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The transverse dynamics of an intense charged particle beam propagating through a periodic quadru-

pole focusing lattice is described by the nonlinear Vlasov-Maxwell system of equations, where the

propagation distances play the role of time. To determine matched-beam quasiequilibrium distribution

functions, one needs to determine a dynamical invariant for the beam particles moving in the combined

applied and self-generated fields. In this paper, a perturbative Hamiltonian transformation method is

developed which is an expansion in the particle’s vacuum phase advance ��� �v=2�, treated as a small

parameter, which is used to transform away the fast particle orbit oscillations and obtain the average

Hamiltonian accurate to order ��3. The average Hamiltonian is an approximate invariant of the original

system, and can be used to determine self-consistent beam quasiequilibrium solutions that are matched to

the focusing channel. The equation determining the average self-field potential is derived for general

boundary conditions by taking into account the average contribution of the charges induced on the

boundary. It is shown for a cylindrical conducting boundary that the average self-field potential acquires

an octupole component, which results in the average motion of some beam particles being nonintegrable

and their trajectories chaotic. This chaotic behavior of the beam particles may significantly change the

nature of the Landau damping (or growth) of collective excitations supported by an intense charged

particle beam.
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I. INTRODUCTION

There is growing interest in studying the detailed equi-
librium and stability properties of intense charged particle
beams for applications to high energy and nuclear physics,
high energy density physics research using intense particle
beams, and heavy ion beams for inertial fusion energy and
warm dense matter applications, etc. [1,2]. In many of the
applications, intense charged particle beams have to be
transported over long distances through a focusing chan-
nel, which provides transverse particle confinement. In a
quadrupole focusing channel, the beam particles experi-
ence a transverse linear focusing-defocusing force, which
is a periodic function of time in the beam frame. This
oscillating force provides the necessary focusing only in
an average sense [3–7]. For intense charged particle beams,
this average focusing force must be strong enough to over-
come both thermal and space-charge defocusing of the
beam particles.

Identifying regimes for quiescent beam propagation has
been one of the main challenges of accelerator research [8–
18]. In particular, the development of systematic ap-
proaches that are able to treat self-consistently the applied
periodic focusing force and the self-field force of the beam
particles simultaneously is very important [19–23]. Several
recent investigations [24–26] have used standard Hamil-
tonian perturbative methods [27–31]. With these methods,
one searches for the generating function that relates the old
set of canonical phase-space variables to the new canonical

set. The new canonical variables are chosen to have a
Hamiltonian that is independent of time. In the standard
approach, the generating function is a function of the
mixed set of variables (old and new). This makes the
perturbative analysis moderately complicated. In particu-
lar, the analysis in Refs. [24,25] was carried out to third

order in the small parameter ð�v=2�Þ1=2, where �v is the
vacuum phase advance [5]. The analysis in Ref. [26] was
carried out to 5th order, but the authors appeared to have
made an error in the iterative procedure, which invalidates
the results. An advantage of the approach described in the
present analysis is that, instead of using a generating
function which is a function of the mixed set of variables,
we work with functions that depend exclusively on a new
nonoscillating set of variables from the outset. This sig-
nificantly simplifies the analysis, and allows us to develop
an iterative procedure that makes no reference to the gen-
erating function in its final form. In this paper, we also
make a more consistent ordering of all relevant quantities
in the derivation of the canonical transformation. In this
new ordering, all quantifies are expanded in the small
parameter ��� �v=2�, which is the square of the small
parameter used by previous authors in Refs. [24–26]. As a
result, the third-order expansion in the present analysis is
equivalent to a sixth-order expansion used in previously
developed methods.
For intense charged particle beams, it is important to

take special care in determining the self-field potential.
The authors of Refs. [25,26] worked directly with
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Poisson’s equation, while the author of Ref. [24] worked
directly with the Green’s function for Poisson’s equation.
We use the latter approach here because it allows for a
simpler treatment, and also allows us to take into account
the boundary conditions more easily. The correct treatment
of the boundary is very important because the oscillation of
charges induced on the conducting boundary produces an
important contribution to the average self-field potential,
and may significantly change the dynamics of the beam
particles.

The organization of this paper is as follows. In Sec. II,
the equations describing the nonlinear dynamics of an
intense charged particle beam propagating through a quad-
rupole focusing channel are summarized. The dynamical
quantities are normalized, and the small expansion pa-
rameter � is identified. The perturbative Hamiltonian trans-
formation method is developed in Sec. III, and the
canonical transformation for arbitrary quadrupole focusing
lattice is derived correct to second order in the small
parameter ��� �v=2�. Illustrative examples of the canoni-
cal transformation and detailed comparisons with numeri-
cal simulations are presented in Sec. IV. Expressions for
the average self-field potential are obtained in Sec. V.
Finally, the key results and conclusions are summarized
in Sec. VI.

II. THEORETICAL MODEL

The transverse dynamics of a coasting intense charged
particle beam can be described by the nonlinear Vlasov-
Poisson system of equations for the beam distribution
function fðx; y; px; py; sÞ and the normalized self-field po-

tential �ðx; y; sÞ. Here s ¼ vbt is the longitudinal coordi-
nate, where vb ¼ const is the directed beam velocity. In
what follows, we use index notations where ðx; yÞ �
ðx1; x2Þ, and ðpx; pyÞ � ðp1; p2Þ. For simplicity, we also

suppress variable indices inside of function definitions, i.e.,
we employ the notation fðx1; x2; p1; p2; sÞ � fðx; p; sÞ.

