propagating through an 

alternating-gradient quadrupole lattice, and perform the analysis of the transverse beam 

dynamics in the frame of reference moving with the beam. The applied focusing force of the 

periodic lattice is assumed to be of the form,  

                                        ( )[ ]yxqbfoc yxtm eeF ˆˆ −κ ,                                                 (1) = −

where ( ) ( Lqq tt )τπκκ 2sinˆ=  is the lattice function, τL is the lattice period, mb is the particle mass, 

and  is the transverse beam phase space. For the case where the beam distribution 

function is close to a beam quasi-equilibrium, the evolution of the characteristic transverse beam 

dimensions 

( yxyx &&,,, )

( ) 2122 xta = and ( ) 2122 ytb = can be described approximately by the simplified 

envelope equations [1, 15] 
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Here, bbbb meNK 22=  is the beam self-field perveance, ∫= bb fydxdxdydN &&  is the beam line 

density, eb is the particle charge, and we have assumed x yε ε ε= ≡ , where the transverse 

emittance xε , is defined by   

                            ( ) ( ) ( )( ) 2224 xxxxxxxxx &&&& −−−−−=ε ,                             (4)  
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and, ∫−= bb fydxdxdydN χχ &&1  denotes the statistical average of a phase function χ  over the 

beam distribution function, bf . The matched solutions to the envelope equations (2)-(3), 

satisfying ( ) ( )tata L =+τ  and ( ) ( )tbtb L =+τ , can be used for calculation of the phase 

advances [1]. The vacuum phase advance vσ , describing the normalized lattice strength, can be 

expressed as  

                        ( ) ( )∫∫
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and the depressed phase advance σ , including self-field effects, is given by  
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Note that the ratio vσσ  can be used as a normalized measure of the space-charge strength, with 

1→vσσ  corresponding to an emittance-dominated beam with negligible space-charge force, 

and 0→vσσ  corresponding to a space-charge–dominated beam with negligible emittance.  

 In order to describe the average beam dynamics, the smooth-focusing approximation is 

often used, in which the applied focusing force in Eq. (1) is replaced by the uniform focusing 

force   

( )yxqb
sf
foc yxm eeF ˆˆ2 +−= ω .                                                     (7)  

Here, the smooth-focusing frequency qω  is related to the amplitude of the sinusoidal lattice 

function qκ̂  (approximately) by 1232ˆ −= Lqq τπωκ  [1]. In the smooth-focusing approximation, the 

envelope equations (2)-(3) have same form, but the terms describing the oscillating force of the 

quadrupole lattice, i.e., ( )tqκ  in Eq. (2) and ( )tqκ−  in Eq. (3), are replaced with the term  

corresponding to the smooth-focusing lattice coefficient. For the case of an azimuthally 

2
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symmetric beam, it is straightforward to show that the matched smooth-focusing solutions are 

given by 02)()( bRsbsa == , where  is determined from  0bR
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and the smooth-focusing phase advances are given approximately by [1] 

                               ,                                                              (9)  Lq
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Finally, we point out that along with sf
v

sf σσ , the normalized beam intensity can be 

characterized by the dimensionless parameter 22 2 qpbbs ωω= , where ( ) 21
0

24 bbpb mneπω =  is the 

plasma frequency, and n0 is the on-axis number density [1].  

           The envelope equations (2)-(3) describing the evolution of the beam transverse 

dimensions support mismatch oscillations around a beam quasi-equilibrium. In the smooth-

focusing approximation, it is straightforward to show that the oscillation frequencies of these 

normal modes are given by  

( ) 214
0

22
0 bbb

sf
s RRK εω += ,                                                 (11) 

