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                    Abstract 

The design of ion drivers for warm dense matter and high energy density physics 

applications and heavy ion fusion involves the acceleration and compression of intense 

ion beams to a small spot size on the target. Typically, ion beam acceleration and 

transport in vacuum is provided by a periodic focusing accelerator. Then, a dense 

background plasma is used to neutralize the beam space-charge during the longitudinal 

compression process. Finally, additional transverse focusing can be provided by a strong 

(several Tesla) final focus solenoid. In this thesis, the transport properties of an intense 

ion beam pulse propagating in an ion driver are investigated by making use of advanced 

numerical particle-in-cell simulations and reduced analytical models. 

In particular, in order to study the properties of an intense beam quasi-equilibrium 

matched to a periodic focusing lattice, a numerical scheme is developed that allows for 

the quiescent formation of a matched beam distribution. Also, the problem of controlling 

the transverse beam envelope by variations in the lattice amplitude is addressed, and a 

detailed quantitative analysis of the associated halo particle production is performed. Ion 

beam pulse transport though a dense background plasma is investigated with emphasis on 

the effects of a weak solenoidal magnetic field ( ~100 G), which can be present inside the 

long drift section due to the fringe fields of the strong final focus solenoid. In particular, 

whistler wave excitation and the effects of self-focusing on ion beam propagation through 

a background plasma along a solenoidal magnetic field are analyzed. Finally, the 

 iii



feasibility of using a weak (~ 100 G) collective focusing lens for a tight final focus of the 

ion beam is investigated. The results of the thesis research are analyzed for the 

parameters characteristic of the Neutralizing Drift Compression Experiment (NDCX-I) 

and its planned upgrade (NDCX-II). 
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Chapter 1 

Introduction  

The high efficiency of energy delivery and deposition makes intense ion beam pulses 

particularly attractive for high energy density physics applications and inertial 

confinement fusion [Davidson, 2002]. Recent advances in ion accelerators and focusing 

systems have made possible the production of high energy density condition and warm 

dense matter phenomena under controlled laboratory conditions. For instance, density-

temperature regimes similar to the interiors of giant planets and low-mass stars can be 

accessible in compact beam-driven experiments [Logan et al., 2007]. In addition to 

fundamental physics applications, the use of intense heavy ion beams for compression 

and heating of a target fuel is a promising approach to inertial confinement fusion energy 

applications (so-called heavy ion fusion) [Arnold, 1978]. Ion-beam-driven high energy 

density physics and heavy ion fusion attract the interest of leading research institutions 

and laboratories around the world, including the United States [Logan et al., 2007; HIFS 

White Paper, 2008], Russia [Sharkov, 2007], Germany [Hoffmann et al., 2009], and 

Japan [Horioka et al., 2009].  

 An intense high energy ion beam is produced and delivered to the target by an ion 

driver. In this thesis work, transport properties of an intense ion beam pulse propagating 

in an ion driver are investigated.  

 

1 



1.1. Ion Drivers 2

1.1 Ion Drivers  

A schematic of an ion driver for warm dense matter and high energy density physics 

applications, and heavy ion fusion is shown in Fig. 1.1. Leaving the ion source, an ion 

beam pulse is matched into the accelerator region, where the directed kinetic energy of 

the beam ions is significantly increased. The transverse confinement of the ion beam in 

the accelerator section against strong space-charge forces is typically provided by a 

periodic focusing lattice consisting of quadrupole or solenoidal focusing magnetic or 

electrostatic lenses. In order to increase the intensity of the long ion beam pulse, temporal 

and spatial compression occurs in the subsequent compression section. One of the 

modern approaches to the compression process is to use dense background plasma, which 

charge neutralizes the ion charge bunch, and hence facilitates compression of the charge 

bunch against strong space-charge forces. Finally, additional focusing is provided in the 

final focus section, and then the compressed ion bunch deposits its energy into the target.  

 

 

 

Ion 
source 

Acceleration 
Section 

Neutralized Drift 
Compression Section 
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Fig. 1.1: Block diagram of an ion driver for ion-beam-driven warm dense matter and 

high energy density physics applications, and inertial confinement fusion.  
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Conceptual design of a heavy ion fusion driver:  

A block diagram of a possible heavy ion fusion driver [Kwan, 2004] presenting the 

conceptual design parameters of an ion beam pulse as it propagates through the driver is 

shown in Fig. 1.2. The total beam current from the ion source is typically designed to be 

in the range 50-100 A. Therefore, to overcome the space-charge forces associated with 

high-current heavy ion beams, a heavy ion fusion driver is usually designed to contain an 

array of ~100 parallel ion beam channels at ~0.5 A each. The acceleration of the ion 

beam pulses starting from a 2-3 MeV injector to 100GeV can be provided by induction 

linear accelerators, which are also capable of compression of the beam pulses from 

~10,000 ns at the source to ~100 ns at the end of the accelerator section [Kwan, 2004].   

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: Block diagram of a typical heavy ion beam driver for inertial fusion energy 

[Kwan, 2004].  
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Neutralized Drift Compression Experiment-I (NDCX-I): 

Although a full-scale heavy ion fusion test facility with high-gain target physics is 

presently in a design stage, a compact heavy ion driver for warm dense matter 

experiments (NDCX-I) has been recently built at the Lawrence Berkeley National 

Laboratory [Seidl et al., 2009]. In this ion-beam-driven experiment the ion beam energy 

is deposited into a thin (a few microns) target aiming to reach warm dense matter 

conditions, regimes corresponding to solid-state densities and temperatures of order 1 eV. 

More specifically, a target temperature of 0.2 eV - 0.5 eV is expected to be achieved in 

experiments on the NDCX-I facility. It should be pointed out that a few micron target 

will hydro-expand in a few nanoseconds at 1 eV, and therefore the energy has to be 

deposited by short pulses of order 1 ns duration. The schematic of the Neutralized Drift 

Compression Experiment is shown in Fig. 1.3. A singly-ionized Potassium (K+) ion beam 

pulse with duration of several microseconds and directed ion energy of ~300 keV is 

produced from an alumino silicate source powered by a Marx generator. The beam pulse 

carries a current Ib ~ 30 mA, and the characteristic beam radius is the order of 1 cm. 

Leaving the source, the beam is matched into a solenoidal transport lattice, which 

controls the beam envelope. In order to compensate for misalignments of the beamline 

components, which can lead to an offset of the beam centroid, three steering dipoles are 

placed inside the gaps between the solenoids. Passing through the final (4th) transport 

solenoid, the ion beam acquires a radial convergence angle, typically of the order 10 

mrad, and then a head-to-tail velocity tilt is imparted to the beam pulse inside the  
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Fig. 1.3:  Elevation view of the Neutralized Drift Compression Experiment - I (NDCX-I) 

[Seidl et al., 2009].  
 

acceleration (tilt) gap of the induction bunching module. A schematic of the induction 

bunching module is shown in Fig. 1.4. A time-dependent current passes through high-

voltage feedthroughs encircling the ferromagnetic core(s). As a result, the azimuthal 

magnetic flux through the ferromagnetic materials varies in time and induces a time-

dependent longitudinal electric field in the accelerator gap as illustrated in Fig. 1.4. The 

charge bunch encounters the induced electric field only within the acceleration gap, and 

the pulse modulators and cores are external to the beam-plasma-chamber system. The 

time-dependent electric field produced inside the acceleration gap imparts a head-to-tail 

velocity tilt to the beam pulse by decelerating the head of the beam pulse, and 

accelerating the tail of the beam pulse. As a result, the ion bunch undergoes a 

longitudinal compression as it propagates through the long drift section (Ld=85 cm) filled 

with a dense neutralizing plasma. Provided the plasma is sufficiently dense it can 

effectively neutralize the charge and current of the ion beam pulse [Kaganovich et al.,  
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Fig. 1.4:  The physics principles of the induction module (left). A cross-section (right, 

with φ symmetry) of the induction module: acceleration gap (load circuit region under 

vacuum) (1), transformer oil insulation for induction cavity (leakage circuit region) (2), 

insulated power feed (3), ferromagnetic core (4), exposed face of core (5), and vacuum 

insulator (6). The Ez field direction in the gap is indicated for the given Bφ field direction 

in the ferromagnetic core [Sefkow, 2007]. 

 

2010]. Therefore, nearly-ballistic (field-free) simultaneous longitudinal and transverse 

beam compression occurs inside the drift section. Finally, an additional transverse 

focusing of the ion beam pulse is provided by a short (ls = 10 cm) high-field (Bs =8 T) 

final focus solenoid, which is placed downstream of the drift section. Note that in order to 

compensate for the strong space-charge forces of the compressed ion beam pulse, the 

final focus solenoid has to be filled with a neutralizing plasma as well. 

In the present configuration of the Neutralized Drift Compression Experiment – I 

(NDCX-I), the large volume neutralizing background plasma inside the drift section is 

produced by a ferroelectric plasma source [Efthimion et al., 2007]. This plasma source 
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utilizes the concept of large electric fields on a surface of a ferroelectric material (with a 

large dielectric constant), and allows for the generation of high-density surface plasma. In 

the present NDCX-I configuration, the walls of the drift section are made of a 

ferroelectric material, and a surface discharge is produced by applying a pulsed biased 

voltage between rear and front electrodes placed on both sides of the ferroelectric wall. A 

high-density surface plasma, initially created on the ferroelectric surfaces, then flows 

toward the axis and fills the entire drift section. It was demonstrated [Sefkow et al., 2008] 

that this source provides plasma density of ~1010cm-3 on the axis of the beamline, which 

can be enough to provide complete charge neutralization in the drift section for the ion 

beams explored in the NDCX-I.  

The density of the plasma created by the ferroelectric plasma source decreases to 

zero outside the drift section over a short distance of several centimeters. Therefore, to 

provide a neutralizing background inside the final focus solenoid, four cathodic-arc 

plasma sources (CAPS) are used in the present configuration of the NDCX-I device. The 

sources are placed out of the line-of-sight of the beamline in order to avoid interaction 

with the ion beam, and angled toward the axis of the final focus solenoid (Fig. 1.3). It 

should be noted that filling the strong magnetic solenoid with a neutralizing plasma is 

itself a challenging problem [Roy et al., 2009], and providing improved neutralizing 

plasma background inside the final focus solenoid is still one of the critical problems in 

NDCX-I optimization. 
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Fig. 1.5:  Schematic of the longitudinal compression of ion beam pulses in the 

N
 

 

eutralized Drift Compression Experiment – I (NDCX-I). The frames illustrate the time 

dependence of (a) the ion beam current at the ion source, (b) the directed beam energy at 

the exit of the tilt gap, and (c) the ion beam current at the longitudinal focal plane. 

 

It is straightforward to show for the case of ballistic (field-free) beam 

compression that the beam tail will meet the beam head at the longitudinal focal plane, 

provided the voltage waveform, ( ) ( )∫=Δ dztEtV ztilt , produced across the acceleration 

(tilt) gap of the induction bunching module is specified by [Welch et al., 2005; Sefkow, 

2007] 
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Here, cvbb =β  is the normalized directed beam velocity upstream of the tilt gap, 

0037.0=hβ  is the normalized velocity of the beam head downstream of the tilt gap,  and 

Lf corresponds to the drift length to the ideal longitudinal focal plane. The volt-second  
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Fig. 1.6:  (Color) Time-dependent transverse beam distributions demonstrating the 

simultaneous transverse focusing at the time of peak compression. The full width at half 

maximum (FWHM) of the peak is ≈2.5 ns [Seidl et al., 2009]. 
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capability of the induction bunching module allows compression of only a ~200 ns 

portion of the entire (several microsecond) ion beam pulse, and the schematic of the 

longitudinal beam dynamics is shown in Fig.  1.5. Note that there is a long uncompressed 

part of the ion beam pulse (prepulse) that propagates ahead of the compressed portion of 

the ion beam. 

The results of the experiments on the NDCX-I facility demonstrating the 

simultaneous longitudinal and transverse compression are shown in Fig. 1.6 [Seidl et al., 

2009]. The longitudinal compression decreases the duration of the compressing (~200 ns) 

portion of the ion beam pulse to τc≈2.5 ns, and the peak bunch current is increased to 

Ip≈1.5 A. Furthermore, at peak compression, 50% of the beam flux is located within a 

radius of 1.5mm due to the transverse compression.  

Finally, it should be noted that the induction bunching module (IBM) has been 

recently upgraded, and the upgraded IBM has a nearly double volt-second capability. 

Design studies [Seidl et al., 2009] demonstrated that it is advantageous to use the 

increased capability for compression of a ~400ns portion of the beam pulse, with a 

shallower slope of the tilt and a correspondingly longer drift section. Accordingly, in the 

present configuration of the Neutralized Drift Compression Experiment – I (NDCX-I), 

the drift compression section has been increased by 1.44 m by extending the length of the 

ferroelectric plasma source. The experiments on ion beam compression including the 

upgraded IBM and longer drift section are currently being carried out on the NDCX-I 

facility. 
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Neutralized Drift Compression Experiment – II (NDCX-II): 

While a target temperature of only 0.2 eV - 0.5 eV is expected to be achieved on the 

NDCX-I facility, its planned upgrade (NDCX-II) will operate at higher beam energies 

(few MeV), and will allow for target heating up to 1-2 eV [HIFS White Paper, 2008; 

Friedman et al., 2009]. Another important feature of the upgraded NDCX-II driver is that 

it will allow for highly uniform heating of a few microns target, using Li+ ions which 

enter the target with kinetic energy of ~ 3 MeV, slightly above the Bragg peak for 

deposition (the peak in dE/dx), and exit with energies slightly below that peak. A 

schematic illustration of Lithium ion beam energy deposition in the aluminum foil is 

shown in Fig. 1.7, and the NDCX-II target concept and ion driver requirements for 

achieving a target temperature greater than 1 eV is shown in Fig. 1.8. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7: (Color) Schematic of the energy deposition of lithium ions into an aluminum 

target, demonstrating the possibility of highly uniform heating of a few micron target by 

using ~3 MeV Li+ ions beams in the NDCX-II facility [Friedman, 2007].     
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Fig. 1.8:  (Color) Figure shows the NDCX-II target concept, and driver requirements to 

achieve target temperature higher then 1 eV [Friedman, 2007].     

 

A schematic of the NDCX-II facility is shown in Fig. 1.9. Similar to the NDCX-I 

device, the NDCX-II ion driver utilizes the concept of simultaneous neutralized (near-

ballistic) drift compression inside a few meters drift section, as well as final transverse 

focusing by a several-centimeter-long high-field (several Tesla) final-focus solenoid. 

However, the acceleration section of the NDCX-II facility is much more complex 

compared to the four-solenoid transport section of the NDCX-I device, where only the 

transverse beam envelope is controlled. The NDCX-II acceleration system accelerates the 

ion beam, provides longitudinal compression (thus increasing the beam current), and 

finally controls the transverse beam envelope. The acceleration and  
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Fig. 1.9: (Color) NDCX-II layout for 23 induction cells [Friedman et al., 2010].     

longitudinal compression of the ion beam pulse is provided by the induction cells from 

the decommissioned Advanced Test Accelerator (ATA) facility at Lawrence Livermore 

National Laboratory (hereafter, ATA cells). The operational principles of an ATA cell are 

the same as those of the NDCX-I induction bunching module. That is, depending on the 

voltage waveform applied in the acceleration gap of an ATA cell, each cell can accelerate 

the ion beam pulse and impart a head-to-tail velocity tilt. The control of the beam 

transverse envelope is provided by 2-3 T confining transport solenoids.  

In recent design studies [Friedman et al., 2009; Friedman et al., 2010] it is 

assumed that the NDCX-II injector produces Lithium (Li+) ion beam pulse with duration 
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of ~500 ns, directed beam energy of ~ 100 keV, and the current of ~70 mA. The ion 

beam pulse then propagates through the acceleration section, where it is accelerated to 

~3.5 MeV, and its current increases to ~2 A due to the nonneutral longitudinal drift 

compression. Leaving the acceleration section, the radially convergent ion beam pulse 

with an imparted head-to-tail velocity tilt propagates through a few-meter-long 

neutralized drift section, then passes through a 10-15 Tesla final focus solenoid, and 

finally deposits its energy into the thin target. The results of the numerical design studies 

demonstrate that about 75% of the 30nC beam charge crosses the focal plane in a 1-ns 

window, with a minimal pre-pulse. The current of the compressed beam (averaged over 

that window) is 23 A, with a peak (averaged over a 0.1-ns window) of 32 A and a full-

width at half maximum of 1 ns [Friedman et al., 2009].  

 

Future facilities for ion-beam-driven high energy density physics and heavy ion fusion: 

The future plans of the US heavy-ion-fusion program involve building of the Integrated 

Beam – High Energy Density Physics Experiment (IB-HEDPX) based on the knowledge 

base established by the NDCX-II device [HIFS White Paper, 2008]. The IB-HEDPX 

device will be a flexible user facility, with greater flexibility in choice of ion for Bragg-

peak heating, higher kinetic energy (up to 25 MeV), advanced multiple-target handling 

capabilities, and a much richer set of diagnostics than NDCX-II. Beyond IB-HEDPX, and 

building on the anticipated achievement of ignition on the National Ignition Facility 

(NIF), high coupling efficiency will allow heavy ion beams to explore the implosion of  
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Table 1.1: Scientific objectives and key features of a sequence of heavy-ion-beam driven 

facilities for high energy density physics and fusion [HIFS White Paper, 2008].     

 

 

 

 

 

 

 

 

 

 

mm-scale cryo-targets at moderate energy and cost in the Heavy Ion Direct Drive 

Implosion Experiment (HIDDIX) facility. This would provide the capability to drive low-

convergence-ratio (5-10) spherical implosions with ion beams for the first time, and to 

explore issues of hydrodynamic stability to Rayleigh-Taylor modes under the stabilizing 

influence of non-normal ion beam illumination. Encouraging results in those areas and 

others would motivate development of a Heavy Ion Fusion Test Facility (HIFTF) [HIFS 

White Paper, 2008].The Scientific objectives and key features of a sequence of heavy-

ion-beam-driven facilities for high energy density physics and heavy ion fusion are 

summarized in Table 1.1. 
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1.2 Motivation 

An noted earlier, an ion beam driver is a complex transport system involving ion beam 

pulse propagation through a vacuum acceleration system, propagation through a 

neutralizing background plasma, and strong magnetic final focusing. Therefore, in order 

to improve the performance of a heavy ion driver, it is of great importance to achieve a 

better physics understanding of the beam transport properties. In particular, it is important 

to realize nonlinear and collective effects that become increasingly important for high-

intensity ion beams. In what follows we outline several critical problems in intense ion 

beam transport through the acceleration section, the neutralized drift compression section, 

and the final focus section of an ion driver.  

 

Ion beam transport in the acceleration section: 

Although, initial ion-beam-driven experiments (e.g. NDCX-I) can use several short 

solenoidal or quadrupole magnetic lens to control the beam envelope from the injector to 

the neutralized drift compression section, future ion-beam-driven facilities will operate at 

much higher beam energies, and will require a long acceleration section. Accordingly, a 

transport focusing system with a large number of focusing elements has to be employed 

to maintain transverse beam confinement against strong self-field forces during the 

acceleration. Typically, a periodic focusing lattice, which consists of ether solinodial or 

quadrupole focusing elements, is used for these purposes [Davidson and Qin, 2001a]. 

Quiescent propagation of an intense ion beam through a periodic focusing lattice with 
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minimal irreversible growth of the transverse beam phase-space area (emittance) is of 

particular importance for the subsequent neutralized drift compression phase. Therefore, 

analysis of intense beam quasi-equilibria (so-called matched distributions) in a periodic 

focusing lattice is critical for optimizing the ion driver design. However, imperfections in 

the focusing elements, as well as an initial mismatch between the injector and the 

transport lattice can result in collective mismatch oscillations of the transverse beam 

envelope. Also, the mismatch oscillations can be produced due to variations in the lattice 

amplitude designed to control the transverse beam envelope inside the accelerator. The 

relaxation of the beam mismatch can provide an increase in the statistical area of the 

transverse beam phase-space, and can also be responsible for the production of high-

energy beam halo particles [Gluckstern, 1994]. The transverse excursion of these halo 

particles can be significantly outside the beam core, which degrades the beam quality and 

can lead to the activation of the chamber wall, or to an influx of particles released from 

the wall. The problem of halo particles becomes most pronounced for an intense charged 

particle beam with strong self-fields, and therefore it is of particular importance for an 

ion driver development to asses the influence of a mismatch on the beam transport 

properties.  

 

Intense ion beam transport through a background neutralizing plasma: 

Understanding the physical and technological limits of the neutralized drift compression 

of an intense ion beam pulse is of great practical importance both for present and future 

ion-beam-driven facilities. Even for the ideal case where a dense background plasma 
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provides ballistic (field-free) transport, simultaneous longitudinal and transverse 

compression can be limited by thermal effects of the ion beam, or due to the non-

chromatic nature of the transverse aberrations acquired inside a finite-length tilt gap, 

where a head-to-tail velocity tilt is imparted to the beam pulse [Sefkow, 2007]. The ion 

beam compression can also be limited due to the development of various collective 

streaming instabilities, which can occur even for a perfectly neutralized initial state, i.e., 

complete initial neutralization of the beam charge and the beam current [Davidson et al., 

2009; Startsev and Davidson, 2009]. Finally, it is of particular practical importance to 

estimate the degree of beam charge and current neutralization depending on the 

parameters of the background plasma, i.e., density, temperature, effects of ionization, etc. 

Although the critical problem of ion beam neutralization by a background plasma has 

been extensively studied in [Kaganovich et al., 2001, Kaganovich et al., 2010], a variety 

of new and unexplored physical properties appear in the presence of an external 

solenoidal magnetic field. A weak solenoidal magnetic field of order 100 G can be 

present inside the neutralizing drift section of a heavy ion driver over distances of a few 

meters from the strong final focus solenoid, which is located downstream of the beamline 

nearly after the drift section. Although, the V×B force produced by such a weak magnetic 

field typically do not have a pronounced influence on the ion beam dynamics, it can 

significantly modify the plasma electron response, and therefore alter the degree of ion 

beam charge and current neutralization [Kaganovich et al., 2008; Dorf et al., 2010]. It is 

therefore of particular importance for an ion driver development to asses the influence of 

a weak solenoidal magnetic field on the ion beam transport properties.    
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Final beam focusing: 

Typically, in order to provide final transverse beam focusing, a strong (several Tesla) 

magnetic solenoid, placed downstream of the drift section, is involved in the design of an 

ion driver. Due to the strong space-charge self-fields of an intense ion beam pulse, a 

neutralizing plasma is also required inside the magnetic solenoid. Note that apart from the 

challenge of using a several Tesla magnetic solenoid, filling it with a background plasma 

provides additional technical challenges [Roy et al., 2009]. Furthermore, the fringe fields 

of the strong magnetic solenoid can penetrate deeply into the drift section at a magnitude 

of order 100 G, and can significantly influence the neutralized ion beam transport. In 

particular, strong nonlinear radial electric fields can be generated due to a local 

polarization of the magnetized plasma background by the moving ion beam [Dorf et al., 

2009c]. These nonlinear fields can produce aberrations, thus limiting the transverse focus 

of the ion beam pulse. It is therefore of great practical interest to investigate alternative 

possibilities of the final beam transverse focusing.  

 

1.3 Thesis Overview  

In this thesis research, detailed numerical and analytical studies have been performed to 

improve theoretical understanding of the dynamics of intense beam propagation through 

an ion driver. An overview of this thesis is provided below. 

Chapter 2 provides a brief overview of the general and reduced analytical models 

describing the nonlinear transverse dynamics of an intense charge particle beam 
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propagating through a periodic focusing lattice, and discusses critical problems in intense 

ion beam transport, including the production of halo particles and space-charge limits 

defining the stable regimes of beam propagation. It is shown that the oscillating nature of 

the focusing field, along with the nonlinear dynamics of the beam particles, provide a 

significant challenge for analytical studies of a matched quasi-equilibrium beam 

distribution. Therefore, to improve the theoretical understanding of beam quasi-equilibria 

distributions, a numerical scheme allowing for the quiescent formation of a matched 

beam distribution is developed. A quasi-equilibrium beam distribution matched to a 

periodic focusing lattice is achieved in numerical particle-in-cell simulations by means of 

the adiabatic turn-on of the oscillating focusing field. Quiescent beam propagation for 

over a hundred of lattice periods is demonstrated for a broad range of beam intensities, 

and the properties of the matched-beam distribution are investigated. In particular, self-

similar evolution of the beam density profile is observed over a wide range of system 

parameters.  

Chapter 3 addresses the problem of controlling the transverse beam envelope 

during its propagation through the acceleration section by variations in the strength of the 

periodic-focusing lattice. In particular, the transverse compression of an intense ion beam 

propagating though an alternating-gradient quadrupole lattice is investigated. It is evident 

that variations in a lattice amplitude can lead to a certain level of beam mismatch, which 

can result in emittance growth and production of halo particles. Hence, it is a matter of 

considerable practical interest to determine how smooth (adiabatic) the lattice transition 

should be to assure that matching is maintained during the compression. This problem is 
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investigated for a wide range of beam intensities, and it is concluded that ~10 lattice 

periods are typically required in order to maintain beam matching for ~2X compression. 

For the case of nonadiabatic compression, halo particle production by a beam mismatch 

acquired during the compression stage is studied. In particular, in order to perform a 

quantitative analysis of this effect, a novel spectral method for halo particle definition is 

developed. In addition, it is shown that the analysis, based upon the spectral method, can 

provide important insights into other critical problems in intense beam transport such as 

mismatch relaxation and the space-charge transport limits.  

Chapter 4 discusses the propagation of an intense ion beam through a dense 

background neutralizing plasma along a weak (~ 100 G) solenoidal magnetic field.  The 

electromagnetic field perturbations excited by the ion beam pulse are calculated 

analytically and verified by comparison with the numerical simulations. The degrees of 

beam charge neutralization and current neutralization are estimated, and the transverse 

component of the Lorentz force associated with the excited electromagnetic field is 

calculated. It is found that the application of a weak solenoidal magnetic field along the 

direction of ion beam propagation through a neutralizing background plasma can 

significantly enhance the beam self-focusing for the case where the beam radius is small 

compared to the collisionless electron skin depth. The enhanced focusing is provided by a 

strong radial self-electric field that is generated due to a local polarization of the 

magnetized plasma background by the moving ion beam. A positive charge of the ion 

beam pulse becomes overcompensated by the plasma electrons, which results in the 

radial focusing of the beam ions. The effect of the plasma-induced enhanced self-
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focusing in the presence of weak fringe fields from a final focus solenoid is assessed for 

the parameters characteristic of the Neutralized Drift Compression Experiment-I (NDCX-

I), and its planned upgrade NDCX-II. Finally, it is shown that the plasma response to the 

ion beam pulse is significantly different depending on whether the value of the solenoidal 

magnetic field is below or above the threshold value corresponding to the strong resonant 

excitation of large-amplitude whistler waves. The use of intense whistler wave 

excitations for diagnostic purposes is also discussed.  

Chapter 5 investigates the feasibility of using a weak (~100 G) solenoidal 

magnetic field for tight collective final focusing of intense ion beams for the Neutralizing 

Drift Compression Experiment (NDCX-I). In the collective focusing scheme, a weak 

magnetic lens provides strong focusing of an intense ion beam carrying an equal amount 

of neutralizing electron background [Roberston, 1982]. For instance, a solenoidal 

magnetic field of several hundred gauss can focus an intense neutralized ion beam within 

a short distance of several centimeters. The enhanced focusing is provided by a strong 

self-electric field, which is produced by the collective electron dynamics. The numerical 

simulations are performed with the LSP particle-in-cell (PIC) code, and the results of the 

simulations are found to be in very good agreement with analytical predictions. 

Collective focusing limitations due to possible heating of the co-moving electrons during 

the transverse compression are also discussed. Finally, the original analysis of the 

collective lens operation, which assumes quasineutrality and small perturbations of the 

applied solenoidal magnetic field, is extended to the more general cases of nonneutral 

collective focusing and arbitrary perturbations of the applied solenoidal magnetic field 
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due to the presence of the beam. The influence of nonneutral collective focusing on the 

transverse dynamics of an ion beam pulse in the present configuration of NDCX-I, which 

involves a strong (8 Tesla) magnetic solenoid for the final beam focusing, is also 

discussed.  

Finally, Chapter 6 summarizes the conclusions drawn from the earlier chapters, 

and identifies possible areas of future research. 

 



Chapter 2 

Intense Charged Particle Beam 

Propagation through a Periodic Focusing 

Lattice 

 

2.1 Introduction 

Periodic focusing transport systems have a wide range of applications ranging from basic 

scientific research in high energy and nuclear physics to applications such as spallation 

neutron sources, nuclear waste treatment, ion-beam-driven high energy physics, and 

heavy ion fusion. Of particular importance at the beam intensities of practical interest are 

the effects of the intense self-fields produced by the beam space charge and current on 

determining the detailed equilibrium and nonlinear dynamics of the system. However, the 

nonlinear effects of the intense self-fields provide a significant challenge for detailed 

analytical studies. It is therefore increasingly important to develop reduced analytical 

models and advanced numerical techniques for an improved theoretical understanding of 

intense beam transport.  

24 
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In Sec. 2.2 we present a brief overview of the general and reduced analytical 

models describing the nonlinear transverse dynamics of a charge particle beam 

propagating through a periodic focusing lattice, and discuss critical problems in intense 

ion beam transport, including the production of halo particles and space-charge limits 

defining the stable regimes of beam propagation. It is shown that the oscillating nature of 

the focusing field along with the nonlinear dynamics of the beam particles provide a 

significant challenge for analytical studies of a matched quasi-equilibrium beam 

distribution. Therefore, it is important to develop a numerical scheme allowing for the 

quiescent formation of a quasi-equilibrium beam distribution matched to a periodic 

focusing lattice. Section 2.3 presents a numerical method for the formation of a quasi-

equilibrium beam distribution matched to a periodic focusing lattice by means of the 

adiabatic turn-on of the oscillating focusing field.  Quiescent beam propagation for over a 

hundred of lattice periods is demonstrated for a broad range of beam intensities, and the 

properties of the matched-beam distribution are investigated.  

 

2.2 Theoretical Models and Background 

In this section, we summarize the general theoretical models used to describe the 

nonlinear transverse dynamics of a charged particle beam propagating through a periodic 

focusing lattice, and discuss critical problems in intense ion beam transport, including the 

production of halo particles and space-charge limits defining the stable regimes of beam 

propagation. The detailed self-consistent description of intense charged particle beam 
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transport based on the Vlasov-Maxwell equations is presented in Sec. 2.2.1. The 

simplified beam dynamics model, including the smooth-focusing approximation and the 

envelope equations are summarized in Sec. 2.2.2 and Sec. 2.2.3, respectively. In Sec. 

2.2.4 the production of halo particles by a beam mismatch is described, and finally, Sec. 

2.2.5 presents an overview of intense beam transport limits. 

 

2.2.1 Vlasov-Maxwell Description 

We consider an axially continuous intense charged particle beam propagating in the z-

direction with average axial velocity Vb through a periodic focusing lattice with axial 

periodicity length S=const (Fig. 2.1). The beam is assumed to be thin, with characteristic 

transverse dimensions a and b in the x and y directions satisfying  

                          a,b<<S.                                                              (2.1)    

Consistent with Eq. (2.1) we assume that the beam particle have large axial momentum 

cmp bbbb βγ= , and make use of the paraxial approximation [Davidson, 1990; Reiser, 

1994] 

                                                 ( ) 2222 ,, bbzyx ppppp <<−                                               (2.2)  

                         
2

3 2 2

2 1b b
b

b b b

N eK
m cγ β

≡ << ,                                                     (2.3) 

Here,  px, py, and pz are the components of a beam particle’s momentum, Kb is the beam 

self-field perveance [Lawson, 1958], ( , , , ,b bN dxdydx dy f x y x y s)′ ′ ′= ′∫  is the number of 

particles per unit axial length, ( ) 1 221b bγ β
−

= −  is the relativistic mass factor, eb and mb are 
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the charge and rest mass of a beam particle, respectively, c is the speed of light in vacuo, 

and βb=Vb/c. The beam dynamics in the transverse phase space ( ), , ,x y x y′ ′  is described 

by the distribution function ( ), , , ,bf x y x y s′ ′ , where 0s s bctβ= +  is the effective axial 

coordinate, and x dx ds′ =  and y dy ds′ =  denote the dimensionless transverse 

velocities.  

The thin-beam approximation permits a Taylor expansion of the applied focusing 

fields about the beam axis at (x,y)=(0,0). The applied magnetic field of the focusing 

lattice can therefore be approximated as [Davidson, 1990] 

( )( )yq xêxq yzB ê +′B = ,                                                  (2.4)                                                   

for the case of an alternating-gradient quadrupole lattice [Fig. 2.1 (a)], and 

 ( ) ( )( xzzzsol xzBezB eB ˆ
2
1

+′−= )yyê ,                                        (2.5) 

for the case of a periodic-focusing solenoidal lattice [Fig. 2.1 (b)]. Here, 

( ) ( )( ) ( )( )0,00,0 xByBzB q
y

q
xq ∂∂=∂∂=′ , and ( ) ( )( )0,0zBzB sol

zz ∂∂=′ . It now follows that the 

applied focusing force is given by [Davidson, 1990; Davidson and Qin, 2001a] 

                                        [ ]yyxxbbbfoc ysxscm eeF ˆ)(ˆ)(22 κκβγ +−=

)(sx

,                              (2.6) 

where the corresponding lattice function κ and )(syκ  are specified by  

                                       ( ) ( ) ( ) ( )
2cm

sBe
sss

bbb

qb
qyx βγ

κκκ
′

=≡−= ,                                      (2.7)  

for the case of a quadrupole lattice, and 
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Fig. 2.1: Schematic of magnet sets producing (a) an alternating-gradient quadrupole field 

with axial periodicity S; and (b) a periodic focusing solenoidal field with axial 

periodicity S.  
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                                       ( ) ( ) ( ) ( ) 2

22 ⎟⎟
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⎞
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⎝

⎛
=≡=

cm
sBe

sss
bbb

zb
syx βγ

κκκ                                   (2.8) 

for the case of a solenoidal lattice. The condition of lattice periodicity implies  

                                       )()( Sss xx += κκ , )()( Sss yy += κκ .                                    (2.9) 

Finally, note that for the case of a quadrupole lattice ( ) 0=
sq sκ , and for the case of a 

solenoidal lattice ( ) 0>≡ sss s κκ , where 
0

0

1...
s S

s
s

S ds
+

−= ⋅⋅⋅∫  denotes the average of an s-

dependent function over one lattice period S.  

For an intense beam, the self-generated electric ( )ts ,xE  and magnetic ( )ts ,xB  

fields have significant influence on the transverse dynamics of beam particles. In many 

regimes of practical interest the self-generated electric and magnetic fields can be 

approximated by [Davidson and Qin, 2001a] 

                                              ,                                        ss φ−∇=E

                                             ,                                                      (2.10) z
s
z

s eA ˆ×∇=B

where the self-field potentials, ( )txs ,φ  and ( )txAs
z , , are determined self-consistently 

from 

                                                  ∫ ′′−=∇⊥ bb
s fydxdeπφ 42 , 

                                               ∫ ′′−=∇⊥ bbb
s
z fydxdVe

c
A π42 .                                        (2.11)     
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Equations (2.11) yield , and it follows that the transverse component of the 

Lorentz force associated with the beam self-fields is given approximately by 

s
b

s
zA φβ=

                                           ( ) φ
γ

β ⊥⊥ ∇−=×+= 2ˆ
b

bs
zb

s
b

s e
e BeEF                                 (2.12)              

The reduction factor 22 11 bb βγ −=  in Eq. (2.12) is associated with focusing effect of the 

self-magnetic field created by the beam current. Therefore, the effects of the net beam 

self-field are weak for the case of a highly relativistic beam. However, self-field effects 

can become much more pronounced for weakly relativistic or nonrelativistic beams.  

Introducing the normalized self-field potential ( ) ( )
3 2 2

, ,
, , b

b b b

e x y s
x y s

m c
φ

ψ
γ β

= , it is readily 

shown that the nonlinear Valsov-Maxwell equations describing the evolution of the beam 

distribution function, fb, is given approximately by [Davidson, 1990; Davidson and Qin 

2001a] 
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bbb κψκψ ,      (2.13) 

where the normalized self-field potential ( )zyx ,,ψ  is determined self-consistently from 

                                      
2 2

2 2

2 b
b

b

K dx dy f
x y N

πψ∂ ∂⎛ ⎞ ′ ′+ = −⎜ ⎟∂ ∂⎝ ⎠ ∫ .                                (2.14) 

Assuming that a perfectly conducting cylindrical wall is located at radius 

( )1 22 2
wr x y r= + = ,  Eq. (2.14) is to be solved subject to the boundary condition  

                                                          ( )1 ,
wr r

r
r

ψ θ
θ =

0∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
,                                      (2.15) 
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where ( ,r )θ  corresponds to the cylindrical polar coordinates defined by cosx r θ=  and 

siny r θ= .  

  

2.2.2 Smooth-Focusing Approximation 

Solutions to Eqs. (2.13)-(2.15) describe the self-consistent nonlinear evolution of an 

intense beam propagating through a periodic focusing lattice. Of particular practical 

importance are the “quasi-equilibrium” (matched) solutions in which the beam 

distribution function is periodic with axial periodicity length equal to the lattice period, 

i.e., ( ) ( ), , , , , , , ,b bf x y x y s S f x y x y s′ ′ ′ ′+ = . However, the oscillating nature of the 

focusing field provides a significant challenge for a detailed determination of matched 

quasi-equilibrium solutions. The problem can be significantly simplified if the so-called 

smooth-focusing approximation [Channell, 1999; Davidson et al., 1999; Davidson and 

Qin, 2001b], which describes the average focusing effect of the oscillating confining 

field, is used for analysis of the average dynamics of the beam particles. Within this 

approximation, the average external focusing force has the form 

                                           ( )yxsfbbb
sf
foc yxcm eeF ˆˆ22 +−= κβγ ,                                       (2.16) 

where the constant sfκ  is defined by [Davidson and Qin, 2001b] 

                                        ( ) ( )
ss

s

s
q

s

s
qsf sdssds

2

00
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫∫ κκκ ,                                  (2.17) 

for a quadrupole lattice, and  
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Fig. 2.2: Step-function model of a periodic lattice. The figure shows plots of periodic-

focusing coupling coefficients corresponding to (a) a quadrupole lattice κq(s), and  

(b) a solenoidal lattice, κs(s). For the case of a quadrupole lattice, such a configuration is 

often called a FODO transport lattice (acronym for focusing-off-defocusing-off). 
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                         ( ) ⎥⎦
⎤

⎢⎣
⎡ −+= ∫∫ 2

2

00 s

s

s s
s

s

s sssf dsds δκδκκκ ,                               (2.18) 

for a solenoidal lattice, where ( ) ( ) sss ss κκδκ −≡ .  

If  ( )q sκ ( )[ ss ]κ  has the form of a step-function lattice with constant amplitude 

 ˆqκ ( )sκ̂  and constant filling factor qη  ( )sη , as shown in Fig. 2.2, then it follows from 

Eqs. (2.17)-(2.18) that sfκ  is given to leading order by [Davidson and Qin, 2001a] 

                                              ⎟
⎠
⎞

⎜
⎝
⎛ −= ηκηκ

3
21ˆ

16
1 222 Sqqsf ,                                            (2.19) 

for the case of a quadrupole lattice, and  

                                         ( ) ( ) 2222 ˆ1121ˆ Sssssssf κηηκηκ −+= ,                                     (2.20) 

for the case of a solenoidal lattice. 

The smooth-focusing approximation significantly simplifies the analysis of the 

beam transverse dynamics. Indeed, the transverse smooth-focusing Hamiltonian defined 

by  [Davidson and Qin, 2001a; Davidson and Qin, 2001b] 

                         ( ) ( )0 2 2 21 1
2 2 sfH x y rκ ψ⊥ ′ ′= + + + r                                     (2.21) 

becomes an invariant of beam particles motion, and therefore the smooth-focusing 

approximation supports azimuthally symmetric equilibrium solutions for distribution 

functions of the form  

 ( )000
⊥= Hff bb                                                    (2.22) 

For future references, here we present several examples of beam equlibria: 
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Thermal Equilibrium [Davidson, 1990; Brown and Reiser, 1995]: 

( )
2 2 2 2

0 0 0ˆ expˆ ˆ2
b b b b b b

b b
b b

m c m cf H n H
T T

γ β γ β
π⊥ ⊥

⊥ ⊥

⎛ ⎞ ⎧
= −

⎫
⎨ ⎬⎜ ⎟

⎝ ⎠ ⎩ ⎭
,                    (2.23) 

Waterbag Equilibrium [Davidson and Chen, 1998; Davidson and Qin, 2001a]:  
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⎠
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⎝
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bbb
bb

βγ
π
βγ

,                       (2.24) 

Kapchinskij-Vladimirskij (KV) Equilibrium [Kapchinskij and Vladimirskij, 1959; 

Davidson, 1990] 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ⊥

⊥⊥ 22
000

ˆ

2
ˆ

cm
T

H
n

Hf
bbb

bb
b βγ

δ
π

.                              (2.25) 

Here,   is a positive constant with units of energy, and U(x) is the Heaviside step 

function defined by U(x)=0 for x<0, and U(x)=1 for x≥0. Assuming, without loss of 

generality, 

ˆ
bT⊥

( )0r 0ψ = = , it readily follows from Eqs. (2.23)-(2.25) and (2.21) that  is 

the on-axis number density.   

ˆbn

As evident from Eq. (2.16), within the smooth-focusing approximation, the beam 

particles exhibit oscillatory motion with axial periodicity length (smooth-focusing period) 

given by 2 sfπ κ  in the absence of the self-fields. Therefore, it is intuitively appealing 

to assume that the smooth-focusing approximation is valid if the lattice period is 

sufficiently small compared to the period of a smooth-focusing oscillation, i.e.,  

                                                          2sf Sκ π 1< .                                                (2.26)       
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Figure 2.3: Illustrative example of the exact single-particle orbit x(s)/x0 in a quadrupole 

FODO lattice (solid line) with filling factor 5.0=qη  and 61.0=Ssfκ . The dashed line 

corresponds to the smooth-focusing particle trajectory.  The initial conditions are 

specified by  and ( ) 00 xsx == ( ) 00 ==′ sx . 