The distribution function fðx; p; sÞ satisfies the nonlin-
ear Vlasov equation [5],

df

ds
¼ @f

@s
þ X2

�¼1

dx�

ds

@f

@x�
þ X2

�¼1

dp�

ds

@f

@p� ¼ 0; (1)

where

dx�

ds
¼ @H

@p� ;
dp�

ds
¼ � @H

@x�
(2)

are the particle equations of motion, and � ¼ 1; 2 refer to
the transverse phase-space variables ðx; y; px; pyÞ. The

Hamiltonian Hðx; p; sÞ describes the particle motion in a
force field that is the sum of a linear, externally applied,
transverse focusing force with components F�

foc ¼��ðsÞ��x�, where �ðsÞ is the focusing field strength,
�1 ¼ 1, �2 ¼ �1, and the normalized self-field potential
�ðx; sÞ is calculated self-consistently using Poisson’s

equation. The Hamiltonian Hðx; p; sÞ is defined by

Hðx; p; sÞ ¼ X2
�¼1

p�p�

2
þ X2

�¼1

�ðsÞ�
�x�x�

2
þ�ðx; sÞ;

(3)

where �ðsÞ varies periodically as a function of axial coor-
dinate s according to �ðsÞ ¼ �ðsþ SÞ, and S ¼ const is
the lattice period. In this paper, we consider lattice func-
tions that satisfy the condition

R
sþS
s d�s�ð�sÞ ¼ 0 and have

odd half-period symmetry �ðsÞ ¼ ��ðsþ S=2Þ. Poisson’s
equation for the normalized self-field potential �ðx; sÞ is
given by

r2
?� � X2

�¼1

@

@x�
@

@x�
� ¼ � 2�A

N

Z
fðx; p; sÞdp1dp2;

(4)

where N ¼ R
dx1dx2dp1dp2fðx; p; sÞ is the number line

density of the beam particles, A ¼ 2q2N=mbv
2
b�

3
b is the

beam self-field perveance, mb and q are the particle mass

and charge, respectively, and �b ¼ ð1� v2
b=c

2Þ�1=2 is the

relativistic mass factor.
It is convenient to introduce the dimensionless renor-

malized variables �x ¼ x=a, �s ¼ s=S, ��ð �sÞ ¼ �ðsÞ=�0, �p ¼
p=ða�0SÞ, and �f ¼ ðf=NÞa4ð�0SÞ2, where S is the period
of the applied focusing lattice, a is the characteristic trans-
verse beam dimension, and �0 is the characteristic value of
the lattice function �ðsÞ. Equations (1) and (2) maintain the
same form in normalized variables, whereas the normal-
ized Hamiltonian �H takes the form

�Hð �x; �p; �sÞ ¼ ��ð�sÞ ½�
� �x� �x��
2

þ �

�½ �p� �p��
2

þ
Z

Lð �x; �x0Þ �fð �x0; �p0; �sÞD �x0D �p0
�
:

(5)

For simplicity, we adopt a square-bracket notation for
summations. e.g., ½x�x�� � P

2
�¼1 x

�x�. Moreover, for
multidimensional integrals, we adopt the notationR
dx1dx2Z ¼ R

DxZ. In Eq. (5), � is defined by � �
S2�0, and the Green’s function Lð �x; �x0Þ satisfies the equa-
tion �

@

@ �x�
@

@ �x�

�
Lð �x; �x0Þ ¼ �sb�ð �x� �x0Þ: (6)

Here, sb ¼ 2�A=ð�0SÞ2a2 ¼ ð4�q2N=mba
2�3

bÞ=ð�0SvbÞ2
is a dimensionless measure of the beam space-charge
intensity. For a beam transversely confined by the external
focusing lattice, the characteristic maximum value of nor-
malized intensity sb is ðsbÞmax � 1 [5]. In Eq. (5), the
function �f is normalized according to

R
d �xd �p �f ¼ 1. In

what follows, we assume that all terms inside the curly
brackets in Eq. (5) are of the same order.
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III. PERTURBATIVE HAMILTONIAN
TRANSFORMATION METHOD

In what follows, we drop the bar notation over the
normalized variables. To determine the matched quasi-
equilibrium solutions to the Vlasov equation (1), we search
for a time-dependent canonical transformation of the form
[5,24–26] ðx�; p�;H; sÞ ! ðQ�; P�; K; sÞ, where

x� ¼ x�ðQ;P; sÞ; p� ¼ p�ðQ;P; sÞ; (7)

with time-independent transformed Hamiltonian KðQ;PÞ.
For every canonical transformation there is a function ~S
that satisfies the differential relation [27–30]

½p�dx�� �Hds ¼ d~Sþ ½P�dQ�� � Kds: (8)

It is convenient to search for a function ~S of the form ~S ¼
Uþ ½p0ðQ;P; sÞ�ðx�QÞ��, where UðQ;P; sÞ and
p0ðQ;P; sÞ are functions of the new phase-space variables.
The relationships between the old and new set of phase-
space coordinates are obtained from Eq. (8) by equating
coefficients in front of the differentials of independent
variables ðdP�; dQ�; dsÞ, and can be expressed as�
ðx�QÞ� @p�

0

@P	

�
¼

�
ðp� p0Þ� @ðx�QÞ�

@P	

�
� @U

@P	
;

ðp� PÞ	 ¼ �
�
ðp� p0Þ� @ðx�QÞ�

@Q	

�

þ @U

@Q	
þ

�
ðx�QÞ� @p�

0

@Q	

�
;

K �H ¼ �
�
ðp� p0Þ� @ðx�QÞ�

@s

�
þ @U

@s

þ
�
ðx�QÞ� @p

�
0

@s

�
: (9)

The canonical transformation procedure outlined by
Eqs. (7)–(9) is slightly different from the standard ap-
proach. In the standard approach, the generating function
~S is taken to be a function of the mixed set of variables (old
and new). This makes the perturbative analysis moderately
complicated [24–26] relative to the present approach. An
advantage of the approach described in the present analysis
is that, instead of using a generating function which is a
function of the mixed set of variables, we work with
functions that depend exclusively on the new nonoscillat-
ing set of variables ðQ�; P�Þ from the outset. This signifi-
cantly simplifies the analysis, and allows us to develop an
iterative procedure that makes no reference to the generat-
ing function in its final form.

The distribution function in the new coordinates
FðQ;P; sÞ is related to the distribution function in the old
coordinates fðx; p; sÞ by

FðQ;P; sÞDQDP ¼ fðx; p; sÞDxDp: (10)

Equation (10) expresses particle conservation in the
phase-space volumeDxDp under the transformation given

by Eq. (7). For a canonical transformation, the phase-space
volume is conserved according to DxDp ¼ DQDP, and
therefore FðP;Q; sÞ ¼ f½xðQ;P; sÞ; pðQ;P; sÞ; s�. The dis-
tribution function in the new variables satisfies the Vlasov
equation

dF

ds
¼ 0: (11)

For a time-independent Hamiltonian, there exists a trivial
solution to the Vlasov equation (11), given by F ¼
G½KðQ;PÞ� for arbitrary functionG. The periodic focusing
solution to the original Vlasov equation (1) can be deter-
mined by inverting Eq. (7) according to fðx; p; sÞ ¼
GfKG½QGðx; p; sÞ; PGðx; p; sÞ�g. Here, the subscript G de-
notes the implicit dependence of the solution on the choice
of the function G. For solutions of this form, we can use
Eq. (10) to express the original Hamiltonian in Eq. (5) as