( ) 214
0

22
02 bbb

sf
odd RRK εω += ,                                                (12) 

where the RMS beam radius, Rb0, is determined from Eq. (8). Here,  corresponds to the 

symmetric (even) mode with 

sf
sω

ba δδ = , and  corresponds to the  quadrupole (odd) mode with sf
oddω

ba δδ −= , where aδ  and bδ  are the small-signal perturbations of the transverse matched-beam 
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dimensions a  and b , respectively. The quadrupole and symmetric modes represent collective 

transverse oscillations of the charged particle beam envelope. On the other hand, due to the 

nonlinear transverse dependence of the beam self-fields near and beyond the beam edge, 

individual beam particles can oscillate about and through the beam core with energy-dependent 

betatron frequency. Collective self-field perturbations produce modulation of the betatron 

frequency, and therefore parametric resonant interaction between the edge beam particles and the 

collective modes may occur. In particular, beam particles, which are close to fundamental 

resonance with the collective mismatch oscillation, can gain transverse energy and populate the 

halo region. 

 

III. SMOOTH-FOCUSING APPROXIMATION 

This section develops a framework for the quantitative analysis of halo production by a 

beam mismatch, making use of the smooth-focusing approximation, which describes the average 

focusing effect of the oscillating confining field. As noted earlier, in order to describe the 

production of halo particles by a beam mismatch it is convenient to consider a beam propagating 

through a periodic focusing lattice as an ensemble of betatron oscillators coupled to the 

collective mismatch oscillations. This approach was also used in Refs. [16, 17] for the analysis of 

beam mismatch relaxation for the case of a quadrupole lattice. It was pointed out [16, 17] that for 

the case of a space-charge-dominated beam most of the betatron oscillators in the initial beam 

equilibrium distribution are far from the parametric (2:1) resonance with the collective mismatch 

mode. Therefore, only a slight damping of the collective oscillations occurs. However, as the 

beam space-charge intensity decreases, the half-value of the mismatch frequency approaches the  
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frequency distribution of the betatron oscillators, providing an increased mixing of the collective 

oscillations. As shown in Fig. 1, the beam betatron frequency distributions and the corresponding 

mismatch oscillation frequencies obtained for the smooth-focusing thermal equilibrium 

distribution [1] for various values of  the beam intensity concur with the conclusions in Refs. [16, 

17]. Inspecting Fig. 1, it is also instructive to note that as the beam intensity increases the beam 

frequency spectrum shifts toward lower frequency values relative to the smooth-focusing 

frequency, qω . This is consistent with the fact that the beam self-fields depress the total-focusing 

Figure 1: (Color) Plots of the normalized beam betatron frequency distribution for the smooth-

focusing thermal equilibrium distribution obtained for different values of the beam intensity 

corresponding to 25.0=vacσσ , 9999.0=bs  (blue), 6.0=vacσσ ,  (pink), 9.0=bs

95.0=vacσσ ,  (green). Each frequency distribution is normalized to its maximum 

value. The vertical dashed lines show the corresponding half-values of the mismatch oscillations 

frequency obtained within the smooth-focusing approximation, 

2.0=bs

2sf
sω . Results are obtained 

using the WARP PIC-code [18] for a smooth-focusing field. 
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force acting on a beam particle, and therefore increase the period of particle betatron oscillations. 

Also, note that the frequency spectrum width is attributed to the nonlinear effects of the beam 

self-fields. Therefore, for the case of the smooth-focusing thermal equilibrium distributions 

shown in Fig. 1, the spectrum width has a maximum for a moderate beam intensity. Indeed, as 

the beam intensity increases the beam density profile approaches a flat-top distribution, and 

hence the self-electric fields become nearly linear. On the other hand, as the beam density 

decreases the effects of the beam self-fields become less pronounced [19]. Without loss of 

generality, here and throughout the remainder of this paper, for illustrative purposes we show the 

betatron frequency distributions corresponding to the particle oscillatory motion in the x-

direction. Also, each plotted betatron frequency distribution is normalized to its maximum value. 