 

Indeed, if the condition in Eq. (2.26) is satisfied, averaging over the rapid motion with 

length scale S, can provide an effective description of the average transverse dynamics of 

a beam particle. Detailed analysis of the validity limits of the smooth-focusing 

approximation is considered in References [Davidson et al., 1999; Dorf et al., 2009a; 

Startsev et al., 2009], and also later in this chapter. Here, as an illustrative example, we 

show the vacuum solution (obtained in the absence of self-fields) for the transverse 

motion of a single particle, making use of the smooth-focusing approximation, and taking 

into account the oscillating nature of the applied focusing force (Fig. 2.3). 
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The advance in phase of the slow transverse oscillation that the particle undergoes 

per oscillation period S (see Fig. 2.3) is called the phase advance. It is evident for the 

smooth-focusing particle trajectory that sf
v sf Sσ κ= , and for the illustrative parameters 

in Fig. 2.3 the smooth-focusing vacuum phase advance corresponds to . If the 

net defocusing effect of the self-field force is taken into account, the period of the particle 

motion increases, and the particle phase advance 

035=sf
vσ

σ  decreases compared to its vacuum 

value, vσ . Therefore, the ratio vσσ  is often used as a normalized measure of the beam 

self-field strength. Another convenient parameter describing normalized beam intensity, 

which is often used in beam and nonneutral plasma physics is given by [Davidson and 

Qin, 2001a] 

                                                       22

2

ˆ2

ˆ

qb

pb
bs

ωγ
ω

= ,                                                    (2.27) 

where ( )1 22ˆ ˆ4pb b b b bn e mω π γ≡  is the relativistic plasma frequency,  is the on-axis 

plasma number density, and 

ˆbn

( ) 2122ˆ cbsfq βκω ≡  is the average transverse focusing 

frequency associated with the (smooth-focusing) lattice coefficient sfκ . 

 

2.2.3 Envelope Equations for a Continuous Beam 

Determining solutions to Eqs. (2.13)-(2.15), which describe the detailed self-consistent 

nonlinear evolution of an intense beam propagating through a periodic focusing field, can 

often require significant computational effort. However, for the case where the beam 
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distribution is close to a beam quasi-equilibrium, the evolution of the characteristic 

transverse beam dimensions ( ) 2122 xsa = and ( ) 2122 ysb = can be approximately 

described by the simplified envelope equations [Reiser, 1994; Davidson and Qin, 2001a] 

                              ( ) ( ) 3

2

2

2 2
a

a
baa

K
sa

ds
d b

x
εκ =⎥

⎦

⎤
⎢
⎣

⎡
+

−+ ,                                   (2.28)       

                              ( ) ( ) 3

2

2

2 2
b

b
bab

K
sb

ds
d b

y
εκ =⎥⎦

⎤
⎢⎣
⎡

+
−+ ,                                     (2.29)   

where we have assumed x yε ε= ≡ ε , and the transverse emittance, xε , is defined by   

                              ( ) ( ) ( )( ) 22 24x x x x x x x x xε ′ ′ ′ ′= − − − − − .             (2.30)  

Here, 1
bN dxdydx dy fbχ χ− ′ ′= ∫  denotes the statistical average of a phase function χ  

over the beam distribution function, bf . Note that the transverse beam emittance defined 

in Eq. (2.30) corresponds to an average statistical area of the transverse beam phase-

space. For the special case of a Kapchinskij-Vladimirskij (KV) distribution [Eq.(2.25)], 

the beam density is uniformly distributed within the elliptical cross-section 

( ) ( )2 2 2 20 x a s y b s≤ +⎡ 1≤⎣ ⎤⎦ , the transverse beam emittance is conserved, 

( )s constε = , and Eqs. (2.28)-(2.29) describe the exact evolution of the outer edge ( )a b,  

of the beam envelope [Davidson and Qin, 2001a].  

The matched solutions to the envelope equations (2.28)-(2.29), satisfying 

( ) ( )a s S a s+ =  and ( ) ( )b s S b s+ = , can be used for calculation of the phase advances 
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[Davidson and Qin, 2001a]. The vacuum phase advance, vσ  describing the normalized 

lattice strength can be expressed as  

                         
( ) ( )

0 0

0 0

2 20
lim lim

b b

s S s S

v K K
s s

ds
a s b

σ ε ε
+ +

→ →
≡ =∫ 0

ds
s∫ ,                                 (2.31)  

and the depressed phase advance σ  including self-field effects is given by  

            
( ) ( )

0 0

0 0

2

s S s S

s s

ds ds
a s b s

σ ε ε
+ +

≡ =∫ ∫ 2 ,                                          (2.32) 

Within the smooth-focusing approximation the envelope equations (2.28)-(2.29) 

have the following form  
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−+ .                                     (2.34) 

The matched smooth-focusing solutions are given by 0)()( brsbsa == , and it is 

straightforward to show that in the smooth-focusing approximation the phase advances 

are given by [Davidson and Qin, 2001a] 

                                  sf
v sf Sσ κ= ,                                                  (2.35)  

and  

                                              

1 22
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For the case of an azimuthally symmetric beam, the equilibrium beam radius 0br  

determined from Eqs. (2.33) and (2.34) and dsbddsad == 0 , and 0)()( brsbsa == , is 

given by the solution to the radial force balance equation 

                                         3
0

2

02
0 b

b
b

b
sf r

r
r
K εκ =⎟⎟

⎠

⎞
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⎝

⎛
− .                                             (2.37) 

Equation (2.37) represents the balance between the applied lattice focusing field, the 

beam self-fields, and the effective “thermal pressure” associated with the transverse 

velocity spread of the beam particles. It is readily seen from Eq. (2.37) that the 

dimensionless parameter 22
0 εbbrK  can be used as a normalized measure of the self-field 

strength with 122
0 <<εbbrK  corresponding to an emittance-dominated beam with 

negligible self-field force, and 122
0 >>εbbrK   corresponding to an intense, space-charge-

dominated beam with very small transverse emittance.  

 

2.2.4 Halo Particle Production by a Beam Mismatch 

In order to maintain high beam quality and avoid activation of the chamber wall, it is 

important to minimize the transverse excursion and number of halo particles ejected from 

the beam core. Mechanisms that can cause the production of halo particles range from 

beam mismatch and envelope instabilities [Gluckstern, 1994; Gluckstern et at., 1998; 

Wangler et al., 1998; Allen et al., 2002], to collective excitations in the beam interior 

[Strasburg and Davidson 2000; Strasburg and Davidson 2001]. Here, we present brief 

overview of the beam mismatch mechanism developed by Gluckstern [Gluckstern, 1994], 
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in which halo particles gain their energies by means of parametric resonant interaction 

with the self-field perturbations produced by a beam mismatch.  

 For simplicity, we make use of the smooth-focusing approximation, and a more 

detailed analysis taking into account the effects of the oscillating focusing field is 

presented later in this chapter and also in Chapter 3. Assuming small-signal perturbations 

0, brba <<δδ , we express ara b δ+= 0  and brb b δ+= 0 . It is straightforward to show that 

the envelope equations (2.33)-(2.34) support mismatch oscillations around the 

equilibrium beam radius 0br  with normal mode oscillation periods determined by 

[Struckmeier and Reiser, 1984; Lund and Bukh, 2004] 

( ) ( )22 22
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SL
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π
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=                                                (2.38) 

( ) ( )22 3

2
sfsf

v

sf
q

SL
σσ

π
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= .                                               (2.39) 

Here,  corresponds to the symmetric (even) mode with sf
sL ba δδ = , and  corresponds 

to the  quadrupole (odd) mode with 

sf
qL

ba δδ −= . The quadrupole and symmetric modes 

represent collective transverse oscillations of the charged particle beam envelope. On the 

other hand, due to the nonlinear transverse dependence of the beam self-fields near and 

beyond the beam edge, individual beam particles can oscillate about and through the 

beam core with energy-dependent betatron frequency. Collective self-field perturbations 

produce modulation of the betatron frequency, and therefore parametric resonant  
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Figure 2.4: A snapshot of the radial beam ( )rr ′,  phase space for the case of a space-

charge-dominated beam with 9999.0=bs ( )25.0=sf
v

sf σσ . The halo is produced by a 

mismatch oscillations with amplitude 03.0~ bb rrδ . The results are obtained with WARP 

simulations, using a smooth-focusing model. The dashed lines schematically illustrate 

different phase-space trajectories, corresponding to the Poincare sections with strobe 

time taken at the minimum of the beam radius. The “O-point” corresponds to a fixed 

stable point of 2:1 (fundamental) parametric resonance.  
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interaction between the edge beam particles and the collective modes may occur. In 

particular, beam particles, which are close to fundamental resonance with the collective 

mismatch oscillation, can gain transverse energy and populate the halo region 

[Gluckstern, 1994].  

 A snapshot of the radial beam ( )rr ′,  phase space shown in Fig.  2.4. illustrates the 

resonance halo structure, produced by an azimuthally symmetric mismatch oscillations 

with amplitude 03.0~ bb rrδ . The beam intensity corresponds to a space-charge-dominated 

limit with 9999.0=bs ( )25.0=sf
v

sf σσ ; and the numerical results for this illustrative 

example are obtained using the WARP particle-in-cell (PIC) code [Friedman et al., 1992; 

Grote et al., 1998]. The dashed lines schematically illustrate different phase-space 

trajectories, corresponding to the Poincare sections with the strobe time taken to coincide 

with the minimum of the beam radius. Note that most of the halo particles travel near the 

separatrix, which separates stable core trajectories from trajectories around the “O-point”, 

corresponding to the stable fixed point of the parametric resonance. 

 

2.2.5 Intense Beam Transport Stability Limits 

Understanding stability properties of an intense charged particle beam propagating in a 

periodic focusing lattice is a critical problem in intense beam transport, especially in 

heavy ion fusion, which relies on high-brightness and high-current heavy ion beams to 

deliver high power to the target. An extensive scientific effort over the past several 

decades has revealed a wide range of collective unstable processes degrading beam 
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quality, ranging from higher-order kinetic instabilities internal to the beam to low-order 

beam envelope instabilities. A well-known example of a kinetically unstable distribution 

is the Kapchinskij-Vladimirskij (KV) distribution, where hypershell structure of the 

energy distribution provides the source of free energy to drive higher-order collective 

instabilities internal to the beam [Hofmann et al., 1983; Davidson and Qin, 2001a]. As a 

result, the KV distribution becomes unstable at sufficiently high beam intensities. On the 

other hand the low-order evolution of the beam edge envelope [Eqs (2.28)-(2.29)], can 

also become unstable in the region of high values of vacuum phase advances due to the 

parametric resonance coupling of mismatch oscillations to the periodic lattice structure 

(Fig. 2.5) [Struckmeier and Reiser, 1984; Lund and Bukh, 2004].   

Over two decades ago, another class of unstable higher-order resonance processes 

attributed to beam space-charge effects was observed experimentally [Tiefenback et al., 

1985; Tiefenback, 1986]. It was demonstrated that the quality of space-charge-dominated 

beam transport in alternating-gradient quadrupole focusing lattices is significantly 

degraded in the region where ( ) 232 222 πσσ >−v  (Fig. 2.5). Although, this criterion has 

been extensively used in the practical design of focusing systems, the origin of this limit 

had not been fully understood until recently, when a plausible theoretical model has been 

proposed [Lund and Chawla, 2006]. For future reference, we briefly summarize the 

properties of this space-charge transport limit. 

 Detailed numerical studies [Lund and Chawla, 2006] revealed the robustness of 

this transport limit, demonstrating that various choices of initial beam distribution are 
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Figure 2.5: (Color) Beam stability regions in a FODO quadrupole lattice. The blue 

region illustrates band  of strong parametric evelope instability. The red region 

corresponds to the higer-order resonance instability [Lund and Chawla, 2006]. 

subject to strong growth in statistical phase-space area (emittance growth), when 

( )22 2 2 3 2vacσ σ π− > . Figure 2.6 shows a significant increase in the beam transverse 

emittance for the cases where the initial beam distribution is specified by the thermal 

equilibrium [Eq. (2.23)], waterbag [Eq. (2.24)], and semi-Gaussian (that is Gaussian in 

velocity and has a uniform distribution in position) distribution functions. 

In order to probe the beam microstate, the particle-core model using a KV core 

was effectively utilized [Lund and Chawla, 2006]. The particle-core model is used to 

study a single particle dynamics governed by the applied lattice focusing fields and the 

self-fields produced by the oscillating beam core, whose evolution is described by the  
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Figure 2.6: (Color) PIC simulations of the plane-averaged emittance growth for different 

initial distributions in a FODO quadrupole channel ( ,0100=vσ 2.0=vacσσ , 5.0=qη ). 

[Lund and Chawla, 2006]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: (Color) Core-particle Poincare phase-spaces for 5.0=qη , , 

(a)

0100=vσ

67.0=vacσσ , and (b) 2.0=vacσσ . Results are obtained using the particle-core 

model with a KV core. The extent of the core is plotted in red, and rx corresponds to the 

outer edge of the beam envelope. [Lund and Chawla, 2006]. 
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envelope equations [Eqs. (2.28)-(2.29)]. Typically, the density distribution within the 

beam core is assumed to be uniform, which corresponds to a matched KV quasi-

equilibrium. Figure 2.7 illustrates Poincare phase space plots obtained with the particle-

core model for the cases of a moderate intensity beam with 67.0=vσσ  and  

[Fig. 2.7(a)], and a space-charge-dominated beam with 

0100=vσ

2.0=vσσ  and [Fig. 

2.7(b)]. 

0100=vσ

It is readily seen from Fig. 2.7 that for the unstable case [Fig. 2.7(b)], the core is 

surrounded by a chaotic sea region connected to a large 4:1 resonance structure that 

ultimately limits the particle oscillation amplitude. Therefore, near-edge particles can 

diffuse outside the beam core sufficiently to partake in the higher-order resonances, thus 

providing emittance growth. In contrast, for the case of a moderate intensity beam (stable 

case) [Fig. 2.7(a)] the particles remain close to the matched envelope. Note the large 

change in scale between the stable and unstable plots. Stability thresholds based on this 

resonance picture were found to be in approximate agreement with experiment and 

simulations [Lund and Chawla, 2006].  

Finally, it should be noted that the effects of beam space-charge can also 

significantly modify the stability properties of beam transport at moderately weak beam 

intensities. In particular, it has recently been demonstrated that a similar 4:1 resonance 

structure appears, and associated higher-order effects can dominate over the envelope 

instability for the case of a lower intensity beam with 8.0~vσσ  [Jeon et al., 2009; 

Groening et al., 2009]. 
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2.3 Adiabatic Formation of a Matched-Beam 

Distribution for an Alternating-Gradient Quadrupole 

Lattice 

 

This section develops a numerical method for the formation of a quasi-equilibrium beam 

distribution matched to an alternating-gradient quadrupole focusing lattice by means of 

the adiabatic turn-on of the oscillating focusing field. The motivation for this work and a 

summary of previous studies are described in Sec. 2.3.1. In Sec. 2.3.2 the method is 

investigated for a wide range of transport system parameters, making use of particle-in-

cell simulations, and quiescent beam propagation for over a hundred of lattice periods is 

demonstrated. In Sec. 2.3.3, properties of the quasi-equilibrium matched-beam 

distribution are investigated, and compared with the predictions of the analytical theory 

developed by Davidson et al. [Davidson et al., 1999]. Finally, the analysis is extended to 

the case of a periodic-focusing solenoidal lattice, and various choices of the initial beam 

distribution in Sec. 2.3.4.  

 

2.3.1 Motivation  

As noted earlier, the equilibrium and stability properties of an intense charged particle 

beam propagating through an alternating-gradient quadrupole focusing lattice are of 

particular importance for a wide range of applications to high energy and nuclear physics, 
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ion-beam-driven high energy density physics and heavy ion fusion, and nuclear waste 

transmutation [Chao, 1993; Reiser, 1994; Davidson and Qin, 2001a]. It is therefore 

important to develop an improved theoretical understanding of intense beam transport. 

Although the nonlinear effects of the intense self-fields produced by the beam space-

charge provide a significant challenge for analytical studies, various analytical models 

have been developed to describe an equilibrium beam distribution matched to an 

alternating-gradient quadrupole focusing lattice [Channell, 1999; Davidson et al, 1999; 

Davidson and Qin, 2001a]. To validate prospective models it is particularly important to 

develop numerical techniques allowing for the formation of a quasi-equilibrium beam 

distribution. Furthermore, numerical schemes describing the quiescent loading of a beam 

distribution into a transport lattice and minimizing the deleterious effects of beam 

mismatch are of particular importance for detailed numerical studies of various collective 

processes and instabilities. In this section, we present a numerical method for the 

formation of a quasi-equilibrium beam distribution matched to an alternating-gradient 

quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing 

field [Dorf et al., 2009a; Dorf et al., 2009b]. 

 The approach of adiabatic turn-on of the oscillating focusing field has been 

previously investigated by means of nonlinear δF simulations by Stoltz et al. for the case 

of a periodic focusing solenoidal lattice [Stoltz et al., 1999]. In that work the total 

distribution function Fb of a beam propagating through a periodic focusing soleniodal 

field with coupling coefficient ( ) ( )sSs ss κκ =+  is divided into a zero-order part ( )0
bF  
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that propagates through the average focusing field consts =κ , plus a perturbation ( )bFδ , 

which evolves nonlinearly in the zero-order and perturbed field configurations. It was 

demonstrated that for the case where the oscillatory component of the coupling 

coefficient, ( ) ( ) sss ss κκδκ −≡ , turns on adiabatically over many periods of the focusing 

lattice, the amplitude of the mismatch oscillations reduces by more than an order-of-

magnitude compared to the case where the field oscillation is turned on suddenly. The 

technique reported in [Stoltz et al., 1999], however, can not be applied to the case of an 

alternating-gradient quadrupole lattice, because the average component of the focusing 

field vanishes.  

Here we generalize the method of adiabatic formation of a matched beam 

distribution to the case of an alternating-gradient quadripole lattice [Dorf et al., 2009a]. 

In this generalized approach, an equilibrium beam distribution is initially loaded into a 

uniform focusing channel with the focusing field given by the smooth-focusing 

approximation, which describes the average effects of the alternating-gradient lattice 

[Channell, 1999; Davidson et al., 2001b; Startsev et al., 2009]. The oscillating 

quadrupole focusing field is then adiabatically turned on as the amplitude of the uniform 

field component is adjusted to maintain the average (smooth-focusing) effects of the total 

focusing field fixed. It is demonstrated that the generalized method allows for quiescent 

formation of a quasi-equilibrium beam distribution matched to a quadrupole lattice for a 

broad range of beam intensities and vacuum phase advances describing the strength of 

the oscillating focusing field. For the case of sufficiently large values of the vacuum 
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phase advance, the deviations of the beam distribution function from the initial state can 

be significant. Therefore, in the present analysis we use the full particle-in-cell code 

WARP [Friedman et al., 1992; Grote et al., 1998] to perform the numerical simulations. 

However, we note that the formalism presented here will also provide a useful approach 

for initializing the choice of self-consistent quasi-equilibrium distributions 0f  in 

nonlinear Fδ  simulations for intense beam propagation in periodic-focusing lattices [Qin 

et al., 2007; Startsev et al., 2007; Qin et al., 2008].  

Properties of the quasi-equilibrium matched beam distribution are investigated in the 

present analysis. In particular, self-similar evolution of the transverse beam density 

profile is observed. Furthermore, the density profile of the beam distribution matched to 

the quadrupole lattice is found to be self-similar to the initial density profile 

corresponding to the smooth-focusing equilibrium distribution. These observations are 

consistent with predictions of the Hamiltonian averaging theory developed by Davidson 

et al. [Davidson et al., 1999]. The range of validity of the self-similarity feature is also 

investigated.  

As noted earlier in this chapter, a mismatch between the beam and the transport 

lattice can produce halo particles, which may cause degradation of the beam quality and 

activation of the chamber wall [Gluckstern, 1994; Allen et al., 2002]. For intense beam 

accelerators and transport systems it is increasingly important to suppress beam halo 

production; therefore, quiescent beam matching from the source region into the transport 

lattice is of particular practical importance [Batygin, 1996; Prost et al., 2005; Chung et al, 
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2007]. Note that the method presented in this section for adiabatic formation of a 

matched beam distribution may possibly be utilized in the design of next-generation 

transport systems. Indeed, an intense beam produced by an emitting source typically has 

an azimuthally symmetric envelope with a negligible convergence (divergence) angle and 

can be easily matched to a uniform focusing channel. Then, a matching section where the 

oscillating quadrupole field is turned on adiabatically can be used to provide quiescent 

beam matching to the transport lattice. Conditions on the length of the adiabatic turn-on 

section required to assure that matching is maintained are discussed.   

 

2.3.2 Quiescent Loading of a Matched-Beam Distribution for a 

Quadrupole Lattice  

In this section we describe the numerical scheme that allows for the quiescent formation 

of a quasi-equilibrium beam distribution matched to an alternating-gradient quadrupole 

lattice [Dorf et al., 2009a].  The scheme is then examined for a range of values of beam 

intensity and lattice vacuum phase advance, making use of particle-in-cell numerical 

simulations performed with the 2D slice version of the WARP code. The scheme works 

as follows. First, the oscillating focusing field of the quadrupole lattice is replaced with 

the smooth-focusing force given by Eqs. (2.16) and (2.17), and the thermal equilibrium 

beam distribution [Eq. (2.23)]  

                   ( )
2 2 2 2

0 0 0ˆ expˆ ˆ2
b b b b b b

b b
b b

m c m cf H n H
T T

γ β γ β
π⊥ ⊥

⊥ ⊥

⎛ ⎞ ⎧
= −

⎫
⎨ ⎬⎜ ⎟

⎝ ⎠ ⎩ ⎭
,                        (2.40) 
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is loaded into the uniform focusing channel. Then, the oscillating quadrupole focusing 

force in Eq. (2.6) is adiabatically turned on, and the uniform focusing component is 

correspondingly adjusted to maintain the smooth-focusing effect of the total focusing 

field fixed. That is, the total focusing force acting on the beam particles is specified by  

                         ( ) ( )[ ] ( ) ( ) ( )( )yxqyxsf
q
foc yxssVyxsVsF eeee ˆˆˆˆ12 −−+−= κκ ,                 (2.41) 

where V(s) is a function describing the smooth transition of the focusing field in the 

matching section that satisfies ( )0V s 0= =  and  ( ) 1V s = ∞ = . Here, we adopt a simple 

model in which V(s) varies according to  

                                ( )
1 1

1 2 1 21 exp 1 exp
tr tr

L s L
V s

L L

− −−⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
,                     (2.42) 

where 1 22L  is the length of the matching section, and  is the characteristic length scale 

for variation of V(s) from zero to unity, and L1/2>>Ltr>>S is assumed. We also assume a 

step-function (FODO) model of a quadrupole lattice, for which the corresponding 

smooth-focusing lattice coefficient, 

trL

sfκ , in Eq. (2.41) is given approximately by Eq. 

(2.19).  

A plot of the transition function V(s) along with the corresponding evolution of 

the normalized rms envelope beam dimension 
1 22

rmsX x≡  is shown in Fig 2.8. For 

future reference, here we define Xmax as the beam x-envelope local maximum value 

calculated at the end of each focusing cell. Detailed results of the numerical simulations 
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Figure 2.8: (Color) Evolution of a space-charge-dominated beam with 2 2
02 1b bK R ε =

 

5.3 . 

Phase advances are given by  and 065.9vσ = 0.260vσ σ =

 

. The corresponding smooth-

focusing parameters are 061.8 , sf
vσ = 0.247sf sf

vσ σ =  , 9999.0=bs ; and 402 21 =SL

 

 

 

. The 

figures show plots of (a) the evolution of the rms beam envelope, Xrms, versus number of 

lattice periods, Np, (b) the lattice transition function V(s), and (c) the evolution of the  

rms beam envelope in the final state (blue), and a schematic of the corresponding FODO 

lattice coefficient κq(s) (pink). 

 

 



2.3. Adiabatic Formation of a Matched-Beam Distribution 54

for the illustrative parameters corresponding to the cases of a space-charge-dominated 

beam with 2 2
02 15.3b bK R ε =  ( 0.26vσ σ ≈ ), and an emittance-dominated beam with 

2 2
02 0.2b bK R ε =  ( 0.91vσ σ ≈ ), are shown in Figs. 2.9-2.14 [Dorf et al., 2009a]. Here, 

( )2 2 2
0 0bR x y≡ + , is the mean-square beam radius, where 1 0

0 b bN dxdydx dy fχ χ− ′ ′= ∫  

denotes the statistical average of a phase function χ  over the initial smooth-focusing 

beam distribution function 0
bf  in Eq. (2.40). Note that for the case of a KV distribution 

22
0

2
0 bb rR = , where 0br  is the outer edge of the beam equilibrium envelope [Eq. (2.37)]. 

For each value of the beam intensity, the following values of the lattice vacuum phase 

advance have been considered: , and . The 

corresponding values of the phase advances (

044.8vσ = 065.9v =σ 087.5vσ =

sf
vσ , sfσ ), and normalized beam intensity sb, 

calculated for the initial beam equilibrium in the smooth-focusing channel are indicated 

in the captions to Figs. 2.9-2.14. Other important parameters of the numerical simulations 

correspond to filling factor 3.0=qη  and wall radius rw=4Rb0; the total number of 

macroparticles used in the simulation is , and the total number of grid cells 

in the x and y directions is 

6104×=ptN

128x yN N= = . To assure that matching is approximately 

maintained in the matching section, we choose 1 2 5trL L =  and take sf
sLL 521 = , where 

 is the smooth-focusing period of the linear mismatched oscillations defined in Eq. 

(2.38). The ratio of the length of the matching section to the lattice period, 

sf
sL

SL 212 , is 

indicated in the captions to Figs. 2.9-2.14. It value depends on the value of the phase 
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advances, and for the considered illustrative parameters it varies from 242 21 ≈SL  for 

 and 087.5vσ = 91.0≈vacσσ  to 512 21 ≈SL  for  and 044.8vσ = 0.26vσ σ ≈ . 

In each of Figs. 2.9-2.14, the frames in (a) illustrate the discrete evolution of the 

normalized rms envelope x-dimension, 
1 22

rmsX x≡  , calculated at the end of each 

focusing cell where the beam x-envelope has a local maximum value. Such a graphical 

representation for a matched beam would be a horizontal straight line; therefore (a) 

provides a convenient representation of beam mismatch. The frames in (b) show fast-

Fourier transform (FFT) plots of Xrms(s), where the continuous evolution of Xrms(s) is used 

for the FFT calculations. Finally, the frames in (c) show the evolution of the x-component 

of the normalized perturbations in transverse beam emittance, 

( ) ( )[ ] ( )0 0 0s( )x x x xs s sδε ε ε ε ε≡ − = = . Along with the evolution of the beam 

parameters for the case of adiabatic turn-on of V(s) shown by the solid curves, Figs. 2.9-

2.14 also show the evolution of beam parameters (dashed curves) for the case where the 

initial distribution is loaded instantaneously into an alternating-gradient quadrupole 

lattice with  [Lund et al., 2009].  ( ) 1V s ≡

To load the particles for this case, first the matched solutions to the envelope 

equations (2.28)-(2.29) are found. Then, the smooth-focusing thermal equilibrium 

distribution that satisfies ( ) ( )sbsaRb ′=′= 222
02  is calculated. Here  denotes the 

location inside the focusing cell where 

s′

( ) ( )sbsa ′=′ . Finally, the positions and velocities  
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Figure 2.9: Evolution of a space-charge-dominated beam with 2 2
02 . Phase 

advances are given by  and 

 

 

 

 

 

15.3b bK R ε =

044.8vσ = 0.255vσ σ = . The corresponding smooth-focusing 

parameters are , 043.3sf
vσ = 0.247sf sf

vσ σ = , 9999.0=bs ; and 1.572 21 =SL . The figures 

show plots of: (a) max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and 

Xmax corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT 

of Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading.  
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Figure 2.10: Evolution of an emittance-dominated beam with 2 2
02 b bK R ε = 0.2 . Phase 

advances are given by  and 044.8vσ = 0.913vσ σ = . The corresponding smooth-focusing 

parameters are , 0

 

 

43.3sf
vσ = 0.91σ σ 0.32ssf sf

v = , b ; and 5.43= 2 21 SL = . The figures show 

plots of: (a) max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and Xmax 

corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT of 

Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading. 
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 Figure 2.11: Evolution of a space-charge-dominated beam with 2 2
02 b bK R ε =

 

 

 

 

 

 

15.3 . Phase 

advances are given by  and 065.9vσ = 0.260vσ σ = . The corresponding smooth-focusing 

parameters are , 061.8sf
vσ = 0.247sf sf

vσ σ =  , 9999.0=bs ; and 402 21 =SL . The figures 

show plots of: (a) max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and 

Xmax corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT 

of Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading. 
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 Figure 2.12: Evolution of an emittance-dominated beam with 2 2
02 b bK R ε =

 

 

 

 

 

 

0.2 . Phase 

advances are given by  and 065.9vσ = 0.915vσ σ = . The corresponding smooth-focusing 

parameters are , 061.8sf
vσ = 0.91sf sf

vσ σ = , 0.32bs = ; and 5.302 21 =SL . The figures show 

plots of: (a) max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and Xmax 

corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT of 

Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading. 
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Fig. 2.13: Evolution of a space-charge-dominated beam with 2 2
02 . Phase 

advances are given by  and 

 

 

15.3b bK R ε =

087.5vσ = 0.265vσ σ = . The corresponding smooth-focusing 

parameters are , 078.7sf
vσ = 0.247sf sf

vσ σ =  , 9999.0=bs ; and 4.312 . The figures 

show plots of: (a) 

 

 

 

21 =SL

max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and 

Xmax corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT 

of Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading. 
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 Figure 2.14: Evolution of an emittance-dominated beam with 2 2
02 b bK R ε =

 

 

 

 

 

 

0.2 . Phase 

advances are given by  and 087.5vσ = 0.918vσ σ = . The corresponding smooth-focusing 

parameters are , 078.7sf
vσ = 0.91sf sf

vσ σ = , 0.32bs = ; and 9.232 21 =SL . The figures show 

plots of: (a) max 0bX X  versus number of lattice periods, Np, where 1 22
0 0bX x= , and Xmax 

corresponds to the value of Xrms calculated at the end of the focusing cell; (b) FFT of 

Xrms(s) versus kS/2π; and (c) normalized perturbed emittance δεx(s)/ε0 versus s/S. The 

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves 

correspond to the case of an instantaneous beam loading. 
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of the beam particles are linearly scaled, providing the size and the slope of the beam 

envelope to be consistent with the matched solution to the envelope equations (2.28)-

(2.29). Note that the frames in (a) in Figs. 2.9-2.14 illustrate the initial evolution of the 

beam mismatch for the case of instantaneous loading, and the evolution near the exit of 

the matching section, 212Ls > , for the case of adiabatic formation of a beam quasi-

equilibrium. Correspondingly, the averages for the FFT calculations are from 0s =  to 

 for the case of instantaneous loading, and from  100s = S 1 22s L=  to 1 22 100Ss L= +  for 

the case of adiabatic turn-on of V(s). Note that the 100-lattice-period window for the FFT 

averages is found to be sufficient for present purposes. It allows us to resolve the 

difference between the even (symmetric) and the odd (quadrupole) mismatch envelope 

mode frequencies as evident in Figs. 2.9, 2.11, and 2.13. Furthermore, for the case of an 

emittance-dominated beam the mismatch oscillations are significantly damped after ~100 

lattice periods. Therefore an increase in the FFT-average window would result in noise 

integration.  

 It is evident from Figs. 2.9-2.14, for the case of adiabatic formation of the beam 

quasi-equilibrium, that the amplitude of the mismatch oscillations is reduced compared to 

the case of instantaneous loading of the beam distribution. Furthermore, for the case of 

adiabatic formation, note that the beam mismatch is attributed primarily to the numerical 

imprecision in loading the initial smooth-focusing equilibrium distribution, and therefore 

can be further suppressed if a finer grid structure, and larger number of macroparticles 

are used in the simulations. In contrast, the numerical scheme for instantaneous loading 
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cannot provide the detailed quasi-equilibrium intrinsically. Note that mismatch relaxation 

is more pronounced for the case of an emittance-dominated beam compared to the case of 

a space-charge-dominated beam, which is consistent with the studies in [Variale, 2001; 

Dorf et al., 2006; Dorf et al., 2007]. Of particular interest is the case of intense beam 

propagation with 2 2
02 15.3 9999.0b bK R ε =  ( =bs

87.5vσ =

) through the quadrupole lattice with 

moderately high vacuum phase advance ( ). In this case, appreciable emittance 

growth is evident even for adiabatic formation of the beam distribution [Fig. 2.13(c)]. 

The simulations demonstrate that the beam is well-matched to the lattice for over 450 

lattice periods, and therefore the increase in the beam emittance cannot be attributed to 

mismatch relaxation. A plausible explanation of this phenomena can be attributed to 

“higher-order resonance” effects, which limit intense beam transport in the region where 

0

( )22 2 2 3 2vacσ σ π− >  [Tiefenback et al., 1985; Tiefenback, 1986] as proposed in [Lund 

and Chawla, 2006]. As the system parameters approach this stability limit, higher-order 

resonances appear near the beam core in the transverse phase-space (Sec. 2.2.5); 

therefore, near-edge particles can diffuse outside the beam core sufficiently to participate 

in the resonances, thus providing emittance growth [Lund and Chawla, 2006].  

 As noted earlier, the matching section that provides adiabatic lattice transition 

from a uniform channel to an alternating-gradient quadrupole lattice could in principle be 

utilized to provide beam matching from the source into the quadrupole lattice for next-

generation accelerators and transport systems. It is therefore of particular practical 

importance to estimate how smooth (adiabatic) the lattice transition should be to assure  
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 Figure 2.15: (Color) Degree of beam m

 

 

ismatch at the end of the matching section plotted 

versus the length of the matching section. Here, the vacuum phase advance is , 

and the two cases correspond to normalized intensity 

065.9vσ =

2 2
02 1b bK R ε =

 

5.3  and 9999.0=bs  

(blue curve), and 2 2
02 0.b bK R ε = 2 0.32b and s =  (pink curve). 

that matching is maintained during the transition [Dorf et al., 2009a]. Figure 2.15 

illustrates the degree of beam mismatch, mδ , calculated at the end of the matching section 

( 1 22s L> ) for different values of the matching section length, 212L , for the case where 

the vacuum phase advance of the lattice vσ  is 65.90.  Here, we measure the beam 

mismatch, mδ , by the ratio of the maximum to minimum values of 
1 22

rmsX x≡  

calculated at the end of each focusing cell within the first two periods of the smooth-

focusing mismatch oscillationsafter the beam leaves the matching section, i.e., within the 

range sfLLs<L 222 2121 +< . Recall that the beam rms envelope x-dimension, Xrms, has a 

local maximum at the end of a focusing cell. It is readily seen from Fig. 2.15 that a 
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moderate length of the matching section, ~10 lattice periods, is sufficient to assure that 

the beam is well-matched to the lattice. Furthermore, a longer matching section is 

required for higher beam intensities. It should be noted that these observations are 

consistent with the results of detailed numerical and experimental studies in [Dorf et al., 

2006; Gilson et al., 2007] of the beam response to the smooth variations of the lattice 

amplitude.  

 

2.3.3 Self-Similar Evolution of the Beam Density Profile 

In the previous section we demonstrated that the formation of a quasi-equilibrium beam 

distribution matched to an alternating-gradient quadrupole focusing lattice can be 

achieved in the numerical simulations by means of the adiabatic turn-on of the oscillating 

focusing field. In this section we investigate properties of the matched beam distribution 

in order to compare results of the numerical simulations with predictions of the analytical 

theory developed by Davidson et al. [Davidson et al., 1999]. Furthermore, we make use 

of the numerical simulations to investigate the validity limits of the theory. The analytical 

model developed in Refs. [Davidson et al., 1999; Startsev et al., 2009] applies 

Hamiltonian averaging techniques to the nonlinear Vlasov-Maxwell equations (2.13)-

(2.14), assuming sufficiently small vacuum phase advance, vσ .  It has been demonstrated 

that the evolution of the beam density profile for the case of intense beam propagation 

through an alternating gradient-quadroupole lattice is given by [Davidson et al, 1999; 

Davidson and Qin, 2001a] 
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correct to order , where 3ε̂ πσε 2ˆ v≡   is the expansion parameter of the theory. Here, 

 is the beam density profile corresponding to an arbitrary smooth-focusing 

equilibrium, and 
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where ( ) ( )sXsa rms2=  and ( ) ( )sYsb rms2= .  Note that the theory assumes that the 

conducting wall is sufficiently far removed from the beam ( )∞→wr .   

 We now investigate properties of the quasi-equilibrium beam density profiles 

obtained in the numerical simulations for the illustrative parameters considered in Sec. 

2.3.2, and compare it with predictions of the analytical theory given by Eqs. (2.43) and 

(2.45) [Dorf et al., 2009a]. Recall, that for all of the simulations we take rw=4Rb0, which 

corresponds to a sufficiently large radius of the conducting wall. Results of the numerical 

simulations are presented in Figs. 2.16-2.21, and the density profiles shown in the figures 

are calculated within the first lattice period after the beam leaves the matching section, 

i.e., SLsL +<< 2121 22 . Figures 2.16 and 2.17 show contour plots of the beam density 

for the cases of a space-charge-dominated beam with 2 2
02 b bK R ε =15.3  [Fig. 2.16], and 

an emittance-dominated beam with 2 2
02 b bK R ε = 0.2  [Fig. 2.17]. It is readily seen from 

the figures, plotted in the scaled coordinates ( ) ( ){ }sbysax , , that the contours of  
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Figure 2.16: (Color) Contour plots of the beam density calculated at the end of the 

(b) regularly normalized coordinates. The 

 phase advance is , and the normalized beam intensity corresponds to 

focusing cell and plotted in (a) scaled, and 

vacuum 044.8vσ =

2 2
02 15.3b bK R ε =  ( ). 9999.0=bs
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Figure 2.17: (Color) Contour plots of the beam density calculated at the end of the 

(b) regularly normalized coordinates. The 

 phase advance is , and the normalized beam intensity corresponds to 

 

focusing cell and plotted in (a) scaled, and  

vacuum 044.8vσ =

2 2
0

 

2 0 .2 0.32bs =b bK R ε =  ( ). 
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Figure 2.18: (Color) Plots of the beam density profile for a space-charge-dominated 

beam with 2 2
02 1  (5.3 9999.0

 

 

b bK R ε = =bs ). Phase advances are given by  and 044.8vσ =

0.255vσ σ = . Shown are (a) the normalized density profile, 

( ) ( ) ( ) ( ) ( )2 0
0, , 0x

b b bs a s b s R n x s n r= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦bn x

 

, plotted versus the scaled transverse 

coordinate x/a(s); and (b) ( ) ( )0,x
b bn x s n r

 

 

 

 

0=  plotted versus 0bx R . Density profiles 

correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the 

maximum value of Xrms (pink curve); the minimum value of Xrms (green curve); and the 

location inside the focusing cell where Xrms=Yrms (cyan curve). The flutter on top of the 

beam density profiles in Frame (a) is reduced in simulations with a larger number of 

macroparticles ( ) and coarser grid (Nx=Ny=64) as shown in Frame (c).  6106×=ptN
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Figure 2.19: (Color) Plots of the beam density profile for an emittance-dominated beam 

with 2 2
02 0.2 0.32b =

 

 

b bK R ε =  ( s ). Phase advances are given by  and 044.8vσ =

0.913vσ σ = . Shown are (a) the normalized density profile, 

( ) ( ) ( ) ( ) ( )2 xn x⎡⎣

 

0
0, , 0b b b bn x s a s b s R s n r= =⎡ ⎤ ⎤⎣ ⎦ ⎦ , plotted versus the scaled transverse 

coordinate x/a(s); and (b) ( ) ( )0,x
b bn x s n r

 

 

0=  plotted versus 0bx R . Density profiles 

correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the 

maximum value of Xrms (pink curve); the minimum value of Xrms (green curve); and the 

location inside the focusing cell where Xrms=Yrms (cyan curve).

 



2.3. Adiabatic Formation of a Matched-Beam Distribution 70

constant beam density are approximately circular, which is consistent with Eqs. (2.43)-

(2.44). Therefore, without loss of generality, in the following analysis we present results 

of the numerical simulations for the evolution of the beam density projected along the x-

direction, . Figures 2.18 and 2.19 show the evolution of the beam 

density plotted in scaled coordinates [Fig. 2.18 (a) and Fig. 2.19 (a)], and regularly 

normalized coordinates [Fig. 2.18 (b) and Fig. 2.19 (b)] for the cases where 

(( , ) , 0,x
b bn x s n x y s≡ = )

2 22 15.3ε =0b bK R  and 2 2
02 b bK R ε 0.2=

( )

, respectively. For these simulations, a relatively 

modest value of the vacuum phase advance of  is considered. It is readily seen 

that the evolution of the quasi-equilibrium beam density is self-similar, i.e., 

044.8vσ =

( ) ( )[ ]saxnsxnsyxn x
b

x
bb =≡= ,,0,

6×=ptN

 to very good approximation. Note that the flutter on 

top of the beam density profiles in Figs. 2.18(a) and 2.18 (b) is due to numerical noise, 

and a much lower noise level is observed in the numerical simulations with a larger 

number of macroparticles ( ) and coarser grid (610 64x yN N= = ) [compare Fig. 

2.18(a) and Fig. 2.18(c)]. To good visual accuracy, it is evident that the beam density 

evolution in the quadrupole lattice is also self-similar to the initial beam density profile 

[plotted in Figs. 2.18-2.19 by the blue curves] corresponding to the initial smooth-

focusing thermal equilibrium with the distribution function in Eq. (2.40). Note that the 

analytical theory [Davidson et al., 1999; Davidson and Qin, 2001a] predicts that the beam 

density profile is self-similar to the density profile determined from the choice of smooth-

focusing equilibrium distribution function. Therefore, it is not expected a priori that the 

smooth-focusing equilibrium corresponding to the beam distribution matched to the  
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Figure 2.20: (Color). Plots of the normalized beam density profile, 

 

 

( ) ( ) ( ) ( ) ( )2 0
0, ,x

b b bn x s a s b s R n x s n r= ⎡ ⎤ ⎡⎣ ⎦ ⎣ 0b = ⎤⎦ , for a space-charge-dominated beam with 

2 2
02 15.3 9999.0=b

 

b bK R ε =  ( s ). Phase advances are given by (a)  , 065.9vσ =

0.260σ vσ = ; and (b) , 087.5vσ = 0.265vσ σ = . Density profiles correspond to: the 

maximum value of Xrms (pink curve), and the minimum value of Xrms (green curve). The 

flutter on top of the beam density profiles in Frame (b) is suppressed in simulations with 

a larger number of macroparticles ( ) and coarser grid (Nx=Ny=64), as shown 

in Frame (c).  