Hðx; p; sÞ ¼ �ðsÞ½��x�x��
2

þ �

�½p�p��
2

þ
Z

L½x; xð �Q; �P; sÞ�G½Kð �Q; �PÞ�D �QD �P

�
:

(12)

Equations (7) and (9) can be solved iteratively in terms
of the small parameter � ¼ �0S

2 < 1. Specifically, we
express

p ¼ p0ðQ;P; sÞ þ X
n¼1

�npn;

x ¼ Qþ X
n¼1

�nxn;

U ¼ U0ðQ;P; sÞ þ X
n¼1

�nUn;

K ¼ K0ðQ;P; sÞ þ X
n¼1

�nKn;

(13)

where pnðQ;P; sÞ, xnðQ;P; sÞ,UnðQ;P; sÞ, andKnðQ;P; sÞ
(n ¼ 0; 1; 2; . . . ) are functions to be determined from the
iterative procedure. Using Eq. (13), we expand the
Hamiltonian H in Eq. (12) according to

Hðx; p; sÞ ¼ X
n¼0

�nHnðQ;P; sÞ: (14)

Substituting the expansions [Eqs. (13) and (14)] into
Eqs. (9), we obtain

H0ðQ;P; sÞ ¼ �ðsÞ½��Q�Q��
2

;

p	
0 ¼ P	 þ @U0

@Q	
;

@U0

@P	
¼ 0;

(15)

K0 �H0 ¼ @U0

@s
: (16)

From Eq. (16), we obtain
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K0 ¼ hH0i ¼ h�i ½�
�Q�Q��
2

¼ 0; (17)

and

U0 ¼ ��ð1Þ ½��Q�Q��
2

; (18)

p	
0 ¼ P	 � �ð1Þ�	Q	; (19)

where hAi � ð1=SÞRsþS
s d�sAð�sÞ, and hhAii � A� hAi.

Here, we also introduce the notation Að0Þ � hhAii and

AðnÞ �
��Z

dsAðn�1Þ
��

(20)

for n � 1. If what follows, we will use properties that
follow from the definition in Eq. (20), including

AðsÞ ¼ hAi þ
�
dA

ds

�ð1Þ ¼ hAi þ dAð1Þ

ds
; (21)

valid for any periodic function AðsÞ ¼ Aðsþ SÞ, and
dAðnþ1Þ

ds
¼ AðnÞ; (22)

hAðkÞBðnÞi ¼ �hAðk�1ÞBðnþ1Þi ¼ �hAðkþ1ÞBðn�1Þi; (23)

½AðkÞBðnÞ�ð1Þ þ ½Aðkþ1ÞBðn�1Þ�ð1Þ ¼ hhAðkþ1ÞBðnÞii: (24)

Substituting the expansions [Eqs. (13) and (14)] into
Eqs. (9), we obtain

Kn ¼ Hn þ @Un

@s
� Xn�1

l¼1

�
p�
n�l

@x�l
@s

�
þ

�
x�n

@p�
0

@s

�
; (25)

x	n ¼ � @Un

@P	
þ Xn�1

l¼1

�
p�
n�l

@x�l
@P	

�
;

p	
n ¼ @Un

@Q	
� Xn�1

l¼1

�
p�
n�l

@x�l
@Q	

�
þ

�
x�n

@p�
0

@Q	

�
;

(26)

where n ¼ 1; 2; . . . . From Eq. (25), we obtain

Kn ¼
�
Hn þ

�
x�n

@p�
0

@s

��
� Xn�1

l¼1

��
p�
n�l

@x�l
@s

��
; (27)

and

Un ¼ Xn�1

l¼1

�
p�
n�l

@x�l
@s

�ð1Þ � �
Hn þ x�n

@p�
0

@s

�ð1Þ þ �UnðQ;PÞ:

(28)

Here, �Un is an arbitrary function of P and Q. We now
choose �Un so that hxni ¼ 0. Introducing Zn � Hn �
�½��x�nQ

��, and substituting Eq. (28) into Eq. (26), we
obtain

Kn ¼ hZni �
Xn�1

l¼1

��
p�
n�l

@x�l
@s

��
; (29)

x	n ¼ @Zð1Þ
n

@P	
þ Xn�1

l¼1

�
@p�

n�l

@s

@x�l
@P	

� @p�
n�l

@P	

@x�l
@s

�ð1Þ
;

p	
n ¼ �p	

n � @Zð1Þ
n

@Q	
� hh�ð1Þ�	x	n ii

� Xn�1

l¼1

�
@p�

n�l

@s

@x�l
@Q	

� @p�
n�l

@Q	

@x�l
@s

�ð1Þ
;

(30)

where the average value �pn satisfies

@ �p�
n

@P	
¼

�Xn�1

l¼1

�
@p�

n�l

@Q�

@x�l
@P	

� @p�
n�l

@P	

@x�l
@Q�

��

� @

@P	
h��x�n�ð1Þi: (31)

For the Hamiltonian function Hðx; p; sÞ [Eq. (12)] the
functions Zn depend only on pk and xk, with k < n.
Therefore, Eqs. (29)–(31) provide an iterative procedure
which can be used to determine the canonical transforma-
tion in Eq. (7), and the new time-independent Hamiltonian
KðP;QÞ as implicit functions of the equilibrium distribu-
tion function G. In this paper we present results valid up to
second order in the small parameter � for the canonical
transformation in Eq. (13), and up to third order in � for the
average Hamiltonian K. Because K0 ¼ 0, the average
Hamiltonian K has the form K ¼ �ðK1 þ �K2 þ �2K3 þ
� � �Þ. The � in front of the bracket renormalizes the time
scale, so that the average dynamics occurs on the slow time
scale Q ¼ Qð�sÞ and P ¼ Pð�sÞ. Therefore, to determine
the trajectories xðsÞ and pðsÞ valid to second order in �, we
need to determine the average Hamiltonian K valid up to
the third order in �.
Omitting algebraic details, it is straightforward to show

that the canonical transformation takes the form

x� ¼ Q� � ��ð2Þ��Q� þ �2f2�ð3Þ��P� þ ð��ð2ÞÞð2ÞQ�g;
(32)

and

p� ¼ fP� � �ð1Þ��Q�g þ �f�ð2Þ��P� þ ð��ð2ÞÞð1ÞQ�g þ �2
�
�ð3Þ Z D �QD �PG

@

@Q�

�
�	Q	 @L

@Q	
þ �	 �Q	 @L

@ �Q	

�

þ ½3hð�ð2ÞÞ2i � 2ð��ð3ÞÞð1Þ � ð��ð2ÞÞð2Þ�P� þ f�ð3Þhð�ð1ÞÞ2i � ½�ð��ð2ÞÞð2Þ�ð1Þg��Q�

�
: (33)

E. A. STARTSEV et al. Phys. Rev. ST Accel. Beams 13, 064402 (2010)

064402-4



Moreover, the inverse transformation is given by

Q� ¼ x� þ ��ð2Þ��x� þ �2f�2�ð3Þ��p� þ ½3hð�ð2ÞÞ2i � 2ð��ð3ÞÞð1Þ � ð��ð2ÞÞð2Þ�x�g; (34)

and

P� ¼ fp� þ �ð1Þ��x�g � �f�ð2Þ��p� þ ð��ð2ÞÞð1Þx�g � �2
�
�ð3Þ Z D �xD �pG

@

@x�

�
�	x	

@L

@x	
þ �	 �x	

@L

@ �x	

�

� ð��ð2ÞÞð2Þp� þ f�ð3Þhð�ð1ÞÞ2i � ½�ð��ð2ÞÞð2Þ�ð1Þg��x�
�
: (35)

The new time-independent Hamiltonian is then determined to be (correct to the third order in �)

K ¼ �

�½P�P��
2

½1þ 3�2hð�ð2ÞÞ2i� þ ½Q�Q��
2

fhð�ð1ÞÞ2i þ �h�ð�ð2ÞÞ2i þ �2h½ð��ð2ÞÞð1Þ�2ig

þ
Z

D �QD �PGð �KÞ
�
LðQ; �QÞ þ �2

hð�ð2ÞÞ2i
2

�
���	Q�Q	 @2L

@Q�@Q	
þ 2���	Q� �Q	 @2L

@Q�@ �Q	

þ ���	 �Q� �Q	 @2L

@ �Q�@ �Q	

���
: (36)

For a periodic lattice with odd half-lattice-period symme-
try, �ðsÞ ¼ ��ðsþ S=2Þ, the term h�ð�ð2ÞÞ2i occurring in
Eq. (36) is identically zero, i.e., h�ð�ð2ÞÞ2i � 0, and there-
fore the normalized average Hamiltonian K=� is expanded
in a series of even powers ð�2kÞ of the small parameter �.

Using Eq. (36), we obtain the approximate expression
for the square of the vacuum phase advance �2

v valid up to
fourth order in small parameter �, i.e.,

�2
v ¼ S2�2f1þ 3�2hð�ð2ÞÞ2igfhð�ð1ÞÞ2i þ �h�ð�ð2ÞÞ2i

þ �2h½ð��ð2ÞÞð1Þ�2ig: (37)

Note from Eqs. (32)–(37) and the definitions in Eq. (20)
that the actual expansion parameter in Eqs. (32)–(37) is not

� but rather �� � �½hð�ð1ÞÞ2i�1=2 � �v=ð2�Þ. For a lattice
with small filling factor �� T=S � 1, when the focusing
elements occupy a distance 2T which is a small portion of

the lattice period S, the correction ½hð�ð1ÞÞ2i�1=2 � � can be
quite important. For such lattices the theory presented in
this paper still applies even if � > 1, provided the condition
�� � 1 still holds. It can be easily shown that for intense
beams with normalized intensity sb & 1when the self-field
part of the average Hamiltonian K is of the same order as
the external focusing part, which is in turn of the same
order as the kinetic part

Z
D �QD �PGð �KÞLðQ; �QÞ � ½Q�Q��

2
hð�ð1ÞÞ2i � ½P�P��

2
;

(38)

then the self-field terms in the expressions for the canonical
transformation in Eq. (32)–(35) have an order which is
consistent with expansion in the small parameter
�v=ð2�Þ � ��. Note that for very intense beams with sb &
1, the external focusing force is reduced by the repulsive
self-field force, and one expects the expansion parameter to
be proportional to the depressed phase advance �=2�

[5–7]. However, for moderately intense beams, the de-
pressed phase advance for transverse particle oscillations
with average Hamiltonian K given by Eq. (36) is of the
same order as the vacuum phase advance, i.e.,�� �v. The
case of extremely intense beams, when the depressed phase
advance is much smaller than vacuum phase advance � �
�v, requires special consideration and is not analyzed here.

IV. ILLUSTRATIVE APPLICATIONS

As a specific application, in this section we examine the
canonical transformation in Eq. (7), valid up to second
order in the small parameter �, for the intense beam system
with Hamiltonian given by Eq. (12), for the specific choice
of sinusoidal lattice function �ðsÞ ¼ �� sinðksÞ with lattice
period S ¼ 2�=k. The new time-independent Hamiltonian
is then determined to be

K ¼ �

�½P�P��
2

�
1þ �2

3 ��2

2k4

�
þ ��2

2k2
½Q�Q��

2

�
1þ �2

��2

16k4

�

þ
Z

D �QD �PGð �KÞ
�
LðQ; �QÞ þ �2

��2

4k4

�
�
���	Q�Q	 @2L

@Q�@Q	
þ 2���	Q� �Q	 @2L

@Q�@ �Q	

þ ���	 �Q� �Q	 @2L

@ �Q�@ �Q	

���
: (39)

From Eq. (39), we obtain for the vacuum phase advance�
�v

2�

�
2 ¼ �2

��2

2k4

�
1þ �2

3 ��2

2k4

��
1þ �2

��2

16k4

�
; (40)

or equivalently,�
�v

2�

�
2 ¼

�
�0

v

2�

�
2
�
1þ 3

�
�0

v

2�

�
2
��

1þ 1

8

�
�0

v

2�

�
2
�
; (41)
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where �
�0

v

2�

�
¼ �ffiffiffi

2
p

�
��S2

ð2�Þ2
�
: (42)