In previous studies [16, 17] the spectral analysis was applied to the initial beam quasi-

equilibrium. Here, we extend the betatron spectral analysis to the case of a mismatched beam 

distribution. This allows us to develop a convenient framework for the quantitative analysis of 

halo production by a beam mismatch. Note that a particle betatron frequency increases with an 

increase in a particle energy. Therefore, the high-energy tail of an initial beam equilibrium 

distribution corresponds to the high-frequency tail in the betatron frequency distribution (Fig. 1). 

Inspecting the betatron frequency distribution of the initial beam thermal equilibrium distribution 

for the case of a space-charge-dominated beam, it is evident that only an exponentially small 

fraction of the beam particles has the energy corresponding to the parametrically resonant 

frequency, 2sf
sω . However, during the relaxation of a large beam mismatch there is an energy 

transfer from the collective mismatch modes to the resonant particles, which gain energy and 

populate the halo region. It is therefore intuitively appealing to expect that a “bump-on-tail” 

structure attributed to the high-energy halo particle will appear near  
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Figure 2: (Color) Relaxation of a beam mismatch for the case of a space-charge-dominated beam 

with 25.0=sf
v

sf σσ , . Shown are plots of (a) beam betatron frequency distribution 

for the final ‘quasi-relaxed’ state (blue), and for the initial state corresponding to the smooth-

focusing thermal equilibrium distribution (black), (b) fast-Fourier transform (FFT) of Rb(t), (c) 

and (d) the instantaneous  phase space corresponding to the final beam state, and the same 

state after halo removal, respectively. The amplitude of the mismatch oscillations in the final 

state is 

9999.0=bs

( RR,& )

12.0≅bb RRδ . Results are obtained using the WARP code for a smooth-focusing field. 
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the half-value of the mismatch oscillations frequency in the betatron frequency distribution of a 

mismatched space-charge-dominated beam.  

Figure 2 (a) shows the beam betatron frequency distribution for the case of a mismatched 

space-charge-dominated beam. For this illustrative example, a thermal equilibrium beam 

distribution [1] with 25.0=sf
v

sf σσ  ( 9999.0=bs ) was subjected to an instantaneous increase in 

the applied smooth-focusing force , 3.1=q
inc
q ωω . Then, after a time period, ( )isf

sstep ωπτ 2= , 

corresponding to one-quarter of the linear mismatch oscillation period calculated for the initial 

beam equilibrium, the applied force is returned back to its initial value. Here, 

( ) ( ) 21422
biibibi

sf
s RRK εω += , 

2122 yxRb +=  is the RMS beam radius, and the subscript “i” 

denotes the initial equilibrium beam state. Note that we have assumed an azimuthally symmetric 

initial beam distribution, and therefore only the symmetric (even) mode of mismatch oscillations 

is excited. After introducing the beam mismatch as described above, the beam is allowed to relax 

until the mismatch amplitude remains nearly constant [8]. In the final (‘quasi-relaxed’) beam 

state, the x and y coordinates of each beam particle are tracked, and the fast-Fourier transform 

(FFT) averages of the particle oscillograms are calculated [Fig. 3(c)]. It should be noted that the 

single-particle motion for the case of a mismatched intense beam is, in general, non-integrable, 

and the corresponding frequency spectra may have a complex structure [Fig. 3(c)]. Indeed, in 

addition to the fundamental (2:1) “halo” resonance, nonuniformities in the beam density profile 

along with the mismatch oscillations produce a higher-order resonance structure inside the beam 

core, and therefore even the core particle motion can become chaotic (Figs. 3). For the 

construction of the beam betatron frequency distribution [Fig. 2(a)], the particle’s “betatron” 

frequency is assigned to the frequency corresponding to the maximum value in the Fourier power 

spectrum of the particle oscillogram. As evident from Fig. 3, the power frequency spectra and  
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Figure 3: (Color) Dynamics of core and halo particles in the final state of a mismatched space-

charge-dominated beam with 25.0=sf
v

sf σσ  ( 9999.0=b

 

 

 

 

 

s ): (a) and (b) Normalized x/Rf-

oscillogram of the halo and core particles motion, respectively. Here, Rf corresponds to the RMS 

equilibrium radius calculated for the final beam state; (c) Fast-Fourier transform (FFT) of the 

core particle (pink) and the halo particle (blue) x-oscillograms; (d) Poincare section for the core 

(pink) and halo (blue) particles with the strobe time, taken at the minimum of the beam radius. 