6106×=ptN
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Figure 2.21: (Color) Plots of the normalized beam density profile, 

( ) ( ) ( ) ( ) ( )2 0
0, ,x

b b bn x s a s b s R n x s n r= ⎡ ⎤ ⎡⎣ ⎦ ⎣ 0b = ⎤⎦ , for an emittance-dominated beam with 

2 2
02 0.2 0.32b =b bK R ε =  ( s ). Phase advances are given by (a)  , 065.9vσ = 0.915vσ σ = ; 

and (b) , 087.5vσ = 0.918vσ σ = . Density profiles correspond to: the maximum value of 

Xrms (pink curve), and the minimum value of Xrms (green curve).  
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quadrupole lattice should remain the same during the adiabatic transition phase in the 

matching section. Finally, Figs. 2.20 and 2.21 show the beam density evolution plotted in 

scaled coordinates for larger values of the vacuum phase-advance  and 

. It is readily seen that the beam density evolution is still self-similar to good 

visual accuracy for . However, the self-similar feature becomes less accurate 

for  for both space-charge-dominated and emittance-dominated beams. This 

illustrates the range of validity of the analytical predictions given by Eqs. (2.43)-(2.44). 

Again, we note that the flutter on top of the beam density profiles in Figs. 2.20(a)  and 

2.20(b) can be substantially suppressed if a larger number of macroparticles is used in the 

simulations. However, in the density-fall-off region, the difference in the beam density 

profiles remains very similar [compare Figs. 2.20(b) and 2.20(c)]. It is particularly 

interesting to note, for the case of an emittance-dominated beam with  

065.9vσ =

087.5vσ =

vσ =

065.9vσ =

087.5

0.918vσ σ =  and 

, that the beam transport is stable, the effects of higher-order resonances are 

weak, however the analytical theory predictions is still of limited validity.   

087.5vσ =

 

2.3.4 Extension of the Adiabatic Formation Scheme to the Case of a 

Periodic-Focusing Solenoidal Lattice and Various Choices of Initial 

Beam Distribution 

The approach used in Sec. 2.3.2 for adiabatic formation of a beam quasi-equilibrium 

matched to a quadrupole lattice, can be generalized in a straightforward manner to the 
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case of a periodic solenodial lattice [Dorf et al., 2009b]. For the case of a solenoidal 

lattice, to maintain the average (smooth-focusing) effects of the average focusing field 

fixed, the transition of the applied lattice force is specified by           

( ) ( )[ ] ( ) ( ){ }( )yxssfssf
s
foc yxssVsVF ee ˆˆ11 2 ++−−−= δκκκκ ,              (2.45) 

where V(s) is defined in Eq. (2.42). Here, we assume a step-function model of a periodic-

focusing solenoidal lattice (Fig. 2.2), for which the corresponding smooth-focusing lattice 

coefficient, sfκ , in Eq. (2.45) is specified by Eq. (2.20). 

As noted earlier, a similar approach for formation of a quasi-equilibrium beam 

distribution matched to a periodic focusing solenoidal lattice by means of adiabatic turn-

on of the oscillating focusing field has been previously reported by [Stoltz, et al., 1999]. 

However, the choice of the applied lattice force transition, ( )sF s
foc , considered in [Stoltz 

et al., 1999] did not provide a constant average (smooth-focusing) value of the focusing 

force. Furthermore, small oscillations of the beam envelope with variations in the rms 

beam radius of the order of 1% were considered, which allowed for the effective use of 

δF simulations, rather than full PIC simulations [Stoltz et al., 1999].  

The results of the numerical simulations for illustrative parameters corresponding 

to a moderate intensity beam with 5.0=vσσ , propagating through quadrupole and 

solenoidal lattices, are presented in Figs. 2.22-2.24 [Dorf et al., 2009b]. For the case of 

beam propagation through a quadrupole lattice, note that thermal equilibrium [Eq. (2.23)] 

and waterbag equilibrium [Eq. (2.24)] distributions have been used for the initial beam  
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Figure 2.22: Plots of Xmax/Xb0 versus number of lattice periods, Np, for the case of a 

moderate beam intensity with 

 

 

5.0=vσσ . Frames (a) and (b) correspond to a quadrupole 

lattice with 3.0=qη ,  ( ), 057=vσ 054=sf
vσ 4.422 21 =SL ,and the initial smooth-

focusing beam equilibrium correspond to the thermal equilibrium and waterbag 

distributions, respectively. Frames (c) and (d) correspond to a solenoidal lattice with 

( ), 084=vσ 083=sf
vσ 5.552 21 =SL , and ( ), 099=vσ 097=sf

vσ 5.472 21 =SL , 

respectively; here 3.0=sη  and the initial smooth-focusing beam equilibrium 

corresponds to a thermal equilibrium distribution. The solid curves correspond to 

adiabatic turn-on of the lattice, and the dashed curves correspond to the case of 

instantaneous beam loading.  
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Figure 2.23: (Color) Plots of the beam density profile for the case of a quasi-equilibrium 

beam distribution matched to a quadrupole lattice with 3.0=qη  and . The 

normalized beam intensity corresponds to 

057=vσ

5.0=vσσ . Frames (a) and (b), and Frames 

(c) and (d) correspond to initial thermal equilibrium and waterbag distributions, 

respectively. The density profiles correspond to: the initial smooth-focusing thermal 

equilibrium (blue curve); the maximum value of Xrms (pink curve); and the minimum 

value of Xrms (green curve). 
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Figure 2.24: (Color) Plots of the beam density profile for the case of a quasi-equilibrium 

beam distribution matched to a solenoidal lattice with 3.0=sη . The normalized beam 

intensity corresponds to 5.0=vσσ . Frames (a) and (b), and Frames (c) and (d) 

correspond to  and , respectively. The initial smooth-focusing beam 

equilibrium corresponds to a thermal equilibrium distribution. The density profiles 

correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the 

maximum value of Xrms (pink curve); and the minimum value of Xrms (green curve). 

084=vσ 099=vσ

 

 

(b) )
(

(c) (d) 

 
(

)
0

,
0

x b
b

n
x

s
n

r
=

 
(

)
(

)
0

,
0

x b
b

n
x

s
n

r
=



2.4. Summary and Discussions 78

loading. To assure that matching is approximately maintained in the transition section, we 

choose 1 2 5trL L =  and take sf
sLL 521 =  for the quadrupole lattice case, and sf

sLL 1021 =  

for the solenoidal lattice case. The ratio of the length of the matching section to the lattice 

period, SL 212 , is indicated in the captions to Fig. 2.22. 

It is readily seen that the evolution of the beam density profile is self-similar for 

any choice of periodic lattice structure and initial beam distribution. In addition, it is 

interesting to note, for the case of a solenoidal lattice, that the self-similarity feature is 

preserved to good accuracy even for , whereas for the case of a quadrupole 

lattice the self-similarity feature becomes less accurate for smaller values of vacuum 

phase advance ( ) [Dorf et al., 2009b]. 

099=vσ

05.87=vσ

 

2.4 Summary and Discussions 

It is increasingly important to develop an improved theoretical understanding of the 

equilibrium, stability, and transport properties of intense non-neutral beams propagating 

in periodic focusing accelerators and transport systems. A detailed self-consistent 

description of intense charged particle beam transport involves analysis of the Vlasov-

Maxwell equations (Sec. 2.2.1), which offers a significant challenge for analytical studies 

due to the oscillatory nature of the applied focusing force, and the nonlinear effects of the 

intense self-fields produced by the beam space-charge. Therefore, various simplified 

beam dynamics models, including the smooth-focusing approximation (Sec. 2.2.2), 
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envelope equations (Sec. 2.2.3), Hamiltonian averaging techniques, etc., have been 

presented to provide insights on intense beam propagation. To validate prospective 

models it is particularly important to develop numerical techniques allowing for the 

formation of a quasi-equilibrium beam distribution. Furthermore, numerical schemes 

describing the quiescent loading of a beam distribution into a transport lattice, and 

minimizing the deleterious effects of beam mismatch (Sec. 2.2.4), are of particular 

importance for detailed numerical studies of various collective processes and instabilities 

(Sec. 2.2.5). 

In this chapter we have described a numerical scheme allowing for the formation 

of a quasi-equilibrium beam distribution matched to an alternating-gradient quadrupole 

focusing lattice by means of adiabatic turn-on of the oscillating focusing field (Sec. 

2.3.2). The scheme demonstrates the ability to load a matched-beam distribution into a 

quadrupole lattice for a broad range of beam intensity and vacuum phase advance 

. Furthermore, for higher values of vacuum phase advance (for 

instance, ), even in a regime where the parameters of the transport system 

approach the unstable transport criterion given by 

066vσ ≤

087.5vσ =

( ) 232 222 πσσ >−v , and the transport 

of the intense beam is accompanied by beam emittance growth, it is found that the 

method of adiabatic formation described here still provides adequate beam matching. 

Therefore, the scheme described here can be effectively used for detailed studies of 

intense beam transport and stability properties, since it is able to suppress the effects of 

the initial beam mismatch. Finally, it is found that a relatively modest length of the 
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matching section (~10 lattice periods) is sufficient to assure that the beam is well-

matched to the lattice, thus making the scheme attractive for practical applications. 

 Properties of the matched beam quasi-equlibrium obtained in numerical 

simulations have been investigated and compared with the predictions of the analytical 

theory developed by Davidson et al. in [Davidson et al., 1999] (Sec. 2.3.3). The theory 

shows that for sufficiently small values of πσε 2ˆ v≡ , the evolution of the beam density 

is self-similar correct to . In accordance with the theory, the numerical simulations 

demonstrate self-similar evolution of the beam density profile for . However, for 

higher values of vacuum phase advance (for instance, ) the self-similarity 

feature becomes less accurate over a wide range of beam intensities, which demonstrates 

the validity limits of the theory.  

3ε̂

066vσ ≤

087.5vσ =

 The numerical scheme for describing formation of a quasi-equilibrium beam 

distribution matched to an alternating-gradient quadrupole focusing lattice, has been 

generalized to the case of a periodic-focusing solenoidal lattice (Sec. 2.3.4). Furthermore, 

various distributions have been considered for the initial beam equilibrium (Sec. 2.3.4). 

The self-similar evolution of the matched-beam density profile is observed for arbitrary 

choice of initial distribution function and lattice type. 

 It should be noted that the formalism developed here can provide a useful 

approach for initializing the choice of self-consistent quasi-equilibrium distributions 0f  

in nonlinear Fδ  simulations [Qin et al., 2007; Startsev et al., 2007; Qin et al., 2008] for 

intense beam propagation in periodic-focusing lattices.  



Chapter 3 

Transverse Compression of an Intense 

Ion Beam Propagating through a 

Quadrupole Lattice 

 

3.1 Introduction 

Alternating-gradient accelerators and transport systems have a wide range of applications 

ranging from basic scientific research to industrial applications [Davidson and Qin, 

2001a; Reiser, 1994; Chao, 1993]. Of considerable practical importance for heavy ion 

beam applications to high energy density physics and fusion is the axial compression and 

transverse focusing of the (initially long) charge bunch to a small spot size at the target 

location. As noted earlier, one of the modern approaches to the compression process is to 

use dense background plasma which charge neutralizes the ion charge bunch, and hence 

facilitates compression of the bunch against strong space-charge forces [Henestroza et 

al., 2004; Roy et al., 2005; Davidson and Qin, 2005]. On the other hand, the transverse 

focusing can also be achieved by means of increasing the focusing strength of the 

alternating-gradient lattice along the beam propagation direction [Qin et al., 2004; Dorf et 
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al., 2006]. Although lattice compression significantly facilitates the technical realization 

of the process, uncompensated, high-intensity charge bunch propagation through the 

lattice transition region inevitably leads to a certain level of beam mismatch and 

emittance growth. Furthermore, a beam mismatch can produce halo particles [Gluckstern, 

1994; Wangler et al., 1998; Allen et al., 2002; Qiang et al., 2002] that have much higher 

transverse energy than the core particles and may cause a degradation of beam quality 

(see Sec. 2.2.4).  

It is evident that the beam mismatch will decrease as the length of the transition 

region is increased, assuming that the lattice amplitude is constant outside the transition 

region. Hence, it is a matter of considerable practical interest to determine how smooth 

(adiabatic) the lattice transition should be to assure that matching is maintained during 

the compression.  In Sec. 3.2, a detailed investigation of this  problem is performed for a 

long, coasting beam using the envelope equations and full particle-in-cell numerical 

simulations with the WARP code [Friedman et al., 1992; Grote et al., 1998] in the 

smooth focusing approximation, which describe the average effects of a periodic lattice. 

In Sec. 3.3 the effects of the alternating-gradient quadrupole field are taken into account.  

It is found that even a strong mismatch, produced during the compression process, 

can be consistent with moderate emittance growth. Nonetheless a certain fraction of the 

beam particles experience resonant interaction with the mismatch oscillations and 

populates the halo region. In Sec. 3.4, a qualitative analysis describing the details of halo 

formation during the compression process is performed. Finally, Sec. 3.5 develops a 

novel spectral technique for quantitative analysis of halo production by a beam mismatch 
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[Dorf et al., 2007]. The method is then applied to quantitative studies of the halo 

production during the transverse beam compression. In addition, it is shown that the 

analysis, based upon the spectral method, can provide important insights into other 

critical problems in intense beam transport such as mismatch relaxation and the space-

charge transport limits (see Sec. 2.2.5). 

The transverse compression of a long axially-stationary charge bunch has been 

extensively investigated in the Paul Trap Simulator Experiment (PTSX) [Chung et al., 

2007; Gilson et al., 2007] that simulates the nonlinear transverse dynamics of intense 

beam propagation over large distances through an alternating-gradient transport lattice 

[Gilson et al., 2004; Gilson et al., 2006]. Therefore, the numerical studies presented here 

can provide important insights for interpretation of the experiments carried out on PTSX. 

Furthermore, since we study only transverse beam dynamics in the present chapter, it is 

convenient to perform the analysis in the axial rest frame of the charge bunch. In this 

frame axial ion velocity is equal to zero, 0=bV , and the relativistic mass factor is equal 

to unity ( 1=bγ ).  Note that the axial rest frame of the charge bunch, described above, is 

the laboratory frame for the experiments carried out on PTSX. 

 

3.2 Smooth-Focusing Analysis  

In this section we make use of the smooth-focusing approximation (Sec. 2.2.2) to study 

the nonlinear response of long charge bunches to alternating-gradient waveforms with 
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time-varying amplitude [Dorf et al., 2006]. This model is used to describe the average 

effects of a quadrupole focusing field. Within this approximation, in the axial rest frame 

of the charge bunch the external focusing potential has the form 

                                             ( ) ( ) 22

2
1, rt

e
mtr q

b

b
foc ωϕ = ,                                                   (3.1) 

where  )(tqω   is the smooth focusing frequency, r  is the radial distance from the beam 

axis, and  and  are  the particle mass and charge, respectively.  The normalized 

intensity parameter specified in the laboratory frame by Eq. (2.27), has the following 

form in the beam frame of references 

be bm

                                                       22 2 qpbs ωω≡ ,                                                         (3.2) 

where ( ) 212
04 bbp menπω =  is the plasma frequency, and ( 00 = )≡ rnn  is the on-axis 

number density.  

 The initial quasi-stationary distribution, which is used in the simulations later in 

this section, is assumed to correspond to a thermal equilibrium distribution [Eq. (2.23)], 

and the corresponding density profile  is given by [Davidson and Qin, 2001a] )(rn
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Here, T=const is the transverse temperature, and the space-charge potential   is 

determined self-consistently from Poisson’s equation . Except for 

space-charge-dominated beams ( ), numerical solutions of Poisson’s equation 

)(rsϕ

)(4)(2 rner b
s πϕ −=∇
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show that the radial density profile is bell-shaped, and is nearly Gaussian even for 

moderate values of  [compare Figs. 2.18(a) and 2.19(a)]. Regardless of the detailed 

shape of the density profile, the mean-square radius of the charge bunch is determined 

from the global radial force balance constraint [Davidson and Qin, 2001a] 

bs

r(

2
bR

2
be

bR 2

                                                  ,                                                 (3.4)  22 2 bbqb NTRm +=ω

where  is the line density, and  is the mean-

square beam radius.  
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 This section is organized as follows. In Sec. 3.2.1 the transverse beam 

compression is investigated using the envelope equations; and the full self-consistent 

analysis is performed in Sec. 3.2.2, making use of particle-in-cell numerical simulations 

with the WARP code. 

 

3.2.1 Rate Equation for the Beam Radius 

From the fully nonlinear Vlasov-Maxwell equations describing a long charge bunch 

when the external focusing force has cylindrical symmetry [Eq. (3.1)], one can derive the 

following rate equation that describes the evolution of the rms radius of the charge bunch 

[Davidson et al., 1998; Davidson and Qin, 2001a] 
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Here, bbbb meNK 22=  is the effective self-field perveance, and 

[( ]) 2122224 bb RyxR −+=ε  is the unnormalized transverse emittance defined in the beam 

frame. The super-dot  denotes time derivative and ( )• ...  denotes the statistical average 

over the particle distribution function  in the transverse phase space 

. Although the emittance will vary due to nonuniformities in charge density, for 

present purposes we assume that )(t

),,,,( tyxyxfb

),,,( yxyx

ε  is approximately constant if the focusing frequency 

)(tqω changes adiabatically. More detailed studies of the emittance behavior are 

presented in Sec. 3.2.2. Assuming that t const=)(ε , we can use Eq. (3.5) to analyze the 

evolution of the rms beam radius during the compression process. Following the analysis 

in [Gilson et al., 2005; Chung et al., 2007], we adopt a simple model in which )(tqω  

 according to                      varies
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where 212τ  is the characteristic transition time, and qτ  is the characteristic time scale for 

variation of )(tqω  from the constant value qiω  to the constant value qfω .  

Here, we consider long charge bunches, which are initially matched. This readily 

gives for the smooth-focusing model that    [ ] 00 ==tbR  and [ ] 00 ==tbR .  Using the 

simplified Eq. (3.5), we now estimate the transition time 212τ  that is consistent with 

adiabatic compression. For a quantitative description of the adiabaticity of the 
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compression process we introduce the beam mismatch parameter 0RRΔ=η , where RΔ  

is the amplitude of the mismatch oscillations, and is the quasi-equilibrium radius, 

which is determined from the instantaneous value of 

)(0 tR

)(tqω . Here, note that 

.  Assuming that bRRR =+Δ 0 1<<η during the adiabatic compression, we linearize Eq. 

(3.5) around the quasi-equilibrium radius , which gives )(0 tR

( ) 0R−=2 Rt Δ+ωRΔ                                    ,                                            (3.7) 

( ) 2where    14
0

22
0 RRKb εω +=     is the frequency of small-amplitude linear oscillations.  

It is evident from Eq. (3.7) that for adiabatic compression the inverse transition time 

1
21 )2( −τ  has to be much smaller than ω . Note, that the frequency ω  depends on , and 

hence the inverse transition time needs to be much smaller than its minimum value, i.e., 

0R

)()2( 0
1

21 iRωτ <<− , where is the initial quasi-equilibrium beam radius.   iR0

For more detailed studies of the adiabaticity of the process we make use of the 

Van Der Pol method and introduce the following variables: RtiRz Δ+Δ= )(ω  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

dtiza
0

exp1 ω
ω

 [Fraiman, 2001]. Note that RRz =Δ+Δ= 2)(2 2222 ω E  is 

the energy of the oscillator, and ω22 za =  is a well-known adiabatic invariant for the 

pendulum equation (3.7). The physical interpretation of this adiabatic invariant 

corresponds to the area of the ellipse in the phase space ( RΔ , RΔ ).   After some 

straightforward algebra, we obtain the following equation for the slow evolution of a, 
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where star  denotes complex conjugate. Recall that before compression the beam is 

matched, with . Furthermore, the transition time should be large enough to 

assure 

( )*

1

0)0( =a

<<η . Hence we can neglect the first term on the right-hand side of Eq. (3.8). As 

a result, we obtain  

                                          ∫ ∫
′
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t t

dttdiRta
0 0

0 )exp()( ω
ω

.                                      (3.9) 

It is evident from Eq. (3.9) that the inverse transition time 212τ  must be much smaller 

than the frequency of linear oscillations ω to assure that matching is maintained during 

compression. In this case ( )qa τω−∝ exp2 , where ω  is a certain value of ω  

between )( 0iRω  and )( 0 fRω , and ,  are the initial and final quasi-equilibrium 

beam radii, respectively.  

iR0 fR0

Illustrative numerical solutions to Eq. (3.5) are presented in Fig. 3.1 [Dorf et al., 

2006]. To model a warm beam with moderate space-charge strength, and a space-charge-

dominated beam, we consider the cases 7.0=bs  and 9999.0=bs , respectively. For the 

compression, we take 521 =qττ  and 3.2=qiqf ωω  in Eq. (3.6). Figure 3.1 shows that a 

relatively fast compression, 87.0)( 0 =iq Rωτ  for 9999.0=bs , and  64.0)( 0 =iq Rωτ  for 

, leads to a significant mismatch in the final state, whereas a more adiabatic  7.0=bs
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Figure 3.1: Numerical solutions to envelope equation (4) for ε=const. Plots of 

normalized rms beam radius Rb/Ri versus t/τq. The cases shown correspond to: (a) Space-

charge dominated beam with 9999.0=bs ; Broken line: adiabatic compression with 

74.1)( 0 =iq Rωτ ; Solid line: non-adiabatic compression with  87.0)( 0 =iq Rωτ . (b) 

Moderate space-charge strength with 7.0=bs ; Broken line: adiabatic compression with 

28.1)( 0 =iq Rωτ ; Solid line: non-adiabatic compression with 64.0)( 0 =iq Rωτ . 
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Figure 3.2: Plot of )( 0iq Rωτ versus Rf/Ri for adiabatic compression with ηf=2% . The two 

cases correspond to normalized intensity sb=0.9999 (solid curve) and sb=0.7 (broken 

curve). 

 

 

 

 

 

 

 

 

 
Figure 3.3: Plots of vacσσ versus Rf/Ri for adiabatic compression with ηf=2%. The two 

cases correspond to normalized intensity sb=0.9999 (broken curve) and sb=0.7 (solid 

curve). 
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compression, 74.1)( 0 =iq Rωτ  for 9999.0=bs , and 28.1)( 0 =iq Rωτ  for 7.0=bs , 

provides a nearly matched beam envelope in the final stage.  Figure 3.2 shows how the 

characteristic time scale for variation of )(tqω   depends on the ratio of the final to initial 

beam radius, for adiabatic compression, and for several values of  [Dorf et al., 2006]. 

To estimate the transition time, we use the condition that the final mismatch parameter, 

bs

ff RR 0Δ=η , is equal to or less than 2%.  To describe the change of the intensity 

parameter during the compression process, the ratio of the phase advances 

( )[ ] ( )qεωbqb
sf
vac

sf KK εωσσ 221
212 −+= , calculated in the smooth focusing 

approximation [Eq. (2.36)] for different values of the final beam radius, is plotted in Fig. 

3.3 [Dorf et al., 2006].  

It should be noted from Fig. 3.3 that the relative space-charge strength as 

measured by sf
vac

sf σσ  decreases during the adiabatic compression process.  This result 

can be explained by recalling that constt ≈)(ε  has been assumed during the adiabatic 

compression process. Since 22
bR2 Y >>+  foX r slow (adiabatic) compression, we obtain 

the following relation between the beam radius and effective transverse temperature, 

consTRb ≈21 decreasing the beam radius results in an increase in the 

effective transverse beam temperature, and hence a decrease in the relative space-charge 

strength, which can also be measured in the beam frame by the dimensionless parameter 

t . Therefore, 

TeN bb 22=δ ) [Davidson and Qin, 1999; Davidson and Qin, 2001a].    in Eq. (3.4
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3.2.2 Numerical Simulations of Beam Compression  

The analysis of beam compression presented in Sec. 3.2.1 was made under the 

assumption that the transverse emittance remains approximately constant during the 

adiabatic compression process. To elucidate the details of the emittance behavior, the 

fully nonlinear Vlasov-Maxwell equations should be solved. In this section, we employ a 

two-dimensional transverse slice model using the WARP electrostatic particle-in-cell 

(PIC) code for this purpose [Dorf et al., 2006]. Results of the numerical simulations for 

the illustrative parameters used in Sec. 3.2.1 are shown in Fig. 3.4. Evidently, there is no 

significant emittance change during the adiabatic compression process. For a space-

charge-dominated beam with 9999.0=bs , the emittance decreases by 4% from its initial 

value, and for moderate space-charge strength with 7.0=bs , the emittance variations are 

less than 1%. Such a small emittance change during the adiabatic compression process 

validates the assumptions made in Sec. 3.2.1.  For the case of non-adiabatic compression, 

when the transition time is small compared to the inverse frequency of beam radius 

oscillations, 1−ω , the emittance variations are nearly  6% in both cases.  

Despite such a moderate emittance change, an important qualitative difference is 

evident for the time evolution of the beam radius, when comparing results from the PIC 

code simulations and from the constant emittance model.  To describe this phenomenon, 

it is convenient to introduce two stages of the compression process. The transition stage 

takes place during the transition phase of the smooth-focusing frequency, )(tqω , i.e.,  
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Figure 3.4: Evolution of the normalized beam radius Rb/Ri (solid line) and normalized 

transverse emittance ε/εi (broken line) during the compression process. Figures (a) and 

(b) correspond to an adiabatic compression for 

 

9999.0=bs , 74.1)( 0 =iq Rωτ , and for 

,7.0=bs 28.1)( 0 =iq Rωτ , respectively. Figures (c) and (d) correspond to a non-adiabatic 

compression for , 9999.0=bs 87.0)( 0 =iq Rωτ , and for 7.0=bs , 64.0)( 0 =iq Rωτ , 

respectively . Results are obtained using the WARP code for a smooth-focusing field. 
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2120 τ<< t , and the relaxation stage for 212τ>t  represents the mismatched beam 

behavior in the final focusing field with constant smooth-focusing frequency qfω  . The 

largest difference in behavior is observed in the relaxation stage, during the non-adiabatic 

process when the beam is strongly mismatched after the transition. Figure 3.1 shows that 

the constant emittance model exhibits oscillations in beam radius with a constant 

amplitude, whereas the fully nonlinear Vlasov-Maxwell description gives a slight 

damping of the oscillations for a space-charge-dominated beam with  [Fig. 

3.4(c)], and an almost complete mixing of the oscillations for the moderate space-charge 

strength with  [Fig. 3.4(d)].   

9999.0=bs

7.0=bs

A plausible description of the damping mechanism of the mismatched oscillations 

is the following.  Nonuniformities in the density profile produce nonlinear self fields. 

Therefore, particles move with energy-dependant betatron frequency and affect the 

oscillations of moments of the distribution function due to phase-mixing. References 

[Clauser et al., 1999; Variale, 2001] give a detailed explanation of these phenomena by 

means of Landau-like damping. In [Clauser et al., 1999] the particles are considered as an 

ensemble of betatron oscillators coupled to the collective mismatch oscillations 

(mismatch mode). The damping of the mismatch mode occurs due to the energy transfer 

from collective oscillations to the oscillators (beam particles) which are close to 

parametric 2:1 resonance with the mismatch mode. The relaxation time is determined by 

the phase-mixing of the trapped particles (resonant betatron oscillators). In the same work 

[Clauser et al., 1999] it is shown that for the case of a space-charge-dominated beam  
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Figure 3.5: Relaxation of the large mismatch in a space-charge-dominated beam with  

 

 

sb=0.9999 during the compression process using the smooth-focusing approximation. (a) 

Plot of Rb/Ri verses normalized time t/τmis, where τmis is the period of the mismatched 

oscillations in the final state. (b) Time dependence of Rb/Ri in the final state (solid line) 

can be fitted with a cosine function (broken line) with high accuracy. The ratio of the 

first and second harmonic amplitudes in the spectrum of the  Rb(t)  dependence (obtained 

by applying  FFT techniques)  is equal to 2.5x104. Results are obtained using the WARP 

code  [Dorf et al., 2006]. 
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most of the betatron oscillators are far from resonance, providing a slight damping of the 

collective oscillations. As the beam space-charge intensity decreases, the mismatch 

frequency approaches the frequency distribution of the betatron oscillators, providing an 

increased mixing of the collective oscillations. This coincides well with the results 

presented here. We also emphasize that the present simulations show (Fig. 3.5) that a 

large mismatch for a space-charge-dominated beam tends to relax to a state with a non-

uniform density profile, and to a distribution function which is periodic in time. This state 

corresponds qualitatively to the nonlinear saturation of Landau damping and has a 

significant number of trapped particles (see Sec. 3.3 for details). Future studies of this 

state may provide important insights for the construction of ‘equilibrium’ states for 

intense beam propagation in a periodic lattice. 

The relaxation process described above transfers energy from the collective 

oscillations to the transverse motion of the resonant particles, thereby increasing the 

transverse phase space area (emittance growth). Figure 3.4(d) (for the beam radius) 

indicates that the phase-mixing time is about thirty times larger than the transition time. 

Hence, it is expected that there will be negligible emittance variations during the 

transition stage even during non-adiabatic compression. Indeed, Fig. 3.4(d) (for the 

emittance) shows that the emittance decrease during the initial transition of the smooth-

focusing frequency is less than 0.5%, whereas the overall emittance growth is 6%. A 

theoretical model providing the estimate of the emittance growth due to the mismatch 

relaxation can be found in [Reiser, 1994]. The detailed behavior of the emittance 

validates the use of Eq. (3.5) with the constε = assumption to model the transition stage, 
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even for non-adiabatic compression.  Comparing Figs. 3.1 and 3.4 indicates that the 

constant-emittance model and the PIC simulations give approximately the same initial 

amplitude of the mismatched oscillations.  

Another interesting feature of the compression process is the emittance decrease 

during the initial transition stage. Examining Fig. 3.4 shows that the emittance decrease 

depends weakly on the transition time, and it is much larger for a space-charge-

dominated beam than for a moderate intensity beam. To explain this phenomenon, we 

make use of the rate equation for the transverse emittance [Davidson et al., 1998; 

Davidson and Qin, 2001a], 

                              ( KVFb EE
dt
dR

dt
d

−−= 22

8
1 ε ) .                                     (3.10) 
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21)2( ψ  is the normalized self-field energy, ψ  solves 

( )∫∫−=∇ bbb fydxdNKπψ 22 , and [ ]( ))2(ln41)21( 21
bwbKV RrKE += , where rw is the 

radius of the conducting wall, is the self-field energy of the equivalent cold ( 0=T ) 

beam, having the same  rms radius  and line density .  It can be shown that the self-

field energy of the thermal equilibrium beam [Eq. (3.3)] with fixed rms radius and line 

density decreases with decreasing  temperature and reaches its minimum value for a  cold 

distribution ( ) with the flat-top density profile.  During the transition stage, the 

effective beam temperature increases (see Sec. 3.2.2 for details), thereby increasing the 

difference between  and  and leading to a decrease in the emittance.      
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3.3  Effects of Alternating-Gradient Quadrupole Field 

In this section, we present numerical studies using the WARP code describing the beam 

response to an alternating-gradient quadrupole focusing field with time-varying 

amplitude [Dorf et al., 2006]. For present purposes, the instantaneous scheme (see Sec. 

2.3.2) is used to load the initial distribution function. That is, first, for a specified 

intensity parameter , effective temperature bs T , and on-axis number density , we 

apply the smooth-focusing model to construct the initial equilibrium.  Then, using the 

corresponding values for the emittance 

0n

ε  and perveance , we determine the matched 

solutions of the envelope equations (2.28)-(2.29), which have the following form in the 

beam frame of reference 

bK

                            
.)(2)(

,)(2)(
32

32

bbaKbtb

abaKata

ybq

xbq

εκ

εκ

=+−−

=+−+
                                       (10) 

Here )(ta and )(tb are the characteristic transverse beam dimensions in the x  and y  

directions, respectively, εεε == yx  are the transverse emittances defined in the beam 

frame as ( ) 2122 xx−24 xxx =ε  and ( ) 212224 yyyyy −=ε , and )(tqκ  is the 

alternating-gradient lattice function defined in the beam frame. To approximate the beam 

distribution coming out of the source (say, in PTSX), during the final stage of forming 

the initial quasi-equilibrium we load the particles with a semi-Gaussian distribution, 

which is Gaussian distribution in  and  and has a uniform (step-function) density 

profile, into the matched envelope. Similarly to the experiments on beam compression on 

x y
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PTSX [Gilson et al., 2007; Chung et al., 2007], in the present simulations the beam is 

allowed to relax during 100 periods of the focusing lattice before compressing the lattice 

amplitude. The time dependence of the rms beam radius and the transverse emittance 

during the adiabatic and non-adiabatic processes including the first 100 lattice periods are 

shown in Fig. 3.6 [Dorf et al., 2006]. For a non-axysimmetric beam, which is studied in 

this section, we define the average beam radius as ( ) 2122 ~~ baRb += , where 
212~ xa =  

and 
212~ yb =  are the rms envelope dimensions. The average transverse emittance ε  is 

defined as . 2/1)( yxεεε =

 Consistent with the experiments carried out on PTSX [Gilson et al., 2007], to 

model the lattice we take ( )LLqq tt τπτπωκ /2sin2)( 123 −= , where τL is the lattice period. 

All other parameters are the same as in Sec. 3.2. It should be noted that even for non-

adiabatic compression the transition time is sufficiently large so that the smooth-focusing 

approximation is valid during the transition phase. Comparing Figs. 3.4 and 3.6, we note 

that the smooth-focusing approximation and the full alternating-gradient quadrupole field 

model give remarkably similar results. The differences are evident in the emittance 

behavior during the initial stage (before beam propagation through the lattice transition 

region) which is due to the initial beam mismatch in the quadrupole field model.  

Furthermore, the smooth-focusing model shows a complete mixing of the oscillations in 

beam radius for a beam with moderate space-charge strength, , during non-

adiabatic compression,  whereas in the quadrupole field model the amplitude of the  

7.0=bs
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Figure 3.6: Evolution of the normalized beam radius Rb/Ri (solid line) and normalized 

transverse emittance ε/εi (broken line) during the compression process. Figures (a) and 

(b) correspond to an adiabatic compression for 9999.0=bs , 2021 =Lττ  

[corresponding to 74.1)( 0 =iq Rωτ ], and 7.0=bs , 1021 =Lτ
 

 

 

τ  [corresponding to 

28.1)( 0 =iq Rωτ ], respectively. Figures (c) and (d) correspond to a non-adiabatic 

compression for , 9999.0=bs 1021 =Lττ  [corresponding to 87.0)( 0 =iq Rωτ ], and 

, 7.0=bs

 

 

 

5=21 Lττ  [corresponding to 64.0)( 0 =iRqωτ ], respectively . Results are 

obtained using the WARP code for an alternating-gradient quadrupole lattice. 
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oscillations only decreases to 30% of its initial value.  However, contrary to the smooth-

focusing approximation, the oscillations in average beam radius cannot be considered as 

a measure of the final-state mismatch. In fact, even for a perfectly matched beam (KV 

distribution), the sum of the rms envelope dimensions is nearly constant, 

consttbta ≅+ )(~)(~ , but consttbtaRb ≠+= 2122 )](~)(~[ . Therefore, to estimate the 

mismatch of the final state, it is important to analyze the behavior of the rms envelope 

dimensions   and a~ b~ , which are illustrated in Figs. 3.7 and 3.8  [Dorf et al., 2006]. It is 

evident from Fig. 3.7(b), which shows the time dependence of a~  and b~ for the non-

adiabatic compression of a beam with 7.0=bs , that the beam is only slightly mismatched 

in the final state. The particle phase advances, defined as 

∫
+t

t

τ

ε∫
+

==
LLt

t

tbdtdt
τ

εσ )() 2ta (2 , and ∫
+

→
=

bKvacσ lim
Lt

t

tadt
τ

ε )(2

0
 (see Sec. 2.2.3) , are shown 

for the initial and final stages of compression process in Figs. 3.7 and 3.8.   

As mentioned earlier, for the parameters used in the simulations, the smooth-

focusing approximation is valid during the transition phase even for a non-adiabatic 

process. This means that the perturbations introduced to the beam in the transition region 

of the quadrupole lattice can be averaged and the averaged perturbation has azymuthal 

symmetry. Therefore, as shown in Figs. 3.7 and 3.8, only the symmetric mode (x and y 

envelope dimensions oscillate with zero relative phase shift) is excited during the 

compression process. 
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Figure 3.7: WARP simulations of the beam compression in an alternating-gradient 

quadrupole lattice. Evolution of the rms envelope dimensions 0
~~ aa (solid line) and 

0
~~ bb

 

 

(broken line) are plotted during (a) adiabatic compression with 1021 =Lττ , and 

during (b) non-adiabatic compression with 521 =Lττ , for a beam with moderate space-

charge intensity, .  7.0=bs
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Figure 3.8: WARP simulations of the beam compression in an alternating-gradient 

quadrupole lattice. Evolution of the rms envelope dimensions 0
~~ aa (solid line) and 

0
~~ bb

 

 

(broken line) are plotted during (a) adiabatic compression with 2021 =Lττ , and 

during (b) non-adiabatic compression with 1021 =Lττ , for a space-charge-dominated 

beam with .  9999.0=bs
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3.4 Halo Formation During the Compression Process 

In previous sections, the evolution of low-order moments of the distribution function 

(such as the rms envelope dimensions and transverse emittance) was studied.  The results 

show that even non-adiabatic compression, which leads to significant beam mismatch by 

the end of the transition stage, does not result in large emittance growth ( %6<Δε ). 

Nevertheless, it is well known that a beam mismatch produces halo particles that have 

much higher transverse energies than the core particles and may cause a deterioration in 

beam quality during the subsequent beam transport (Sec. 2.2.4). In this section, we 

present a detailed analysis of halo formation during the compression process using the 

WARP code for an alternating-gradient quadrupole lattice [Dorf et al., 2006]. 

Figures 3.9(a), 3.9(b) and Figs. 3.10(a), 3.10(b), respectively, illustrate the initial 

and final  phase-spaces for both moderate and high values of the space-charge 

intensity parameter . The scaled coordinates 

),( xx

s )~2( axX =  and ( ) xaxaxX ε~~2 −=  are 

plotted to remove the envelope oscillations [Lund and Chawla, 2006]. For a space-

charge-dominated beam with the almost flat-top density profile shown in Fig. 3.11(a), the 

two-lobe shape of the final phase-space plot [Fig. 3.10(b)] clearly indicates 2:1 

(fundamental) resonance interaction between the beam particles and the collective 

mismatch oscillations (Sec. 2.2.4). Note that the resonance structure of the XX −  phase-

space projection is filled with particles, as opposed to the rr ′−  phase-space projection 

shown in Fig. 2.4, where the halo particles travel mostly near a separatrix. This difference  
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Figure 3.9: Plots of the instantaneous  phase space for a beam with moderate 

space-charge intensity, :  (a) Initial state at 

),( XX

7.0=bs 100=Lt

 

τ ; (b) Final state at 

3.357=Lt τ  for non-adiabatic compression with 521 =Lττ ; (c) Final phase of the 

transition stage at 110=Lt
 

τ  for non-adiabatic compression with 521 =Lττ ; (d) Final 

state at 95.309=Lt τ  for adiabatic compression with 1021 =Lττ  [Dorf et al., 2006]. 
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Figure 3.10: Plots of the instantaneous  phase space for a space-charge-dominated 

beam, :  (a) Initial state at 

),( XX

9999.0=bs 100=Lt τ ; (b) Final state at 25.175=Lt

 

 

τ  

(corresponds to the maximum beam radius) for non-adiabatic compression with 

10=21 Lτ

 

 

τ ; (c) Final phase of the transition stage at 120=Lt τ  for non-adiabatic 

compression with 1021 =Lττ ; (d) Final state at 199=Lt τ  for adiabatic compression 

with 202 =L1 ττ ; (e) Final state at 05.178=Lt

 

τ  (corresponds to the minimum beam 

radius) for non-adiabatic compression with 1021 =Lττ  [Dorf et al., 2006].  
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is due to the following factors. First, the azimuthal symmetry of an applied focusing force 

for the case shown in Fig. 2.4 provides conservation of a beam particle angular canonical 

momentum, in contrast to the case of the quadrupole lattice considered here. Second, is 

the proper choice of the projection plane, namely the rr ′−  projection, since the equations 

governing the evolution of the r and θ particle coordinates are decoupled due to the 

conservation of a particle canonical momentum. Finally, note that the appearance of just 

one fixed point for the 2:1 parametric resonance structure in Fig. 2.4 (O-point in Fig. 2.4), 

in contrast to the two resonance points in Fig. 3.10(b), is simply due to the positive 

definition of the radial coordinate r [that is, for y=0, r(-x)=r(x)]. 

Of particular interest is the evolution of the beam halo. The halo evolution after 

one-half of the period of the mismatch oscillations period is illustrated in Fig. 3.10(e). 

The time instants for the phase-space plots are indicated by arrows in Fig. 3.8(b) for the 

rms envelope dimensions in the final state. Note that the 2:1 resonance points are located 

on the X  axis when the core radius is a minimum, and on the X  axis when the core 

radius is a maximum. This coincides well with the results obtained by Ikegami in 

[Ikegami, 1999], where the Poincare section for the particle-core model with the strobe 

time, taken at the minimum (maximum) of the beam size,  gave the same location of the 

resonance islands. In the same work [Ikegami, 1999], the maximum halo extent (the 

width of the separatrix of the 2:1 resonance island) was found to be about twice as large 

as the maximal core radius, when the halo was driven by the symmetric mode. Fig. 

3.10(d) illustrates approximately the same halo width.  
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Figure 3.11: WARP simulation for an alternating-gradient quadrupole lattice. 

Normalized beam density profile n(x,y=0)/n0 in the final state for non-adiabatic 

compression. The two cases correspond to (a) 9999.0=bs , 25.175=Lττ , and (b) 

, 7.0=bs 3.375=Lττ . The small graphical inserts correspond to the density profile at the 

core edge [Dorf et al., 2006]. 
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Figure 3.12: WARP simulation results using a smooth-focusing model. Plots of the 

radial  phase space at the final state of the non-adiabatic compression process for 

(a) , 

),( rr

9999.0=bs 5.437=Lt τ , and (b) 7.0=bs , 5.725=Lt τ   [Dorf et al., 2006]. 
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The analogous studies were also performed for a beam with moderate space-

charge strength, , and the results are illustrated in Fig. 3.9. The strong 

nonuniformities in the density profile [compare Figs. 3.11(a) and 3.11(b)] lead to a 

complete mixing of the mismatch oscillations, and therefore particles do not experience 

resonance interaction in the final state [Fig. 3.9(b)].  