Furthermore, the detailed expressions for the canonical
transformation are given by

x� ¼ Q� þ �

�
��

k2
��Q� sinðksÞ

�

þ �2
�
2
��

k3
��P� cosðksÞ � ��2

8k4
Q� cosð2ksÞ

�
; (43)

and

p� ¼
�
P� þ ��

k
��Q� cosðksÞ

�
� �

�
��

k2
��P� sinðksÞ � ��2

4k3
Q� sinð2ksÞ

�

þ �2
�
��

k3
cosðksÞ

Z
D �QD �PG

@

@Q�

�
�	Q	 @L

@Q	
þ �	 �Q	 @L

@ �Q	

�
þ ��2

8k4
P�½12þ 5 cosð2ksÞ�

þ ��3

16k5
��Q�

�
9 cosðksÞ � 1

3
cosð3ksÞ

��
: (44)

Furthermore, the inverse transformation is given by

Q� ¼ x� � �

�
��

k2
��x� sinðksÞ

�
� �2

�
2
��

k3
��p� cosðksÞ � ��2

8k4
½12þ 5 cosð2ksÞ�x�

�
; (45)

and

P� ¼
�
p� � ��

k
��x� cosðksÞ

�
þ �

�
��

k2
��p� sinðksÞ � ��2

4k3
x� sinð2ksÞ

�

� �2
�
��

k3
cosðksÞ

Z
D �xD �pG

@

@x�

�
�	x	

@L

@x	
þ �	 �x	

@L

@ �x	

�
þ ��2

8k4
p� þ ��3

16k5
��x�

�
9 cosðksÞ � 1

3
cosð3ksÞ

��
: (46)

Figure 1 shows the differences �QðsÞ ¼ QðsÞ �
Qtrðx; p; sÞ, �PðsÞ ¼ PðsÞ � Ptrðx; p; sÞ, and �K=� ¼
½K � Ktrðx; p; sÞ�=� plotted as functions of the normalized
variable s=S over the interval s ¼ ½0; 1=�4� for the case of
negligible space charge sb ! 0, and for �� ¼ k ¼ 1, � ¼
0:1 (�v ¼ 25	). Here, the differences are between the
numerical solution of Hamilton’s equations of motion for
the average Hamiltonian given by Eq. (39) ½QðsÞ; PðsÞ; K�,
and the solution ½Qtrðx; p; sÞ; Ptrðx; p; sÞ; Ktrðx; p; sÞ� ob-
tained by solving numerically the original system of equa-
tions with Hamiltonian given by Eq. (12) and using the
transformation formulas given by Eqs. (45) and (46).
The same initial conditions were used in both cases,
i.e., Qð0Þ ¼ Qtrð0Þ ¼ 0 and Pð0Þ ¼ Ptrð0Þ ¼ ½ð1þ
�2=16Þ=ð1þ 3�2=2Þ�1=2. As evident from Fig. 1, the dif-
ferences �Q and �P grow linearly as �5s from values of
order �3 at time s=S� 1. Such secular growth is expected
since the next-order correction to the phase advance is of
order �5. On the other hand, the average energy difference
stays constant at its initial value of order �K=�� �3. This
is also expected, since K given by Eqs. (39) is an adiabatic
invariant for the original system with Hamiltonian in
Eq. (12), and therefore is conserved with exponential
accuracy, i.e., the value of ðs=SÞ0 when the difference in
invariant becomes of order its initial value �K=��
�K=�� �3 is given by ðs=SÞ0 � expðconst=�Þ=�l for
some power index l [29–31].

As a second example, we consider here the periodic
step-function lattice specified by

�ðsÞ ¼ � ��; for js� S=2j< �S=4;

�ðsÞ ¼ ��; for 0< s < �S=4 and S� �S=4< s < S;

�ðsÞ ¼ 0; for �S=4< s < S=2� �S=4 and

S=2þ �S=4< s < S� �S=4: (47)

Here, the constant filling factor � lies in the interval 0<
�< 1, and the coefficients in the average HamiltonianK in
Eq. (39) are given by

hð�ð1ÞÞ2i ¼ ��2S2�2

16

�
1� 2�

3

�
;

hð�ð2ÞÞ2i ¼ ��2S4�2

3840
ð5� 5�2 þ 2�3Þ;

h�ð�ð2ÞÞ2i ¼ 0;

h½ð��ð2ÞÞð1Þ�2i ¼ ��4S6�4

3 870 720
ð315� 1050�þ 1337�2

� 768�3 þ 168�4Þ:

(48)

Using Eqs. (37) and (48), we obtain the approximate
expression for the square of the vacuum phase advance
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�2
v ¼ 
4

0

�
1� 2�

3

�

þ
8
0

ð315� 420�þ 98�2 þ 60�3 � 21�4Þ
3780

; (49)

where 
0 � ð� ��S2�=4Þ1=2. For the step-function lattice
given by Eq. (47), the vacuum phase advance can be
calculated exactly [5,6], and is given by

cosð�vÞ ¼ ðcosh
1Þðcos
1 �
2 sin
1Þ
þ
2ðsinh
1Þ

�
cos
1 �
2

2
sin
1

�
; (50)

where 
1 ¼ �1=2
0 and 
2 ¼ 
1ð1� �Þ=� and 
0 ¼
ð� ��S2�=4Þ1=2. Taylor expansion of Eq. (50) up to the fourth
order in the small parameter � reproduces exactly the result
given in Eq. (49). Shown in Fig. 2 are the plots of �v=�sf

and �v=�
a
v versus �v for � ¼ 1=2, where �sf is given by

the first term in Eq. (49). Here�a
v and�v are obtained from

Eqs. (49) and (50), respectively. It is evident from Fig. 2
that the next nonvanishing approximation to the vacuum
phase advance �a

v given by Eq. (49) is accurate to within
0.6% for �v 
 60	, and is accurate to within 3% for �v 

90	, while the first-order approximation �sf given by the

first term in Eq. (49) is only accurate to within 5% for
�v 
 60	, and is accurate to within 12% for �v 
 90	.
Note from Eq. (49), as we already mentioned at the end

of Sec. III, that the actual expansion parameter for the
present theory is �v=2�� �� � 1, and not simply �.
The distinction is important for lattices with small filling
factor � � 1. For such lattices the theory presented in this
paper still applies even if � > 1, provided the condition
�� � 1 still holds.