Results are obtained using the WARP code for a smooth-focusing force. The parameters of the 

simulation are the same as in Fig. 2. 



 

particle oscillograms for typical core and halo particles elucidate the relevance of this approach 

for the purpose of distinguishing a halo particle from a core particle. Indeed, the “betatron” 

frequency values for the core and halo beam particles lie inside the “core” and “bump-on-tail” 

frequency ranges of the beam betatron frequency distribution, respectively [Fig. 2(a)]. The 

corresponding Poincare radial phase-space plots ( )RR,&  for these halo and core particles are 

shown in Fig. 3(d). Here, 22 YXR +≡ , ( ) RYYXXR &&& +≡ , X  and X&  are the scaled 

coordinates defined as axX = , ( ) xaxxaX ε&&& −= , and Y  and Y&  are their analogs in the y-

direction.  

Figure 2(a) shows that the betatron frequency distribution function of a mismatched 

space-charge-dominated beam has a clear bump-on-tail structure attributed to beam halo 

particles. Note that most of the bump is located to the right of the half-value of the mismatch 

oscillation frequency calculated for the final beam distribution, ( ) ( ) 21422
bffbfbf

sf
s RRK εω += . 

Here, fε  corresponds to the average value of the transverse beam emittance in the final state, 

and  is the corresponding value of the RMS equilibrium beam radius determined from Eq. (8) 

where 

bfR

fεε = . This allows us to formulate the following simple quantitative definition of a halo 

particle. If the particle betatron frequency is greater than one-half of the mismatch oscillation 

frequency then it designated as a halo particle. Figures 2(c) shows the beam radial phase space 

at the final state, and Fig. 2(d) shows the same phase space after removing particles with betatron 

frequency in the x or y direction higher than ( ) 2f
sf
sω . The remaining small fraction of halo 

particles corresponds to the fraction of the bump-on-tail structure located to the left of ( ) 2f
sf
sω .   
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Figure 4: (Color) Relaxation of a beam mismatch for the case of an emittance-dominated beam 

with 
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 ( 2 ). Shown are plots of (a) beam betatron frequency distribution for 

the final ‘quasi-relaxed’ state (blue), and for the initial state corresponding to the smooth-

focusing thermal equilibrium distribution (black), and (b) the evolution of the normalized RMS 

beam radius Rb/Ri. Frames (c), (d), and (e) show the normalized  phase-space 

corresponding to the initial state, final state, and final state after halo removal, respectively. 

Results are obtained using the WARP code for a smooth-focusing field. 
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In addition, a few more halo particles appear during the FFT averaging calculations, because the 

energy transfer process is not yet fully completed.  Note that the actual frequency spectrum of an 

envelope rms dimension [Fig. 3(b)] has a finite bandwidth with the central frequency , 

which is slightly smaller than its linear approximation, 

NL
sω

( ) f
sf
sω  due to nonlinear effects, and also 

due to the coupling to the dynamics of the higher–order moments, e.g., beam emittance. 

Therefore, more halo particles can be selected by the proposed criteria if an improved model for 

describing the mismatch oscillations frequency spectrum is employed to determine the “cut-off” 

frequency. 