7.0=bs

To assure that the simulation parameters do demonstrate halo formation, and that 

the above analysis is not a collateral effect due to the core tails, we use a smooth-focusing 

model with the same parameters and plot the radial rr −  phase-space, (see Fig. 3.12). 

Note that in the smooth-focusing approximation there is no core flutter and we don’t use 

the scaled coordinates. Figure 3.12(a) for a space-charge dominated beam with 

 clearly illustrates the resonance structure, and the resonance structure is not 

observed in Fig. 3.12(b) for moderate space-charge intensity with . In Sec. 3.2.2 

it was indicated that the relaxation of a large mismatch for a space-charge-dominated 

beam corresponds qualitatively to the nonlinear stage of Landau-like damping. Indeed, 

the halo particles illustrated in Fig. 3.12(a) are the trapped particles in the nonlinear 

interaction between the collective mismatch oscillations and the single particle motion. 

9999.0=bs

7.0=bs

We emphasize here some interesting features of the halo formation. The 

simulations show that during the transition stage only a small number of particles leave 

the core [compare Figs. 3.9 (a) and (c) and Figs. 3.10 (a) and (c)], whereas most particles 

populate the halo region during the relaxation stage [compare Figs. 3.9 (a) and (b) and 

Figs. 3.10 (a) and (b)]. Furthermore, it is found that the halo formation process saturates 
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along with the Landau-like damping of the mismatch mode. These details are evidence 

that the main mechanism for halo formation is indeed an energy transfer from the 

collective modes to the resonant particles (halo particles). When the transition stage is 

much shorter than the characteristic damping time, there is negligible collective energy 

transfer to the particles, and the particles stay trapped inside the beam core.   

Of considerable practical interest are the halo particle contributions to the low-

order moments of the beam distribution function. To investigate these phenomena 

qualitatively, we have also arbitrarily removed the halo particles from the simulation. No 

rigorous mathematical criteria were applied for the removal procedure. We simply 

removed particles from the XX − and YY −  projections of the 4D phase-space using 

“visual criteria” to obtain approximate quantitative information about interesting 

phenomena. The contours which were used to divide the XX −  phase space into the core 

and halo regions are illustrated in Figs. 3.9(b) and 3.10(b), and analogous contours were 

applied to the YY −  phase space projection. The ratios of the values of rms envelope 

dimensions calculated with and without halo particles are 95.0~~ =halowithouthalowith aa  for 

9999.0=bs , and 91.0~without~a =halohalowith  for a 7.0=bs . For the transverse emittance 

we obtained 9.0=halowithouthalowith  for  xx εε 9999.0=bs , and

85.0  for .0=x
halowith

x εε halwithout o 7=bs . It should be em  here that, after halo 

removal, the emittance drops somewhat below its initial value. Consequently, for the 

parameters used here, the core size variations in phase space during the relaxation stage 

phasized
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are smaller than the increase in the beam phase space area and related emittance growth 

attributed to the halo formation. The halo fraction of all simulation particles is about 2% 

for a space-charge-dominated beam with 9999.0=bs , and about 4% for a moderate 

intensity beam with 7.0=bs . This differe  be explained by recalling (Sec. 3.2.2) 

that more energy transfers from the collective oscillations to the transverse particle 

motion for 7.0=bs  than for 9

nce can

999.0=bs . Anot g feature is that a negligible 

number of new halo particles (less than 0.05% of all simulation particles) are observed 

for both values of bs  if we continue the simulations after the halo particle removal 

procedure (in these simulations, to conserve the line-charge, we placed the removed halo 

particles on the beam axis). This indicates that, despite charge density non-uniformities at 

the beam edge and mismatch oscillations, the phase space of the beam core is surrounded 

by a KAM surface, providing the core particles stay inside the core region and do not 

penetrate the halo region.  

her interestin

The results for adiabatic compression for different values of the space-charge 

intensity parameter are illustrated in Figs. 3.7(a) and 3.8(a) (rms envelope dimensions 

behavior) and Figs. 3.9(d) and 3.10(d) ( XX −  phase space). These figures show that a 

certain level of the final beam mismatch still persists. However, it should be noted that 

the final population of halo particles is similar to the initial one, which is produced by 

initial beam mismatch. Hence, a further increase in the transition time does not lead to an 

improved quality of the final beam state.  
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3.5 Spectral Method for Quantitative Analysis of Halo 

Production by a Beam Mismatch 

In the previous section an extensive qualitative description of halo production by a beam 

mismatch has been presented. In this section, more emphasis is placed on providing 

quantitative treatment of the halo formation phenomena. Although, the presence of a 

beam halo is typically evident by visual inspection of a beam distribution [Sec. 3.4], it is 

of particular interest to obtain a more quantitative measure of this phenomena [Wangler 

and Crandall, 2000; Allen and Wangler, 2002; Dorf et al., 2007]. In [Wangler and 

Crandall, 2000], the beam profile parameter constructed from the second and forth 

spatial moments of the beam distribution,  

 222

4

−=
x

x
h ,     

has been proposed as a characterization of the halo in a 1D spatial projection. This 

formalism for calculating dimensionless halo parameters, based upon moments of the 

beam distribution function, has been then extended to quantify halo formation in 2D 

phase-space [Allen and Wangler, 2002]. The phase-space halo parameter [Allen and 

Wangler, 2002], 
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generalized the spatial-profile parameter, h, using kinematic invariants of the particle 

distribution in phase space. These halo parameters can be efficiently used for comparing 

the ‘halo intensity’ for different beam distributions. For instance, it follows that h=H=0 

for the Kapchinskij-Vladimirskij distribution, and h=H=1 for a Gaussian distribution.  

Although the evolution of the halo parameters (h, H) can provide insights into the 

halo production process, no guidelines have been provided on how to quantitatively 

distinguish halo particles from core particles. Therefore, the actual ‘halo fraction’ of all 

beam particles for a given distribution cannot be estimated. Attempts to distinguish halo 

particles from the beam core particles were made in [Okamoto and Ikegami, 1997; Dorf 

et al., 2006]. However, those studies were based on a “visual analysis” (see Sec. 3.4) of 

the transverse phase-spaces, and no rigorous mathematical criteria were applied.  

A simple quantitative definition a halo particle based on an analysis of the beam 

betatron frequency distribution has been proposed in [Dorf et al., 2007]. It has been 

demonstrated that the betatron frequency distribution function of a mismatched space-

charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. 

In Sec. 3.5.1 we present the detailed analysis of the halo definition for a broad range of 

beam intensity, making use of the smooth-focusing approximation, and also taking into 

account the effects of an alternating-gradient quadrupole field. This formalism is then 

applied to quantitative studies of the halo production during the transverse beam 

compression in Sec. 3.5.2. Finally, in Sec. 3.5.3 it is shown that the spectral analysis can 

also provide important insights into other critical problems in intense beam transport, 

e.g., the mismatch relaxation process, and space-charge transport limits (see Sec. 2.2.5).  
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3.5.1 Spectral Method for Halo Particle Definition 

This section develops a framework for the quantitative analysis of halo production by a 

beam mismatch. In Sec. 2.2.4, in order to describe the production of halo particles by a 

beam mismatch it was convenient to consider a beam propagating through a periodic 

focusing lattice as an ensemble of betatron oscillators coupled to the collective mismatch 

oscillations. This approach has also been used in [Clauser et al., 1999; Variale, 2001] for 

the analysis of beam mismatch relaxation. It has been noted that for the case of a space-

charge dominated beam most of the betatron oscillators in the initial beam equilibrium 

distribution are far from the parametric (2:1) resonance with the collective mismatch 

mode (Fig. 3.13). Therefore, only a slight damping of the collective oscillations occurs. 

However, as the beam space-charge intensity decreases, the mismatch frequency 

approaches the frequency distribution of the betatron oscillators, providing an increased 

mixing of the collective oscillations (Fig. 3.13). It is also instructive to note that as the 

beam intensity increases the beam frequency spectrum shifts toward lower frequency 

values relative to the smooth-frequency, qω . This is consistent with the fact that the beam 

self-fields depress the total-focusing force acting on a beam particle, and therefore 

increase the period of particle transverse oscillations. Also, note that the frequency 

spectrum width is attributed to the nonlinear effects of the beam self-fields. Therefore, for 

the case of the smooth-focusing thermal equilibrium distributions shown in Fig. 3.13, the 

spectrum width has a maximum for a moderate beam intensity. Indeed, as the beam 

intensity increases the beam density profile approaches a flat-top distribution, and hence  
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Figure 3.13: (Color) Plots of the normalized beam betatron frequency distribution for the 

smooth-focusing thermal equilibrium distribution obtained for different values of the 

beam intensity corresponding to 25.0=vacσσ , 9999.0=bs  (blue), 6.0=vacσσ , 

 (pink), 9.0=bs 95.0=vacσσ , 2.0=bs  (green). Each frequency distribution is 

normalized to its maximum value. The vertical dashed lines show the corresponding 

half-values of the mismatch oscillations frequency obtained within the smooth-focusing 

approximation, 2sf
sω . Results are obtained using the WARP code for a smooth-

focusing field. 

the self-electric fields become nearly linear. On the other hand, as the beam density 

decreases the effects of the beam self-fields become less pronounced. Without loss of 

generality, here and throughout the remainder of Sec. 3.5, for illustrative purposes we 

show the betatron frequency distributions corresponding to the particle oscillatory motion 

in the x-direction (Fig. 3.13). Also, each plotted betatron frequency distribution is 

normalized to its maximum value. 
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In previous studies [Clauser et al., 1999; Variale, 2001] the spectral analysis was 

applied to the initial beam quasi-equilibrium. In this section, we extend the betatron 

spectral analysis to the case of a mismatched beam distribution [Dorf et al., 2007]. This 

allows us to develop a convenient framework for the quantitative analysis of halo 

production by a beam mismatch. Note that the energy-dependent betatron frequency 

increases with an increase in a particle energy. Therefore, the high-energy tail of an initial 

beam equilibrium distribution corresponds to the high-frequency tail in the betatron 

frequency distribution (Fig. 3.13). Inspecting the betatron frequency distribution of the 

initial beam thermal equilibrium distribution for the case of a space-charge-dominated 

beam, it is evident that only an exponentially small fraction of the beam particles has the 

energy corresponding to the parametrically resonant frequency, 2sf
sω . However, during 

the relaxation of a large beam mismatch there is an energy transfer from the collective 

mismatch modes to the resonant particles, which gain energy and populate the halo 

region (Sec. 2.2.4 and Sec. 3.4). It is therefore intuitively appealing to expect that a 

“bump-on-tail” structure attributed to the high-energy halo particle will appear near the 

half-value of the mismatch oscillations frequency in the betatron frequency distribution 

of a mismatched space-charge-dominated beam.  

For simplicity, we start the analysis by making use of the smooth-focusing 

approximation (Sec. 2.2.2), in which the oscillating focusing force is replaced with a 

uniform focusing force. Figure 3.14(a) shows the beam betatron frequency distribution  
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Figure 3.14: (Color) Relaxation of a beam mismatch for the case of a space-charge-

dominated beam with 25.0=vacσσ , 9999.0=bs . Shown are plots of (a) beam betatron 

frequency distribution for the final ‘quasi-relaxed’ state (blue), and for the initial state 

corresponding to the smooth-focusing thermal equilibrium distribution (black), (b) FFT 

of Rb(t), (c) and (d) the instantaneous ( )RR,  phase space corresponding to the final beam 

state, and the same state after halo removal, respectively. The amplitude of the mismatch 

oscillations in the final state is 12.0≅bRbRδ . Results are obtained using the WARP 

code for a smooth-focusing field. 
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for the case of a mismatched space-charge-dominated beam. For this illustrative example, 

a thermal equilibrium beam distribution with 25.0=vacσσ  ( 9999.0=bs ) was subjected 

to an instantaneous increase in the applied smooth-focusing force , 3.1=q
inc
qω ω . Then, 

after a time period, ( )isf
sstep ωπτ 2= , corresponding to one-quarter of the linear mismatch 

oscillation period calculated for the initial beam equilibrium, the applied force is returned 

back to its initial value. Here, ( ) ( ) 21422
iiibi

sf
s RRK εω += , and the subscript “i” denotes 

the initial beam state. Note that we assume an azimuthally symmetric initial beam 

distribution, and therefore only the symmetric (even) mode of mismatch oscillations is 

excited. After introducing the beam mismatch as described above, the beam is allowed to 

relax until the mismatch amplitude remains nearly constant. In the final (‘quasi-relaxed’) 

beam state, the x and y coordinates of each beam particle are tracked, and the FFT 

averages of the particle oscillograms are calculated [Fig. 3.15(c)]. It should be noted that 

the single-particle motion for the case of a mismatched intense beam is, in general, non-

integrable, and the corresponding frequency spectra may have a complex structure [Fig. 

3.15(c)]. Indeed, in addition to the fundamental (2:1) “halo” resonance, nonuniformities 

in the beam density profile along with the mismatch oscillations produce a higher-order 

resonance structure inside the beam core, and therefore even the core particle motion can 

become chaotic (Figs. 3.15). For the construction of the beam betatron frequency 

distribution [Fig. 3.14(a)], the particle’s “betatron” frequency is assigned to the frequency 

corresponding to the maximum value in the Fourier power spectrum of the particle 

oscillogram. Shown in Fig. 3.15 the power frequency spectra and particle oscillograms 
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Figure 3.15: (Color) Dynamics of core and halo particles in the final state of a 

mismatched space-charge-dominated beam with 25.0=vacσσ  ( ): (a) and (b) 9999.0=bs

Normalized x/Rf-oscillogram of the halo and core particles motion, respectively. Here, Rf 

corresponds to the RMS equilibrium radius calculated for the final beam state; (c) FFT 

of the core particle (pink) and the halo particle (blue) x-oscillograms; (d) Poincare 

section for the core (pink) and halo (blue) particles with the strobe time, taken at the 

minimum of the beam radius. Results are obtained using the WARP code for a smooth-

focusing force. The parameters of the simulation are the same as in Fig. 3.14. 
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for typical core and halo particles elucidate the relevance of this approach for the purpose 

of distinguishing a halo particle from a core particle. The corresponding Poincare radial 

phase-space plots ( )RR,  for these halo and core particles are shown in Fig. 3.15(d). Here, 

22 YXR +≡ , ( ) RYYXXR ≡ + , X  and X  are the scaled coordinates defined in Sec. 

3.4, and Y  and Y  are their analogs in the y-direction. Note that the “betatron” frequency 

values for the core and halo beam particles lie inside the “core” and “bump-on-tail” 

frequency ranges of the beam betatron frequency distribution, respectively [Fig. 3.14(a)]. 

Figure 3.14(a) shows that the betatron frequency distribution function of a 

mismatched space-charge-dominated beam has a clear bump-on-tail structure attributed 

to beam halo particles. Note that most of the bump is located to the right of the half-value 

of the mismatch oscillation frequency calculated for the final beam distribution, 

( ) ( ) 21422
fffbf

sf
s RRK εω += . Here, fε  corresponds to the average value of the transverse 

beam emittance in the final state, and  is the corresponding value of the equilibrium 

beam radius determined from Eq. (3.5) where 

fR

fεε = . This allows us to formulate the 

following simple quantitative definition of a halo particle. If the particle betatron 

frequency is greater than one-half of the mismatch oscillation frequency then it 

designated as a halo particle. Figures 3.14(c) shows the beam radial phase space at the 

final state, and Fig. 3.14(d) shows the same phase space after removing particles with 

betatron frequency in the x or y direction higher than ( ) 2f
sf
sω . The remaining small 

fraction of halo particles corresponds to the fraction of the bump-on-tail structure located 
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to the left of ( ) 2f
sf
sω . In addition, a few more halo particles appear during the FFT 

averaging calculations, because the energy transfer process is not yet fully completed.  

Note that the actual frequency spectrum of an envelope rms dimension [Fig. 3.15(b)] has 

a finite band width with the central frequency , which is slightly smaller than its 

linear approximation, (  due to nonlinear effects, and also due to the coupling to the 

dynamics of the higher–order moments, e.g., beam emittance. Therefore, more halo 

particles can be selected by the proposed criteria if an improved model for describing the 

mismatch oscillations frequency spectrum is employed to determine the “cut-off” 

frequency.   

NL
sω

) f
sf
sω

It should be noted that according to the proposed halo definition, even a matched 

beam with a thermal equilibrium distribution function has a certain fraction of halo 

particles. This fraction is exponentially small for a space-charge-dominated beam, but it 

increases with decreasing beam intensity since the mismatch frequency approaches the 

frequency distribution of the betatron oscillators. Nevertheless, the spectral framework 

for a quantitative analysis of halo production developed above for a space-charge-

dominated beam can also be efficiently utilized for the case of a low-intensity beam. The 

evolution of the beam betatron frequency distribution function due to beam mismatch 

relaxation for the case of a low-intensity beam with 95.0=vacσσ  ( 2 ) is shown in 

Fig. 3.16. For this illustrative example, the beam mismatch is introduced in the same way 

as described above for the case of a space-charge dominated beam, i.e., by increasing the  

.0=bs
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Figure 3.16: (Color) Relaxation of a beam mismatch for the case of an emittance-

dominated beam with 95.0=vacσσ  ( 2.0=bs ). Shown are plots of (a) beam betatron 

frequency distribution for the final ‘quasi-relaxed’ state (blue), and for the initial state 

corresponding to the smooth-focusing thermal equilibrium distribution (black), and (b) 

the evolution of the normalized RMS beam radius Rb/Ri. Frames (c), (d), and (e) show 

the normalized (  phase-space corresponding to the initial state, final state, and final 

state after halo removal, respectively. Results are obtained using the WARP code for a 

smooth-focusing field. 
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focusing strength of the lattice to 3.1=q
inc
q ωω  for a time period of ( )isf

sstep ωπτ 2= . 

Comparing the betatron frequency distributions for the initial and final states [Fig. 

3.16(a)], it is natural to assign a pronounced difference in the tail region where 

( ) 2f
sf
sx ωωβ >  to the generated beam halo. Note that for the case of an emittance-

dominated beam the mismatch oscillations are completely relaxed [Fig. 3.16(b)], and 

therefore particles do not experience a resonance interaction in the final state [compare 

Fig. 3.16(d) and Fig. 3.14(c)].  

The quantitative analysis of halo production by a beam mismatch developed 

above for a constant focusing field (smooth-focusing approximation) can be generalized 

in a straightforward manner to the case of an oscillating quadrupole focusing field. Figure 

3.17(a) shows the evolution of the beam betratron frequency distribution function due to 

beam mismatch relaxation for the case of a space-charge-dominated beam with 

25.0=vacσσ  and . To save computational time, the initial beam distribution 

was loaded into a quadrupole lattice making use of the “instantaneous loading” scheme 

(Sec. 2.3.2), which provides an initial beam matching sufficient for present purposes. For 

this simulation a sinusoidal lattice wave form is assumed, 

055=vacσ

( Lt τπ /2sin )Lqq t τπωκ 2)( 123 −= , and a beam mismatch is introduced by an instantaneous 

increase in the lattice amplitude to 15.1=q
inc
q ωω  at the zero phase of the sine function. 

The lattice amplitude is maintained fixed at  for one-half of the lattice period, and 

then instantaneously decreased to its initial value, 

inc
qω

qω . 
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Figure 3.17: (Color) Relaxation of a beam mismatch for the case of a space-charge-

dominated beam with 25.0=vacσσ  ( 9999.0=bs ), . Shown are plots of (a) 

beam betatron frequency distribution at the final ‘quasi-relaxed’ state (blue), and the 

initial state (black); (b) FFT of Xrms(t); and (c) and (d) the instantaneous  phase 

space corresponding to the final state, and the final state after halo removal, respectively. 

Results are obtained using the WARP code for an alternating-gradient quadrupole field.  
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Note that the non-monotonic tail structure in Fig. 3.17(a) is now represented by 

the two bumps corresponding to half-values of the symmetric (even), sω , and the 

quadrupole (odd), oddω , mismatched envelope mode frequencies (Sec. 2.2.4). This is due 

to the fact that both modes are exited by the abrupt mismatch, and they both produce 

high-energy resonant halo particles. The quantitative criteria for a beam halo particle 

should therefore be generalized for the case of a quadrupole oscillating lattice in the 

following way: if the particle betatron frequency is greater than the quadrupole (odd) 

envelope frequency half-value then it is a halo particle. To further investigate this criteria 

we compare the normalized  beam phase space shown in Fig. 3.17(c) with the 

same phase-space after removing particles with betatron frequency satisfying 

),( XX

( ) 2f
sf
oddωωβ >  [Fig. 3.17(d)], where ( ) ( ) 21422 43 ffqf

sf
odd Rεωω +=  is the corresponding 

smooth-focusing value of the quadrupole (odd) mismatched envelope mode frequency in 

the final beam state. The actual spectrum of the beam rms envelope x-dimension obtained 

in the PIC simulations, taking into account the oscillating nature of the applied lattice and 

nonlinear effects, is shown in Fig. 3.17(b). Again, as noted earlier for the case of a 

constant focusing force (smooth-focusing approximation), a few more halo particles can 

be selected if an improved model accounting for the width and shape of the mismatch 

oscillations frequency spectrum is employed for determination of the “cut-off” frequency. 

 Finally, we present the evolution of the beam betatron frequency distribution due 

to mismatch relaxation for the case of a low-intensity beam, taking into account the 

effects of the oscillating applied lattice force (Fig. 3.18). For this illustrative example we  
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Figure 3.18: (Color) Evolution of the beam betatron frequency due to mismatch 

realxation for the case of an emittance-dominated beam with 95.0=vacσσ  (

 

 

2.0=bs ), 

. Shown are plots of the betatron frequency distribution at the final ‘quasi-

ed’ state (blue), and at the initial state (black). Results are obtained using the 

ARP code for an alternating-gradient quadrupole field.  

040=vacσ

relax

W

 

take 95.0=vacσσ , , and the beam mismatch is introduced by an instantaneous 

increase in the lattice amplitude to 

040=vacσ

2.1=q
inc
q ωω  at the zero phase of the sine function. 

The lattice amplitude is maintained fixed at  for one lattice period, and then 

instantaneously decrease to its initial value 

inc
qω

qω . Inspecting the beam frequency 

distributions at the initial and final beam states, it again appears natural to assign a 

pronounced difference in the tail region for ( ) 2f
sf
oddω>xωβ  to the generated beam halo.  
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3.5.2 Quantitative studies of beam halo production during the 

compression process 

In this section we apply the formalism for a quantitative definition of a beam halo particle 

(Sec. 3.5.1) to quantitative studies of halo production during the transverse compression 

of a charged particle beam propagating through an alternating-gradient quadrupole 

focusing lattice [Dorf et al., 2007]. As in previous sections of this chapter, here the lattice 

function is specified by ( ) ( )LLqq ttt τπτπωκ /2sin2)( 123 −= . The transition of the lattice 

strength, ( )tqω , is given by Eq. (3.6), and for the illustrative examples presented in this 

section we take 421 =qττ  and 2=qiqf ωω . The initial beam distribution is loaded into 

a quadrupole lattice in the same way as described in Sec. 3.3, and the beam is allowed to 

relax during 50 periods of the focusing lattice before compressing the lattice amplitude. 

In this section we consider cases of a space-charge-dominated beam with 

( ) 25.0=ivacσσ , and a moderate intensity beam with ( ) 43.0=ivacσσ . During the 

transition, the lattice strength measured by the vacuum phase advance is changing from 

 to ( ) . Here, the subscripts “i” and “f” correspond to the initial 

and final beam state, respectively.  

( ) =ivacσ 04.17 03.35=ivacσ

The discrete evolution of the normalized rms envelope x-dimension calculated at 

each focusing period at the zero phase of the lattice sine function, X0, are shown in Fig. 

3.19 for the illustrative cases of adiabatic and non-adiabatic transitions [Dorf et al., 

2007]. Note that such a graphical representation for a matched beam would be a  
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Figure 3.19: Rms envelope x-dimension plotted versus number of lattice periods. (a) 

Adiabatic compression with 1521 =Lττ  (bold line) and nonadiabatic compression with 

621 =Lττ  (fine line) for a space-charge-dominated beam. (b) Adiabatic compression 

with 1021 =Lττ  (bold line) and nonadiabatic compression with 421 =Lττ  (fine line) 

for a beam with moderate intensity.  

horizontal straight line; therefore Fig. 3.19 provides a convenient representation of beam 

mismatch (see Sec. 2.3.2). The detailed dependence of the beam emittance increase on 

the transition time, 212τ , is illustrated in Fig. 3.20 for different values of the beam 

intensity. Finally, we use the quantitative definition of a beam halo particle (Sec. 3.5.1), 

and calculate the corresponding number of halo particles produced by the beam 

mismatch, which is acquired during the compression process. Figure 3.21 shows the halo 

fraction of all the simulation particles at the final beam state as a function of the transition  
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Figure 3.21: Halo fraction of all simulation particles versus characteristic transition time, 

21τ . Circles correspond to ( ) 43.0=ivacσσ , and squares to ( ) 25.0=ivacσσ  [Dorf et al., 

2007]. 
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time, 21τ , for different values of the beam intensity. Note that the small, non-vanishing 

fraction of beam halo particles is present in the final state even for the case of an 

adiabatic compression. This is due to the fact that the quantitative halo definition selects a 

fraction of high-energy beam edge particles as halo particles. This fraction is 

exponentially small for a space-charge-dominated beam, but it increases with decreasing 

beam intensity since the mismatch frequency approaches the frequency distribution of the 

betatron oscillators (see. Sec. 3.5.1).   

 

3.5.3 Spectral Analysis of Strong Mismatch Relaxation and Intense 

Beam Transport Limits 

The spectral analysis of a mismatched beam distribution (Sec. 3.5.1) has been 

demonstrated to be a powerful tool for studies of nonlinear transverse dynamics of an 

intense beam propagating through a periods-focusing lattice. In particular, it can provide 

the opportunity to carry out a quantitative analysis of halo production by a beam 

mismatch (Secs. 3.5.1 and 3.5.2). In this section, we make use of this new formalism to 

study other critical problems in intense beam transport. 

 

The spectral evolution of a beam core during the relaxation of a beam mismatch:  

In the previous sections the analysis was focused on beam halo production by a beam 

mismatch. However, it is of particular interest to study the evolution of the beam core  
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Figure 3.22 (Color): Strong mismatch relaxation for the case of a space-charge-

dominated beam with 25.0=vacσσ  ( 9999.0=bs ). Shown are plots of (a) the beam 

betatron density distribution function calculated at qft ωπ235.8101 ×=  (red), and 

qft ωπ235.43502 ×=  (blue); and (b) evolution of the beam transverse emittance. The 

dots illustrate the values of the beam transverse emittance at the time instants t1 and t2 

when the halo particles are removed from the corresponding beam distributions. The 

beam mismatch is introduce by an instantaneous increase in the lattice strength to 

qiqf ωω 4.1= . Results are obtained using the WARP code for a smooth-focusing force. 
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during the relaxation of a beam mismatch. Figure 3.22(a) shows the evolution of the 

beam betatron frequency distribution obtained within the smooth-focusing approximation 

for the case of a space-charge-dominated beam with ( ) 25.0=ivacσσ . For this 

simulation, the mismatch was introduced by an instantaneous compression of the lattice 

amplitude to the value 4.1=qiqf ωω . Shown in Fig. 3.22(a) are the frequency 

distributions calculated at the time instants corresponding to qft ωπ235.8101 ×=  and 

qft ωπ235.43502 ×= .  It is interesting to note that the “bump-on-tail” structure in Fig. 

3.22(a) attributed to the beam halo remains nearly the same, whereas the difference is 

clear in the core region. This means that most of the beam halo is generated on a time-

scale shorter than the time-scale of the beam core evolution. Finally, we note that the core 

relaxation process also leads to an increase in the beam emittance. Figure 3.22(b) 

illustrates the evolution of the beam transverse emittance during the mismatch relaxation 

process. It is readily seen that the beam emittance continues to grow during the time 

period between t1 and t2, when most of the halo is generated. To further elucidate this, we 

compare the values of the beam emittance calculated at t1 and t2 after removing halo 

particles from the corresponding beam distributions. The corresponding values of the 

beam emittance calculated for the beam distributions without halo particles, are shown by 

the dots in Fig. 3.22(b), and clearly demonstrate an increase in the beam emittance due to 

the beam core relaxation.  
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Spectral analysis of intense beam transport limits: 

As noted earlier in Sec. 2.2.5, intense beam transport stability limits is one of the critical 

problems in intense beam transport. Of particular importance here are the higher-order 

resonance effects that limit stable intense beam propagation in the region of high vacuum 

phase advance, where ( )22 2 2 3 2vacσ σ π− > . In this section, we use the spectral analysis 

of the beam distribution to provide insights into that problem. The betatron frequency 

distributions for an intense beam with 3.0=vacσσ  propagating through a quadrupole 

lattice are shown in Fig. 3.23(a) for different values of the lattice vacuum phase advance. 

For these simulations a semi-Gaussian beam distribution is loaded into a quadrupole 

lattice as described in Sec. 3.3, and the corresponding evolution of the beam transverse 

emittance is shown in Fig. 3.23(c). As evident from Figs. 3.23(a) and 3.23(b), as the 

vacuum phase advance increases and the system parameters approach the instability 

criteria, the core of the betatron frequency distribution remains the same. However, the 

distribution tail function increases in extent. This observation can support the analysis 

developed in [Lund and Chawla, 2006], which proposes that the emittance growth can be 

attributed to high-energy beam edge particles that diffuse outside of the beam core 

sufficiently to participate in the higher-order resonances, thereby increasing the statistical 

beam area in the transverse phase space, i.e., the beam transverse emittance. 
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Figure 3.23 (Color): Dynamics of a space-charge-dominated beam with 3.0=vacσσ   in 

a quadrupole lattice for the case where the system parameters are near the transport 

stability limit ( ) 232 222 πσσ ≅−vac . Shown are plots of (a) the beam betatron 

distribution function for increasing values of the vacuum phase advance corresponding 

to  (pink),  (blue),  (green), and  (brown); (b) 

zoom-in on the tails of the distributions shown in Frame (a); and (c) evolution of the 

beam transverse emittance. Results are obtained using the WARP code for an 

alternating-gradient quadrupole field. 
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3.6 Summary and Discussion 

In this chapter, envelope equations and full particle-in-cell numerical simulations using 

the WARP code have been used to investigate the evolution of the rms beam radius, the 

emittance growth, and halo formation during the  transverse compression of an intense 

ion beam propagating through an alternating-gradient quadrupole lattice. It was shown 

that when the lattice transition is smooth (adiabatic) the emittance variation is negligibly 

small and therefore a constant-emittance approximation can be used as a closure 

condition for the envelope equations to model the compression process. For the case of a 

non-adiabatic transition, it was found that the characteristic time scale for the emittance 

growth is much larger than the transition time required for adiabatic compression. 

Therefore, even for non-adiabatic compression, the constant-emittance approximation can 

be used to estimate the beam mismatch produced in the transition region.   

The details of halo formation were investigated self-consistently using the WARP 

code, both in the smooth-focusing approximation and for a quadrupole lattice. In the 

smooth-focusing approximation, a 2:1 resonance structure was observed for space-

charge-dominated beams with almost uniform density profile. For a quadrupole lattice, 

the beam particle motion in the 4D transverse phase space provides some smearing of the 

2:1 resonance structure in the 2D  phase-space projection. Nonetheless the width and 

location of the resonance islands coincide well with the results, obtained in the particle-

core model for a quadrupole focusing field [Ikegami, 1999]. It was also found that during 

halo formation the energy transfers from the collective mismatch oscillations to the 
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transverse motion of the resonant particles (halo particles). The energy transfer time is of 

order the phase-mixing (Landau-like damping) time. Therefore, only a few particles 

populate the halo region during beam propagation through the lattice transition region. 

Generation of most of the halo particles, and consequently growth of the transverse 

emittance, occurs during the subsequent beam transport. 

In addition, a new spectral technique for the analysis of a mismatched intense 

beam propagating through an alternating-gradient lattice has been developed. It has been 

shown that the beataron frequency distribution of a mismatched intense beam has a 

“bump-on-tail” structure attributed to the beam halo particles. Based on this 

phenomenon, a quantitative definition of halo particles produced by a beam mismatch has 

been proposed, which provided an opportunity to carry out quantitative studies of the 

halo production during the transverse beam compression. It has also been found that the 

analysis, based upon the spectral method, can provide important physical insights into 

other critical problems in intense beam transport, such as strong mismatch relaxation and 

space-charge transport limits. In particular, it has been demonstrated that during strong 

mismatch relaxation, most of the beam halo is generated on a time-scale shorter than the 

time-scale for the beam core relaxation. Furthermore, it has been observed that the core 

relaxation process also leads to an increase in the beam emittance. Finally, the spectral 

analysis of a beam distribution loaded into a quadrupole lattice for the case where the 

system parameters lie near the transport stability limit, ( ) 232 222 πσσ ≈−vac , has been 

performed. It has been shown that as the system parameters approach the stability limit, 
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the core of the beam betatron distribution does not change significantly, whereas the tail 

of the distribution increases. This observation supports the analysis developed in [Lund 

and Chawla, 2006], which proposed that the emittance growth can be attributed to high-

energy beam edge particles that diffuse outside the beam core sufficiently to participate 

in the higher-order resonances, thereby increasing the statistical beam area in transverse 

phase space. 

 

 

 

 

 

 



Chapter 4 

Intense Ion Beam Transport through a 

Background Plasma Along a Solenoidal 

Magnetic Field  

 

4.1 Introduction 

Neutralization and focusing of a charged particle beam by a background plasma form the 

basis for a variety of applications to high energy accelerators and colliders [Chen, 1985; 

Joshi, 2007], ion-beam-driven high energy density physics and fusion [Roy et al., 2005, 

Yu et al., 2005, Kaganovich et al., 2010], and astrophysics [Gruzinov, 2001; Medvedev 

et al., 2005]. As noted earlier, one of the modern approaches to ion beam compression for 

heavy ion fusion applications is to use a dense background plasma which charge 

neutralizes the ion charge bunch, and hence facilitates compression of the bunch against 

strong space-charge forces. In a typical design of a heavy ion driver, a radially 

convergent ion beam with an imposed head-to-tail longitudinal velocity tilt propagates 

through the drift section filled with a neutralizing background plasma, where nearly 

ballistic compression occurs provided the beam charge and current are well-neutralized.  

139 
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Additional control and focusing of the beam pulse can be provided by the 

application of a solenoidal magnetic field in the neutralizing region [Lee and Sudan, 

1971; Chu and Rostoker, 1973; Rosinskii and Rukhlin, 1973; Berk and Pearlstein, 1976; 

Johnson, et al., 1988]. It has recently been demonstrated that even a weak magnetic field 

of order 100 G can significantly affect the transverse dynamics of an ion beam 

propagating through a background plasma [Kaganovich et al., 2007; Dorf et al., 2009c]. 

Although, in many regimes of practical interest, the direct BV×  magnetic force exerted 

by a 100 G field has a negligible influence on the massive beam and plasma ions, the 

dynamics of the background plasma electrons can be significantly affected by the 

presence of the magnetic field. As a result, strong collective electromagnetic self-fields 

can be produced inside the dense plasma and can have a pronounced influence on the ion 

beam dynamics. It should be noted that such weak values of magnetic field can be present 

inside the neutralizing drift section of a heavy ion driver over distances of a few meters 

from the strong final focus solenoid, which is placed downstream of the drift section in 

order to provide additional transverse focusing of an ion beam (Chapter 1). It is therefore 

of particular practical importance to asses the influence of a weak solenodial magnetic 

field on the dynamics of an ion beam pulse propagating through a background plasma. 

It has been found that the properties of the background plasma response are 

significantly different depending on whether the value of the solenoidal magnetic field is 

below or above the threshold value specified by . Here, peb
cr
ce ωβω 2= ceω  and peω  are the 

electron cyclotron and plasma frequencies, respectively, and b b cvβ =  is the directed ion 
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beam velocity normalized to the speed of light c. Note that the threshold value of the 

magnetic field can be expressed as ( )1 23 112 10c b pB n cm kGβ −= ⎡ ⎤⎣ ⎦ , where  is the 

background plasma density. For instance, for an ion beam with 

pn

~ 0.05bβ  propagating 

through a background plasma with density np~1011 cm-3, this corresponds to a relatively 

weak magnetic field of order 100 G. The paramagnetic plasma response and the 

defocusing effect of a radial self-electric field, generated due to a local polarization of the 

magnetized plasma background, have been demonstrated for the case where pebce ωβω 2<  

[Kaganovich et al., 2007; Kaganovich et al., 2008]. In contrast, for the case of 

pebce ωβω 2>

ce

, the plasma response is diamagnetic, and the radial self-electric field is 

focusing [Dorf et al., 2009c; Dorf et al., 2010]. It is interesting to note that the 

qualitatively different local plasma responses are separated by the critical value of 

magnetic field , which corresponds to the resonant excitation of large-amplitude 

wave-field perturbations [Volokitin et al., 1995; Dorf et al., 2010]. 

cr
cece ωω =

peb

This introductory section is organized as follows. Section 4.1.1 briefly reviews 

neutralization of the ion beam space-charge and current for the case where the ion beam 

propagates through an unmagnetized plasma. The effects of a weak solenoidal magnetic 

field, ωβω 2< , applied along the beam propagation direction are summarized  in 

Sec. 4.1.2. It is demonstrated for the case of a long ion beam pulse that the so-called slice 

approximation, which does not account for the effects of coupling between the 

longitudinal and transverse dynamics, can adequately describe the background plasma 
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response in the regime where pebce ωβω 2< . Finally, Sec. 4.1.3 discusses a qualitative 

difference between the regimes where pebce ωβω 2<  and pebce ωβω 2> , which requires an 

improved theoretical model to describe the background plasma response in the regime of 

a moderately strong magnetic field, i.e. pebce ωβω 2> .  

Detailed analytical and numerical studies of ion beam transport through a 

neutralized background plasma in the regime where pebce ωβ2≥ω  are presented in the 

following sections of this chapter. In particular, the theoretical model and assumptions in 

the present analysis are described Sec. 4.2. In Sec. 4.3 we consider the regime of resonant 

wave excitation corresponding to 2cr
ce b peω β ω= , present the asymptotic time-dependent 

solution in the linear approximation, and estimate the saturation amplitude due to the 

nonlinear response of the plasma electrons. The analytical solutions for the 

electromagnetic field are compared to the results of numerical particle-in-cell simulations 

in Sec. 4.4. Finally, in Sec. 4.5 a detailed analysis of the local plasma response including 

the effects of enhanced beam self-focusing is presented.  

 

4.1.1 Ion Beam Transport through an Unmagnetized Plasma 

In this section we discuss the conditions for ion beam charge and current neutralization 

for the case where the ion beam pulse propagates through an unmagnetized neutralizing 

cold plasma background [Kaganovich et al., 2001].  It has been demonstrated that the 

beam space-charge is well-neutralized provided the beam is nonrelativistic and the beam 
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pulse duration bτ  is much longer than the electron plasma period, i.e., πτω 2>>bpe . In 

the opposite limit, πτω 2<<bpe , electrostatic plasma waves are excited by the moving ion 

beam that considerably reduces the degree of charge neutralization.  

 The key parameter for good current neutralization is the collisionless electron skin 

depth pep c ωδ = . The beam current is well-neutralized by the electron return current 

provided the beam radius is large compared to the electron skin depth, i.e., peb cr ω> . In 

the opposite limit, i.e., peb cr ω< , the total electron return current is still equal to the 

beam current, however it is distributed over distances of order pec ω , which is now much 

broader than the ion beam current profile. Therefore, the electron return current density is 

less than the ion beam current density by a factor of order crbpeω .  The condition for 

current neutralization, i.e., peb cr ω> , can be conveniently expressed in terms of the 

beam current as ( kAnnI ebbb )β25.4> , where  and   are the beam density and  

electron density, respectively.  

bn en

It is important to note that the ion beam charge is neutralized mostly by the action 

of the electrostatic electric field, whereas the electron return current is driven by the 

inductive electric field generated by the inhomogeneous magnetic flux of the ion beam 

pulse in the reference frame of the background plasma. Electrons are accelerated in the 

direction of beam propagation, and thus the electrons tend to neutralize the current as 

well as the space charge [Kaganovich et al., 2001; Kaganovich et al., 2010]. In order to 

elucidate the dynamics of the plasma electrons, a reduced nonlinear analytical model has 
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been developed [Kaganovich et al., 2001]. The model uses the fact that Maxwell’s 

equations for the electromagnetic fields and the fluid equations for the electrons possess a 

conservation law for the generalized vorticity [Buneman, 1952; Kaganovich et al., 2001], 

defined by  

Bp
c
e

−×∇=Ω e ,                                                        (4.1)  

where  is the electron fluid momentum, B is the self-magnetic field, and –e is the 

electron charge. For a long ion beam pulse with , where  is the characteristic 

length of the beam pulse, it follows that  

ep

bb rl >> bl

 
r

p
e
cB ez

∂
∂

−=ϕ ,                                                         (4.2) 

where we have used the fact that the generalized vorticity is zero in front of the beam 

pulse. The neutralizing return electron current can now be obtained from the Ampere’s 

law, provided the displacement current can be neglected [Kaganovich et al., 2001]. 

Substituting Eq. (4.2) into Ampere’s law, and assuming azimuthally symmetric ion beam 

we obtain  

( ezebbb
e

pe
ez VnVnZ

nc
V

r
r

rr
−=

∂
∂

∂
∂

− 2

21 ω
) .                                         (4.3) 

Here,  is the longitudinal component of the electron velocity, and ezV eepe mne24πω = , 

where  is the electron mass. A high degree of the beam current neutralization is now 

evident for the case where the beam radius is greater than the electron skin depth, 

em

 



4.1. Introduction 145

peb cr ω> , since the left-hand-side of Eq. (4.3) is small compared to the electron current 

term on the right-hand-side of the equation.  

It is of particular importance to calculate the radial component of the Lorentz 

force, Fr, acting on the beam ions. Neglecting by the inertia terms in the electron radial 

momentum balance equation, the self-electric field can be estimated as [Kaganovich et 

al., 2001]  

2

2
1

ez
e

ezr V
re

m
BV

c
E

∂
∂

−== ϕ ,                                                    (4.4) 

where Eq. (4.2) for a long beam pulse has been used. In the nonrelativistic limit, for the 

radial component of the Lorentz force we obtain [Kaganovich et al., 2001] 

( )
r

V
VVmZB

c
V

EeZF ez
ezbeb

b
rbr ∂

∂
−=⎟

⎠
⎞

⎜
⎝
⎛ −= ϕ .                                  (4.5) 

It follows from Eqs. (4.3) and (4.5) that the total force acting on beam ions is focusing 

( ). This phenomenon is known as self-magnetic pinching effect, and can be used in 

many practical applications involving neutrazlied ion beam transport. For instance, this 

self-focusing can compensate for the transverse spreading of the ion bunch, thus 

providing self-pinched ion beam transport over long distances [Hahn and Lee, 1996; 

Ottinger et al., 2000]. Note that for the case where the plasma is sufficiently dense 

 (linear regime), the electron velocity is small compared to the beam velocity, 

, and the magnetic component of the Lorentz force has dominant influence on 

the beam ions compared to weak nonlinear effects of the electric field component .  