V. EVALUATION OF SELF-FIELD POTENTIAL

The corrections to the average Hamiltonian in Eq. (36)
are of two kinds. The corrections to the kinetic energy term
and the average applied focusing term give corrections to
the average frequency of the particle motion in the applied
oscillating field in Eq. (37), whereas the final term gives the
corrections to the average self-field potential. The integral
form of the self-field potential is inconvenient for numeri-
cal calculations because it contains the convolution of the
beam density nðQÞ ¼ R

DPGðKÞ with the long-range
function LðQ; �QÞ. The self-field term can be expressed as

20 40 60 80
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a
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  0

FIG. 2. Plots of the normalized quantities �v=�sf and �v=�
a
v

versus the vacuum phase advance �v for � ¼ 1=2.
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FIG. 1. Plots of �QðsÞ ¼ QðsÞ �Qtrðx; p; sÞ, �PðsÞ ¼
PðsÞ � Ptrðx; p; sÞ, and �K=� ¼ ½K � Ktrðx; p; sÞ�=� as func-
tions of the normalized variable s=S over the interval ½0; 1=�4�
for the choice of dimensionless parameters sb ¼ 0, �� ¼ k ¼ 1,
� ¼ 0:1 (�v ¼ 25	).
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a self-field potential �� that satisfies the equation

��ðQÞ ¼
�Z

D �QL½Q�ð1þ ���vÞ; �Q�ð1þ ���vÞ�nð �QÞ
�

� h�vðQÞi; (51)

where v � �ð2Þ. Note that the expansion of the expression
in Eq. (51) to second order in terms of the small parameter
� reproduces the self-field term in Eq. (36). This expression
for the average self-field potential is general and is valid for
the case where the Green’s function L satisfies general
boundary conditions. In what follows, we make use of
the representation given by Eq. (51) to obtain the differen-

tial equation for the average potential ��ðQÞ for general
boundary conditions. In Eq. (51), the Green’s function L is
chosen to satisfy the boundary conditions for the unaver-
aged potential in the spacial coordinates ðx1; x2Þ. The
boundary conditions for the unaveraged potential in the
coordinates ðx1; x2Þ are introduced in a nontrivial way

into the average potential ��ðQÞ in the spacial co-
ordinates ðQ1; Q2Þ through the Green’s function L as given
by Eq. (51).

By changing the integration variables,�vðQÞ in Eq. (51)
can be expressed as �vðQÞ ¼ �v½Q�=ð1þ ���v�, where
�vðQÞ is given by

�vðQÞ ¼ 1

1� �2v2

Z
D �QLðQ; �QÞn

� �Q�

1þ ���v

�
: (52)

Making use of these definitions, and expanding correct to
second order in the small parameter �, we obtain the
expression for the average potential:

��ðQÞ ¼ ð1þ �2hv2iÞ
0 þ �2hv2i
�

1 �

�
��Q� @

@Q�

�

2

þ 1

2

�
���	Q�Q	 @2

@Q�@Q	

�

0

�
; (53)

where the functions 
0ðQÞ, 
1ðQÞ, and 
2ðQÞ satisfy the
Poisson-type equations,

r2
?
0 ¼ �sbnðQÞ;

r2
?
1 ¼ �sb

��
Q� @

@Q�

�
þ 1

2

�
���	Q�Q	 @2

@Q�@Q	

��

� nðQÞ;
r2

?
2 ¼ �sb

�
��Q� @

@Q�

�
nðQÞ; (54)

where r2
? � ð@=@Q1Þð@=@Q1Þ þ ð@=@Q2Þð@=@Q2Þ, and

r2
?LðQ; �QÞ ¼ �sb�ðQ� �QÞ: (55)

To solve Eqs. (54), one needs to specify some boundary
surface in the coordinate space ðQ1; Q2Þ and certain bound-
ary conditions on this boundary. It is convenient to desig-
nate this boundary surface to be a surface in the coordinate
space ðQ1; Q2Þ, where the function LðQ; �QÞ satisfies the
same boundary conditions as the function Lðx; �xÞ in the
coordinate space ðx1; x2Þ. In that case, the boundary con-
ditions for 
0ðQÞ, 
1ðQÞ, and 
2ðQÞ in Eqs. (54) in the
coordinate space ðQ1; Q2Þ are the same as the boundary
conditions for the Green’s function LðQ; �QÞ. Note that this
boundary surface in the coordinate space ðQ1; Q2Þ be-
comes a surface that oscillates around the boundary surface
in the coordinate space ðx1; x2Þ. Because the two surfaces

differ, the average potential ��ðQÞ in the coordinate space
ðQ1; Q2Þ does not satisfy the same boundary conditions as
the unaveraged potential in the coordinate space ðx1; x2Þ, as
can be seen from Eq. (53).
Next we introduce the zero-order smooth-focusing po-

tential�0ðQÞ that satisfies the equilibrium Poisson’s equa-
tion [5],

r2
?�0 ¼ �sbn0ðQÞ; (56)

with the same boundary conditions as the Green’s function
LðQ; �QÞ. Here, n0ðQÞ � nðQ;�0Þ. Making use of this
definition and Eqs. (53) and (54), we can express the
average potential and the particle density correct to second
order in � as

�� ¼ �0 þ �2hv2i ��1;

n½Q; ��ðQÞ� ¼ n0 þ �2hv2in00 ��1ðQÞ;
(57)

where n00 � @n0ðQ;�0Þ=@�0. Substituting Eqs. (56) and

(57) into Eqs. (53) and (54), we obtain the integral equation

for the next-order correction ��1,

��1 ¼
Z

dQ0LðQ;Q0Þ ��1ðQ0Þn00ðQ0Þ þ�0 þ�1

�
�
��Q� @

@Q�

�
�2 þ 1

2

�
���	Q�Q	 @2

@Q�@Q	

�
�0;

(58)

where �1 and �2 satisfy the equations

r2
?�1 ¼ �sb

��
Q� @

@Q�

�
þ 1

2

�
���	Q�Q	 @2

@Q�@Q	

��

� n0ðQÞ;
r2

?�2 ¼ �sb

�
��Q� @

@Q�

�
n0ðQÞ; (59)

with the same boundary conditions as the Green’s function
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LðQ; �QÞ. Applying the transverse Laplacian operatorr2
? to

Eq. (58), we obtain a differential equation for the correc-

tion term ��1:

½r2
? þ sbn

0
0ðQÞ� ��1 ¼�sb

�
1þ

�
Q� @

@Q�

�
n0ðQÞ

þ 1

2

�
���	Q�Q	 @2

@Q�@Q	

��
n0ðQÞ

�r2
?

�
��Q� @

@Q�

�
�2

þ 1

2
r2

?

�
���	Q�Q	 @2

@Q�@Q	

�
�0:

(60)

The boundary condition for the correction term ��1 follows
from Eq. (58) and the boundary conditions for�0,�1, and
�2.