It should be noted that according to the proposed halo definition, even a matched beam 

with a thermal equilibrium distribution function has a certain fraction of halo particles. This 

fraction is exponentially small for a space-charge-dominated beam, but it increases with 

decreasing beam intensity since the mismatch frequency approaches the frequency distribution of 

the betatron oscillators. Nevertheless, the spectral framework for a quantitative analysis of halo 

production developed above for a space-charge-dominated beam can also be efficiently utilized 

for the case of a low-intensity beam. The evolution of the beam betatron frequency distribution 

function due to beam mismatch relaxation for the case of a low-intensity beam with 

95.0=sf
v

sf σσ  ( 2 ) is shown in Fig. 4. For this illustrative example, the beam mismatch is 

introduced in the same way as described above for the case of a space-charge dominated beam, 

i.e., by increasing the focusing strength of the lattice to 

.0=bs

3.1=q
inc
q ωω  for a time period of 

( )isf
sstep ωπτ 2= . Comparing the betatron frequency distributions for the initial and final states 

[Fig. 4(a)], it is natural to assign a pronounced difference in the tail region where 

( ) 2f
sf
sx ωωβ >  to the generated beam halo. Note that for the case of an emittance-dominated 
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beam the mismatch oscillations are completely relaxed [Fig. 4(b)], and therefore particles do not 

experience a resonance interaction in the final state [compare Fig. 4(d) and Fig. 2(c)]. 

 

IV. EFFECTS OF AN ALTERNATING-GRADIENT QUADRUPOLE FIELD 

The quantitative analysis of halo production by a beam mismatch developed above for a 

constant focusing field (smooth-focusing approximation) can be generalized in a straightforward 

manner to the case of an oscillating quadrupole focusing field. Figure 5(a) shows the evolution of 

the beam betratron frequency distribution function due to beam mismatch relaxation for the case 

of a space-charge-dominated beam with 25.0=vacσσ  and . For this simulations, the 

initial beam distribution is loaded into a quadrupole lattice by making use of the 

pseudoequilibrium procedure [20], which provides an initial beam matching sufficient for 

present purposes. Then, a beam mismatch is introduced by an instantaneous increase in the 

lattice amplitude to 

055=vacσ

15.1ˆˆ =q
inc
q κκ  at the zero phase of the sine function. The lattice amplitude is 

maintained fixed at  for one-half of the lattice period, and then instantaneously decreased to 

its initial value, 

inc
qκ̂

qκ̂ . 

Note that the non-monotonic tail structure in Fig. 5(a) is now represented by the two 

bumps corresponding to half-values of the symmetric (even), sω , and the quadrupole (odd), 

oddω , mismatched envelope mode frequencies (Sec. II). This is due to the fact that both modes 

are exited by the abrupt mismatch, and they both produce high-energy resonant halo particles. 

The quantitative criteria for a beam halo particle should therefore be generalized for the case of a 

quadrupole oscillating lattice in the following way: if the particle betatron frequency is greater 

than the quadrupole (odd) envelope frequency half-value then it is a halo particle. To further  
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transform of Xrms(t); and (c) and (d) the instantaneous 

9999.0=b
055=vσ

( )XX ,&  phase space corresponding to the 

final state, and the final state after halo removal, respectively. Results are obtained using the 

WARP code for an alternating-gradient quadrupole field.  
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Figure 6: (Color) Evolution of the beam betatron frequency due to mismatch realxation for the 

case of an emittance-dominated beam with 

 

investigate this criterion we compare the normalized (  beam phase space shown in Fig. 

5(c) with the same phase-space after removing particles with betatron frequency satisfying 

), XX &

( ) 2f
sf
oddωωβ >  [Fig. 5(d)]. Here, ( ) ( ) 214222 bffbfbf

sf
odd RRK εω +=  is the corresponding smooth- 

focusing value of the quadrupole (odd) mismatched envelope mode frequency in the final beam 

state. The actual spectrum of the RMS beam envelope x-dimension obtained in the PIC 

simulations, taking into account the oscillating nature of the applied lattice and nonlinear effects, 

is shown in Fig. 5(b). Again, as noted earlier for the case of a constant focusing force (smooth-

focusing approximation), a few more halo particles can be selected if an improved model 

95.0=vacσσ  ( 2.0=bs ), . Shown are plots 

f the betatron frequency distribution at the final ‘quasi-relaxed’ state (blue), and at the initial 

tate (black). Results are obtained using the WARP code for an alternating-gradient quadrupole 

ield.  