0<rF

eb nn <<

ez VV << b
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4.1.2 Effects of a Weak Magnetic Field (ωce<2βbωpe) 

In this section we summarize the effects of a weak solenoidal magnetic field on the 

degrees of beam charge neutralization and current neutralization [Kaganovich et al., 

2007; Kaganovich et al., 2008]. The significant difference from the “unmagnetized case” 

with no applied magnetic field (Sec. 4.1.1) is that a small radial displacement, rδ , of a 

background plasma electron is now accompanied by a strong azimuthal rotation of the 

electrons around the beam axis. Indeed, due to the conservation of canonical angular 

momentum for the case of an azimuthally symmetric ion beam, variations of magnetic 

flux through the electron orbit set up a large kinetic component of the canonical angular 

momentum, i.e., the electrons start to rotate about the beam axis (axis of symmetry of the 

beam-plasma system) with a high angular velocity Veφ (Fig. 4.1). Because the zBeV ×ϕ  

force should be mostly balanced by a radial self-electric field, the electron rotation results 

in a plasma polarization and produces a much larger self-electric field than in the limit 

with no applied field [Kaganovich et al., 2007; Kaganovich et al., 2008]. Another 

important consequence of the strong electron rotation is the generation of an azimuthal 

self-magnetic field, which is much larger than in the limit with no applied solenoidal field 

[Kaganovich et al., 2007; Kaganovich et al., 2008].  

 In order to calculate the electromagnetic self-field generated by an ion beam pulse 

propagating through a neutralizing plasma along a uniform magnetic field zB ˆextext B= , 

the following reduced linear ( eb nn << ) analytical model has been developed 

[Kaganovich et al., 2007]. We express the induced magnetic field as B  and make  A×∇=
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use of the transverse Coulomb gauge, 0⊥∇ ⋅ =A . Assuming a long beam pulse with 

 and bb rl >> 1>>bpeτω , the displacement current can be neglected compared to the 

electron current [Kaganovich et al., 2001], and Ampere’s equations can be expressed as  

 ( ezebbb
z VnVnZ

c
e

r
Ar

rr
−=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−
π41 ) ,                                (4.6) 
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∂

∂
∂ .                                       (4.7) 

Here, Veφ and Vez are the azimuthal and longitudinal components of the electron flow 

velocity, respectively. The electron flow velocity can be calculated making use of the 

conservation of generalized vorticity [Buneman, 1952; Kaganovich et al., 2001] 

ematic illustration of large self-electric field production. The 

radial displacement, δr, of the electron position is accompanied by a fast azimuthal 

is (blue curve). A strong radial electric force 

Figure 4.1: (Color) Sch

rE eEf −=  is rotation around the beam ax

produced in order to balance the radial component of the magnetic force 

( ) exteM BVcef ϕ−= . The double-dashed line illustrates the ion beam pulse outline.    
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e et n n
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e e
⎝ ⎠

Ω ΩV V ,                                     (4.8) 

where the generalized vorticity is defined as ( )em e c= ∇× −eΩ V A , and Ve is the 

electron flow velocity. Projecting out the longitudinal and azimuthal components of Eq. 

(4.8), we obtain [Kaganovich et al., 2007] 
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e

ebe
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e ∂

∂
AV zez −= ϕ1 ,                                     (4.9) 
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In deriving Eqs. (4.9)-(4.10) we have taken into account, for nb<<ne, that the radial 

component of the electron force balance equation gives cBVE =−r e 0ϕ , where Poisson’s 

equation can be used to determine the radial electric field. Equations (4.6)-(4.7) together 

beam pulse pr

the ion-beam pulse [Kaganovich 

et al., 

with Eqs.(4.9)-(4.10) constitute the self-consistent slice model for describing the self-

electromagnetic field perturbation excited by a long ion opagating through 

a background plasma along a solenoidal magnetic field. 

Figure 4.2 shows a comparison of analytical theory and the LSP [LSP, 1999] 

particle-in-cell (PIC) simulation results for the self-magnetic field, the perturbation in the 

solenoidal magnetic field, and the radial electric field in 

2007]. The PIC simulations have performed in slab geometry, because the 

numerical noise tends to be larger in cylindrical geometry due to the singularity on the 

axis (r=0). Accordingly, the results of the analytical model in Fig. 4.2 have been obtained 

from Eqs. (4.6)-(4.10) in slab geometry. The parameters of this illustrative example  
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Figure 4.2: (Color) Comparison of analytical
 

 

 

 theory and LSP simulation results for the 

uthal self-magnetic field, the perturbation in the solenoidal magnetic field, and the 

icular slice of the beam pulse. The ion beam moves 

with velocity βb=0.33c along the z axis. The beam density profile is Gaussian with rb=1 

azim

radial self-electric field in a perpend

 
cm, lb=17 cm, and 10

0 1038 ×== pb nn cm3. The values of the applied magnetic field Bext 

are the following: (a) Bext=300 G; and (b) Bext=900 G [Kaganovich et al., 2007]. 
 

corre p nd to a Gaussian ion beam pulse with density profile s o

( )[ ]2222
0 exp bbbb lvzrrnn −−−=  with effective beam radius, rb=1 cm, and beam put lse half-

ngth, lb=17 cm, propagating with velocity vb=0.33c through a background plasma with le

density 311104.28 −×== cmnn . For this choice of beam parameters, the electron skin 

 radius, 

0bp

depth is approximately equal to the beam pepb cr ωδ =~ . It is readily seen from

(

 

 magnetic field increases from Bext=300 G Fig. 4.2 that as the applied

28.0=bpe2ce βωω ) to Bext=900 G ( 85.02 =bpece βωω ) there is a sizeable increase in  
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the azimuthal component of the self-magnetic field, and radial component of the self-

ting to note that the plasma response is 

agnetic, with 0>

field, and radial component of the self-

ting to note that the plasma response is 

agnetic, with 0>

electric field. Furthermore, it is intereselectric field. Furthermore, it is interes

paramparam −= BBB extzzδ , for the main part of the beam aperture. 

Finally, it is of particular practical importance to calculate the radial component 

of the total Lorentz force, ( )ϕβ BEeZF brbr −= , acting on the beam ions. Making use of 

cBVE er 0ϕ−= , the force can be determined from the solutions to Eqs. (4.6)-(4.10). 

Figure 4.3 shows the radial profile of the normalized radial force calculated from Eqs. 

(4.6)-(4.10) in cylindrical us values of the parameter geometry for vario 222 ωβω  pebce

malized radial force ( )ppbebbr nvmnZF δ2
0

2Figure 4.3: (Color) The nor  acting on the 

 particles for different values of the parameter 222
bpece βωωbeam . The gray (green) line 

ensity profile multiplied by 0.2 in order to fit the profile in the plot. 

The beam radius is equal to the skin depth, rb=δb. [Kaganovich et al., 2007]. 

shows the Gaussian d
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[Kaganovich et al., 2007]. It is interesting to note that the force is changing from focusing 

to defocusing for the main part of the beam pulse as the applied magnetic field increases. 

The radial force is nearly zero when 5.1222 =pebce ωβω . This value can be o

beam transport over long distances to avoid the pinching effect [Kaganovich et al., 2007]. 

 

 4.1.3 Effects of a Moderately Strong Magnetic Field (ωce>2βbωpe) 

An important difference between the two regimes, i.e., 2ce b pe

ptimal for 

ω β ω<   and pebce ωβω 2> , 

appears to be due to excitation of electromagnetic wave-field perturbations, which 

propagate oblique to the beam axis for the case where the applied magnetic field exceeds 

the threshold value corresponding to 2cr
ce b peω β ω=  [Kag l., 200 , 

2010]. Therefore, the slice approximation used for the analysis of the case where 

2ce b pe

anovich et a 8; Dorf et al

ω β ω<  (Sec. 4.1.2), and not taking into account the effects of coupling between the 

longitudinal and transverse dynamics eneral, be applied to the case where 

pebce

 cannot, in g

ωβω 2> , and a different approach has been developed [Dorf et al., 2010]. Here, we 

gain that the threshold value of the magnetic field in many practical 

applications corresponds to a relatively weak magnetic field. For instance, for an ion 

~ 0.05b

emphasize a

beam with β  propagating through a background plasma with density 

31110~ −cmn p , the threshold magnetic field is of order 100 G. The magnetic fields above 

such weak values can be present inside the neutralizing drift section of an ion driver over 
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distances of a few meters (Chapter 1), and therefore theoretical studies of the case where 

pebce ωβω 2>  are of particular practical importance.  

In the present analysis, we consider a fast ion beam pulse with velocity much 

he Alfven velocity, and therefore the bgreater than t

with ion

eam ions cannot interact effectively 

 Alfven wave excitations. Furthermore, we assume a smooth beam density profile 

with a characteristic axial length scale for density variation, bl , much greater than the 

wavelength of electron plasma wave excitations, b b pel v ω>> . Therefore, electrostatic 

electron plasma wave excitations are also significantly suppressed [Kaganovich et al., 

2001; Kaganovich et al., 2004]. However, if a suffi g ambient magnetic field 

with 2ce b pe

ciently stron

ω β ω>  is present inside the neutralizing region, the ion beam pulse can 

effectively interact with the electromagnetic electron whistler branch of the plasma 

dispersion relation [Oliver et al., 1994; Krafft and Starodubtsev, 2002]. Therefore, in the 

present studies we analyze excitation of the whistler branch by an ion beam pulse 

propagating through a neutralizing plasma along a solenoidal magnetic field, and assess 

its influence on the degrees of beam charge neutralization and current neutralization, and 

the transverse beam dynamics. 

 The fundamental problem of whistler wave-field perturbations excited by a 

charged particle beam propagating in a magnetized plasma has been extensively studied 

for several decades, and various methods have been developed [Ahiezer et al., 1974]. 

Recent interest in this problem has been motivated by possible use of charged particle 

beams for space communications [Lavergnat and Pellat, 1979; Krafft et al., 1994; Krafft 
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and Starodubtsev, 2002]. Propagating in the magnetized ionosphere or the magnetosphere 

plasma, charged particle beams can excite whistler wave-field perturbations, and 

therefore can be used as compact on-board emitters in the very-low-frequency range, 

replacing large-apertures electromagnetic antennas. Analytical and numerical studies of 

whistler branch excitations by a density-modulated electron beam propagating through a 

background plasma along a uniform magnetic field, including both linear and nonlinear 

effects have been reported in [Volokitin et al., 1995; Volokitin et al., 1997; Krafft and 

Volokitin, 1998]. However, in those calculations the case of a thin beam with 1
br k −

⊥<<  

has been considered, and the effects of the transverse beam structure have not been taken 

into account. Here, br  is the characteristic beam radius, and k⊥  is the perpe  

component of the whistler wave vector. Note that in contrast to space-physics 

phenomena, where the wavelength of the whistler waves is large compared to the beam 

radius, for the parameters typical of neutralized intense ion beam transport applications, 

the beam radius can be comparable to the perpendicular wavelength. Furthermore, an 

axially-continuous, density-modulated beam with modulation period ml  has been 

considered in previous works [Volokitin et al., 1995; Volokitin et al., 1997; Krafft and 

Volokitin, 1998], and therefore a monochromatic wave excitation with frequency 

ndicular

b mv lω =  was obtained. Note that a finite-length ion beam pulse with a bell-shaped (not 

modulated) axial density profile used in intense beam transport applications can excite a 

quency spectrum with a characteristic frequency broad fre ~ b bv lω  and bandwidth 

~δω ω . Therefore, in the present analysis we consider excitation of the electromagnetic 
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whistler branch by a finite-length ion beam pulse propagating through a background 

along a solenidal magnetic field, taking into account the effects of the 

longitudinal and transverse beam structures.  

In the following sections we demonstrate that the total electromagnetic field 

excited by the ion beam pulse can be con

plasma 

veniently represented as the sum of two 

components: a local field component, corresponding to the local polarization of the 

background plasma, and rapidly decaying to zero outside the beam pulse; and a wave 

field component that can extend far outside the beam. It is then shown that in the regime 

where 2ce b peω β ω>>  the local-field component has the dominant influence on the 

transverse beam dynamics. Moreover, in this limit, a positive charge of the ion beam 

pulse b compensated by the plasma electrons, resulting in an enhanced 

transverse focusing of the beam ions [Dorf et al., 2009c; Dorf et al., 2010]. Note that for 

the case where 2ce b pe

ecomes over-

ω β ω<  considered in Sec. 4.1.2, the beam charge is under-

neutralized, and the radial electric field has a defocusing effect. Furthermore, it is found 

that the local plas  is changing from paramagnetic for the 2ce b pema response ω β ω<  case 

[Kaganovich et al., 2007], to diamagnetic for the 2ce b peω β ω>  case [Dorf et al., 2010].  

A plausible heuristic description of qualitatively different regi beam 

interaction with the background plasma can be giv  the analysis of the balanc

mes of ion 

en based on e 

between the electric and magnetic forces acting on a rotating background plasma electron 

[Fig. 4.4]. Figure 4.4(a) shows the case of under-neutralized beam space-charge 

corresponding to 2ce b peω β ω< . In this regime the net positive charge of the ion  
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 (a) (b) 
 

 

 

ωce<2βbωpe ωce>2βbωpe  

Figure 4.4: (Color) Tw
 

o different regimes of ion beam interaction with a background 

p lasma. (a) Corresponds to ω  beam charge is under-neutraliz

 defocusing, Er>0, and the plasma response is paramagnetic, δBz>0. 
ce<2βbωpe; the ed, the radial 

self-electric field is

(b) Corresponds to ωce>2βbωpe; the beam charge is over-neutralized, the radial self-

 is dedefocusing, Er<0, and the plasma response is diamagnetic, δBz<0.  The 

trate the trajectory of a background plasma electron; the double-dashed 

lines illustrate the ion beam outline, rE eEf

 

electric field
 

blue curves illus 

−=  and ( ) exteM BVcef ϕ−= .   

eam attracts a plasma electron, i.e.

 

 

0<rδb , . Due to conservation of canonical angular 

omentum, a decrease in the ma through the electron orbit provides electron m gnetic flux 

angular rotation in the negative azimuthal direction, 0<ϕeV . As a result, the radial 

component of the magnetic force acting on the electron is positive, 0>−= cVeBf eextM ϕ ,  

and is balanced by the positive (defocusing) radial component of the electric field, 

0>rE . Note that the positive azimuthal component of th t, 

0>−= ϕϕ eee Venj , produces a positive (paramagnetic) perturbation of the longitudinal 

tic field, 0>zB

e electron curren

magne δ . In contrast, for the case where the beam space charge is over-
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neutralized [Fig. 4.4(b)] a plasma electron moves radially outward as the ion beam 

approaches, i.e., 0>rδ , and an increase in the magnetic flux is associated with the 

positive azimuthal component of the electron velocity, 0>ϕeV . This leads to a 

diamagnetic effect 0<z, Bδ , and also a focusing electric field, 0<rE , is generated to 

provide force balance on the plasma electrons.  

It is interesting to note that the threshold value of magnetic field, 

2cr
ce b pe

 the 

ω β ω= , which separates these qualitatively different regimes of ion beam 

interact

amplitude wa

ion with the background plasma, corresponds to the resonant excitation of a large-

ve-field component [Volokitin et al., 1995, Dorf et al., 2010]. This effect of 

resonant wave excitation can be utilized for diagnostic purposes. Indeed, placing a pick-

up loop outside the beam pulse and varying the amplitude of the applied magnetic field, a 

large-amplitude signal will be detected when the applied magnetic field approaches the 

threshold value specified by 2cr
ce b peω β ω= . Therefore, it is expected that this scheme can 

be utilized as a passive diagnostic tool to measure the beam velocity or plasma density 

[Dorf et al., 2010].   

  

4.2 Theoretical Model 

 this section we calculate the electromagnetic field excitation generated by an ion beam 

kground plasma with a constant velocity, vb, along a 

uniform magnetic field 

In

pulse propagating through a cold bac

. The beam carries a current ( )xtvznevZj bbbbb ,−= , zBextext ˆ=B
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where Zb is the beam ion charge state, -e is the electron charge, nb is the beam number 

density, and  x and z are the transverse and longitudinal coordinates, respectively. For 

simplicity in the analytical s  we consider here 2D slab (x

results of numerical simulations in cylindrical (r,z) geometry are presented in Sec. 4.3. 

Provided the beam density is small compared to the plasma density (nb<<np) , we assume 

a linear (small-signal) plasma response and obtain the following equation for the Fourier 

transforms of the perturbed electromagnetic field components  

( ), exp x zd d i t ik x ik zωω ω= − + +∫ kE k E , and ( ), exp x zd d i t ik x ik zωω ω= − + +

tudies, ,z) geometry, and the 

∫ kB k B , 

where 

                         ( ) kkk jE ,2,, 4 ωω πε
c

i=⋅−k EkkE ,
2

ωωk ⋅− 2

2 ωω
c
I .                           (4.11) 

Here, εI  is the dielectric tensor de

[Ahiezer et al., 1974] with 

scribing linear response of the cold plasma electrons 

( )2221 cepeyy
221 ωωε pezz −=ωωωε −−== , , and xxε

( )[ ]222
cecepeyxxy i ωωωωωεε −=−= , where ( ) 2124 eppe mneπω =  is the plasma frequency, 

cmeB eextce =ω  is the electron cyclotron frequency, and the plasma ion response is 

neglected provided ciceωωω >>  [Lifshitz and Pitaevskii, 1981]. Here, cmeB iextci =ω  is 

the ion cyclotron frequency, and e  mi are the electron m

respectively. Fi

 beam-plasm ristic time fo

 m and ass and ion mass, 

nally, we neglected perturbations in the ion beam motion, assuming that 

the time duration of a interaction is smaller than the characte r 

the ion beam response [Startsev et al., 2008]. The space-time Fourier transform of the 
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beam current is specified by ( ) ( )bzzxbb vkkkneZ −= ωδω ,, kk vj , where  

( ) ( )ξξξ ikxikxndxdn −−= ∫ exp, .  zxbk

It is straightforward to show

yields a steady-state solution, 

combination bz v t

 for this q. (4.11) 

 solely through the 

 model of the beam current that E

in which all quantities depend on z and t

ξ = −

long, w

. In what follows, we assum  e that the beam pulse is sufficiently

ith rb<<lb and ~ v lb b peω ω<< . Note that the latter condition implies that 

electrostatic electron plasma wave excitations are significantly suppressed [Kaganovich 

et al., 2001]. Finally, in this section, for simplicity we assume that pece ωω << , and a 

general analysis for the case of an arbitrary ratio of pece ωω  can be found in Appendix 

portant to analyze the x-comA. For present purposes, it is particularly im ponent of the 

electric field perturbations, x, and the -component of the magnetic field perturbations, 

                       

E y

By, which determine the transverse dynamics of the beam particles. After some 

straightforward algebra we obtain the following Fourier transforms of the transverse 

electromagnetic field components [Dorf et al., 2010], 

( )
( )
( )

2 23 2 2

2 2 22 2 2 ,

x
z b z bb x ce

e pe wh x zp pe pe

eE k v n k vc Z k k
m c k kn c k

ω δ ωω
ω ω ωω ω

−
−+

,k ki= − ,                    (4.12)                         

( )
( )
( )

2 2y
b b pe x z bZ ckeB k v nω β ω,k

2 2 2 2 2 ,
z b

e pe p pe wh x z

k v
i

m c n c k k k
δ ω

ω ω ω ω
−

= −
+ −

k ,                        (4.13) 

where use has been made of Faraday’s equation, ( ) EkB k ×=,ωω c , to obtain the 

perturbed magnetic field component. Here, cvbb =β , 222
zx kkk += , and 
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                                       ( )
( )

2 2 2
2

22 2 2
, ce z

wh x z

pe

k kk k
k c
ωω
ω

=
+

,                 

is the dispersion relation for the electron whistler branch. The electromagnetic field 

perturbations Ex and By, can now be obtained by applying inverse space-time Fourier 

frequency ω rea

                      (4.14) 

transforms to Eqs. (4.12) and (4.13). Integration over the dily gives  

               
( )

( )
( )

2 22

2 2 2 22 2 2

exp
,

z b zce

e pe z wh x zp pe pe

k v ik vt
m c k v k kn c k

ω
ω ωω ω
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k               (4.15) 

                    

3 2x
b x nc Z k keE i= −k ,       

( )
( )
( )

2 2

2 2 2 2 2 2

exp
,

y ik vteB b pe x z b z

e pe p pe z wh x z

Z ck k v n
i

m c n c k k v k k
β ω

ω ω ω
= −

+ −
kk .                        (4.16) 

It is evident that the onset of wave-field generation by the beam pulse corresponds to 

existence of real solutions to  

−

( )2 2,wh x z z bk k k vω = 2 .                                               (4.17) 

Note that the condition in Eq. (4.17) is equivalent to the resonance condition for 

Cherenkov radiation, namely ph
z bV v= , where  is the z-component of the whistler 

wave phase velocity.  

.16), which provides a challenge in calculating the inverse 

Fourier integration. In what follows, first, based on

sponding Landau contours in the complex k-plane, and the steady-

ph
zV

 Excitation of the whistler wave field perturbations is associated with the poles 

(singularities) in Eqs. (4.15)-(4

 the dispersion relation [Eq. (4.14)] 

and the Cherenkov condition [Eq. (4.17)], properties of the excited whistler waves are 

investigated (Sec. 4.2.1). Then, the singularities are properly treated by carrying out the 

integration along corre
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state solution for the excited electromagnetic field perturbations is obtained (Sec. 4.2.2). 

Finally, the time evolution of the excited electromagnetic perturbations is discussed in 

Sec. 4.2.3, and the influence of the excited wave field on the degrees of a beam charge 

neutralization and current neutralization is assessed in Sec. 4.2.4.   

 

4.2.1 Properties of the Excited Whistler Waves 

It is straightforward to show that real solutions to Eq. (4.17) exist, provided 

                                            2 1ce b peα ω β ω= > ,                                                    (4.18) 

2 2as illustrated in Fig. 4.5(a). For this case, the solutions  correspond to the long-

agnetic part of the whistler branch, 

,em qsk k=

emk k pe cwavelength electrom ω= < , and the short-

wavelength quasi-electrostatic part, ckk peqs ω>=  [Fig. 4.5(a)]. In the limit where 

1>>α  the solutions are approximately given by  

2 pe
qs

α
                           k

c
ω

≅ , 
2

pe
emk

c
ω
α

≅

m erse wave v

.                                               (4.19) 

Note that for a long beam pulse with 1 1− −>>  the transv ectors of the 

excited wave field are approximately given by 

,~z b qs ek l k

x kk emqs ,±≈  [see Fig. 4.5(b)].  

gx

field the quasi-electrostatic and the long-

wavelength histler wav  with the

opposite signs of group velocity, Vgx. Furthermore, it can be shown that the z-component  

The directions of the x-component of the group velocity V  for the excited wave 

are illustrated in Fig. 4.5(b). Note that 

electromagnetic w es  same signs of phase velocity have 
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Figure 4.5: (Color) Plots of solutions to Eq. (4.17) corresponding to the w

histler wave-field. (a) The absolute value of the norma

 wave phase velocity (solid curve) is intersected by diff

lized beam velocity βb (dashed lines). (b) The circles on the plane (

s to Eq. (4.17). For the case of a long beam pulse with 

imarily excited are illustrated by the short vertical bol

 illustrate positive and negative signs, respectively, of the x

group velocity for the excited waves.   

ave vectors of 

lized z-component of 

the whistler erent values of the 

a kx,kz) illustrate 

tion w , the wave 

r d lines. Red and blue 

-component of the 
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Figure 4.6: Schematic illustration of whistler waves excited by the ion beam

 of reference, the long-wavelength electromagnetic wave

 pulse, and the short-wavelength quasi-electr

 pulse. In the 

 frame -field propagates 

ostatic wave-field 

beam

ahead of the beam

propagates towa

f the group velo ve field is smaller 

an the beam agnetic wave field 

ropagates in the z-direction faster than the beam. Therefore, the long-wavelength 

4.6 [Dorf et al., 2010].  

rd the beam tail. 

city for the short-wavelength quasi-electrostatic wa

 velocity. In contrast, the long-wavelength electrom
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electromagnetic perturbations excited by the beam tail can propagate along the beam 

nd influence the dynamics of the beam head. A schematic illustration of the whistler 

ave excitations is shown in Fig. 
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4.2.2 Wave-Field and Local-Field Components of the Excited 

Electromagnetic Perturbations 

Wave-field excitations for the case where 1α >  are associated with the poles in Eqs. 

(4.15)-(4.16), which appear in the real space of the wave vector components (k ,k ). Note, 

1 1− −

axis depend weakly on the value of kz, i.e., 

x z

for the case of a long beam pulse, m , that the pole locations on the real kx-,qsk>>~z b ek l

( )2
,

2
,qsemx kk ±≅ 21 qsemz kk− . It is therefore 

along the k -axis. To properly account for the pole contributions, the integration over kx-

space should be carried out along the Landau contour, CL, as illustrated in Fig 4.7 [Dorf 

et al., 2010]. Note that integration along the contour CL shows that sufficiently far outside 

the beam only wave fields with a positive (negative) x-component of group velocity 

ve example, we consider

convenient to carry out the inverse Fourier integration, first along the kx-axis, and then 

z

propagate in the region x>0 (x<0).  

To demonstrate this fact, as an illustrati  the simple case 

where the spectrum of the beam density is an analytical function in the complex kx-plane, 

which satisfies ( )exp 0xn k x− →k  for large values of |kx|. Considering x>0, and closing 

the Landau contour through a semi-circle of an infinitely large radius lying in the upper-

plane [Figs. 4.7(a) and 4.7(b)], we readily obtain that the wave field excitations 

correspond to contributions from the poles at kx=–kem and kx=kqs for kz<0, and at kx=kem 

and kx=-kqs for kz>0. Note that the group velocity of these waves is indeed directed away 

from the beam, i.e., Vgx>0 [see. Fig. 4.5(b)]. Finally, it should be pointed out that the 

integration contours CL are different for the cases where kz>0 and kz<0. Therefore, even  
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Figure 4.7: (Color) Integration contours used for evaluation of the integrals in Eqs. 

.15)-(4.16). Frames (a) and (b) show Landau contours CL corresponding to kz<0 and 

z>0, respectively. Frames (c) and (d) illustrate contours of integration equivalent to the 

nes shown in Frames (a) and (b), respectively. Red and blue colors are used to illustrate 

the integration contours for x>0 and x<0, respectively. 

r a symmetric longitudinal beam density profile, the electromagnetic field perturbations 

re not, in general, symmetric around the beam center, implying oblique wave 

ropagation.  

eam with a smooth radial profile, 

it can be shown that the contribution from the on-axis poles corresponds to the wave-field 
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For present purposes, it is convenient to represent the integration along the 

ontour CL for x>0 (x<0) as an integral along a slightly shifted upward (downward) 

ontour C+ (C-) lying below (above) the poles of nk, plus (minus) the residues of the 

elevant on-axis poles [Figs. 4.7(c) and 4.7(d)]. For a b

c

c
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components of the electromagnetic field perturbation ( W
y

W
x BE , ) extending far outside the 

beam, and the integrals along the paths C+ and C- correspond to the local-field 

components ( loc
y

loc
x BE ,

 for a suffi

) that rapidly decay to zero outside the beam. Assuming 

s ciently long beam pulse, we obtain the following approximate ,z e q

expressions for the wave-field components of the electromagnetic field perturbation for 

x>0 [Dorf et al., 2010], 

                               

mk k<<

( ) ( )2 2

2y pe b b
em qs

eB Z
b b

πω β
ω

= +
−

,                                   (4.20) 

       

W

e pe p qs emm c cn k k

( ) ( )2 2 em qs
e pe p pe qs em

e e
m c cn k kω ω

= +
−

.                                 (4.21) 

Here,  

22W
x b ceeE Zπ ω

( ) ( ) ( )[ ]
∞

−+±=
0

22222 21cos, xkkkkkkndkck ∓ξω ,      (4.22) 

                        

∫ ,,,,,b emqszemqszzemqszpeemqsemqs k

( ) ( )[ ]∫
∞

−±=, ke emqs
0

2
,

2
,,

2
, 21cos, xkkkkkkndk emqszemqszzemqszemqs ∓ξk ,          (4.23) 

are the tic components corresponding to

subscript “qs”) and the long-wavelength electromagnetic (with subscript “em”) waves, 

respectively, and 

 electric and magne  the quasi-electrostatic (with 

bz v tξ = − . Note that the correction term, ( )2 2k k xδϕ = , which ,z em qs

y retained se of the wave-field component, yields a curvature in the 

phase fronts, and a corresponding decrease in the wave-field amplitude for 

The local fields are given for x>0 by [Dorf et al., 2010] 

we onl  in the pha

2x l k≥ . ,b em qs
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( )
( )( )

2 2 2

2 2 2 2
xz

loc
pe b x x pey ik xik

z x
e pe p x em x qsC

Z k k ceB
i dk e dk e n

m c cn k k k k
ξ ω β ω

ω
+

∞

−∞

+
= −

− −∫ ∫ k ,                      (4.24)             

( )( )
3 2

2 2 2 2

loc
ik xikx b x ce

z x
e pe p pe x em x qsC

eE Z k
m c cn k k k k

ξ ω
ω ω

+

∞

−∞ − −k

It should be noted that for the case where the beam pecified by 

( ) ( ) ( ),b b x z bn x z v t n x n z v t− = − , the integration over the kz-space can be carried out 

independently from the kx-space integration. Therefore, the axial depende  local 

fields is determined solely by the beam

xzi dk e dk e n= − ∫ ∫ .                   (4.25)  

density profile is s

nce of the

 density axial profile, that is 

. In contrast, it is readily seen from Eqs. (4.20)-(4.23) that 

the wave field propagates obliquely to the beam. This implies a coupling between the 

transverse and longitudinal dynamics of the system, and therefore limits the validity of 

the slice approximation. 

following illustrative parameter

( ) ( ),, ( )loc loc
z b E BE B n z v t x= − Φ

Features of the steady-state whistler wave excitation are shown in Fig. 4.8 for the 

s: ( )22 2 2
0 expb b b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , lb=10c/ωpe (beam 

pulse duration τb=lb/vb=30.3/ωpe), vb=0.33c, nb0=0.05np, np=2.4·1011 cm-3
, and Bext=1600 

G [Dorf et al., 2010]. It is readily seen for a wide-aperture beam, r =2.5c/ω , that the 

ic part of the whistler branch is primarily excited [Fig. 4.8 

(a)], and the amplitude of the quasi-electrostatic wave field is exponentially small [see 

Eq. (4.22)]. In contrast, for the case of a thinner beam, rb=0.5c/ωpe, the short-wavelength 

quasi-electrostatic waves

b pe

long-wavelength electromagnet

 are primarily represented in the excited spectrum [Fig. 4.8(b)] 

due to the large excitation factor, ( )2 2 2
qs pek cω+ , in front of the integral in Eq. (4.22).   
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Figure 4.8: (Color) Plots of the s plitude of the transverse magnetic fielteady-state am d 

perturbations By. The beam-plasma parameters correspond to Zb=1, lb=10c/ωpe, βb=0.33, 

np=2.4·1011 cm-3. The applied magnetic field, Bext=1600 G, corresponds to 

=ωce/(2βbωpe)=1.54. The frames show (a) primarily excitation of long-wavelength 

agnetic waves by a wide-aperture ion beam with rb=2.5c/ωpe; and (b) primarily 

excitation of short-wavelength quasi-electrostatic waves by a thin beam with 

b=0.5c/ωpe. The information used in obtaining the plots is obtained from Eqs. (A1)-

alization factor in Frames (a) and (b) is given by B nb0Zbeβbrb. The 

s schematically illustrate the direction of the wave packet group velocity. The 

dashed lines correspond to the contour of constant beam density corresponding to the 

 radius rb. 
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effective beam 

 

Note that for the parameters in this illustrative example, ~ce peω ω , and therefore to 

obtain the plots in Fig.4.8, we used Eqs. (A1)-(A7), which include ce peω ω  correction 

erms. t
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4.2.3 Time Evolution of the Wave-Field Perturbations 

 should be noted that the denominators in Eqs. (4.20)-(4.21) can be expressed as 

                        

It

2 2 2 24 1qs em pek k cα α ω− = − 2 ,                                       (4.26) 

and it readily follows that there is strong resonant wave excitation for the case where the 

poles are merging, corresponding to  and qs em pek k cω= =12 == pece βωωα  [see Fig. 

4.5(a)]. Indeed, it can be shown in the limit 1α =  that the group velocity of an excited 

gx 0V = , gzV v=

erefore be a

ng a linear plasm

wave packet becomes equal to the beam velocity, i.e., b . That is the wave 

packet is moving together with the beam pulse, and can th mplified to very 

large amplitude (during a very long time interval), assum a response. 

to dissipation e that the local sp

i

ecifi

The wave-field intensity, however, will be saturated either by nonlinear processes or due 

(collisions). Not ed by Eqs. (4.24)-(4.25) do not  fields 

have singularities at 1=α .  

For the case where 1>α , the de reaches a finite quasi-steady-

state limit with a characteristic time scale 

wave-field amplitu

of { }~ min ,s b gx b gz br V l V v− . This time 

interval is required for an initial transient wave packe op ufficiently outside 

the beam pulse.  For the excited wave vectors specified by Eq. (4.7), it can be shown that 

( )

τ

t to pr agate s

gx gz b x zV V v k k− = . Therefore, for a sufficiently long beam pulse with 1
,b qs eml k −>> , the 

wave perturbations propagate primarily in the transverse direction, and leave the beam in 

the time period ~s b gxr Vτ . For the case where 1α ≥  and ~b per c ω , making use of Eqs. 

(4.14) and (4.17), we obtain ~ ~s b gx br V l vbτ .  That is, the time scale for achieving a 
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quasi-s r theteady-state is of orde  beam pulse duration, and is therefore much longer than 

the plasma period, i.e.,  

                                                   ~ 1s b b pel vτ ω>>                                                     (4.27) 

Note that this result is significantly different from the case Bext=0, where the 

 reach a quasi-steady-state is of order of the plasma period [Dorf et 

al., 2010].  

 

It is of particular intere

characteristic time to

4.2.4 Influence of the Excited Wave Field on Beam Charge 

Neutralization and Current Neutralization 

st for neutralized beam transport applications to estimate the 

lization and curre

excited wave field. Here, we consider the case where 

degrees of beam charge neutra nt neutralization associated with the 

, and the limit where 1α >>  1α ≥

and the analysis of the local-field component is addressed in Sec. 4.5. It is convenient to 

introduce er0 04 b b bE n Zπ=  and 0 04 b b b bB n Z e rπ β=  that represent, respectively, the 

tic field generated by an ion 

current neutralization 

easured by . Considering, for simp

Gaussian beam

characteristic transverse self

density and radius. The degrees of beam

can now be effectively m

 density profile with 

-electric field and self-m

 char

Ex/E0 and By

agne

ge neutralization and 

/B0

beam propagating in vacuum. Here, nb0 and rb are the characteristic values of the beam 

licity, a 

( ) 2 2 2 2
0 4 4b b b b x b zn r l r k l kπ −4 expn= −⎡ ⎤⎣ ⎦k , it f

from Eqs. (4.20)-(4.23) that the degrees of beam charge neutralization and current 

neutralization associated with the wave field excitations is given by [Dorf et al., 2010]  

ollows 
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( ) ( ){ }2 2 2 2 2 2 2max exp 4 ,exp 4W
qs pe b qs b emy c k r k r kB ω − −

2
0

~
4 1B

π
α α −

,                    (4.28)      

( ) ( ) ( ) ( ){ }2 2 2 2 2 2 2 2 2 22

2
0

max exp 4 , exp 4
~

W
qs pe b qs em pe b emx ce

pe

c k r k c k r kE ω ωωπ
− −

.  (4.29)   

It readily follows from Eqs. (4.28)-(4.29), for the case where 

24 1E ω α α −
                      

12 ≤embkr  and 1≥α , that 

the beam current is not neutralized, i.e., 0 ~ 1W
yB B . The beam charge is, however, well-

neutralized, i.e., 0 1W
xE E << , provided pece ωω <<  [this is due to the factor 2 2

ce peω ω  in 

Eq. (4.29)]. For the case where ~ce peω ω , the degree of charge neutralization decreases, 

giving 0 ~ 1WE E , (see Appendix A), which is consistent with the analysis x in 

[Kaganovich et al., 2008].  

 

4.3 Resonant Wave Excitation: The Asymptotic Time-

Dependent Solution  

In the previous section, it was demonstrated for the critical case where 1α = , that very-

large-amplitude w xcitations a ed by the linear theory fo si-

steady-state solution. This effect amplitude wave-field excitations in the limit of 

merging poles corresponding to 

ave-field e re predict r a qua

of large-

12 == pece βωωα  and qs em pek k cω= =  (so-called 

double pole case) has been previously reported in [Volokitin et al., 

997] for the case of an axially-continuous and thin (

 et al., 1995; Volokitin 

1br k⊥ << ) electron b1 eam with a 
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periodically modulated axial density profile. In those calculations, weak dissipation (due 

and the excited whistler waves [V

to collisions) [Volokitin et al., 1995], or nonlinear interaction between the beam electrons 

olokitin et al., 1997] were assumed in order to estimate 

pres

nlinear response of the background plasm

echanis

the saturated amplitude of the electromagnetic field perturbations. In the ent analysis 

we obtain the asymptotic time-dependent solution for the wave amplitude in the linear 

approximation. Furthermore, we discuss a possible mechanism for saturation of the wave 

field intensity associated with the no a electrons, 

which can drive the system off resonance [Dorf et al., 2010]. Provided the beam ions are 

sufficiently massive, the saturation determined by this m m can occur before the 

nonlinear interaction between the beam ions and the excited whistler waves becomes 

important.  

To describe the time evolution of the electromagnetic field perturbation excited 

by the ion beam pulse, we solve here an initial-value problem, making use of Laplace 

transforms with respect to time. Note that the temporal Fourier transform used in Sec. II 

yields only the steady-state solution. In this section, we assume that the initial 

electromagnetic field is zero everywhere, and the beam current (source) is 

instantaneously turned on at t=0, i.e., ( ), ( )b b b bj Z en z v t x H t= − , where H(t) is the 

Heaviside step function defined by H(t)=0 for t<0, and H(t)=1 for t≥0. Similar to Eq. 

(4.3), we obtain that the space (Fourier) - time (Laplace) transform of the perturbed 

transverse magnetic field is given by [Dorf et al., 2010] 
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( ) ( ) ( )

3 3 2
, 1

2 ,

y
pe b b z x

e pe p pe wh x z z b

c Z k keB n
m c n c k k k k v

ω ω β
ω π ω ω ω ω+ − −⎡ ⎤⎣ ⎦

k k

The inverse Laplace time transform performed in the complex ω-plane readily gives 

    

2 2 2 2 2= − .             (4.30) 

( )
( ) ( )

( )
( )

( )

3 3 2 exp exp exp
2 2

y
pe b b z x z b wh wh

e pe p pe z b wh wh wh z b wh wh z b

c Z k k n ik v t i t i teB i
m c n c k k v k v k v

ω β ω ω
ω ω ω ω ω ω ω2 2 2 2 2 2

⎡ − − ⎤
= − + +⎢ ⎥+ − − +⎣ ⎦

kk . 

  (4.31)   

Note that the first term inside the brackets in Eq. (4.31) corresponds to the steady-state 

solution [compare with Eq. (4.16)], in which all quantities depend on t and z exclusively 

through the combination bz v t

    

ξ = − . The other two terms describe the time evolution of 

the transient excitations. Assum ng a sufficiently long beam pulse, , for 

the double-pole case corresponding to 

i 1 1
,~z b qs ek l k− −>> m

2 1ce b peα ω β ω= = , Eq. (4.31) takes the form                           

      

( ) ( )
( )

( ) ( )
( )

3 2

2 2

exp exp exp exp
2

y
pe b b z x wh z b wh z b

e pe wh z b p x pe x pe

cZ k k n i t ik v t i t ik v teB i
m c k v n k c k c

ω β ω ω
ω ω ω ω

⎡ ⎤− − − − −
⎢ ⎥= − − +
⎢ ⎥− +⎣ ⎦

kk .   

(4.32) 

The right-hand side of Eq. (4.32) has two critical points on the real k -axis 

corresponding to 

x

ck pex ω±= . However, for the case where 1α = , the dispersion 

relation yields ( ),wh pe z z bc k k vω ω± = ± . Furthermore, the x-component of the group 

velocity is equal to zero at the critical points, ( ), 0kgx xV k cω= pe z± = . Therefore, the 

time-dependent solution in Eq. (4.32) is regular at the critical points, ckx peω±= , and 
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the inverse Fourier integration in kx-space can be carried out along the real axis. Note that

at large times, 

 

1whtω >>

near the points of stationary phase, where 

, the contribution to the integral comes mainly from the regions 

0wh x gxk Vω∂ ∂ ≡ = , which coincide with the 

critical points ck pex ω±= . The asymptotic time-dependant solution is then given b

        

y   

( ) 22

2

ik
pe b b

p

Z e
c n

ω β −

2

y

x
e pe xm c c kω

∞

−∞

exp sgn 2 1
, sin

z b

z

v t
k z wh xpe pe

z

eB i k k t
n k x d k

c
ωω ω ′′ Δ −⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎣ ⎦= − Δ⎜ ⎟

⎝ ⎠
k ,   

  

⎜ ⎟ Δ⎝ ⎠ ∫

(4.33)   

where ∫= xiky
x

y
k

x

z
eBdkB k , 

∞

−

2 2 3 2
wh wh x z b pek c

k c k
ωx pe

ω ω β ω
=

′′ = ∂ ∂ =⎡ ⎤⎣ ⎦ , been 
∞

and it has 

assumed that ( ) ( )zpezpe kcnkcn ,, ωω −= kk . Noting that 

( )[ ] ( )∫
∞−

−±=−± 121exp ixixdx π , we ob 010]                     
∞

22 tain [Dorf et al., 2

                   
3 22 pe b b pev Zπω ω⎛ ⎞sin ( )y

z
e pe p

eB
t x N z

m c n cω
= ⎜ ⎟

⎝ ⎠
,                           (4.34)          

where  

               ( ) ( )[ ]∫
∞

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

sincos, ξξ
ω

zzz
pe

zzz kkk
c

nkdkN k ,                          (4.35) 

and a symmetric beam profile with ( ) ( ), ,pe z pe zn c k n cω ω k= −k k  has been assumed. 