It is of particular interest to consider a perfectly con-
ducting cylindrical boundary which is located at a distance
R from the beam center. In this case, Lðx; �xÞ ¼ 0 on the
surface ðx1Þ2 þ ðx2Þ2 ¼ R2. As explained above, the
boundary surface in coordinate space ðQ1; Q2Þ is given
by the condition LðQ; �QÞ ¼ 0, and therefore is given by
ðQ1Þ2 þ ðQ2Þ2 ¼ R2. On this surface, �0 ¼ �1 ¼ �2 ¼
0. Note, that this surface is not the conductor boundary,
which is given by ðx1Þ2 þ ðx2Þ2 ¼ R2.

It is convenient to introduce the cylindrical coordinates
ðr; �Þ, where Q1 ¼ r cosð�Þ and Q2 ¼ r sinð�Þ. It follows
from Eqs. (56) that �0ðQÞ ¼ �0ðrÞ and n0ðQÞ ¼ n0ðrÞ,
and Eqs. (56) and (59) become

1

r2
Â2�0ðrÞ ¼ �sbn0ðrÞ;

1

r2

�
Â2 þ @2

@�2

�
�1ðrÞ ¼ � sb

4
½ðÂþ 4ÞÂ

þ cosð4�ÞðÂ� 2ÞÂ�n0ðrÞ;
1

r2

�
Â2 þ @2

@�2

�
�2ðrÞ ¼ �sb cosð2�ÞÂn0ðrÞ;

(61)

where Â ¼ rd=dr. Integrating Eqs. (61) with the appropri-
ate boundary conditions corresponding to �0ðr ¼ RÞ ¼
�1ðr ¼ RÞ ¼ �2ðr ¼ RÞ ¼ 0, and substituting the results
into Eqs. (58) and (60), we obtain equations for the cor-

rection term ��1, which can be expressed as ��1 ¼ pðrÞ þ
cosð4�ÞqðrÞ, where

�
1

r

d

dr
r
d

dr
þ sbn

0
0ðrÞ

�
pðrÞ

¼ �sb
8

R4

Z R

0
drr3n0ðrÞ;�

1

r

d

dr
r
d

dr
� 16

r2
þ sbn

0
0ðrÞ

�
qðrÞ

¼ �2sb

�
n0 þ 4

r2

Z r

0
d�r �r n0ð �rÞ � 12

r4

Z r

0
d�r�r3n0ð�rÞ

�
;

(62)

with boundary conditions

pðRÞ ¼ � 2sb
R2

Z R

0
drr3n0ðrÞ;

qðRÞ ¼ �sb

�
2

R2

Z R

0
d�r�r3n0ð �rÞ � 1

2

Z R

0
d�r �r n0ð�rÞ

�
:

(63)

Note from Eqs. (62) and (63) that pðRÞ � 0 and qðRÞ � 0,

and therefore �� � 0 on the boundary r ¼ R. This is
because for a quadrupole channel the boundary r ¼ R is
not a real conductor surface, but a surface that oscillates

around the conductor surface with an amplitude �R=R�
�½hv2i�1=2.
As a specific example, we consider a beam with constant

average density profile inside the average radius r ¼ a,
located inside a perfectly conducting pipe at r ¼ R, i.e.,

n0ðrÞ ¼
�
�n0; r < a;
0; a < r 
 R:

(64)

This beam density profile is produced self-consistently
by the Kapchinskij-Vladimirskij distribution GðKÞ ¼
ð �n0=2�Þ�ðK � K0Þ [5,19]. For this choice of density pro-
file, the potential �0ðrÞ takes the form

�0ðrÞ ¼
(
�sb �n0

r2

4 þ sb �n0
a2

4 ð1� 2 lnaRÞ; r < a;

�sb �n0
a2

2 lnr
R ; a < r 
 R:

(65)

It follows from Eqs. (64) and (65) that sbn
0
0ðrÞ ¼

�2�s=ð1� �sÞ�ðr� aÞ=a. Here, �s � !2
p=2!

2
sf �

sb �n0=½2hð�ð1ÞÞ2i� [5]. The solution to Eqs. (62) and (63)

gives the correction term ��1 ¼ pðrÞ þ cosð4�ÞqðrÞ, where
the functions pðrÞ and qðrÞ are given by

pðrÞ¼�sb �n0
a2

2

�
a

R

�
4

8<
:
ðraÞ2þ ½2�s=ð1��sÞ�lnða=RÞ

1�½2�s=ð1��sÞ�lnða=RÞ ; r<a;

ðraÞ2þ ½2�s=ð1��sÞ� lnðr=RÞ
1�½2�s=ð1��sÞ�lnða=RÞ ; a<r
R;

(66)

and

qðrÞ ¼ sb �n0
a2

4

8<
:
�ðraÞ4ðaRÞ8 1

1þf �s=½4ð1��sÞ�g½1�ða=RÞ8� ; r < a;

1� 2ðarÞ2 þ ðarÞ4½1� ðrRÞ8� 1þf�s=½4ð1��sÞ�g
1þf �s=½4ð1��sÞ�g½1�ða=RÞ8� ; a < r 
 R:

(67)
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The corrections to the electric field corresponding to the
correction to the potential given by Eqs. (66) and (67)
contain two parts. One part is the correction which remains
finite as R ! 1 keeping r finite. This part of the field
correction is due to the average effects of the beam density
oscillations, and is a decreasing function of r outside the
beam. The other part is the correction which vanishes as
R ! 1 keeping r finite. This part is due to the average field
created inside the region surrounded by the boundary by
the oscillating charges on the boundary induced by the
oscillating beam distribution. It exists because the induced
distribution of charges on the boundary is not cylindrically
symmetric for a beam in a quadrupole channel. This part is
an increasing function of r.

Corrections to the self-field potential leads to the cor-
rection to the average beam radius given by

rbð�Þ ¼ a

�
1� �2hv2i 2�s

ð1� �sÞ
��1ða; �Þ
sb �n0a

2

�
; (68)

which now becomes weakly dependent on the angle �
according to

rbð�Þ ¼ a

�
1þ �2hv2i �s

ð1� �sÞ
� ða=RÞ4
1� 2�s

1��s ln
a
R

þ cosð4�Þ
2

ða=RÞ8
1þ �s

4ð1��sÞ ½1� ðaRÞ8�
��
: (69)

As expected, the corrections to the self-field potential
and the beam density [Eq. (57)] inside the beam, and
corrections to the beam radius are zero when R ! 1,
and the total self-field potential inside the beam is given
by Eq. (65), which is what one would expect for a
Kapchinskij-Vladimirskij distribution in free space (R !
1) which generates the constant beam density given by
Eq. (64). When the conducting boundary is present (R is
finite), the image charge oscillations produce additional
contributions to the average self-field potential inside the
beam, which lead to the octupole correction to the average
beam radius [Eqs. (68) and (69)].