040=vacσ
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accounting for the width and shape of the mismatch oscillations frequency spectrum is employed 

for determination of the “cut-off” frequency. 

 Finally, we present the evolution of the beam betatron frequency distribution due to 

mismatch relaxation for the case of a low-intensity beam, taking into account the effects of the 

oscillating applied lattice force (Fig. 6). For this illustrative example we take 95.0=vacσσ , 

, and the beam mismatch is introduced by an instantaneous increase in the lattice 

amplitude to 

040=vacσ

2.1ˆˆ =q
inc
q κκ  at the zero phase of the sine function. The lattice amplitude is 

maintained fixed at  for one lattice period, and then instantaneously decrease to its initial 

value 

inc
qκ̂

qκ̂ . Inspecting the beam frequency distributions at the initial and final beam states, it again 

appears natural to assign a pronounced difference in the tail region for ( ) 2f
sf
oddx ωωβ >  to the 

generated beam halo.  

 

V. SPECTRAL ANALYSIS OF STRONG MISMATCH RELAXATION AND 

INTENSE BEAM TRANSPORT LIMITS 

The spectral analysis of a mismatched beam distribution has been demonstrated to be a 

powerful tool for studies of nonlinear transverse dynamics of an intense beam propagating 

through a periods-focusing lattice. In particular, it can provide the opportunity to carry out a 

quantitative analysis of halo production by a beam mismatch. In this section, we make use of this 

new formalism to study other critical problems in intense beam transport. 
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A. The spectral evolution of a beam core during the relaxation of a beam mismatch  

In the previous sections the analysis was focused on beam halo production by a beam mismatch. 

However, it is also of particular interest to study the evolution of the beam core during the 

relaxation of a beam mismatch. Figure 7(a) shows the evolution of the beam betatron frequency 

distribution obtained within the smooth-focusing approximation for the case of a space-charge-

dominated beam with ( ) 25.0=i
sf
v

sf σσ . For this simulation, the mismatch was introduced by an 

instantaneous compression of the lattice amplitude to the value 4.1=qiqf ωω . Shown in Fig. 

7(a) are the frequency distributions calculated at the time instants corresponding to 

qft ωπ235.8101 ×=  and qft ωπ235.43502 ×= .  It is interesting to note that the “bump-on-tail” 

structure in Fig. 7(a) attributed to the beam halo remains nearly the same, whereas the difference 

is clear in the core region. This means that most of the beam halo is generated on a time-scale 

shorter than the time-scale of the beam core evolution. Finally, we note that the core relaxation 

process also leads to an increase in the beam emittance. Figure 7(b) illustrates the evolution of 

the beam transverse emittance during the mismatch relaxation process. It is readily seen that the 

beam emittance continues to grow during the time period between t1 and t2, when most of the 

halo is generated. To further elucidate this, we compare the values of the beam emittance 

calculated at t1 and t2 after removing halo particles from the corresponding beam distributions. 

The corresponding values of the beam emittance calculated for the beam distributions without 

halo particles, are shown by the dots in Fig. 7(b), and clearly demonstrate an increase in the 

beam emittance due to the beam core relaxation.  
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Figure 7 (Color): Strong mismatch relaxation for the case of a space-charge-dominated beam 

with 25.0=sf
v

sf σσ  ( ). Shown are plots of (a) the beam betatron density 

distribution function calculated at 

9999.0=bs

t t

 

qfωπ235.8101 ×=  (red), and qfπ235.43502 × ω=  (blue); 

and (b) evolution of the beam transverse emittance. The dots illustrate the values of the beam 

transverse emittance at the time instants t1 and t2 when the halo particles are removed from the 

corresponding beam distributions. The beam mismatch is introduce by an instantaneous increase 

in the lattice strength to the value, qiqf ωω 4.1= . Results are obtained using the WARP code for a 

smooth-focusing force. 
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B. Spectral analysis of intense beam transport limits 

Intense beam transport stability limits is one of the critical problems in intense beam transport. 