Equations (4.34)-(4.35) describe the asymptotic evolution of the wave field for the double 
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pole case corresponding to 12 == pece βωωα . It is readily seen from

sufficiently large times, 

 Eq. (4.34) that at 

2 1wh bt rω′′ >> , the amplitude of the magnetic field is given by 

~y b b b b b bB v t l Z en rβ ,                                              (4.36) 

provided the beam radius is of the ord . 

As the amplitude of the resonantly-excited electromagnetic field perturbation 

increases, nonlinear processes can provide saturation of the energy transfer from the 

 the wave field.  Here, we consider a plausible mechanism to describe saturation 

of the wave field intensity, in which the enhanced electromagnetic field perturbation 

generated by the ion beam pulse modifies properties of the whistler waves, and drives the 

e longitudinal component of

er of or smaller than the electron skin depth

beam to

system off resonance. Indeed, as th  the magnetic field 

perturbation Bz increases, the resonance condition becomes less accurate, 

( )2 1NL
NL ce b peα ω β ω= > , where cme . Recalling that the form of the 

resonant denominator is given by 

BBe z
NL
ce += 0ω

( )11 2 −αα , the normalized magnitude of the 

perturbed longitudinal magnetic field ) ( )2 b pec( z eeB mα β ω  can be estimated by Δ ≡

( )( ) ( ) 1 22~ 1 1b b p b peZ n n r cα ω α
−

Δ ⎡ + Δ − ⎤⎣ ⎦  provided the beam radius is of the order of 

or smal

                          

ler than the electron skin depth [see Eq. (B5)]. It now follows that the wave-field 

intensity saturates at the approximate level  

( ) ( )2 3 2 32 3~ b b p b peZ n n r cα ωΔ .                                  (4.37) 
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For the case of low beam density, pb nn << , this amplitude of the electromagnetic field 

perturbation is significantly higher compared to the case of non-resonant excitation, 

, where the norm d litude isalized stea  proportional to y-state amp1>α pb nn . Finally, we 

emphasize that although the mechanism  for the wave-field intensity saturation 

seems plausible, further detailed analytic are required to validate 

particle-in-cell simulations performed using the two-dimensional slab (x,z) version of the 

LSP code taking into account electroma

 considered

al and numerical studies 

it.  

The resonant excitation of whistler waves has been observed in numerical 

gnetic effects [Dorf et al., 2010]. As an 

illustrative example, we consider a Gaussian ion beam pulse, 

( )22 20.05 expb p b bn n r r z v t l2
b⎡ ⎤= − − −⎣ ⎦ , wit

with 

ction exciting electromagnetic field perturbations. Figure 4.9 shows the results of the 

numeri

h effective beam radius rb=0.92c/ωpe, and 

beam pulse half-length, lb=9.2c/ωpe (beam pulse duration τb=lb/vb=27.8/ωpe), propagating 

velocity vb=0.33c through a background plasma with density, 1110n  cm-3. In 

the numerical simulations, the ion beam is injected through the lower boundary of the 

simulation domain into an unperturbed magnetized plasma, and it propagates in the z-

dire

4.2 ×=p

cal simulations for the time-evolution of the maximum value of the perturbed 

transverse magnetic field By. Note that for the parameters in this illustrative example, 

ωce~ωpe and βb=0.33, and therefore a generalized analysis for arbitrary value of ωce/ωpe  
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Figure 4.9: Time evolution of the maximum value of the normalized perturbed 

transverse magnetic field plotted for different vales of the applied magnetic field. The

pe

 

beam-plasma parameters correspond to Zb=1, rb=0.92c/ωpe, lb=9.2c/ωpe, βb=0.33, and 

cm-3. The applied magnetic field corresponds to 11104.2 ×=pn 1~ =α  (solid curve), 

2.1~ =α  (dashed curve), and 37.1~ =α  (dotted curve). Results are obtained using the 

(x,z) slab model of the LSP code. 

 

 

 

 

ate corrections to the resonance condition. The 

onant excitation of the wave field should  

occur at 

 

 

 

 

 

 

 

 

 

 

should be carried out in order to estim

analysis shows (see Appendix A) that the res

( ) ( )21 2ce b b peα ω β β ω= − =�

Fig. 4.9 that as the magnitude of the a

approaches the critical value corresponding to 

1 [Kaganovich et al., 2007]. It is readily seen from 

pplied uniform longitudinal magnetic field, Bext, 

1~ =α , the saturation amplitude of the 

perturbed magnetic field increases, as well as the time interval required to achieve a 

quasi-steady-state. Note that the perturbed transverse magnetic field shown in Fig. 4.9 is 
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ormalized to the magnetic self-field of an unneutralized beam, 0 04 b b b bB n Z e rπ β=

, that the beam current is unneutralized, 

n . It is 

vident, for the quasi-steady-state regimee

B 0~y B , which is consistent with the analysis performed in Sec. 4.2.4.   

 

Finally, it should be noted that the effect of resonant large-amplitude wave field 

excitations can be utilized for diagnostic purposes in experiments where an ion beam

pulse propagates through a background plasma along an applied solenoidal magnetic 

field [Dorf et al., 2010]. Indeed, measuring the perturbed azimuthal magnetic field, for 

instance, in the vicinity of the chamber wall, it can be expected to obtain the following 

dependence on the value of the applied magnetic field. First, at low values of the applied 

magnetic field, 2 1ce b peα ω β ω= < , the wave-field component of the electromagnetic 

field perturbation is not excited, and the excited signal is expo s the 

magnetic field increases, and the threshold value of 

nentially small. A

2 1ce b peα ω β ω= =  is reached, a 

plitude signal corresponding to resonant wave excitation wlarge-am

Finally,

ill be detected. 

 further increase in the magnitude of the applied magnetic field, 

2 1ce b peα ω β ω= > , will lead to a decrease in the amplitude of the excited signal. 

Provided the directed beam velocity is known, this diagnostic can be used, for instance, 

for passive measurements of the background plasma density. Indeed, determining the 

threshold magnitude of the applied magnetic field, B , from the experimental data, the 

plasma density can be readily obtained from 

c

( ) 2pe ce c bBω ω β= .  
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4.4 Comparison of Analytical Theory with Numerical 

present the results of the numerical simulations performed with the 

particle-in-cell (PIC) code LSP and compare it with the analytical solutions described in 

Sec. 4.2 [Dorf et al., 2010]. Figure 4.10(a) shows the results obtained with the 2D slab 

(x,z) version of the code for the amplitude of the y-component of the perturbed magnetic 

field, when a quasi-steady-state is reached. The correspond

Simulations  

In this section we 

ing analytical solution [Eqs. 

(A1)-(A7)] is shown in Fig. 4.10(b). The following parameters have been used for this 

illustrative example: ( )22 2 20.05 expb p b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , rb=0.92c/ωpe, lb=10rb (be

pulse duration τb=lb/v

am 

b=27.8/ωpe), vb=0.33c, cm-3, and Bext=1600 G . It is 

readily seen from Figs. 4.10(a) and 4.10(b) that the results of the numerical simulations 

11104.2 ×=pn

and analytical theory are found to be in very good agreement. Indeed, the characteristic 

amplitude of the electromagnetic field perturbation, wavelength, angle of the 

propagation, etc., are quite similar.  

In addition, to verify the approximate analytical solution specified by Eqs. (A1)-

(A7), we first solved Eq. (4.11) for arbitrary values of ceωω , peωω , and cepe ωω , and 

regime where a wav s of the perturbed 

electromagnetic fields contain singularities in erical 

integration of the fast Fourier transforms performed along the real kx- and kz- axes would  

then numerically calculated the inverse fast Fourier transforms (FFT). Note that in the 

e field is excited, the Fourier transform

real (kx,kz)-space. Therefore, the num
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Figure 4.10: (Color) Plots of the steady-state amplitude of the transverse magnetic field 

perturbation By. The beam-plasma parameters correspond to Zb=1, rb=0.92c/ωpe, lb=10rb, 

βb=0.33, and cm-3. The applied magnetic field, Bext=1600 G, corresponds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
11104.2 ×=pn

to 
 
α=ωce/(2βbωpe)=1.54. The Frames

x,z) slab version of the LSP code; (b

) numerical 

collisions ν=0.005/τb; and (d) the results

r,z) cylindrical version of the LSP code. Th

  

 correspond to: (a) results of numerical simulations 

) the analytical solution given by 

calculation of fast Fourier transforms, assuming weak 

 of numerical simulations obtained using the

e dashed lines correspond to contours of 

ng to the effective beam radius rb. 

obtained using the ( 

Eqs. (A1)-(A7); (c 

(
 

constant beam density correspondi 
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iverge. To remove the singularities from the real axis, weak collisions have been 

ssumed for the plasma electron response. Correspondingly, the components of the 

d

a

dielectric tensor, εI , should be modified according to 

( )( ) ( )22 21xx yy ceiε ε ω ω ω ν ω= = − + − ⎦ , ( )[ ]pe ω ν ⎡ ⎤+ ⎣
2i 1zz pe iε ω ω ω ν= − + , and 

( )( )22 2
xy yx pe ce cei iε ε ω ω ω ω ν ω⎡ ⎤= − = + −⎣ ⎦ , where ν is the effective collision frequency. In 

he limit of zero collision frequency, the numerical fast Fourier transforms calculation 

hould yield the analytical solutions given in Eqs. (A1)-(A7). The results obtained in the 

umerical fast Fourier transforms calculation for the case of weak dissipation, 

t

s

n ν=0.005/τb, 

emonstrate very good agreement with the analytical solution [compare Fig. 4.10(b) and 

the numerical simulation obtained using the 2D (r,z) cylindrical version of the LSP code 

for the same system parameters are shown in Fig. 4.10(d). Results of the (r,z) LSP 

simulations demonstrate similar waveleng

ometry, and does not decrease for the case of 2D slab geometry. This can 

d

Fig 4.10(c)]. 

It is of particular interest to compare the results obtained for the case of (x,z) slab 

geometry [Figs. 4.10(a) – 4.10(c)] to the case of cylindrical (r,z) geometry. The results of 

th and propagation angle for the excited wave 

field. However, the amplitude of the perturbed electromagnetic field is smaller. 

Furthermore, it decays more rapidly outside the beam pulse, compared to the case of the 

slab beam pulse [compare Fig. 4.10(a) and 4.10(d)]. Note for an infinitely long beam that 

the amplitude of an excited electromagnetic field decreases as 1/r for the case of 

cylindrical ge
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provide

In this section, making use of Eqs. (4.20)-(4.25), we calculate the transverse component 

of the Lorentz force,

 a plausible explanation of the difference in the wave-field amplitude observed in 

cylindrical and slab geometries. 

  

4.5 Self-Focusing of an Intense Ion Beam Pulse  

 x b x b b yF Z eE Z e Bβ= −

has been shown that the excited wave field 

, acting on the beam particles. In Sec. 4.2 it 

l, or vice versa. In contrast, the longitudinal profile of the 

local-field amplitude is the same as the longitudinal beam density profile (see Sec. 4.2.2). 

entire length 

of the ion beam pulse. It is therefore important, in practical applications involving control 

over the beam aperture, to identify the parameter regimes where the local component of 

 perturbation has the 

perturbations propagate oblique to the beam 

with characteristic longitudinal wave number 1~ bz lk . Therefore, the contribution of the 

wave-field component to the total Lorentz force can have opposite signs for the beam 

−

head and the beam tail. That is, it produces a focusing effect in the beam head and a 

defocusing effect in the beam tai

Therefore, the local fields provide a focusing (or defocusing) effect over the 

the electromagnetic field dominant influence on the beam transverse 

dynamics.  

 This section is organized as follows. In Sec. 4.5.1 regimes of dominant influence 

of local fields on the beam transverse dynamics are identified and the transverse 

component of the self-focusing force is calculated. Properties of the self-focusing force 
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are investigated in Sec. 4.5.2. In particular for the case where b per c ω<< , it is shown 

that the collective self-focusing force acting on the beam particles in the presence of a 

weak solenoidal magnetic field can be significantly stronger than the self-pinching force 

in the limit Bext=0.  Also, the influence of the self-focusing effects on the beam dynamics 

in NDCX-I and NDCX-II is assessed. Properties of the local plasma response are 

discussed in Sec. 4.5.3. Finally, the self-focusing force is obtained for the case of 

ylindrc ical (r,z) geometry making use of the slice approximation in Sec. 4.5.4, and the 

possibility of using an electrostatic model for describing plasma response and transverse 

beam dynamics is discussed in Sec. 4.5.5.  

 

4.5.1 Dominant Influence of Local Fields  

It has been demonstrated in Secs. 4.2.3 and 4.3 for the critical case where 1=α , that a 

large-amplitude wave field is exited. Here, we consider the case where 

1>>α ( 2ce b peω β ω>> ). Furthermore, we assume 1−>> kr , or equivalently, qsb

( )peb cr αω2>>  in the limit where 1>>α . This im all level of 

the short-wavelength, quasi-electrostatic wave ex ooth radial 

 density profile. Making use of Eqs. (4.20) forward t  show for 

Lorentz force is given approximately 

by [Dorf et al., 2010] 

plies an exponentially sm

citations for the case of a sm

-(4.23), it is straight

wave-field com

beam o

ponent of the the case where 1−>> qsb kr , that the contribution of the 

electromagnetic field perturbation to the transverse 
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( ) ( )2 2 2 22
2

2

1 4 1

4 1
em peW W W e b

k cm V
R

                2x b x b y bF Z e E B Z
α ω

α α

− −

−

  

          

β π= − ≈ ,              (4.38) 

where

                ( ) [ ]2

1 1 , cospe
em z z emdk k k k k x

R c n
ω

ξ= +∫ .                           (4.39)   

Recall, for 1>>

2

0
z

p

n
∞

k

α , that the characteristic wave vector for the excited long-wavelength 

electromagnetic wave field is given by 2em pek cω α= , and therefore the wave field 

contribution to the Lorentz force vanishes for 1>>α . To obtain the local field 

 

   

contribution, it is convenient to represent the local fields specified by Eqs. (4.24)-(4.25) 

in the following form 

( )2 2 2
2

2 2 2 22

1 1
4 1

x zik x ik
x x peloc

b y b e b
x qs x emp

k k c n e
e B iZ m v d

k k k kn

ξω
β

α α

++ ⎡ ⎤
= − −⎢ ⎥− −− ⎣ ⎦

∫ kk ,    (4.40) 

          
3

2
2 2 2 22

1 1loc

1

x zik x ik
x

x b e b
x qs x emp

k n eeE iZ m v d
k k k kn

ξα

α

+ ⎡ ⎤
= − −⎢ ⎥− −− ⎣ ⎦

∫ kk .                 (4.41) 

For the case where  

1

2 pe

c
b qsr k                                       1>>α  and 

αω
−

lgebra we obtain that the local field contribution, which constitutes 

ost of the transverse Lorentz force, is given by [Dorf et al., 2010] 

>> =                                       (4.42)  

we can neglect by the first terms inside the brackets in Eqs. (4.40) and (4.41), and after 

some straightforward a

m
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2 2 1loc loc b
x b x b b y b e b

p

dnF Z eE Z e B Z m v
n dx

β≈ − = .                                             

The analysis in Appendix A, performed for an arbitrary ratio of 

      (4.43) 

pece ωω , shows 

that for the case of a nonrelativistic ion beam the Lorentz force is still given by Eq. 

(4.43), provided  

                       1>>α   and  ( )1 21 2 21
2b qs ce pe

pe

cr k ω ω
αω

>> � .                       (4.44) − = +

sting to note that an 

annular beam will not pinch to the axis provided the beam dynamics is governed by the 

force in Eq. (4.43). However, the outer beam radius will decrease and the inner beam 

radius w

am thermal pressure, which is also proportional to the gradient of the 

beam density 

Although the total influence of the magnetic and electric field components, 

Note that the transverse component of the Lorentz force [Eq. (4.43)] is proportional to the 

gradient of the beam density. Therefore, for the case of a bell-shaped beam density 

profile, self-focusing of the beam occurs. Furthermore, it is intere

ill increase, resulting in a decrease in the thickness of the annulus and an increase 

in the beam density. Also, note that the self-focusing in Eq. (4.43) can very effectively 

balance the ion be

W
yB  

W
xEand , of the wave field perturbation results in a destructive interference in estim

the transverse Lorentz force [see Eq. (4.38)], it is of particular interest to estimate the 

separate contribution of the wave field component to the Lorentz force, and compare it to 

the contribution of the local field component. For illustrative purposes, we consider here 

ating 
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a Gaussian beam density profile with ( ) 2 2 2 2
04 exp 4 4b b b b x b zn r l n r k l kπ= − −⎡ ⎤⎣ ⎦k .  Making 

use of Eqs. (4.20)–(4.23), it is straightforward to show that the contribution of the wave 

field component can be estimated by [Dorf et al., 2010] 

⎟
⎠

⎜
⎝ 422

p
bebybx ncα

provided the conditions in Eq. (4.42) are satisfied. Similar expressions can be obtained 

for the local fields using Eqs. (4.40)-(4.41), i.e., 

                          

⎟
⎞

⎜
⎛
−exp~~

22
0

2
2 embbbpeWW krnr

vmZBeeE
ω

β ,                     (4.45) 

( )22
02 1~ b

beb
loc
x

n
vmZeE ,                              (4.46) 

                         

,1max bempb rknr

( )
( )22

222

2
02

,1max
,1max

~ b
loc
yb mZBeβ        (4.47) 

It readily follows from Eqs. (4.45)-(4.47), for the case where the beam radius is small 

compared to the wavelength of the long-wavelength el

bem

bpe

pb

b
be rk

cr
nr

n
v

ω
α

,                

ectromagnetic waves, 1b emr k <<

agnetic 

ponents of the 

 order, i.e.,

, 

that the local electric field has the dominant contribution to the trans

the Lorentz force. As the beam radius increases and becomes of order the electrom

wave-field wavelength, , the separate contributions from all com

perturbed electromagnetic field become of the same  

verse component of 

~ 1b emr k

~ ~ ~loc W loc W
x x b xE E Bβ βb xB . With a further increase in the beam radius, 

local magnetic field contribution becomes dominant, and both the quasi-electrostatic and 

long-wavelength electromagnetic wave-field components are exited to exponentially 

small levels for the case of a smooth beam density profile.  

1m >> , the b er k
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Figure 4.11: (Color) Plot of the perturbed transverse self-electric field corresponding to 

ts=8.1τb=54 ns. The system parameters correspond to Zb=1, rb=0.55c/ωpe, τb=75/ωpe, 

βb=0.05, Bext=300 G, and α=ωce/2βbωpe=9.35. The results are obtained using the 2D (x,z) 

am version of the LSP code. The dashed curve corresponds to the contour of constant be

density corresponding to the effective beam radius rb. 

 

 

 

 

 

 

 

The tim  for the case where e evolution of the electromagnetic field perturbation

 and uence of the local 

lation code. Figure 4.11 shows a 

ts=8.1τb =54 ns. 

ple correspond to 

1>>α 1−<<<< emb kr  , which corresponds to a dominant infl

self-electric field, has been studied using the LSP simu

plot of the perturbed transverse self-electric field at the simulation time 

a parameters considered for this illustrative exam

1−
qsk

-plasmThe beam

( )22 2 20.13 expb p b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , np=1010cm-3, Zb=1, rb=0.55c/ωpe, τb=37.5/ωpe, 

b=0.05, Bext=300 G, and α=ωce/2βbωpe=9.35. The wave structure in front of the beam 

pulse corresponds to a transient wave-field perturbations associated with the initial beam 

β
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penetration into the plasma through the boundary at 0=z

tion in Eq. (4.17) is 

. Note that these transient 

perturbations do not interact with the ion beam pulse effectively, because they do not 

satisfy 

corresp  wave field is

influence on the ion beam transverse dynamics  Fig. 4.11. The intensity 

of the excited wave field satisfying the condi negligible, which is 

c

In Sec. 4.3.1, it was demonstrated for the case where 

the Cherenkov criteria in Eq. (4.17). Therefore, the energy content in the 

onding  attributed only to the initial beam penetration into the 

plasma, and is not related to the beam energy later in time. As the transient wave-field 

perturbations leave the beam on the characteristic time scale τs~min{rb/Vgx, lb/|Vgz-vb|} 

(see Sec. 4.2.3), the local component of the self-electric field exhibits the dominant 

, as evident from

onsistent with the analytical calculations performed in this section. 

 

4.5.2 Enhanced Ion Beam Self-Focusing 

12 >>= pebce ωβωα  and 

( )peb cr αω2>> , that the local fields have the dominant influence on the transverse 

 neutralized than the 

eam current, and the self-pinching force is produced by the net self-magnetic field (see 

dynamics of the ion beam particles. In this regime, focusing is provided over the entire 

length of the beam pulse and the corresponding self-focusing force acting on the beam 

ions is specified by Eq. (4.43).  It is of particular interest to compare this self-focusing 

force to the self-pinching force acting on the ion beam particles for the case where the ion 

beam pulse propagates through an unmagnetized plasma, i.e., Bext=0 [Dorf et al., 2009c]. 

Indeed, even for this simple case the beam charge is typically better

b

 



4.5. Self-Focusing of an Intense Ion Beam Pulse 188

Sec. 4.1.1). This self-pinching can be utilized for a variety of applications, including self-

ion beam focusing [

and Lee, 1996]. Note that for the case where B

unneutralized in the limit where the beam radius is small compared to the electron skin 

depth, 

pinched ion beam transport [Ottinger et al., 2000], and heavy Hahn 

ext=0, the beam current is almost 

b per c ω<< . Therefore, the self-pinching effect is a maximum in this regime, and 

the transverse component of the self-pinching force is given by 

∫−=−≅ bbbybb dxnveZBeZF 222
20

4πβ                             (4.48) 
x

c 0

For the case where b per c< ω< , the ratio of the collective self-focusing force in 

the presence of an applied magnetic field [Eq. (4.43)] to the self-pinching force, F0, in the 

limit Bext=0 case, can be estimated as ( )2
0 ~ 1x b peF F c rω >>  [Dorf et al., 2009c]. That 

is, the self-focusing of an ion beam pulse propagating through a neutralizing plasma can 

be significantly enhanced by the application of a solenoidal magnetic field satisfying 

12 >>= pebce ωβωα . Here, we emphasize again that the threshold value 1crα =  

typicall nds to a weak magnetic field (see Sec. 4.1). Also recall, that he 

condition 

y correspo

b per c ω<<  can be rewritten in terms of the beam current Ib as 

( )4.25 kAb b b pI n nβ<< . Note that for a typical ion beam inject

of 1 cm, the beam radius (~ 1 cm) is small compared to the electron skin depth p

the beam and plasma density are in the range of 

or aperture of the order 

rovided 

[ ]( ) 3211108.2 −×<< cmcmrnn bpb , which 

are typical parameters for several beam transport applications [Roy et al, 2005; Seidl et 
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al., 2009; Friedman et al., 2009]. The g enhancement can be of 

considerable practical importance.  

As a practical example, here we consider parameters characteristic of the present 

ength Ld~200 cm filled with a background plasma with density 

np~1011 cm-3. As it exits the drift section, the beam passes through a strong magnetic lens 

with magnetic field Bs=8 T, and length Ls~10cm, which provides additional transverse 

focusing. For the currently operating NDCX-I experiment, typical beam parameters 

correspond to 004.0=I
bβ , 39=I

im a.u., 1=I
bZ . The planned NDCX-II experiment is 

aimed at operating at higher beam

refore, this self-focusin

Neutralized Drift Compression Experiment (NDCX-I) [Seidl et al., 2009] and its future 

upgrade NDCX-II [Friedman et al., 2009], which are designed to study the energy 

deposition from the intense ion beam onto a target.  The experiments involve neutralized 

compression of an intense ion beam pulse with radius rb~1 cm as it propagates through a 

long drift section with l

. The 

corresp

larger than I 

and NDCX-II. Mo ated ef ift 

a

of the strong m

 energies: β

fect of

 can 

e

032.0=II
b

 the beam

become

nsionless param

, 7=II
im

c

nced self-focusing for both NDCX-

 self-focusing

 comparable to th

eters 

a.u., 1=II
bZ

c

 inside the d

e focusing effect 

onding values of the critical magnetic field are given by 65=IB  G and 8=IIB  G, 

for NDCX-I and NDCX-II parameters, respectively. The fringe magnetic field of the 

strong magnetic lens can penetrate deeply into the drift section at a magnitude much 

III
cB ,

reove

section filled with the background plasm

a

, thus providing conditions for enha

r, the integr

gnetic lens. Introducing the dim

r

ssdsf LFLF=δ , 
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where 4~ 2
bcbbs rmF ω  is the magnetic focusing force acting on the beam ions inside the 

lens, and bbesf rvmF ~  th cusin e (nb~ne is assumed), we readily obtain 

04.0=Iδ  and 5.0=IIδ  for the parameters characteristic of NDCX-I and NDCX-II 

respectively. Here, mb and ωcb are the ion beam mass a

respectively. Therefore, the plasma-induced collective focusing effect in a several 

hundred gauss magnetic field can become comparable to the focusing effect of a strong 8 

Tesla final fo  solenoid for the design parameters characteristic of NDCX-II. 

The enhancement of the self-focusing force in the presence of a weak applied 

magnetic field has been observed in electromagnetic particle-in-cell simulations 

performed using the 2D (x,z) slice version of the LSP code [Dorf et a  

2  is e self-fo g forc

nd cyclotron frequency, 

cu

l., 2010]. As an

 example, we consider a Gaussian ion beam pulse, 

s

illustrative

( )2 2exp br r z v t l2 20.13b pn n b b⎡ ⎤= − − −⎣ ⎦

b p

ext

, with effective beam radius, rb=0.55c/ωpe, and 

 half-length, lb=1.875c/ωpe (beam pulse duration τb=37.5/ωpe), propagating 

city v =0.05c through a background plasma with density n =1010 cm-3. The 

erical simulations shown in Fig. 4.12 demonstrate the significant (~10 

ent of the transverse component of the Lorentz force due to an applied 

B =300 G. Figure 4.12 shows the total transverse focusing force (i.e., 

 of the magnetic and electric component of the Lorentz force) acting on the beam 

ions in the presence of an applied magnetic field (green, blue, and pink curves), and for 

ere an external magnetic field is not applied (purple curve). The units of the 

electric field, V/cm, are chosen for practical representation of its numerical value. Note  

beam pulse

with velo

results of the num

times) enhancem
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4.5.3 Properties of the Local Plasma Response 

s demonstrated above, the local component of the self-electric field provides the 

ominant contribution to the transverse Lorentz force for the case where 

A

d

2 1ce b peα ω β ω= >>  and  (or equivalently, 11 −− <<<< embqs krk pebpe crc ωααω 22 <<<< ). 

Form Eq. (4.43) it now readily follows that  

2 2 1 b                                 b x b e b
p

Z eE Z m v
n dx

≈ ,                                        (4.49) 

and therefore, for the case of  a bell-shaped beam density profile, the transverse electric 

self-field produces a focusing effect on the ion beam pulse. This im

dn

plies that a positive 

harge of the ion beam pulse becomes over-compensated by the background plasma 

lectrons [Dorf et al., 2009c]. In the same parameter regime, the z-component of the 

) 

                                

c

e

magnetic field perturbation is specified by (see Appendix B

( )
2loc

b b pez

e pe ce p

ZeB
m c n

β ω
ω ω

≈ −

  

As noted earlier a defocusing self

,bn x z ,                                (4.50) 

indicating a diamagnetic plasma response.

-electric field and a paramagnetic plasma 

response were found for the case where 1<α  (Sec. 4.1.2).  This means that the 

qualitatively different local plas a responses for the cases where m 1<α  and 1>α  are 

separated by the critical case where 1=α , corresponding to resonant excitation of large-

amplitude wave-field perturbations. 
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The analytical calculation demonstrating the dramatic change of the local plasma 

response with an increase of an applied magnetic field has also been verified by the 

results of 2D (x,z) LSP simulations (Fig. 4.13) [Dorf et al., 2010].  The parameters 

chosen for the illustrative example in Fig. 4.13 correspond to  

( )22 2 20.13 expn n r r z v t lb p b b b⎡ ⎤= − − −⎣ ⎦ =0.55c/ωpe, lb=1.875c/ωpe, vb=0.05c, and 

np=1010 cm . One can readily see that the paramagnetic plasma response [Fig. 4.13(b)], 

and the defocusing effect of the transverse self-electric field [Fig. 4.13(a)] for the case 

where 

, rb

-3

α = 0.78, change to a diamagnetic plasma response [Fig. 4.13(d)] and a focusing 

effect of the self-electric field [Fig. 4.13(c)] for α = 9.35. Note that the longitudinal 

oscillations in Fig. 4.13(a) are an artifact of the numerical code, and a smooth 

longitudinal dependence can be obtained by increasing the space-time resolution along 

with the number of macro-particles.  Figures 4.13(e) and 4.13(f) show the approximate 

analytical solutions for the transverse component of the electric field [Eq. (4.49)], and the 

longitudinal component of the magnetic field [Eq. (4.50)], respectively. Finally, note that 

the magnitude of the transverse electric field  increased y

 

 

 perturbation is significantly  b  an 

increase in the applied magnetic field [compare Figs. 4.13(a) and 4.13(c)]. This strong 

transverse electric field provides the enhanced ion beam focusing, as discussed above.  
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Figure 4.13: (Color) Plots of the transverse self-electric field (left) and longitudinal self-

agnetic field (right) of an ion beam pulse with Zb=1, rb=0.55c/ωpe, lb=1.875c/ωpe, and 

b=0.05c propagating through a background plasma with np=1010 cm-3 along a solenoidal 

magnetic field. Frames (a) and (b) correspond to the results of 2D (x,z) LSP simulations 
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v 

for Bext=25 G. Frames (c

Bext=300 G. Frames (e) and (f) correspond to

given by Eq. (4.49) and Eq. (4.50), respecti

 ) and (d) correspond to the results of 2D (x,z) LSP simulations

 the approximate analytical solutions

vely. Note the significantly different local 

for  

p lasma responses between the cases where 

es (c) and (d)]. Dashed lines correspon

ffective beam radius rb. 

α=0.78 [Frames (a) and (b)] and α=9.35 

d to contours of constant beam density [Fram

corresponding to the e
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4.5.4 Slice Model for Enhanced Self-Focusing 

 the previous section (Sec. 4.5.1) we have demonstrated the dominant influence of the 

cal fields for the case where 

In

lo 1>>α  and . Also, as noted earlier (Sec. 4.2.2) 

e axial dependence of the loca elds is de ined solely by the beam density axial 

rofile, that is 

11 >>−
qsbkr

termth l fi

( ) ( )E B x , and it is,, ( )loc locE B n Φz bz v t= −p  therefore appealing to make use 

f the reduced slice model (Sec. 4.1.2) for description of local fields. A simplified 

lation of the collective focusing force based on the slice model has been performed 

in [Dorf et al., 2009c] for the case of cylindrical (r,z) geometry. It is instructive to 

ore intuitive and allows one to obtain the 

xpression for the self-focusing force [Eq. (4.43)] and the conditions for its validity [Eq. 

 general analysis of the excited 

al geo

o

calcu

reproduce that analysis here, since it is m

e

(4.44)] avoiding the tedious calculations required for the

electromagnetic field perturbations (Sec. 4.2).  

 For the case of cylindric metry the radial component of the Lorentz force is 

specified by   

( )r b r bF Z e E Bϕβ                                             (4.51) 

Here, Bφ and Er are the azimuthal component of the self-magnetic field, and the radial 

component of the self-electric field, respectively. As before (Sec. 4.2), here we assume 

immobile plasma ions, cold plasma electrons, and investigate the axisymmetric steady-

state solution, where all quantities depend on t and z solely through the combination ξ=z-

vbt. Assuming that the beam density is small compared to the electron density (nb<<ne), 

= −
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we solve for the collisionless linear plasma response, in which the nonrelativistic plasma 

electron dynamics is governed to leading order by 

 [ ] EBV
Ve eevm +×=
∂

.                                        (4.52) extecbe ∂ξ

Here, Ve is the electron flow velocity and we have made use of ξ∂∂−=∂∂ bvt  for the 

steady-state electron response. Applying the curl operator to the both sides of Eq. (4.52) 

and making use of Faraday law, we readily obtain   

[ ]extee BVBV ××∇=⎟⎟
⎞

⎜⎜
⎛

−×∇
∂
∂

c
e

cm
evm be ξ

.                           (4.53) 

In cylindrical coordinates the ϕ-component of Eq. (4.53) yields  

⎠⎝ e

 

ξϕϕ ∂
∂

+−−=
∂
∂ erez V

vmvB
c
eVB

c
e

r
V

vm ,                      (4.54) bebeextbe

and the radial component of Eq. (4.52) is 

 reext
er

be eEVB
c
eV

vm +=
∂
∂

ϕξ
.                                        (4.55) 

Using Eqs. (4.54) and (4.55) to determine r bE Bϕβ− , we find that the radial component 

of the Lorentz force in Eq. (2) is given by 

r
V

vmZBv
c

eZ
eEZF ez

bebb
b

rbr ∂
∂

=−= ϕ .   

or the case where the beam current is fully neutralized, i.e., , Eq. (4.56) 

                             (4.56) 

bbbeze vnZVn =F

takes on  the simple form  
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dr
dn

n
vmZF b

e
bebr

122= .                       

.43) obtained in Sec. 4.5.1, where the the radial 

coordinate, r, is replaced with transverse coordinate, x.  

In order to find the conditions for the beam current neutralization, here we make 

f equations (4.7), (4.9) and (4.10) we obtain 

[Dorf ., 2009c] 

                        (4.57) 

Note that Eq. (4.57) is equivalent to Eq. (4

use of the slice model (Sec. 4.1.2) specified by Eqs. (4.6)-(4.10). Taking the radial 

derivative of Eq. (4.6) and making use o

et al

    ⎟⎟
⎠

+
∂

+=
∂

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

∂∂∂
− z

pebzb
bb

zz A
rcrrdr

vZ
crcr

r
rrr 222 ω

, (4.58) 

where the effective electron

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂∂∂∂∂ pe

gecege cr
A

vAdnejA
2

221441 ωωππ
ϕ

 gyroradius rge is defined by  

                                                 ( ) 21                                           (4.59) 221 pece
ce

b
ge

v
r ωω

ω
+≡

 

that the left-hand side of Eq. (4.58) is small compared to the term

It now follows for the case where the beam radius is large compared to the effective 

electron gyroradius 

                                                     rr >> ,                                                      (4.60) geb

 ( )rAr zge

right-hand side, and therefore the beam current 

∂∂−2  on the 

is neutralized. Note that the condition in 

Eq. (4.60) is consistent with the second condition in Eq. (4.44), i.e., 1~ −>> qsb kr , obtained in 

the generalized analysis (Sec. 4.5.1). The first condition in Eq. (4.44), i.e., 1>>α , is 

ation.  required however to validate the use of the slice approxim
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B0=300

alytical results in Eq. 

(4.57), are shown by the pink curve. The beam-plasma parameters correspond to Zb=1, 

b=0.55c/ωpe, τb=37.5/ωpe, βb=0.05, and   np=1010 cm-3. The black curve corresponds to 

the radial beam density profile. 

 

 

The analytical analysis for the case of a cylindrical ion beam has been compared 

ith the results of the numerical simulations performed using the 2D (r,z) cylindrical 

ersion of the LSP code [Dorf et al., 2009c]. As an illustrative example, we consider a 

Gaussian ion beam pulse with density profile ( )

Figure 4.14: (Color) Radial dependence of the normalized focusing force at the beam 

center. The results of the numerical 2D (r,z) LSP simulations correspond to  G 

and ωce/βbωpe=18.7 (blue curve), and  ωce=0 (green curve). The an

 

 

-60

-40

-20

0

20

40

60

nb  
eZ

Fr (V/cm) 

 

 

 

 

b

 

0 2 6 8r (cm) 4

r

w

v

[ ]2222  with 

effective beam radius, rb=0.55c/ωpe, and beam pulse half-length, lb=1.875c/ωpe (beam 

exp14.0 bbpb lvtzrrnn −−−=

pulse duration τb=37.5/ωpe), propagating with velocity vb=0.05c through a background 

lasma with density np=1010 cm-3. Figure 4.14 shows the total normalized radial self-

focusing force (i.e., the sum of the electric and magnetic components of the Lorentz 

p
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force), eZF , and the units of electric field, V/cm, are chosen for practical 

represe

corresponding to 35.9=

br

ntation of its numerical value. It is readily seen from Fig. 4.14 that the results of 

the numerical simulations (blue dots) are found to be in good agreement with the 

analytical predictions given in Eq. (4.57) (pink curve) for the case where Bext=300 G, 

α . The green curve in Fig. 4.14 corresponds to the results of the 

numerical simu  the limit Bext=0 G. A significant increase in the self-focusing 

agnetic field (Bext=300 G) is evident. Similarly to the 

case of Cartesian (x, ometry considered in Sec. 4.5.3, the ratio of the collective self-

focusing force in the p esence of an applied magnetic field [Eq. (4.57)] to the self-

pinching force, F e limit B =0 case, can be estimated as 

lations in

force in the presence of a weak m

z) ge

r

0, in th ext ( )2
0r b pe~ 1F F c rω >>  

for the case of a cyli  with ndrical beam b per c< ω<  [Dorf et al., 2009c]. 

is suppressed, the main focusing contribution comes from the strong radial electric field.     

Figure 4.15(a) illustrates the radial component of the self-electric field generated by an  

 

We emphasize again that the nature of the self-focusing effect is different for the 

cases where the external magnetic field is zero or not. In the absence of an applied 

magnetic field, the using force is due to the self-magnetic field of the beam pulse. 

In contrast, if an external solenoidal magnetic field is applied, the beam current becomes 

well-neutralized and the self-magnetic field is significantly suppressed, provided the 

conditions in Eq. (4.44) are satisfied. Nevertheless, the total self-focusing force is 

increased for the case where rb<c/ωpe. Since the magnetic component of the Lorentz force 

 self-foc
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Figure 4.15: (Color) Plots of the radial self-electric field corresponding to (a) B =300 G 

(ωce/βbωpe=18.7) and (b) B0=25 G (ωce/βbωpe=1.56). Other parameters are the same as i
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Fig. 4.14. Zero value of the axial coordinate corresponds to the beam center. Dashed 

 

 

Finally, figure 4.15(b) illustrates the radial component of the self-electric field 

btained in the numerical (r,z) simulations for the case where 

lines correspond to the contour of constant beam density corresponding to the effective 

beam radius. Results are obtained with the 2D (r,z) cylindrical version of the LSP code. 

n beam pulse propagating through a magnetized background plasma [Dorf et al., 

009c]. The system parameters assumed in this simulation are the same as for Fig. 4.14, 

nd the 2D cylindrical version of the LSP code is used. The results of the numerical 

mulations show that the contribution of the electric component to the total Lorentz force 

ig. 4.14) constitutes more than 99%.  

 

 

io

2

a

si

(F

o 78.0=α  corresponding to 

ext=25 G [Dorf et al., 2009c]. Consistent with the analysis in Sec. 4.5.3, the self-electric 

eld is changing from defocusing to focusing with an increase of the applied magnetic 

eld above the threshold value [compare Figs. 4.15(a) and 4.15(b)].  

B

fi

fi
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4.5.5 Electrostatic Model for Enhanced Self-Focusing 
In the previous sections the electromagnetic effects have been taking into account for 

describing the dynamics of background plasma electrons, and the self-focusing force 

calculations. It is however interesting to note that the self-focusing force specified by Eq. 

(4.57) can be obtained within an electrostatic model provided the condition in Eq. (4.60) 

is sati

ed . The 

ends  the 

sfied. The electrostatic approximation is often used in numerical codes for 

simulations of a heavy ion driver (e.g., the electrostatic version of the WARP code), and 

therefore this result can be of particular practical importance. 

 As in previous sections, here we consider immobile plasma ions, cold background 

plasma electrons, and assume linear electron response, provid eb nn <<

solely onaxisymmetric steady-state solution where all quantities dep

combination tvz b−=ξ  is described in the electrostatic approximation by the cold-fluid 

equations for electrons 

01
∂

+
∂
∂

+
∂
∂

=
∂

− VnVnnv δ                                 (4.61) ezperpeb rr ξξ

exter
e BV

c
eV

vm =
∂be

∂
−

ξ
ϕ                                            (4.62) 

exte
er

be BVee
V

vm ϕ
ϕ
−

∂
=

∂
−    

cξξ ∂∂
                                  (4.63) 

z
evm ze

be ∂
=

∂
−

ξ
                                                  (4.64) 

and Poisson’s equation for the electrostatic field, 

V ∂∂ ϕ

ϕ−∇=E  
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( )nnZer δπϕϕ −−=⎟
⎞

⎜
⎛ ∂∂

+
∂ 412

                            (4.65) ebbrrrξ ⎠⎝ ∂∂∂ 2

Here, pee nnn −=δ , where  is the unperturbed plasma density away form the beam, 

de use of 

pn

and we have ma ξ∂∂−=∂∂ bv  and t ξ∂∂=∂∂ z  for the steady-state electron 

nally, note that in the linear approximaresponse. Fi tion, the magnetic BVe × force 

corresponding to the magnetic field perturbations is of the second order, and therefore 

does not appear in Eqs. (4.62)-(4.63).  

 From Eqs. (4.62)-(4.63) it follows that  

extebe
ce rϕξω ∂∂ 2 e BV

c
eeVvm ϕϕ −

∂
=∂ 2

21 .                                  (4.66) 

Assuming that the ion beam pulse is sufficiently long with b vl ceb ω>> , we readily 

obtain  

ϕϕ rext ∂cB
Ve

∂
−= ,                                                    (4.67) 1

and  

                                               ϕ
ω rzB

V
extce

b
er ∂∂

−= .                                                (4.68) 

Combining Eqs. (4.68), (4.64) and (4.61) yields  

cv ∂∂

0=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

−
∂
∂

− ϕ
ξ

ϕ
ξω

δ
ξ be

p

extce

bp
eb vm

en
rB

cv
r

rr
n

nv .                      (4.69) 

Making use of Poisson’s equation (4.65) and assuming 22222 1~ bpeb vl ωξ <<∂∂  we 

obtain 
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bb
b

pepe ωω 1 22
⎞⎛ ∂∂⎟

⎞
⎜
⎛

ce

enZ
vr

r
rr

πϕϕ
ω

41 22 −=+⎟
⎠

⎜
⎝ ∂∂⎟

⎠
⎜
⎝
+ .                               (4.70) 

It now follows from Eq. (4.70) for the case where ( )( ) 21221 pececebge vrr ωωω +≡>>  that  

p

b
beb n

n
vmZe 2−=ϕ ,                                                  (4.71) 

sults obtained in the pr

It should be noted, however, that the analysis presented in this section only 

demonstrates that in the limit  the electrostatic model predicts the same electric 

field as that obtained sis for the case where 

which is consistent with the re evious sections [e.g. Eq. (4.49)]. 

gerr >>

in the generalized analy 1>>α  and >>  gerr

egim(Sec. 4.5.3). Additional analysis has to be performed in ord e of 

validity

er to det he r

 of the electrosta tion. Recall that for the case wher

ermine t

e <tic approxima 1α  the return 

electron current is driven primarily by the inductive elect

case where 

ric field (Sec. 4.1.1); and for the 

1≈α  large-am agnetic wave fields can be excited

These effects are not described by the electrostatic model. We emphasize here that 

electrostatic numerical codes are often used for simulations of an ion driver, and it is 

therefore of particular practical importance to 

neutralized drift section. This should be a subject of future studies.  