VI. DISCUSSION OF RESULTS AND
CONCLUSIONS

In conclusion, in this paper we have studied the non-
linear transverse dynamics of an intense charged particle
beam propagating inside a periodic focusing-defocusing
lattice with period S and characteristic focusing lattice
strength �0. For this system, we have identified a small
expansion parameter ��� �v=2�, where �v is the vacuum
phase advance [5]. Using a consistent normalization, we
have developed a perturbative canonical Hamiltonian
transformation method in Eqs. (29)–(31), which we use
to transform away the fast particle oscillations with lattice
period S, and obtain the average Hamiltonian accurate to

order ��3 [Eq. (36)] and the canonical transformation accu-
rate to the order ��2 [Eqs. (32)–(35)] for arbitrary periodic
focusing lattice. The normalization used in the present
paper is different from the one used by previous authors
[24–26] in that we regard the oscillation component of the
particle momentum to be of the same order as the average
component. This normalization is confirmed by the simu-
lations and the final expression for the average Hamil-
tonian in Eq. (36), where all terms are of the same order.
Because the average particle motion is on surfaces of
constant average energy K ¼ const, in general we obtain
P�Q� 1 from the average Hamiltonian in Eq. (36),
which is what was assumed initially. The Hamiltonian
obtained in Refs. [24–26] multiplies the average external
potential by the square of the small expansion parameter

ð ffiffiffi
��

p Þ2, which implies that Q� P=
ffiffiffi
��

p
, which in turn is

inconsistent with the ordering made in the derivation Q�
P� 1 in Refs. [24–26].
It should also be pointed out that the iterative pro-

cedure used in obtaining the canonical transformation in
Eqs. (29)–(31) is very explicit, and for any given lattice can
be easily programmed into a software package such as
MATHEMATICA [32] to obtain the canonical transformation

valid to arbitrary order.
Using the average Hamiltonian, we obtained the expres-

sion for the vacuum phase advance [Eq. (37)] accurate to
third order in the small parameter ��� �v=2�. Because of
the cancellation of some terms for lattices satisfying the
symmetry condition �ðsÞ ¼ ��ðsþ S=2Þ, the results for
the average Hamiltonian and the vacuum phase advance
are accurate up to fourth order in the small parameter ��.
The results obtained using this method are consistent with
previous results obtained to third order in the small pa-

rameter
ffiffiffi
��

p
in Refs. [24,25]. In this paper, we have ex-

tended the perturbative treatment to third order (for the
average Hamiltonian) in ��� �v=2� (or to the sixth order

in the small parameter
ffiffiffi
��

p
used in previous treatments) by

performing a consistent normalization, and by avoiding the
unnecessary calculation of the generating function as a
function of a mixed set of canonical variables. For a
specific choice of distribution function GðKÞ, Eq. (39)
can be solved to determine the new time-independent
Hamiltonian K. The corrections to the new Hamiltonian
are of two kinds. The corrections to the kinetic energy term
and the applied average potential term give corrections to
the average frequency of the particle motion in the external
oscillating field. We have determined these corrections for
both sinusoidal and step-function lattices in Sec. IV. The
corrections allow us to extend the average formulaic results
to larger vacuum phase advances approaching �v � 90	
with accuracies to within several percent. The use of the
expressions for the canonical transformations [Eqs. (32)–
(36)] allows an accurate representation of the original
highly oscillatory trajectories for much longer periods of
time than previously possible. In fact, the phase error
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accumulates with time at a rate proportional to ��5s [see
Fig. 1].

The average self-field potential was determined in
Sec. V. We used the representation of the average self-field
potential given by Eq. (51) which uses the Green’s function
for the original unaveraged configuration with arbitrary
boundary conditions to derive the differential equations
for the average self-field potential [Eqs. (56)–(60)]. In
this representation, the average potential is the average of
the potential produced by the beam and by the charges that
are induced on the conducting boundary. The average self-

field potential �� [Eq. (57)] can be represented as a sum of a
zero-order smooth-focusing part �0, which satisfies the
Poisson equation (56), plus the next-order correction

�2hð�ð2ÞÞ2i ��1 � ð�v=2�Þ2, where the function ��1 satisfies
the inhomogeneous Helmholz-type equation in Eq. (60).
For the particular case of a cylindrical, perfectly conduct-

ing boundary with radius R, the correction term ��1 can be

expressed in cylindrical coordinates ðr; �Þ as ��1 ¼ pðrÞ þ
cosð4�ÞqðrÞ, where the functions pðrÞ and qðrÞ satisfy
Eq. (62), with the boundary conditions given by
Eq. (63). Note that the average self-field potential acquires
an octupole component, which results in the average mo-
tion of some beam particles being nonintegrable and their
trajectories becoming chaotic. This chaotic behavior of
some of the beam particles may significantly change the
nature of the Landau damping (or growth) of collective
excitations supported by the beam. As a particular ex-
ample, in Sec. V we studied an intense charged particle
beam with Kapchinskij-Vladimirskij distribution [5] inside
a perfectly conducting pipe with wall radius R. It was
shown that the correction to the average self-field potential
inside the beam is zero when the boundary is removed to
R ! 1. When the boundary location is finite (R is finite),
the average motion of the image charges induces nonzero
corrections to the average self-field potential inside the
beam [Eqs. (66) and (67)], which results in the average
beam radius acquiring the octupole component in Eqs. (68)
and (69).

Finally, an interesting application of the average self-
field equations (53) and (54) is for the case of very intense
beams, when the zero-order smooth-focusing part �0 of
the average self-field potential is compensated by the
average applied focusing potential. In this case the second-

order corrections to the average self-field potential �� in
Eq. (53) could become the dominant contributions to the
total self-field potential, and determine the collective dy-
namics of the beam particles. Such dynamics would be
similar to the particle dynamics in a strongly magnetized
quasineutral plasma using a ‘‘gyrokinetic’’ description [33].
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