Of particular importance here are the higher-order resonance effects that limit stable intense 

beam propagation in the region of high vacuum phase advance, where [12-14] 

( )22 2 2 3 2vacσ σ π− >                                                      (13) 

In this section, we use the spectral analysis of the beam distribution to provide insights into that 

problem. The betatron frequency distributions for an intense beam with 3.0=vacσσ  

propagating through a quadrupole lattice are shown in Fig. 8(a) for different values of the lattice 

vacuum phase advance. Note that for 3.0=vacσσ  the instability criteria [inequality (13)] can be 

expressed as . The corresponding evolution of the beam transverse emittance is shown 

in Fig. 8(c), and a pronounced increase in the beam emittance is evident where the system 

parameters approach the stability limit. For these simulations we load the particles with a semi-

Gaussian distribution, which is a Gaussian distribution in  and  and has a uniform (step-

function) density profile, into the matched envelope obtained from Eqs. (2)-(3). It is evident from 

Figs. 8(a) and 8(b) that as the vacuum phase advance increases and the system parameters 

approach the instability criteria, the core of the betatron frequency distribution remains the same. 

However, the distribution tail function increases in extent. This observation supports the analysis 

developed in Ref. [14], which proposes that the emittance growth can be attributed to high 

energy beam edge particles that diffuse outside of the beam core sufficiently to participate in the 

higher-order resonances, thereby increasing the statistical beam area in the transverse phase 

space, i.e., the beam transverse emittance. 

089>vacσ
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Figure 3.23 (Color): Dynamics of a space-charge-dominated beam with 3.0=vσσ   in a 

quadrupole lattice for the cases where the system parameters are near and beyond the transport 

stability limit ( ) 232 222 πσσ ≅−v . Shown are plots of (a) the beam betatron distribution 

function for increasing values of the vacuum phase advance corresponding to  (pink), 

 (blue),  (green), and  (brown); (b) zoom-in of on the tails of the 

distributions shown in Frame (a); and (c) evolution of the beam transverse emittance. Results are 

obtained using the WARP code for an alternating-gradient quadrupole field. 
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VI. CONCLUSIONS  

A new spectral technique for the analysis of a mismatched intense beam propagating 

through an alternating-gradient lattice has been developed. It has been shown that the beataron 

frequency distribution of a mismatched intense beam has a “bump-on-tail” structure attributed to 

the beam halo particles. Based on this phenomenon, a quantitative definition of halo particles 

produced by a beam mismatch has been proposed, which provides an opportunity to carry out 

quantitative studies of halo particle production. It is also found that the analysis, based upon the 

spectral method, can provide important physical insights into other critical problems in intense 

beam transport, such as strong mismatch relaxation and space-charge transport limits. In 

particular, it has been demonstrated that during strong mismatch relaxation, most of the beam 

halo is generated on a time-scale shorter than the time-scale for the beam core relaxation. 

Furthermore, it has been observed that the core relaxation process also leads to an increase in the 

beam emittance. Finally, the spectral analysis of a beam distribution loaded into a quadrupole 

lattice for the case where the system parameters lie near the transport stability 

limit, ( ) 232 222 πσσ ≈−vac , has been performed. It has been shown that as the system 

parameters approach the stability limit, the core of the beam betatron distribution does not 

change significantly, whereas the tail of the distribution increases. This observation supports the 

analysis developed in Ref. [14], which proposed that the emittance growth can be attributed to 

high energy beam edge particles that diffuse outside the beam core sufficiently to participate in 

the higher-order resonances, thereby increasing the statistical beam area in transverse phase 

space.  
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