 

 

 

plitude electrom  (Sec. 4.3). 

identify the conditions where the 

electrostatic modeling can adequately describe the ion beam dynamics inside the 
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4.6 Summary and Discussion 

pebce

In the present chapter, the electromagnetic field perturbation excited by a long ion beam 

pulse propagating through a neutralizing background plasma along a moderately strong 

solenoidal magnetic field satisfying ωβω 2≥  was studied analytically, and by means 

component that can extend far outside the beam. The wave field is represented by a long-

wavelength electromagnetic component with |kx|=kem<ωpe/c, and a short-wavelength 

quasi-electrostatic component with |kx|=kqs>ωpe/c. Note that the longitudinal component 

greater than the beam velocity. Therefore, 

the tail of the beam pulse 

he beam. It 

of numerical simulations using the electromagnetic particle-in-cell code LSP. It was 

demonstrated that the total electromagnetic field perturbation excited by an ion beam 

pulse with a smooth radial density profile can be conveniently represented as the sum of a 

local-field component, rapidly decaying to zero outside the beam pulse, and a wave-field 

of the electromagnetic wave group velocity is 

the long-wavelength electromagnetic perturbations excited by 

can propagate along the beam and influence the dynamics of the beam head. The system 

reaches a quasi-steady-state when the wave packet of the initial transient excitation 

propagates sufficiently far outside t was found, for a sufficiently long ion 

beam pulse, that the time-scale for achieving a quasi-steady-state can be of order the 

beam pulse duration, and is therefore much longer than the inverse plasma frequency. 

This result is significantly different from the case Bext=0, where the characteristic time to 

reach a steady-state is of the order of the plasma period.  
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It was also shown that the wave-field excitations propagate obliquely to the beam 

with a characteristic wavelength of kz~1/lb. Therefore, their contributions to the transverse 

component of the Lorentz force can have opposite signs for the beam head and the beam 

tail. In contrast, the longitudinal profile of the local-field amplitude is the same as the 

longitudinal beam density profile. Therefore, the transverse local fields have the same 

sign over the entire length of the ion beam pulse. It is therefore important, in practical 

applications involving control over the beam aperture, to identify the parameter regimes 

where the local component of the electromagnetic field perturbation has the dominant 

influence on the beam transverse dynamics.  

It was demonstrated, in the regime where 2ce b peω β ω>>  and 1>>qsbkr , that the 

local-field component primarily determines the transverse d

qs

small compared to the 

nhanced compared t

 an applied ma

in the numerical sim

yna m 

particle

shown, for the case where the beam radius is 

that the self-focusing force is significantly e ng force 

acting on the beam particles in the absence of

local diamagnetic plasma response is observed 

predicted analytically for 

mics of the bea

em

electron skin depth, 

e self-focusi

gnetic field. In addition, the 

ulations, and is also 

s; and the wave fields produce a negligible transverse force. Moreover, a positive 

charge of the ion beam pulse becomes over-compensated by the plasma electrons, and the 

associated strong transverse-focusing self-electric field has the dominant influence on the 

beam ions, compared with the magnetic field, provided 11 −− <<<< krk . It was also b

o th

pebce ωβω 2>> . Note that these results differ significantly from 

the case 2ce b peω β ω< , where the transverse electric fi  eld is defocusing, and the plasma
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respon t local plasmse is paramagnetic. The qualitatively differen a responses are separated 

by the critical field case where 2cr
ce b peω β ω= , corresponding to the resonant excitation of 

large-amplitude wave-field perturbations. In the present analysis, the asymptotic time-

dependent solution was obtained for this critical case, and the saturation intensity of the 

wave-field perturbations, determined from the nonlinear response of the background 

plasma electrons, was estimated. In addition, a plausible application of the resonant wave 

excitation effect for diagnostic purposes was discussed.  

The effects of an applied solenoidal magnetic field on neutralized ion beam 

transport described in this chapter has been assessed for the presently operating 

Neutralized Drift Compression Experiment NDCX-I and its future upgrade NDCX-II 

(Chapter 1). The design of  facilities first involves the neutralized drift  t

compression of the ion beam dditional transverse focusing on the target 

plane by a strong (several Tesla) final-focus solenoid. The critical magnetic field 

 corresponds to a relative agnetic field of the order of 10 G (for 

NDCX-I) and 100 G (for NDCX-II). The magnetic fringe fields of the final-focus 

solenoid larger than this value  deep into the drift section thus providing 

conditions for enhanced beam self-focusing. It has been demonstrated for the parameters 

characteristic of NDCX-II expe e integrated effect of the beam self-focusing 

inside the drift section fille und plasma can be comparable to the 

focusing effect of the strong m For the parameters characteristic of the 

he NDCX

 pulse, and then a

ly weak m

 can penetrate

riment that th

d with the backgro

agnetic lens. 

peb
cr
ce ωβω 2=
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NDCX-I experiment, the effects of the self-focusing are much smaller than the focusing 

effect of the strong magnetic lens.  

 

 

 

 

 

 

 

 



Chapter 5 

 

Collective Focusing of Intense Ion Beam 

Pulses 

 

In the previous Chapter it was shown that even a weak solenoidal magnetic field of order 

100 G can have a significant influence on the dynamics of an intense ion beam pulse 

propagating through a neutralizing background plasma. In particular, recent analytical 

calculations and numerical simulations demonstrated enhanced ion beam self-focusing 

induced by the collective dynamics of the plasma electrons [Dorf et al., 2009c]. 

However, it should also be pointed out that the collective effects of a neutralizing 

electron background in a weak solenoidal magnetic field were also utilized in a magnetic 

focusing scheme proposed by S. Robertson a few decades ago [Robertson, 1982]. In this 

Chapter we discuss this focusing scheme, significant extension of the theoretical model, 

and the possibility of its implementation for final focusing of intense ion beams in the 

Neutralizing Drift Compression Experiment-I (NDCX-I)  

 

209 
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5.1 Introduction 

In the collective focusing scheme proposed by S. Robertson (hereafter referred to as a 

collective focusing lens), a weak magnetic lens provides strong focusing of an intense ion 

beam pulse carrying an equal amount of neutralizing electron background [Robertson, 

1982]. For instance, a solenoidal magnetic field of several hundred gauss can focus an 

intense neutralized ion beam within a short distance of several centimeters. Note that for 

a single-species nonneutral ion beam, a several Tesla magnetic field would be required to 

achieve the same focal length. The enhanced focusing in a collective focusing lens is 

provided by a strong self-electric field, which is produced by the collective dynamics of 

the neutralizing electrons.  

A detailed analysis of the collective focusing lens is performed in the following 

sections. However, the main features of the collective focusing lens can be outlined as 

follows. First, let us review principles of operation of a conventional magnetic lens for 

the case of a single-species charged particle beam. Moving from a region of a zero 

magnetic field into the magnetic lens, a beam particle acquires the azimuthal angular 

momentum as the magnetic flux through its orbit increases. As a result, a radial focusing 

 force is acting on the beam particles inside the lens. For the case where the ion 

beam drags a neutralizing co-moving electron background into the magnetic lens, the 

neutralizing electrons entering the lens experience much stronger magnetic focusing than 

the beam ions and tend to build up a negative charge around the lens axis. As a result, an 

electrostatic ambipolar electric field develops that significantly increases the total  

BV ×
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Figure 5.1: (Color) Schematic illustration of collective focusing lens operation. 

Traversing the fall-off region of the solenoidal magnetic field, the co-moving electrons 

acquire a fast rotation around the lens axis due to conservation of the canonical angular 

momentum. As a results, a strong radial electric force is produced in order to balance the 

 magnetic force. This electric force has a dominant influence on the radial 

dynamics of the beam ions.  

BV ×

 

focusing force acting on the beam ions [Fig. 5.1]. Note that the neutralizing electrons 

should enter the lens from a region of a zero magnetic field in order to acquire the 

azimuthal angular momentum necessary for the radial BV ×  magnetic focusing to occur 

inside the lens. Therefore, the collective focusing will only occur if there is no 

background plasma or secondary electrons inside the lens. Otherwise, the rotating 

electrons co-moving with the ion beam will be rapidly replaced by the “non-rotating” 

background plasma electrons inside the lens and the enhanced collective focusing will be 

suppressed [Kraft et al., 1987]. However, it should be noted that in this case the 

collective self-focusing associated with ion beam propagation through a background 

plasma discussed in Chapter 4 can occur instead. Detailed comparison of the collective 
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focusing of a neutralized beam inside a magnetic lens and the enhanced self-focusing of 

an ion beam propagating through a background plasma along a solenoidal magnetic field 

is described below in this chapter.  

Many applications of ion-beam-driven high energy density physics including 

heavy ion fusion and high-energy ion beam production from intense laser-matter 

interaction require ion beam focusing and involve the presence of a neutralizing electron 

background. It is therefore of particular practical importance to investigate the feasibility 

of using a collective focusing lens for these applications. This would allow for the use of 

weak (several hundred Gauss) magnetic fields instead of several Tesla conventional 

magnetic lens, thus significantly facilitating the technical realization of ion beam 

focusing.  

For instance, in a current design of a typical heavy ion driver a strong (several 

Tesla) magnetic solenoid is used to provide final transverse focusing of an ion beam as it 

leaves the drift section filled with a neutralizing background plasma [Yu et al., 2005]. 

Due to the strong space-charge self-fields of an intense ion beam pulse, a neutralizing 

plasma is also required inside the magnetic solenoid. Note that apart from the challenge 

of using a several Tesla magnetic solenoid, filling it with a background plasma provides 

additional technical challenges [Roy et al., 2009]. However, the use of the collective 

focusing concept can significantly simplify the technical realization of the beam final 

focus. Indeed, a neutralizing electron background can be dragged by the ion beam from 

the plasma that fills the magnetic-field-free drift section. The required magnetic field of 

the final focus solenoid can be lowered to the range of several hundred Gauss. Finally, a 
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neutralizing plasma background is not required (should not be present) inside the final 

focus solenoid. As a practical example, here we present results of advanced numerical 

simulations demonstrating the feasibility of tight collective focusing of intense ion beams 

for the Neutralizing Drift Compression Experiment-I (NDCX-I) [Seidl et al., 2009].  

A collective focusing lens can also be utilized in laser generation of a high-energy 

ion beam, where the energetic ions are produced and accelerated by the interaction of an 

intense laser beam pulse with a thin foil [Snavely et al., 2000]. In order to decrease the 

divergence of the produced ion beam, a strong (several Tesla) focusing solenoidal 

magnetic field is used in some experiments [Harres et al., 2010]. However, along with the 

ions, a free-moving electron background is also produced, and therefore it is appealing to 

utilize the collective focusing concept for these applications as well.  

The original concept of a collective focusing lens involved two conditions for the 

enhanced focusing to occur. First, a neutralized ion beam should be sufficiently dense, 

cepe ωω >>

pe

, to maintain quasi-neutrality inside the magnetic solenoid [Robertson, 1982]. 

Here, ω  and ceω  are the electron plasma frequency and the electron cyclotron 

frequency, respectively. Second, perturbations in the applied solenoidal magnetic field 

due to the neutralized beam self-fields should be small. This condition can be expressed 

as pebr c ω<< , or equivalently, [ ] bbI β25.4kA <<

c

 [Robertson, 1982; Robertson, 1983], 

where  is the beam radius, Ib is the beam current, and βb is the directed beam velocity 

normalized to the speed of light . However, in many practical applications to high 

energy density physics involving ion beam transport, the beam parameters may not be 

br
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consistent with the above conditions. In particular, laser-produced high energy short ion 

beam pulses are very dense, with the beam radius typically larger than the collisionless 

electron skin-depth, i.e., peb cr ω> [Snavely et al., 2000; Harres et al., 2010]. Also, 

propagation of a neutralized (by co-moving electrons) ion beam along a strong solenoidal 

magnetic field with pece ωω >  can occur both in a heavy ion driver [Seidl et al., 2009] and 

in the laser production of collimated ion beams [Harres et al., 2010] when a conventional 

several Tesla magnetic lens is used for ion beam focusing. Therefore, the extension of 

previous theoretical models [Robertson, 1982] to the cases where pece ωω >  or peb cr ω>  

is of particular practical importance. In the present work, we investigate the operation of 

a collective focusing lens in these regimes, making use of advanced numerical 

simulations and reduced analytical models. 

The present chapter is organized as follows. The original analysis of a collective 

focusing lens is summarized in Sec. 5.2. Section 5.3 presents results of advanced 

numerical simulations demonstrating the feasibility of tight collective focusing of intense 

ion beams for the Neutralizing Drift Compression Experiment-I (NDCX-I). The effects of 

the nonneutral collective focusing in a strong magnetic field, i.e., peceω >ω , and its 

influence on the ion beam dynamics in the NCDX-I are investigated in Sec. 5.4. Finally, 

an analysis of collective focusing lens operation in the regime where the beam radius is 

comparable to or larger than the collisionless electron skin depth, i.e., peb cr ω> , is 

performed in Sec. 5.5.    
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5.2 A Collective Focusing Lens  

In this section we summarize the concept of a collective focusing lens proposed and 

experimentally verified by S. Robertson [Robertson, 1982; Krafft et al., 1985; Krafft, 

1986; Kraft et al., 1987]. Consider a magnetic lens (magnetic solenoid) where a 

solenoidal magnetic field is nearly uniform inside the lens, , and decreases 

rapidly to zero outside the lens. Note that the applied solenoidal magnetic field has a non-

zero radial component, Br, in the field fall-off region. When an ion beam carrying an 

equal amount of neutralizing electrons enters the lens along the axis of the solenodial 

field, both the electron and ion species acquire an angular momentum (Fig. 5.1). This 

occurs due to the  force, but can be conveniently calculated from the conservation 

of the canonical angular momentum, 

zB ˆ0B≅

rz BV ×

θα rAq−ααθα θ dtdrmP = 2 . Here, ( ),r θ  

corresponds to the cylindrical polar coordinates,  is the azimuthal component of the 

magnetic field vector potential, 

θA

BA =×∇ ,  and   are the species mass and charge, 

respectively, and the subscript 

αm αq

ie,=α  denotes electrons or ions, respectively. Provided a 

neutralized beam enters the lens from a region of a zero magnetic field and does not 

significantly perturb the applied magnetic field of the lens, it follows that inside the lens 

2αααω θ Ω=≡ dtd , where cmαB0qαα =Ω , and initially non-rotating electrons and 

ions are assumed. The evolution of the particles radial coordinate inside the lens is then 

governed by 
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ααα .                                          (5.1) 

Note that the second term on the left-hand-side of Eq. (5.1) corresponds to the difference 

between the centrifugal force, 42 rm eeΩ , and the BV ×θ  magnetic force, 22 rm eeΩ− .  

In the original derivation for the case of a quasi-neutral ion beam, the identical 

radial motion of the electrons and ions was assumed, i.e., ),(),( tzrtzr ie =  [S. Robertson, 

1982]. From Eq. (5.1) it therefore follows for the case of a singly-charged ion beam that 

0
4
1

2

2

=ΩΩ+ ierr
dt
d

αα ,                                            (5.2) 

and for the electric field we obtain ( ) 4rmmeE eieir ΩΩ−−= . Neglecting the electron 

mass, we readily obtain that the strong ambipolar electric field that provides the enhanced 

collective focusing is given by 

e
rmE eer 4

2Ω−= .                                                     (5.3) 

Note that the electric field in Eq. (5.3) provides the balance between the magnetic BV ×θ  

force, the centrifugal force, and the ambipolar electrostatic force acting on neutralizing 

electrons inside the lens. Furthermore, as pointed out in [D. Boercker et al., 1991], the 

same results for the electric field [Eq. (5.3)] was obtained by R. Davidson in [Davidson, 

1976] where the possible equilibrium states for a plasma in a constant axial magnetic 

field were considered. Finally, a comprehensive analysis of a collective focusing lens 

including the thermal effects of the co-moving electrons can be found in [Robertson, 

1986; Krafft, 1986]. 
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In the thin lens limit, where the radial displacement of beam particles within a 

lens is small, and the neutralized beam drifts to a focus outside the lens, the focal length 

of the collective focusing lens is given by [Robertson, 1982]  

( )siebrbb
coll
f LvvrvL ΩΩ≅Δ−= 24 .                                       (5.4) 

Here,  is the axial beam velocity,  is the length of the magnetic solenoid,  is the 

beam radius, and  is the radial velocity acquired within the lens. Note that the focal 

length of a “conventional” magnetic lens is given in the thin-lens approximation for a 

single-species ion beam by 

bv sL br

rvΔ

( )sib
m
f LvL 224 Ω≅ .                                                   (5.5) 

Equation (5.5) follows from Eq. (5.1), assuming that 0≅rE , provided the beam space-

charge is weak or well-neutralized by a background plasma. Comparing Eqs. (5.4) and 

(5.5) it follows that for a given focal length, the magnetic field required for a neutralized 

beam is smaller by a factor of ei mm . Note that the collective focusing effect was 

originally observed by S Robertson in [Robertson, 1982] in the thin-lens limit, and the 

following work by R. Kraft [Kraft et al., 1987] investigated collective focusing for the 

case where the focal point lies within a focusing solenoid.  

 The quasi-neutrality condition, i.e., iie nnn <<− , that has been assumed in the 

above analysis can be expressed in terms of practical system parameters by making use of 

Poisson’s equation and Eq. (5.3). Here, ne and ni are the electron and ion number 
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densities, respectively. After some straightforward algebra it follows that the quasi-

neutrality is maintained provided [Robertson, 1982] 

22

2
1

epe Ω>>ω .                                                       (5.6) 

It has been also assumed that the axial magnetic field perturbations due to the beam are 

small. The azimuthal current density is primarily attributed to the electron rotation and is 

given inside the lens by 2eee ernj Ω= . Making use of Ampere’s law, it is 

straightforward to show that the perturbations are small provided  

pe
b

cr
ω

<<
2
1 ,                                                       (5.7) 

i.e., is the beam radius is smaller than the collisionless electron skin depth [Robertson, 

1982].  

 In conclusion, it is of particular interest to compare the focusing effect of a 

collective focusing lens to the enhanced self-focusing of an ion beam propagating 

through a background neutralizing plasma along a solenoidal magnetic field (Secs. 4.5.2 

and 4.5.4). For both cases, the enhanced focusing is provided by a strong radial electric 

field, which is produced to balance the magnetic BV×  force acting on the rotating 

neutralizing electrons. Note, however, that for the case of a collective focusing lens, the 

rotation of the co-moving electron beam is acquired due to variations of the applied 

solenoidal magnetic field from zero outside the lens to the maximum value inside the 

lens. In contrast, for the case of plasma-induced self-focusing, the background plasma 

electrons are initially immersed in an applied magnetic field, and variations of the 
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magnetic flux that determines the electron rotation are associated with a small radial 

displacement of the electron orbits in the presence of the ion beam self-fields. For this 

reason the plasma-induced enhanced self-focusing can be observed even for the case of a 

uniform applied magnetic field. In contrast, in order for the enhanced focusing to occur 

inside a collective focusing lens, the neutralized beam has to traverse the fall-off region 

of a solenoidal field. Moreover, here we emphasize again that the value of the plasma-

induced self-focusing force [Eq. (4.43)] does not depend on the local value of the applied 

magnetic field. The value of the applied magnetic field however determines the 

conditions for the enhanced self-focusing to occur [see Eq. (4.44)]. 

The ratio of the focusing force acting on beam ions inside a collective focusing 

lens, Fcoll, to the plasma-induced self-focusing force in the presence of an applied 

magnetic field, Fsf, can be estimated as 

2

22

4
1~

b

eb

sf

coll

v
r

F
F Ω

.                                                   (5.8) 

In obtaining the estimate in Eq. (5.8), it has been assumed that brr 1~∂∂ and 

in the expression for the plasma-induced self-focusing force [Eq. (4.43)]. Furthermore, 

the force in Eq. (5.2) governing the neutralized beam dynamics inside the collective 

focusing lens has been generalized to the case of an arbitrary charge-state of the beam 

ions. It is interesting to note that in the limit where the beam radius is of order the 

effective gyroradius given by 

pbb nnZ ~  

ebge vr Ω=  for pee ω<<Ω , the effects become of the same
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 order, i.e., Fcoll~Fsf. Note, however, that the effective gyroradius corresponds to the 

minimum threshold value of the beam radius in the condition in Eq. (4.44).  

Finally, we comment on the significant suppression of the total focusing effect 

that has been observed in the experiments in [Kraft et al., 1987] when a neutralizing 

plasma was produced inside a collective focusing lens. Although the enhanced plasma-

induced self-focusing could still occur inside the magnetic lens with the presence of the 

background plasma, its influence on the ion beam dynamics would be much less than the 

original effects of the collective focusing lens. Indeed, a simple calculation shows that for 

the parameters of the experiments in [Kraft et al., 1987] the ratio in Eq. (5.8) is much less 

than unity.     

 

5.3 Collective Focusing Lens for the NDCX-I Final 

Focus 

As noted earlier, it is appealing to make use of a collective focusing lens in a design of a 

heavy ion driver final focus section. As a practical illustrative example, in this section we 

consider the Neutralized Drift Compression Experiment-I (NDCX-I), which is a scaled 

heavy-ion driver built in order to determine the physical and technological limits of 

neutralized ion beam compression (Chapter 1). Figure 5.2 shows a schematic of the 

NDCX-I final focus section. Leaving the long neutralized drift section, the radially and 

longitudinally convergent ion beam pulse passes through a strong (8 Tesla) final focusing  
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Figure 5.2: (Color) Schematic of the NDCX-I final focus section showing regions filled 

with neutralizing plasma. The neutralizing plasma inside the drift section is created by a 

ferroelectric plasma source (FEPS). The final focus solenoid is filled with a background 

plasma injected by four cathodic-arc plasma sources (only two are shown in the figure).    

solenoid (FFS), which provides additional transverse focusing. The target plane is located 

downstream the final focus solenoid, and is not shown in the figure. In order to 

compensate for the strong space-charge forces of the compressed ion beam pulse, the 

final focus solenoid has to be filled with a neutralizing plasma. In the current design, four 

cathodic-arc plasma sources (CAPS) are used to inject plasma into the final focus 

solenoid. The sources are placed out of the line-of-sight of the beamline in order to avoid 

interaction with the ion beam and angled toward the axis of the final focus solenoid (Fig. 

5.2). Here, we emphasize again that filling the strong magnetic solenoid with a 
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neutralizing plasma is itself a challenging problem [Roy et al., 2009], and providing 

improved neutralizing plasma background inside the final focus solenoid is still one of 

the critical problems in NDCX-I optimization.  

 The final beam focusing can be significantly facilitated by using the concept of a 

collective focusing lens, which requires minimum modifications to the current NDCX-I 

configuration.  Indeed, in order to test the collective focusing, one needs to lower the 

final focus solenoid magnetic field from 8 Tesla to several hundred Gauss and turn off 

the cathodic-arc plasma sources. It is then expected that the beam will drag the required 

neutralizing co-moving electrons from the background plasma that fills the drift section 

[Humphries, 1978; Humphries et al., 1981; Kraft and Kusse, 1987; Callahan, 1996; 

Welch et al., 2002; Sharp et al., 2004] and will experience strong collective focusing 

inside the magnetic solenoid. In this section we present results of advanced numerical 

simulations demonstrating the feasibility of tight collective focusing of an intense ion 

beam for NDCX-I. In Sec. 5.3.1 an idealized model not taking into account the effects of 

the beam simultaneous convergence is considered, and the physical limits of the 

collective focusing are discussed. In Sec. 5.3.2 a practical design for NDCX-I collective 

final focus is proposed.  

 

5.3.1 Idealized Model: Numerical Studies 

In this section we present results of the particle-in-cell numerical simulations of an 

idealized model for the NDCX-I final beam focus (Fig. 5.3). The simulations are  
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Figure 5.3: An idealized model of the NDCX-I final beam focus. (a) Schematic of the 

numerical LSP simulation. (b) The longitudinal profile of the applied axial magnetic 

field of the 700 G final focus solenoid.  
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performed in cylindrical (r,z) geometry with the exact implicit electromagnetic version of 

the LSP code [LSP, 1999]. In the idealized model, the Potassium (K+) ion beam is 

injected through the plane z=0 located inside the drift section near its downstream end. 

To model the short downstream part of the neutralizing drift section, a plasma layer is 

placed between z=-5 cm and z=15 cm. The plasma density is assumed to be uniform with 

np=1011 cm-3, and the electron and ion temperatures are taken to be Te0=Ti0=3 eV. The 

final focus solenoid (FFS) with radius Rs=2 cm and  length Ls=10 cm is centered at zc=25 

cm, and the following initial beam parameters are considered for this idealized model: the 

injected beam density is nb0=1010 cm-3; the directed energy of beam ions is Eb=320 keV, 

which corresponds to 2004.0≈= cvbbβ ; the radial beam density profile is flat-top with 

the outer beam radius rb0=1 cm; the duration of  ion beam injection is 40=bτ  ns, which 

corresponds to the beam length lb≈5 cm; and the transverse and longitudinal beam 

temperatures are assumed to be Tb=0.2 eV. In the simulations, the injected ion beam 

pulse is allowed to drag the electrons when leaving the plasma layer. Therefore, in order 

to maintain charge-neutrality of the system, electron emission is established at the radial 

plasma boundary, Rp=3.8 cm, which coincides with the conducting radial boundary of the 

simulation domain. The fine radial grid spacing with 01.0=Δ fr cm is used in the range of 

cm, and a coarse grid with [ 1,0∈r ] 2.0=Δ cr cm is used for the remainder of the radial 

domain extension. The grid spacing in z-direction is 2.0=Δz cm, and the time step is 

ns.  016.0=Δt
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Note that the present simulations do not resolve the plasma oscillation 

wavelength, pbp v ωλ = , which is an important parameter in the physics of beam 

neutralization by a background plasma [Humphries, 1978; Kaganovich et al., 2001]. 

However, consistent with the more detailed numerical simulations in [Humphries et al., 

1981] and experimental observations in [Kraft and Kusse, 1987], in our simulations the 

space-charge and current of the ion beam is well-neutralized as it leaves the plasma layer, 

which is sufficient for present purposes. Furthermore, due to some uncertainty in the 

background plasma parameters in the NDCX-I, e.g., the electron temperature, and the 

plasma fall-off density profile, a computationally intensive improvement of the 

neutralization analysis would not necessarily provide much better insight into the design 

of the NDCX-I collective final focus section.  

Figure 5.4 presents the results of the numerical simulations for the case where the 

magnetic field inside the final focus solenoid is B0=700 G.  The ion beam comes to a 

tight focus at cm, with ~700 times increase in the number density, 

cm-3 [Fig. 5.4(a)]. The radial electric field inside the lens is shown in Fig. 

5.4(b), and agrees well with the analytical predictions in Eq. (5.3) for cm. Note 

that for the parameters of this illustrative example, most of the beam compression occurs 

within the lens; the focal plane is located slightly downstream the end of the solenoid. 

Accordingly, the beam radius corresponding to the plot in Fig. 5.4(b) is about a half of its 

initial value.  

30≈fz

12107×≈fn
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Figure 5.4: (Color) Results of the numerical simulations performed with the LSP code 

for the idealized model of the NDCX-I final beam focus. (a) Plot of the ion beam density 

at the focal plane corresponding to t=250 ns. (b) Radial dependence of the radial electric 

field inside the lens corresponding to z=25 cm and t=220 ns (blue dots). The analytical 

results in Eq. (5.3) are shown by the pink solid line in Frame (b).  
 

 

It is of particular practical importance to discuss the physical limits of the 

collective focusing. Figure 5.5 shows the system parameters slightly upstream of the 

focal plane, including the ion beam density [Fig. 5.5(a)], the electron density [Fig. 

5.5(b)], and the radial component of the electric field [Fig. 5.5(c)]. It is readily seen that 

near the focal plane, the total space-charge density is positive, and the radial electric field 

is defocusing. This means that the compression of the co-moving electron beam comes to 

stagnation, whereas the ion beam still undergoes compression. This “final” ion beam 

compression is inertial, i.e., it occurs against the ion beam space-charge forces due to the 

ion beam radial convergence generated by the collective focusing. The plausible 

explanation of the electron transverse stagnation can be given by means of thermal  
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Figure 5.5: (Color) Effects of electron heating on collective beam focusing. Shown are 

 
plots of (a) ion beam density, (b) electron density, (c) radial electric field, and (d) 

electron phase-space (Ver/c,z). The results are obtained at time t=240 ns. The horizontal 

dashed lines in Frame (d) correspond to a characteristic initial electron thermal velocity 

specified by ee mT 0 . Results are obtained using the LSP code for the idealized model 

of the NDCX-I final beam focus. 
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effects [Robertson, 1986]. Indeed, neglecting small electron inertia, the radial force 

balance equation for the electron fluid includes the focusing magnetic force, 22 rm eeΩ− , 

the defocusing centrifugal force 42 rm eeΩ , the defocusing electric force, , and the 

thermal pressure term, 

reE

ee np∇ . As the effective transverse electron temperature 

increases during compression, the electric field required to balance the magnetic electron 

focusing decreases. Finally, when the magnetic force is completely balanced by the 

thermal pressure, the electron compression comes to stagnation. A small additional 

compression of the co-moving electron beam, however, is still possible due to the 

positive radial electric field generated during the “inertial” ion beam compression. The 

parameters of the electron beam at the stagnation point can be estimated from  

4
~

2
2 es
eees

r
mT Ω .                                                          (5.9) 

Here, re and Te are the electron beam radius and the effective transverse temperature. At 

the time corresponding to the plots in Fig. 5.5, the electron beam radius is re~0.1 cm, and 

it follows from Eq. (5.9) that Te~215 eV. The corresponding normalized value of the 

effective radial thermal velocity, 02.0~ 1 =−
eeer mTcβ , is consistent with the results of 

the numerical simulations shown in Fig. 5.5(d). It is interesting to note that the value of 

the effective transverse temperature observed in the simulations is approximately 

consistent with the adiabatic compression of the electron beam, where .  constTr ee ≈2

In the simulations presented here, the initial effective transverse temperature of 

the co-moving neutralizing electrons can be attributed to the isotropic thermal 
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distribution of the electrons inside the plasma layer. However, even for the case where 

the background plasma electron are cold, it has been demonstrated both computationally 

[Humphries et al., 1981] and in experiments [Kraft and Kusse, 1987] that the longitudinal 

velocity distribution of the co-moving neutralizing electrons dragged from the 

background plasma is bell-shaped with an approximate width of vb, and a mean velocity 

of vb. This longitudinal velocity can in turn provide the spreading in the transverse 

electron velocity due to the coupling between the longitudinal and transverse electron 

motion caused by finite transverse geometry effects and various collective effects. 

Therefore, the electron-temperature-induced limit of the collective focusing scheme can 

still occur even if a cold background plasma is used as a source of neutralizing electrons.  

Note that the radial ion beam density profile shown in Fig. 5.5(a) is hollow. This 

can be due to nonlinearities in radial profile of the focusing electric field near the axis 

[Fig. 5.4(b)]. However, it is important to point out that the ion beam profile is bell-shaped 

at the focus, as seen in Fig. 5.4(a). Furthermore, it has been observed in the numerical 

simulations that the radial profile of the electric field becomes nearly linear, when the 

magnetic solenoid is moved further downstream from the drift section in order to 

decrease the value of the fringe magnetic fields inside the plasma layer (Sec. 5.4). It also 

should be noted that nonlinear aberrations can be produced due to the thermal spreading 

in the transverse velocity distribution of a co-moving electron beam [Krafft, 1986].   

 For the parameters of the illustrative example shown in Fig. 5.4, the focal plane 

lies near the downstream end of the final focus solenoid (FFS). For practical purposes,  
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Figure 5.6: (Color) Ion beam density at the focal plane for different values of the 

magnetic solenoid strength, B0. The plots correspond to (a) B0=700 G, (b) B0=700 G, and 

(c) B0=300 G. Results are obtained using the LSP code for the idealized model of the 

NDCX-I final beam focus 

however, it can be important to have a gap between the final focus solenoid and the target 

plane (beam focal plane). Figure 5.6 illustrates the beam density at focus for different 

values of the final focus solenoid magnetic strength. It is readily seen that the focal plane 

can be moved downstream by lowering the magnetic strength of the solenoid. However, 

the compressed beam density decreases with a decrease in the applied magnetic field. A 

plausible explanation for this includes the following. First, electron stagnation can occur 

earlier, in accordance with Eq. (5.9). Second, the “inertial” phase of the ion beam 

compression is more pronounced for a stronger magnetic field, because a steeper 

convergent angle is acquired during the collective compression inside the final focus 

solenoid.   
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5.3.2 Practical Design of the NDCX-I Final Focus 

In the previous section an idealized model of the NDCX-I collective final focus section 

was considered. The model did not take into account the effects of the beam’s 

simultaneous, longitudinal and transverse, convergence. However, in the actual NDCX-I 

configuration, the ion beam acquires a radial convergence angle and a head-to-tail 

longitudinal velocity tilt before entering the neutralizing drift section (Chapter 1). The 

beam distribution evolves inside the drift section, and it is of particular practical 

importance to assess the feasibility of a tight collective final focus for the case of a more 

realistic beam distribution at the exit of the drift section.  

Figure 5.7 illustrate a schematic of the simulation configuration presented in this 

section. The beam ions are injected through the upstream boundary of the simulation 

domain at zinj=0. The injected beam current is Ib=27 mA, the directed energy of K+ beam 

ions is Eb=300 keV, the radial beam density profile is flat-top, with outer beam radius 

rb0=1.6 cm; the duration of the ion beam injection is 500~pτ  ns, and both the transverse 

and longitudinal beam temperatures are Tb=0.094 eV. The initial radial convergence 

corresponds to a ballistic focus at Lconv=80 cm, i.e., 02.000 ≡Δ =convbb Lrvrv . After 

injection, the beam propagates through the induction bunching module, where a time-

dependent voltage shown in Fig. 5.8 is applied in the tilt gap between zg1=8 cm and 

zg2=11 cm. The beam then enters a long, Ld=231 cm, drift section filled with a 

background neutralizing plasma. Most of the simultaneous compression occurs inside the 

drift section. However, to provide the additional transverse collective focusing a short,  
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Figure 5.7: Schematic of the numerical LSP simulation configuration for the NDCX-I 

including the longitudinal velocity tilt and initial radial convergence of the ion beam.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.8: The tilt-gap voltage waveform used in the numerical simulations. 
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Ls=10 cm, final focus solenoid with radius Rs=2 cm is placed downstream of the beamline 

after the drift section. It is centered at zs=276 cm, and the on-axis magnetic field inside 

the solenoid is B0=700 G. Leaving the drift section, the beam is allowed to drag the co-

moving electron background from the background plasma, and a tight collective final 

focus is expected to be observed in the simulations. 

The voltage ramp between the time instants th=130 ns and tt=530 ns in Fig. 5.8 

provides the longitudinal compression of only the 400=cτ  ns portion of the entire ion 

beam pulse; and the front part of the beam that propagates through the tilt gap during t<th 

corresponds to the longitudinally uncompressed beam prepulse. Here, the subscripts “h” 

and “t” denote the head and tail of the beam pulse, respectively. The head of the 

compressing beam portion experiences a net decelerating electric force, and the tail 

experiences a net accelerating force. Thus, this part of the ion beam acquires a head-to-

tail velocity tilt that causes the tail of the compressing beam portion to meet its head at 

the longitudinal focal plane. Note that the voltage ramp between th and tt assumed in the 

simulations (Fig. 5.8) corresponds to the so-called idealized voltage waveform given by 

[Welch et al., 2005; Sefkow, 2007]  
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Here, 004.0== cvbbβ  is the normalized directed beam velocity upstream of the tilt gap, 

0037.0=hβ  is the normalized head-velocity of the compressing beam part, and Lf=273 

cm corresponds to the drift length to the ideal longitudinal focal plane. It is 

 



5.3. Collective Focusing Lens for the NDCX-I Final Focus 234

straightforward to show for ballistic compression of a cold beam that different 

longitudinal beam slices will come to the same focal plane at cm, 

provided their velocity is determined according to 

2842 =+= fg
id
foc Lzz

( ) ( )[ ]tVevm tiltbb Δ−= 22  atvm sliceb
2 t the 

tilt gap exit, i.e. z=zg2.  

The ideal longitudinal compression is degraded by thermal effects, and the time-

dependent effects of the longitudinal beam dynamics associated with a finite length of the 

tilt gap [Sefkow, 2007; Sefkow and Davidson, 2007]. Furthermore, traversing the finite-

length tilt gap, the beam particles receive a time-dependent divergence angle [Sefkow, 

2007; Sefkow et al., 2009]. Note that the steep initial convergence angle corresponding to 

Lconv=80 cm (instead of cm), is taken to partially compensate for this 

divergence. However, due to the time-dependent nature of the effect, simultaneous 

longitudinal and transverse beam compression is still degraded due to variations in the z-

location of the transverse focal plane for different beam slices [Sefkow et al., 2009, 

Kaganovich et al., 2009]. The tilt gap is included in the simulations as a gap between two 

long conducting cylinders with radii Rg=3.8 cm aligned along the z-axis, which 

corresponds to the induction bunching module configuration used in NDCX-I; and the 

voltage difference  is applied to the cylinder surfaces. Therefore, the finite-size 

tilt gap effects are adequately described by the present simulations. Note that among the 

deleterious technological effects limiting simultaneous beam compression is a 

discrepancy between the ideal voltage waveform in Eq. (5.10) and the waveform 

generated by the induction bunching module in NDCX-I. This effect is considered in 

284=id
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detail in [Sefkow 2007; Kaganovich et al., 2009], and is outside the scope of the present 

work.  

It has been demonstrated that  a background plasma with np>nb can provide a high 

degree of the beam charge and current neutralization [Kaganovich et al., 2010]. 

Furthermore, it can be shown that collective streaming processes do not have a significant 

influence on ion beam dynamics due to the thermal effects of the background plasma 

electrons. Therefore, it is appealing to use a fluid model for the background plasma, 

instead of a full kinetic description to simulate the ion beam pulse shaping during its 

simultaneous compression inside the long drift section. However, the kinetic effects of 

the co-moving electrons are of particular importance for the collective focusing of the 

beam pulse. Accordingly, the entire simulation domain is divided into two parts. The 

simulation of the long upstream part, from z=0 to zL=251 cm, utilizes the conductivity 

model for a background plasma, where a sufficiently high value of the conductivity is 

chosen to provide complete beam neutralization. The downstream part, from zL=251 cm 

to zend=301 cm, that includes a short downstream part of the drift section and the final 

focus section, is simulated by making use of a fully kinetic model for the background 

plasma electrons and ions. For this downstream simulation we take the plasma density to 

be np=1011 cm-3, the electron temperature Te=3 eV, and the massive plasma ions are 

assumed to be cold. As in the previous section, to maintain charge-neutrality of the 

system, electron emission is established at the radial plasma boundary, Rp=3.8 cm, which 

coincides with the conducting radial boundary of the downstream simulation domain. The 

beam ions are treated as a kinetic species throughout the entire simulation domain. We 
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emphasize again that the use of the fluid model for most of the neutralizing plasma inside 

the drift section allows for a great reduction of the total computational time.  

Finally, the following space-time resolutions for the upstream and downstream 

simulations are used. For most of the upstream simulation domain, except for a narrow 

region near z=zL, we take 1=Δ Iz cm, and the grid resolution in the radial direction 

includes 10 grid points for the region [ ]2.0;0∈r  cm, 10 grid points for  cm, and 

35 grid points for  cm. For the short downstream simulation region, we take 

cm, and the grid resolution in the radial direction includes 40 grid points for 

the region 

[ 1;2.0∈r ]

[ 5;1∈r ]

2.0=Δ IIz

[ ]2.0;0∈r  cm, 100 grid points for [ ]2;2.0∈r  cm, and 19 grid points for 

 cm. Here,  and [ 8.3;2∈r ] IzΔ IIzΔ  denote the grid spacing in the z-direction for the 

upstream and downstream simulations, respectively. To simulate the beam propagation 

through the long drift section the time step Δ ns is used, and when the beam 

propagates through the final focus section, we take ns.  

0066.0=

.0=Δ IIt

It

005

The results of the numerical simulations performed with the LSP code [LSP, 

1999] are shown in Figs. 5.9 and 5.10. Figure 5.9(a) illustrates the pre-compressed ion 

beam pulse density at the exit of the drift section. The beam density is zero downstream 

of the plane z=274 cm, because the downstream simulation ignores most of the prepulse 

part of the beam. Recall, that one of the conditions for the collective focusing to occur 

requires the electron plasma density to be higher than the electron cyclotron frequency 

inside a magnetic solenoid [Eq. (5.6)]. Due to the simultaneous neutralized pre-

compression providing nb~1010 cm-3 near the exit of the drift section this condition is  
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Figure 5.9: (Color) Results of the numerical LSP simulations of the ion beam dynamics 

in the NDCX-I including the initial head-to-tail velocity tilt and the radial convergence 

angle. Shown are plots of (a) the ion beam density at the exit of the neutralized drift 

section corresponding to t=2450 ns, and (b) radial dependence of the radial electric field 

inside the magnetic lens at the center of the final focus solenoid, z=276 cm, 

corresponding to t=2535 ns (blue dots). The analytical results in Eq. (5.3) are shown by 

the solid pink line in Frame (b). 
 

nearly satisfied. Note that the idealized simulation in Sec. 5.3.2 assumes a similar initial 

density of the ion beam pulse, and the tight collective focus is demonstrated. Figure 

5.9(b) illustrates the radial electric field inside the solenoid, which agrees well with the 

analytical predictions in Eq. (5.3). A plot of the beam density at the transverse focal plane 

is shown in Fig. 5.10(a). It is readily seen that a tight transverse collective focus with the 

on-axis (peak) value of the compressed beam pulse ncomp≈5.5*1012 cm-3 occurs in the 

simulations. The time evolution of the ion beam current at ztf=281.6 cm corresponding to 

the transverse focal plane is shown in Fig. 5.10(b). Figure 5.10(b) demonstrates strong 

~80X longitudinal compression, with the peak current Ip=2.2 A, and a compressed ion  
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Figure 5.10: (Color) The ion beam parameters at the transverse focal plane. Shown are 

plots of (a) the ion beam density corresponding to t=2580 ns, and (b) the time evolution 

of the ion beam current at the transverse focal plane corresponding to z=281.6 cm. The 

results are obtained in numerical LSP simulations of the ion beam dynamics in NDCX-I 

including the initial head-to-tail velocity tilt and the radial convergence angle.  

 

beam pulse duration of a few nanoseconds. Note that for the parameters of the present 

simulations the longitudinal focal plane does not exactly coincide with the transverse 

focal plane. It is slightly shifted downstream to zlf=283.2 cm, with a peak current increase 

of a few percent. Therefore, further optimization studies can provide insights into the 

NDCX-I design with slightly improved simultaneous compression. However, even the 

present illustrative simulations demonstrate the feasibility of a very tight collective 

focusing of the ion beam pulse in NDCX-I, and the compressed beam parameters are 

similar to the results of the simulations performed for the case where 8 T final focus 

solenoid is used, and complete beam neutralization is assumed from the drift section 

entrance to the target plane [Siedl et al., 2009].  
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In conclusion, it is important to point out that the long prepulse part of the ion 

beam in the NDCX-I can produce a significant amount of the background electrons by 

preheating the target. Therefore, it may be important to remove those electrons from the 

beam-line. Otherwise they can possibly leak into the final focus solenoid, thus reducing 

the collective focusing of the compressing part of the beam pulse (Sec. 2.1). Note that the 

entire ion beam pulse undergoes simultaneous compression in the new NDCX-II facility 

[Friedman et al., 2009]. Therefore, the absence of the prepusle part of the ion beam 

makes the concept of final collective focusing even more attractive for the planned 

NDCX-II facility.  

 

5.4 Nonneutral Collective Focusing 

The original analysis of a collective focusing lens [Robertson, 1982] assumed quasi-

neutral compression, which is provided by the condition that the electron cyclotron 

frequency corresponding to the magnetic field inside a solenoid, , is greater than the 

electron plasma frequency of an incident neutralized beam,  (Sec. 5.2). However, it is 

of particular importance for several practical applications including the Neutralized Drift 

Compression Experiment-I to investigate the collective focusing in a strong magnetic 

field with . In this case, the quasi-neutrality condition inside the beam can break 

down, and it is important to determine the distribution of the radial electric field inside 

the beam, which is now supported by a pronounced charge separation. In this section we 
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investigate general features of this nonneutral collective focusing (Sec. 5.4.1), and 

discuss its influence on the beam dynamics in the Neutralized Drift Compression 

Experiment-I (Sec. 5.4.2). 

 

5.4.1 Collective Electron Dynamics during Nonneutral Compression  

We start the analysis by determining the conditions for a pronounced charge separation to 

occur inside an ion beam that carries an equal amount of the electron background into a 

strong solenoidal magnetic field. Figure 5.11(a) illustrates a neutralized ion beam that 

propagates through an increasing solenoidal magnetic field, B(z). For simplicity, we 

assume a uniform radial beam density distribution for the initial beam state, with the flat-

top density nb0 and the outer beam radius rb0. The ion beam is moving from a region of 

zero magnetic field, where its charge and current are completely neutralized by a co-

moving monoenergetic electron beam. We denote the electron cyclotron frequency 

corresponding to the maximum value of the magnetic field B0 inside a magnetic solenoid 

by cmeB ee 0≡Ω , and assume that ebpee mne 0
20 4πω =>Ω . Note that the condition 

 itself does not necessarily imply that the quasi-neutrality is not maintained 

during the transverse compression. Indeed, for the case of light and low-energy beam 

ions, and weak longitudinal gradients of the solenoidal magnetic field, the quasi-

neutrality will be maintained inside the beam, provided the increase in the electron 

plasma frequency due to the ion beam compression occurs more rapidly than the increase 

in the magnetic field, i.e., 

0
pee ω>Ω
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Figure 5.11: (Color) (a) Schematic illustration of a neutralized ion beam propagating 

along a strong solenoidal magnetic field with Ω . Two possible regimes of 

collective beam focusing correspond to: (a) quasi-neutral collective focusing where 

quasi-neutrality is maintained inside the beam during compression, and (b) nonneutral 

collective focusing associated with a pronounced build-up of negative charge around the 

beam axis.  
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( ) ( )zz ce
b
pe ωω >> .                                                       (5.11)   

Here, ( ) ei
b
pe mzne24πω = , ( ) cmzeB ece =ω , and ( )zni  is the local value of the ion 

beam density. For simplicity, we assume a short ion beam pulse with characteristic length 

that is much smaller than the longitudinal length-scale for variations of the magnetic 

field. The condition in Eq. (5.11) can be expressed as 
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and the evolution of the ion beam outer radius, Ri(z), for the case of a quasi-neutral 

compression is given by 
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In the limit of a high-energy heavy-ion beam and steep magnetic field gradients, Eqs. 

(5.12)-(5.13) may not have a self-consistent solution. In this case the quasi-neutrality 

inside the beam is no longer maintained, and the nonneutral collective focusing occurs.  

In order to determine the transverse beam dynamics for the case of nonneutral 

collective focusing, one needs to investigate the distribution of the strong radial electric 

field inside the beam. For this purpose we have performed advanced numerical 

simulations with the particle-in-cell code LSP [LSP, 1999]. Note that the schematic of the 

present simulations shown in Fig. 5.12 is similar to the one used in Sec. 5.3.1 (Fig. 5.3) 

for the simulation of the idealized final beam focus in the NDCX-I. However, here the 

distance between the plasma layer and the focusing solenoid is increased in order to  
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Figure 5.12: Collective focusing in a strong solenoidal magnetic field with . 

(a) Schematic of the LSP simulations. (b) Longitudinal profile of the applied axial 

magnetic field.  
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Figure 5.13: (Color) Thermal spreading of the co-moving neutralizing electron beam. 

Plots correspond to (a) longitudinal phase-space (Vez/c, z), and (b) the transverse velocity 

spreading (Ver/c, z). The velocity spreading of the initial cold background plasma 

electrons located from z=-5 cm to z=15 cm is attributed to numerical heating. The time 

instant corresponds to t=200 ns, and the results are obtained with numerical LSP 

simulations. 
 

decrease the value of the magnetic fringe fields inside the plasma. Furthermore, in an 

attempt to provide quiescent neutralization of the ion beam as it leaves the background 

plasma layer, cold plasma electrons are assumed, and a gradual decrease in the plasma 

density is introduced near the downstream end of the layer, that is np=1011 cm-3 for z<12 

cm and then theplasma density is linearly decreased to zero over a distance of ledge=8 cm. 

Note that the numerical simulations with axial grid spacing 2.0=Δz cm and time step 

ns demonstrate that the velocity spread in the electron distribution is of order 

the ion beam velocity (Fig. 5.13). To model the beam, we take rb0=1 cm, nb0=1010 cm-3, 

Zb=1, βb=0.0042, lb≈5 cm, and infinitely massive beam ions are assumed for simplicity. 

005.0=Δt
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The maximum value of the magnetic field inside the focusing solenoid is B0=1600 G, 

which corresponds to , and the longitudinal profile of the on-axis magnetic 

field is shown in Fig. 5.12(b).  

05 pee ω=Ω

 The results of the numerical simulations for an illustrative time t=500 ns, when 

the beam is at the center of the magnetic solenoid, are shown in Fig. 5.14. As the co-

moving electrons enter the magnetic solenoid the electrons acquire a strong azimuthal 

rotation due to conservation of canonical angular momentum [Fig. 5.14(a)]. The resulting 

 magnetic focusing force, along with the centrifugal force, are compensated by the 

strong radial self-electric field [Fig. 5.14(b)]. However, for considered parameters 

BV×

50
epe

b
pe =ω Ω=ω , the condition in Eq. (5.11) is violated, and a strong charge separation 

occurs in order to support the radial self-electric field [Fig. 5.14(c)]. Simulations show 

[Fig. 5.14(b)] that inside the electron beam, i.e., r<Re(z), the electric field is nearly linear, 

and is given by  

                       ( ) ( ) erzmerVmc ceeee 422 ωθ −=+BVE er 0θ−= .                           (5.14)  

Here, Re(z) is the characteristic outer radius of the electron beam, and Re<Ri [Fig. 

5.14(c)]. The nonlinear electric field in the region ie RrR <<  can be determined from 

Poisson’s equation  
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which is to be solved subject to the boundary condition, 
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Figure 5.14: (Color) Nonneutral collective focusing. Shown are plots of (a) the electron 

phase-space (Veθ/c,r), where the blue dots correspond to the results of the LSP 

simulations, and the estimate Veθ=ωcer/2 is shown by the solid pink line; (b) radial 

dependence of the radial electric field at the center of the magnetic solenoid, z=60 cm, 

where the blue dots correspond to the results of the LSP simulations, and the analytical 

estimate in Eq. (5.14) is shown by the solid pink line; and (c) electron density obtained 

in the LSP simulations. The dashed black lines in Frame (c) outline the ion beam, and Re 

corresponds to the characteristic electron beam radius. The time for the illustrated results 

corresponds to t=500 ns. 
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In Eq. (5.15), the longitudinal derivatives have been neglected provided the beam is 

sufficiently long with . Note that the solution to Eqs. (5.15)-(5.16) is, in general, 

nonlinear even for a uniform ion beam density profile. As a result, the aberration effects 

caused by nonlinearities in the focusing electric field can significantly degrade the 

transverse focal spot.  

0bb rl >>

In order to complete the description of the generated radial electric field, one 

needs to determine the evolution of the electron beam radius. The electron beam is being 

dragged into a strong solenoidal magnetic field by an intense heavy ion beam. The 

rotational energy of the electrons and the electrostatic field energy arise from the directed 

energy of the ion beam; and the magnetic pressure force is globally balanced by the 

longitudinal variations of the electrostatic potential. However, the density profile of the 

co-moving electron beam can still diffuse in the longitudinal direction as the beam 

propagates in the increasing magnetic field [Fig. 5.14(c)]. Consistent with that fact, a 

fraction of the electron beam particles with negative values of longitudinal velocity has 

been observed in the simulations. In the present approximate analysis, we neglect the 

longitudinal broadening of the electron beam density profile, and assume that 

. For the case of a sufficiently long beam with , it follows from Eq. 

(5.14) that the electron beam density is uniform, and is specified by  

2
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where ( ) eepe mzne22 4πω = . For the case of strong nonneutral compression with 

, it readily follows from Eq. (5.17) that the condition bbe nZn >> ( ) ( ) 2zz cepe ωω ≈  is 

maintained during the compression of the co-moving electron beam. Making use of 

charge conservation of the co-moving electron beam, we obtain for the case of strong 

nonneutral compression that 
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Equations (5.14)-(5.16) together with Eq. (5.18) provide an approximate self-

consistent estimate of the radial focusing electric field inside the ion beam. We now 

discuss the validity of Eq. (5.14) that demonstrates the balance between the 

magnetic focusing force, the centrifugal force, and the self-electric radial force 

acting on the background electrons. Equation (5.14) follows from the more general Eq. 

(5.1), provided the electron inertial term, i.e., the first term on the left-hand-side of Eq. 

(5.1), can be neglected. Making use of Eq. (5.18), it follows that the force-balance 

equation (5.14) is valid provided    

BV ×

 cebm vl ω22 >> ,                                                       (5.19) 

where  is the characteristic length-scale for variations of the applied magnetic field.  ml

In conclusion, it is interesting to point out that the co-moving electron beam 

compression does not follow the magnetic field lines. Indeed, the radius of a constant 
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magnetic flux tube is given by cefluxR ω1∝ , whereas the electron beam executes 

steeper compression with ceeR ω1∝ . Note, however, that for this system the electron 

gyro-radius is large, and comparable to the beam radius, and furthermore, the electric 

field is strong. Therefore, the “drift approximation”, which implies conservation of a 

particle’s magnetic moment (magnetic flux through a particle’s orbit), and is often used 

for description of magnetic fusion plasma flows, is not valid for the present system.   

 

5.4.2 Influence of Nonneutral Collective Focusing on the Beam 

Dynamics in the NDCX-I 

The design of the NDCX-I final focus section has included a relatively long, lg≈12 cm, 

gap between the downstream end of the neutralizing drift section and the upstream end of 

the 8 T final focus solenoid (FFS). The presence of the gap has been primarily stipulated 

by the gate valve included in the NDCX-I configuration, as shown in Fig. 5.2. Recent 

experimental and numerical studies have demonstrated a lack of neutralizing plasma in 

the gap region. Although moderate beam space charge (nb~109-1010 cm-3) can be 

compensated by the plasma electrons dragged by the ion beam from the drift region, 

collective phenomena occurring in the neutralized beam as it traverses the fringe 

magnetic field at the upstream end of the final focus solenoid can significantly influence 

transverse focusing of the ion beam. This field is of the order of several kG, and therefore 

strong enough that the electron cyclotron frequency is small compared to the plasma 
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frequency, i.e., cepe ωω < , where ebpe men 24πω =  and cmeB ece =ω  are the electron 

plasma and cyclotron frequencies, respectively. For parameters characteristic of NDCX-I 

the condition in Eq. (5.11) is not satisfied, and collective nonneutral focusing occurs 

inside the gap [Sec. 5.4.1]. An excess of beam ion charge develops at intermediate radii, 

while an excess of negative charge develops in the gap region near the axis of the system, 

providing a strong radial focusing field, which can affect the beam’s final focus. 

To investigate the influence of collective effects inside the gap on transverse 

focusing of the beam, we have performed idealized numerical simulations with the LSP 

particle-in-cell code (Fig. 5.15). In the simulations, we take the densities of the 

neutralizing plasma inside the drift section created by a ferroelectric plasma source, and 

the neutralizing plasma inside the final focus solenoid created by cathodic-arc plasma 

sources to be 1010 cm-3 and 1012 cm-3
, respectively. The electron temperature for both 

plasmas is assumed to be 3 eV. The plasmas are treated fully kinetically, allowing for the 

background electrons to flow into the gap should the forces on them induce such motion. 

Singly ionized Potassium (K+) beam ions with an energy of 320 keV are injected into the 

simulation through an aperture of rb0=1 cm located inside the drift section. To model the 

effects of the beam prepulse, for the first 40 ns, of the total beam pulse the beam current 

was set to be 0.028 A (prepulse), and for the second 40 ns, the beam current was set to be 

0.12 A (compressed portion of the beam). Neither the initial convergence angle nor the 

longitudinal velocity tilt were included in the simulations. 
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Figure 5.15: (Color) Influence of collective focusing inside the gap between the 

neutralizing drift region and the final focus solenoid on the ion beam dynamics in 

 

NDCX-I. Schematic of the LSP numerical simulation configuration showing regions 

filled with a neutralizing plasma.  

The results of the numerical simulations are shown in Figs. 5.16-5.18. Figures 

5.16(a) and 5.16(b) show the ion beam density and the density of the electron background 

dragged from the drift section. The radial self-electric field at the same time instant is 

shown in Fig. 5.16(c).  To demonstrate the influence of the radial electric focusing inside 

the gap we plot the beam density near the downstream end of the final focus solenoid 

[Fig. 5.17(a)], and compare it to the beam density in the “ideal neutralization” case where 

a dense background plasma initially fills the entire gap [Fig. 5.17(b)]. One can see that 

collective effects in the gap between the neutralizing plasmas induce premature beam 

focusing.  As the beam propagates from the downstream end of the final focus solenoid to 

the target, a slight decrease in the on-axis beam density is observed. Figure 5.18 (a) 

shows the beam density at the target plane, and Figure 5.18(b) corresponds to the “ideal 

neutralization” case. Note that due to the anharmonic field of the collective focusing  
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Figure 5.16: (Color) LSP simulations of collective nonneutral focusing inside the gap 

between the neutralizing plasmas at t=230 ns. Shown are plots of (a) number density of 

the electrons dragged from the drift section, (b) ion beam density, and (c) radial self-

electric field. The double-arrowed line in Frame (a) illustrates the position of the final 
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Figure 5.17: (Color) Ion beam density at the downstream end of the final focus solenoid 

at t=380 ns. (a) The background plasma is initially absent inside the gap between the 

drift section and the final focus solenoid. (b) Ideal neutralization case corresponding to 

the initial presence of a neutralizing plasma with density np=1010 cm-3 across the entire 

gap. Results are obtained with the LSP numerical simulations. 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: (Color) Ion beam density at the target region at t=490 ns. (a) The 

background plasma is initially absent inside the gap between the drift section and the 

final focus solenoid. (b)  Ideal neutralization case corresponding to the initial presence of 

a neutralizing plasma with density np=1010 cm-3 across the entire gap. Results are 

obtained with the LSP numerical simulations.  
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force, a large tail of halo ions develops around the focused beam core, and the peak beam 

density is reduced by a factor of about four relative to the “ideal neutralization” case 

[compare Figs. 5.18(a) and 5.18(b)].  

The influence of collective focusing inside the gap on the transverse beam 

focusing properties was studied for different values of the ion beam density. It was found 

that the radial electric field is greater for higher beam densities. Therefore, the degrading 

influence of collective effects is less pronounced for the beam prepulse than for the 

compressed portion of the beam.  This is consistent with the experimental observations 

demonstrating better transverse focusing of the beam prepulse. In other studies, we found 

that the collective focusing effect persists even for longer beam pulses, e.g., long enough 

(410 ns) that the beam itself provides a conducting path across the gap. Finally, we note 

that the effects of the collective focusing inside the gap were also investigated making 

use of the numerical simulations performed with the WARP code. Both codes yielded 

similar results. 

In order to mitigate the deleterious effects induced by collective nonneutral 

focusing inside the gap, the configuration of the NDCX-I has been optimized. The gate 

valve has been relocated upstream of the beamline, allowing for a shorter gap of only 5 

cm. The experiments on the ion beam simultaneous compression including final focusing 

by the 8 T final focus solenoid and the shorter gap are currently being carried out on the 

NDCX-I facility. Finally, note that the gap length of 5 cm have been used in the 

simulations presented in previous sections. 
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5.5 Collective Focusing of a High-Intensity Ion Beam 

with rb≥c/ωpe 

As noted earlier, to assure small perturbations in the applied solenoidal magnetic field 

produced by the azimuthal component of the electron current, the beam radius has to be 

smaller than the collisionless electron skin-depth, i.e., peb cr ω<< . In this section, we 

present an analytical self-consistent calculation of the magnetic field perturbation, and 

discuss the collective focusing lens operation for arbitrary values of cr pebω .  

Conservation of the canonical angular momentum for co-moving electrons gives 

(sec. 5.1)  

θθ A
c
eVm ee = ,                                                     (5.20) 

where Veθ is the azimuthal component of the electron velocity, and initially non-rotating 

electrons are considered. Assuming that the beam radius is smaller than the beam pulse 

length, and smaller than the characteristic length-scale for variations of the applied 

solenoidal magnetic field, i.e.,  mbb llr ,<< , we obtain from Ampere’s equation 

( ) θθ
π

eeVen
c

rA
rrr

41
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ .                                         (5.21) 

Assuming, for simplicity, a uniform radial beam density profile with bie nnn ==  for 

, and brr ≤ 0== ie nn  for , Eq. (5.21) is to be solved subject to the boundary 

condition  

brr >
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where Bs is the applied solenoidal magnetic field. Combining Eqs. (5.20) and (5.21) gives  
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∂ 1 ,                                               (5.23) 

where crr pebω= . Solving Eqs. (5.22)-(5.23), it follows that the longitudinal 

component of the total magnetic field, i.e., ( ) rrArBz ∂∂= −
θ

1 , is given by 

( )
( )crI

crI
BB

peb

pe
sz ω

ω

0

0= ,                                                  (5.24) 

where I0(x) is the modified Bessel function. Plots of the total magnetic field Bz(r), i.e., the 

sum of the beam-generated and the applied magnetic fields, for different values of 

cr pebω  are shown in Fig. 5.19. Note that attenuation of the applied magnetic field 

results in a decrease in the focusing electric field since cBVE zer 2θ−= . Furthermore, 

nonlinearities in the magnetic field profile provide aberrations that can degrade the 

transverse focus. However, it is interesting to note that even for large values of cr pebω , 

the outer edge of the beam still experiences collective focusing (Fig. 5.19). It is therefore 

of great interest to carry out detailed self-consistent studies including the effects of the 

beam radial profile evolution, in order to estimate the applied magnetic field required to 

collimate or focus the intense ion beam. 
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igure 5.19: (Color) Radial dependance of the of the total magnetic field, i.e., the sum of 

the beam-induced and applied magnetic fields, for different values of .   cr pebωδ =

5.6 Summary and Discussion 

In the present chapter the collective focusing scheme in which a weak magnetic lens 

provides strong focusing of an intense ion beam pulse carrying an equal amount of 

neutralizing electron background has been reviewed. This collective focusing can allow 

for the use of weak (several hundred Gauss) magnetic fields instead of the several Tesla 

fields used for conventional magnetic lens, thus significantly facilitating the technical 

realization of ion beam focusing for several applications of high energy density physics. 

As a practical example, the feasibility of tight collective focusing of intense ion beams 

for the Neutralizing Drift Compression Experiment-I (NDCX-I) has been demonstrated in 

this Chapter with the advanced numerical simulations.  
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The physical limits of collective ion beam focusing in NDCX-I have been 

discussed. In particular, the influence of the electron heating during the compression on 

the collective beam focusing has been investigated. It has been demonstrated that an 

increase in the thermal electron pressure, results in a decrease in the collective-focusing 

self-electric force. The analytical estimate of the effective electron temperature 

corresponding to the loss of collective focusing has been found to be consistent with the 

results of numerical simulations.  

 The original analysis of collective focusing, assuming quasi-neutral transverse 

beam compression with pece ωω << , has been extended to the case of nonneutral 

collective focusing, that can occur when the beam propagates in a strong solenoidal 

magnetic field with ceei
b
pe mne ωπω <= 24 . This case can be of particular importance 

for several practical applications, including laser-production of high-energy ions, where a 

strong solenoidal magnetic field is used to collimate the divergent ion beam [Harres et 

al., 2010]; and a heavy-ion fusion driver, where a strong magnetic solenoid is often used 

for final beam focusing [Yu et al., 2005]. For the case of nonneutral collective focusing, 

the electron background executes a steeper compression compared to that of the beam 

ions, and as a result an excess of negative charge develops near the solenoidal axis. It has 

been shown for the case of strong nonneutral compression, with  near the beam 

axis, that 

ie nn >>

2cepe ωω ≈  is maintained inside the electron beam, and that the electron 

beam radius decreases as ceeR ω1∝ . The focusing radial electric field inside the electron 
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beam, , is found to be linear with eRr < ( ) erzmE ceer 42ω−= . However nonlinearities in 

the region  cause aberrations, and can degrade the quality of the transverse 

ion beam focus. The influence of nonneutral collective focusing on the ion beam 

dynamics in NDCX-I has been investigated. It has been demonstrated that premature 

focusing and large halo development can occur due to intense collective nonneutral 

focusing in the gap between the drift section and the final focus solenoid.  

iRr <<eR

Finally, the original analysis of the collective focusing, which assumes small 

perturbations of the applied solenoidal magnetic field implied by peb cr ω<< , has been 

extended to the case of an arbitrary ratio of crbpeω . The perturbation in the solenoidal 

magnetic field produced by the azimuthal component of the electron beam current has 

been calculated self-consistently, and strong nonlinearities in the total magnetic field 

have been demonstrated for peb cr ω≥ . However, it has been found that even for large 

values of crb peω , the outer edge of the ion beam pulse still experiences efficient 

collective focusing.     

 

 

 



Chapter 6 

Conclusions and Future Research  

Present design concepts for heavy ion drivers for ion-beam-driven high energy density 

physics and warm dense matter applications, and for heavy ion fusion involve the 

acceleration and compression of intense heavy ion beams to a small spot size on the 

target. Ion beam acceleration and transport in vacuum is provided by a periodic focusing 

lattice. Then, a dense background plasma is used to neutralize the beam space-charge 

during the compression process. Finally, additional transverse focusing is typically 

provided by a strong (several Tesla) final focus solenoid. In this thesis, several critical 

problems of intense ion beam transport in an ion driver have been investigated by means 

of advanced numerical particle-in-cell simulations and reduced analytical models. In 

particular, a numerical method for the formation of a quasi-equilibrium beam distribution 

matched to a periodic focusing lattice by means of the adiabatic turn-on of the oscillating 

focusing field has been developed. The production of halo particles due to beam 

mismatch has been discussed, and a novel spectral method for the quantitative definition 

of beam halo has been proposed. Also, the propagation of an intense ion beam through a 

neutralizing plasma has been investigated with emphasis on the effects of a weak 

solenoidal magnetic field applied along the beam propagation direction. It has been found 

that ion beam self-focusing can be significantly enhanced by the application of a weak 

magnetic field of order 100 G.  Finally, the concept of collective focusing of intense ion 
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beam pulses has been reviewed, and the feasibility of a tight collective focus of an ion 

beam pulse in the Neutralized Drift Compression Experiment has been demonstrated in 

numerical simulations.  

The results presented in each chapter of this thesis are summarized in Sec. 6.1, 

and Sec. 6.2 suggests several future research tasks.  

 

6.1 Conclusions 

In this section a summary of the main results of this thesis research is presented.    

In Chapter 2 of this thesis, the formation of a quasi-equilibrium beam 

distribution matched to an alternating-gradient quadrupole focusing lattice by means of 

the adiabatic turn-on of the oscillating focusing field was studied using particle-in-cell 

simulations. Quiescent beam propagation over several hundred lattice periods was 

demonstrated for a broad range of beam intensities and vacuum phase advances 

describing the strength of the oscillating focusing field. Properties of the matched beam 

quasi-equlibrium obtained in numerical simulations were investigated and compared with 

the predictions of the analytical theory developed by Davidson et al. in [Davidson et al., 

1999]. In accordance with the theory, the numerical simulations demonstrated self-similar 

evolution of the beam density profile for . However, for higher values of vacuum 

phase advance (for instance, ) the self-similarity feature became less accurate 

over a wide range of beam intensities, which demonstrates the validity limits of the 

066vσ ≤

087.5vσ =
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theory. The numerical scheme for describing formation of a quasi-equilibrium beam 

distribution, matched to an alternating-gradient quadrupole focusing lattice, was 

generalized to the case of a periodic-focusing solenoidal lattice. Furthermore, various 

distributions were considered for the initial beam equilibrium. The self-similar evolution 

of the matched-beam density profile was observed for general choice of initial 

distribution function and lattice type.  

In Chapter 3 of this thesis, the transverse compression of an intense ion beam 

propagating through an alternating-gradient quadrupole lattice was investigated. In 

particular, the conditions on how smooth (adiabatic) the lattice transition should be to 

assure that beam matching is maintained during the compression were determined. For 

the case of nonadiabatic compression, halo particle production by a beam mismatch 

acquired during the compression stage was studied. In order to perform a quantitative 

analysis of this effect, a novel spectral method for halo particle definition was developed. 

The method is based on the observation that the betataron frequency distribution of a 

mismatched intense beam has a “bump-on-tail” structure attributed to the beam halo 

particles. It was found that most of the bump is located to the right of the half-value of 

the mismatch oscillation frequency, which allowed us to formulate the following simple 

quantitative definition of a halo particle. If the particle betatron frequency is greater than 

one-half of the mismatch oscillation frequency then it designated as a halo particle.  The 

method based upon the spectral analysis of a mismatched beam distribution was also 

applied to other critical problems of intense beam transport. In particular, it was 

demonstrated that during strong mismatch relaxation most of the beam halo is generated 
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on a time-scale shorter than the time-scale for the beam core relaxation. Furthermore, it 

was shown that the core relaxation process also leads to an increase in the beam 

emittance. Finally, the spectral analysis of a beam distribution loaded into a quadrupole 

lattice for the case where the system parameters lie near the transport stability 

limit, ( ) 232 222 πσσ ≈−vac , was performed. It was found that as the system parameters 

approach the stability limit, the core of the beam betatron distribution does not change 

significantly, whereas the tail of the distribution increases.  

 In Chapter 4 of this thesis, the influence of weak solenoidal magnetic fields of 

order 100 G on intense ion beam pulse transport through a dense background neutralizing 

plasma was investigated. The weak fringe magnetic field (~100 G) of a strong (several 

Tesla) final focus solenoid can penetrate deep into the long drift section filled with a 

neutralizing plasma, making this problem to be of particular importance for the design of 

an ion driver. The analysis presented in this thesis extended studies of ion beam transport 

through a background plasma along a solenoidal magnetic field by Kaganovich et al. 

[Kaganovich et al., 2008] to the important regime of moderate magnetic field strength 

satisfying ωce≥2βbωpe. Here, ωce and ωpe are the electron cyclotron frequency and electron 

plasma frequency, respectively, and βb = Vb/c is the directed ion beam velocity 

normalized to the speed of light. The electromagnetic field perturbations excited by the 

ion beam pulse in this regime were calculated analytically and verified by comparison 

with the numerical simulations. It was demonstrated that the total electromagnetic field 

perturbation excited by an ion beam pulse with a smooth radial density profile can be 
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conveniently represented as the sum of a local-field component, rapidly decaying to zero 

outside the beam pulse, and a wave-field component that can extend far outside the beam. 

It was found in the regime where pebce ωβω 2≅  that there is strong excitation of the wave-

field component corresponding to whistler waves, and the possible use of this effect for 

diagnostic purposes has been discussed. However, the contribution of wave-field 

excitations to the transverse component of the Lorentz force can have opposite signs for 

the beam head and the beam tail. Therefore, for practical application involving control of 

the beam aperture, it is important to identify a parameter regime where the local 

component of the electromagnetic field perturbation, which provides focusing over the 

entire length of the ion beam pulse, has the dominant influence on the beam transverse 

dynamics. It was demonstrated, in the regime where 2ce b peω β ω>>  and 

( ) cepecebb Vr ωωω 21221+>> , that the local-field component primarily determines the 

transverse dynamics of the beam particles, and the wave fields produce a negligible 

transverse force. Moreover, a positive charge of the ion beam pulse becomes over-

compensated by the plasma electrons, and the associated strong transverse-focusing self-

electric field has the dominant influence on the beam ions, compared to the self-magnetic 

field, provided ( ) ( )( )pebcepepeceb c ωβωωωωω <<<<+
21221 bce rV . It was also shown, 

for the case where the beam radius is small compared to the electron skin depth, that the 

self-focusing force is significantly enhanced compared to the self-focusing force acting 

on the beam particles in the absence of an applied magnetic field. In addition, the local 
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diamagnetic plasma response was observed in the numerical simulations, and was also 

predicted analytically for pebce ωβω 2>>

pe

. These results were found to differ significantly 

from the case 2ce bω β ω< , where the transverse electric field is defocusing, and the 

plasma response is paramagnetic. Finally, the effect of the plasma-induced enhanced self-

focusing of an intense ion beam pulse in the presence of weak fringe solenoidal magnetic 

fields was shown to be important for the planned Neutralized Drift Compression 

Experiment-II (NDCX-II). 

 In the Chapter 5 of this thesis, the collective focusing scheme proposed by S. 

Robertson [Robertson, 1982] in which a weak magnetic lens provides strong focusing of 

an intense ion beam pulse carrying an equal amount of neutralizing electron background 

was discussed. For instance, such a collective focusing lens with a magnetic field strength 

of several hundred gauss can focus an intense neutralized ion beam within a short 

distance of several centimeters. The enhanced focusing inside the lens is provided by a 

strong self-electric field, which is produced by the collective electron dynamics. The 

chapter then presented results of advanced numerical simulations demonstrating the 

feasibility of tight final beam focus that can be achieved in the Neutralizing Drift 

Compression Experiment (NDCX-I) by using a several hundred gauss collective focusing 

lens instead of a several Tesla conventional magnetic solenoid. The numerical 

simulations were performed with the LSP particle-in-cell (PIC) code, and the results of 

the simulations were found to be in very good agreement with analytical predictions. The 

collective focusing limitations due to possible heating of the co-moving electrons during 
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transverse compression were discussed. In addition, the original analysis of the collective 

lens operation, which assumes quasineutrality (provided by ωce<<ωpe), and small 

perturbations of the applied solenoidal magnetic field (provided by rb<<c/ωpe), was 

extended to the cases of ωce≥ωpe and rb≥c/ωpe. Here, rb is the beam radius, ωpe is the 

electron plasma frequency inside the incident neutralized beam, and ωce is the electron 

cyclotron frequency inside the lens. In particular, it was demonstrated for the case where 

ωpe<ωce that nonneutral compression corresponding to an excess of negative charge near 

the solenoidal axis can occur. The distribution of the radial self-electric focusing field for 

the case of strong nonneutral compression was calculated. Strong nonlinearities in the 

radial dependence of the electric field were found, and its influence on the ion beam 

dynamics in NDCX-I was analyzed. Finally, for the case where peb cr ω≥ , the 

perturbation in the solenoidal magnetic field produced by the azimuthal component of the 

electron beam current was calculated self-consistently, and strong nonlinearities in the 

total magnetic field were demonstrated. However, it was found that even for large values 

of cr pebω , the outer edge of the ion beam pulse still experiences efficient collective 

focusing.   
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6.2 Future Research  

An improved theoretical understating of transport properties of an intense ion beam pulse 

propagating in an ion driver is critical for applications to ion-beam-driven warm dense 

matter, high energy physics, and heavy ion fusion. Based on the studies presented in this 

thesis, several future research tasks can be suggested as follows.  

The numerical simulations discussed in Chapter 2 of this thesis demonstrate self-

similar evolution of the beam density profile for a quasiequilibrium beam distribution 

matched to a periodic focusing lattice. For this case, i.e., self-similar evolution of the 

beam density with the density profile being approximately constant on elliptical contours 

[Eqs. (2.43)-(2.44)], analytical expressions for the beam self-fields can be derived for an 

arbitrary beam density shape function [Sacherer, 1971; Davidson and Qin, 2001a]. 

Making use of this calculations for the beam self-fields, properties of a matched-beam 

quasi-equilibrium can now be accurately described using a particle-core model (see Sec. 

2.2.5), which requires much less computational effort compared to full particle-in-cell 

simulations. In particular, the particle-core model with the beam self-field calculated 

according to [Sacherer, 1971; Davidson and Qin, 2001a] can be used to investigated the 

higher-order resonance structure, and provide insights into the problem of space-charge 

transport limits. We would like to emphasize here that although the particle-core model 

has been previously typically used for analysis of a Kapchinskij-Vladimirskij (KV) 

matched beam distribution, the present numerical studies demonstrating the self-similar 

beam density evolution for a wide range of initial (smooth-focusing) beam equilibria 
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validate the use of the particle-core model for a wide range of beam quasiequlibria 

matched to a periodic focusing lattice.  

In Chapter 3 of this thesis a novel spectral method for quantitative definition of a 

beam halo particle is proposed. The method is based on the observation of a bump-on-tail 

structure, which appears in the betratron frequency distribution of an intense mismatched 

beam. The bump is located near the half-value of the mismatch oscillations frequency, 

and in the studies presented here, the linear approximation for the mismatch-oscillation 

frequency has been used for the “cut-off” frequency when selecting beam halo particles. 

However, it was pointed out that a few more halo particles can be selected if an improved 

model including nonlinear effects and accounting for the width and shape of the 

mismatch oscillations frequency spectrum is employed for determination of the “cut-off” 

frequency. Improving the criteria for defining a beam halo particle is of particular 

importance for a more quantitative analysis of beam halo production, and should be the 

subject of future studies. 

In Chapter 4 ion beam transport through a dense background neutralizing plasma 

along a solenoidal magnetic field has been investigated. In particular, enhanced ion beam 

self-focusing in the presence of a weak magnetic field has been found, and the self-

focusing force has been calculated for a steady-state regime, assuming infinitely massive 

beam ions [Eq. 4.57]. It is of particular practical interest to extend the present studies to 

the case of finite mass of the beam ions, and describe the ion beam pulse shaping self-

consistently, including the effects of enhanced ion beam self-focusing. The results of 

these studies should then be analyzed for the parameters characteristic of the Neutralizing 
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Drift Compression Experiment-II (NDCX-II), where the effects of enhanced plasma-

induced self-focusing can be important. Furthermore, the present studies assume cold 

plasma electrons and a linear (small-signal) plasma response. It is of great interest to 

consider nonlinear effects and the thermal effects of the background plasma electrons, 

and asses their influence on ion beam self-focusing and whistler wave excitation.  

In Chapter 5 the collective focusing of an intense neutralized ion beam pulse was 

considered. The original analysis of the collective focusing, which assumes 

quasineutrality provided by ωce<<ωpe, was extended to the case of nonneutral 

compression that can occur for the case where ωce≥ωpe, and a reduced analytical model 

was developed to describe the distribution of the radial self-electric field. It is of 

particular interest to apply this analytical model to the self-consistent analysis of the 

transverse dynamics of an ion beam pulse. Furthermore, the original analysis of the 

collective focusing, which also assumes small perturbations of the applied solenoidal 

magnetic field provided by rb<<c/ωpe, was extended to the case where rb≥c/ωpe,  and an 

analytical model was developed to describe the decrease in the total solenoidal magnetic 

field due to the presence of the neutralized beam self-fields. It is of particular interest to 

apply the analytical model developed in this thesis to the self-consistent analysis of the 

collective lens operation in the regime where rb≥c/ωpe. Here, we emphasize again that the 

regimes of collective focusing corresponding to the cases where rb≥c/ωpe and ωce≥ωpe, 

are of particular importance for laser-production of high-energy ions and ion drivers for 

high energy physics applications and heavy ion fusion.   



Appendix A  

 

Electromagnetic Field Perturbations for 

the Case of Arbitrary Ratio of  ωce/ωpe  

 

Equations (4.24)-(4.25) can be generalized to the case of an arbitrary ratio of ce peω ω . 

Assuming ~ ,b b pe cev lω ω ω<<  and , after some straightforward algebra one 

can show that the electromagnetic field perturbations for  are given by 
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Equations (A1)-(A7) describe the electromagnetic field perturbation excited by an ion 

beam pulse for an arbitrary ratio of ce peω ω , and furthermore for an arbitrary beam 

velocity, including the case of a relativistic ion beam. The dynamics of the background 

plasma electrons, however, are assumed to be nonrelativistic, which requires that the 

beam density be much smaller the plasma density (nb<<np).  

The onset of wave generation, corresponding to the existence of real solutions to 

Eq. (A7), is now determined by the condition ( )21 2ce b b peα ω β β ω 1= −� > . In the limit 

where 1~>>α  and 1bβ << , the solutions to Eq. (A7) can be approximated by 

( )1 22 22 1qs pe ce pek cαω ω ω⎡ ⎤= +⎣ ⎦
�  and ( )2em pek cω α=� , where 2ce b peα ω β ω= . Making 

use of Eqs. (A1)-(A6), we can then reproduce the main  results obtained earlier in the 

present paper. Repeating the analysis performed in Sec. 4.3, after some straightforward 

algebra, we find that the asymptotic time-dependent solution for the critical case 

corresponding to 1~ =α  is given by  
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                       ( ) ( ) ( )[∫
∞
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0

sincos,~ ξξ zzzczzz kkkknkdkN k ] ,                          (A9) 

where the critical value of the wave vector, ck~ , corresponding to the solution of Eq. (A7) 

for 1~ =α , is given by  

                                              
1 222

2 2 2 2

1 1
1 1

peb
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b ce pe

k
c
ωβ

β ω ω
⎛ ⎞+

= ⎜⎜ − +
⎟⎟⎡ ⎤⎣ ⎦⎝ ⎠

� ,                                (A10)  

and the longitudinal component of the wave phase velocity is defined by  

                             
( )2 2 2 2 2 2 2 21

z wh x c
ph

z x pe x ce pe pe

kV
k k c k c

ω ω

ω ω ω ω
= =

+ ⎡ + +⎡ ⎤⎣ ⎦ ⎤⎣ ⎦

�� .             (A11) 

Similarly, repeating the analysis performed in Sec. 4.5.1, after some 

straightforward algebra one can demonstrate that for a non-relativistic beam, 1<<bβ , 

with 1~
>>qsbkr , the total wave-field contribution to the transverse component of the 

Lorentz force vanishes, and the transverse force produced by the local field perturbation 

is still determined by Eq. (4.43), i.e.,  

                                                         2 2 1 b
x b e b

p

dnF Z m v
n dx

= .                                          (A12) 
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Axial Magnetic Field Perturbation and 

Local Diamagnetic Plasma Response for 

α=ωce/2βbωpe>>1 

 

Making use of Eq. (4.11), after some straightforward algebra we find for an arbitrary 

ratio of ωce/ωpe that the longitudinal component of the magnetic field perturbation is 

given by W l
z z z

ocB B B= + , where the local component, loc
zB , and the wave component, W

zB , 

are specified for by                                                                                                               2
,b em qsx l k<0 < <
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It follows for the case of a nonrelativistic beam, βb<<1, propagating through a 

background plasma with 2ce b pe 1α ω β ω= >> , that the local z-component of the 

magnetic field perturbation is much greater than the wave-field z-component, and is 

given approximately by 

                                               (
2

,
loc

b b pez
b

e pe ce p

ZeB n x z
m c n

β ω
ω ω

≈ − )

1

,                                   (B4) 

provided the beam radius rb satisfies 1
qs b emk r k− −<< << , or equivalently, 

( ) ( ) pebpepc crc ωααωωω 221 22 <<<<+  in the limit 1>>α .  Equation (B4) 

demonstrates the diamagnetic plasma response, in accordance with the results obtained in 

the numerical simulations.  

 For the critical case where 2ce b pe 1α ω β ω= ≈ , assuming a nonrelativistic ion 

beam, 1<<bβ , after some straightforward algebra it follows from Eqs. (B1)-(B2) that 

( ) ( )2z e b peeB m cα β ωΔ ≡  can be estimated by 

                                           ( )( ) ( ) 1 22~ 1b b p b peZ n n r cα ω α
−

Δ ⎡ + Δ 1− ⎤⎣ ⎦ ,                    (B5) 

provided the beam radius is of the order of or smaller than the electron skin depth.  Note 

that in obtaining Eq. (B5), we have used the fact that pece ωω << , which is required by 

the resonance condition, 2ce b pe 1α ω β ω= = , for the case of a nonrelativistic ion beam 

pulse.  
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