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Abstract 

The collective focusing concept in which a weak magnetic lens provides strong focusing of an 

intense ion beam pulse carrying a neutralizing electron background is investigated by making use of 

advanced particle-in-cell (PIC) simulations and reduced analytical models. The original analysis by 

Robertson [Phys. Rev. Lett. 48, 149 (1982)] is extended to the parameter regimes of particular importance 

for several high energy density physics applications. The present paper investigates (1) the effects of 

nonneutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading 

to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence 

of a finite-radius conducting wall surrounding the beam cross section on beam neutralization. In addition, 

it is demonstrated that the use of the collective focusing lens can significantly simplify the technical 

realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment – I 

(NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making 

use of advanced numerical simulations.   

 

I. INTRODUCTION 

In the collective focusing scheme proposed by S. Robertson (hereafter referred to as a 

collective focusing lens), a weak magnetic lens provides strong focusing of an intense ion beam 

pulse carrying an equal amount of neutralizing electron background [1-7]. For instance, a 

solenoidal magnetic field of several hundred gauss can focus an intense neutralized ion beam 

within a short distance of several centimeters. Note that for a single-species nonneutral ion beam, 

a several Tesla magnetic field would be required to achieve the same focal length. The enhanced 

focusing in a collective focusing lens is provided by a strong self-electric field, which is 

produced by the collective dynamics of the neutralizing electrons.  

The main features of the collective focusing lens can be summarized as follows. First, let 

us review the principles of operation of a conventional magnetic lens for the case of a single-

species charged particle beam. Moving from a region of a zero magnetic field into the magnetic 
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Figure 1: Schematic illustration of collective focusing lens configuration. Traversing the fall-off region of 

the solenoidal magnetic field, the co-moving electrons acquire a fast rotation around the lens axis due to 

conservation of canonical angular momentum. As a result, a strong radial self-electric force is produced 

in order to balance the V  magnetic force. This electric force has a dominant influence on the radial 

dynamics of the beam ions.  

B×

 

lens, a beam particle acquires azimuthal angular momentum as the magnetic flux through its 

orbit increases. As a result, a radial focusing BV ×  force acts on the beam particles inside the 

lens. For the case where the ion beam drags a neutralizing co-moving electron background into 

the magnetic lens, the neutralizing electrons entering the lens experience much stronger magnetic 

focusing than the beam ions and tend to build up a negative charge around the lens axis. As a 

result, an electrostatic ambipolar electric field develops that significantly increases the total 

focusing force acting on the beam ions [Fig. 1]. Note that the neutralizing electrons should enter 

the lens from a region of a zero magnetic field in order to acquire the azimuthal angular 

momentum necessary for radial  magnetic focusing to occur inside the lens. Therefore, 

collective focusing will only occur if no background plasma or secondary electrons are present 

inside the lens. Otherwise, the rotating electrons co-moving with the ion beam will be rapidly 

replaced by the “non-rotating” background plasma electrons inside the lens and the enhanced 

collective focusing will be suppressed [6].  

BV ×

Many applications of ion-beam-driven high energy density physics, including heavy ion 

fusion and high-energy ion beam production from intense laser-matter interaction, require ion 

beam focusing and involve the presence of a neutralizing electron background. It is therefore of 

particular practical importance to investigate the feasibility of using a collective focusing lens for 

these applications. This would allow for the use of weak (several hundred Gauss) magnetic fields 
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instead of a several Tesla conventional magnetic lens, thereby significantly facilitating the 

technical realization of intense ion beam focusing.  

For instance, in the current design of a typical heavy ion driver a strong (several Tesla) 

magnetic solenoid is used to provide final transverse focusing of the ion beam as it leaves the 

drift section filled with a neutralizing background plasma [8-10]. Due to the strong space-charge 

self-fields of an intense ion beam pulse, a neutralizing plasma is also required inside the 

magnetic solenoid. Note that apart from the challenge of using a several Tesla magnetic solenoid, 

filling it with a background plasma provides additional technical challenges [11]. However, the 

use of the collective focusing concept can significantly simplify the technical realization of the 

beam final focus. Indeed, a neutralizing electron background can be dragged by the ion beam 

from the plasma that fills the magnetic-field-free drift section. The required magnetic field of the 

final focus solenoid can be lowered to the range of several hundred Gauss. Finally, a neutralizing 

plasma background is not required (should not be present) inside the final focus solenoid. As a 

practical example, in this paper we present results of advanced numerical simulations 

demonstrating the feasibility of tight collective focusing of intense ion beams for the 

Neutralizing Drift Compression Experiment-I (NDCX-I) [9], which is a heavy ion driver for 

warm dense matter experiments. 

A collective focusing lens can also be utilized in the laser generation of a high-energy ion 

beam, where the energetic ions are produced and accelerated by the interaction of an intense 

laser beam pulse with a thin foil [12]. In order to decrease the divergence of the ion beam, that is 

produced, a strong (several Tesla) focusing solenoidal magnetic field is used in some 

experiments [13]. However, along with the ions, a free-moving electron background is also 

produced, and therefore it is appealing to utilize the collective focusing concept for these 

applications as well.  

The original analysis of a collective focusing lens was performed under the following 

assumptions. First, the neutralized ion beam was considered to be sufficiently dense, cepe ωω >> , 

to maintain quasi-neutrality inside the magnetic solenoid [1]. Here, peω  and ceω  are the electron 

plasma frequency and the electron cyclotron frequency, respectively. Second, perturbations in 

the applied solenoidal magnetic field due to the neutralized beam self-fields were assumed to be 

small. This condition can be expressed as peb cr ω<< , or equivalently, [ ] bbI β25.4kA <<  [1, 2], 
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where  is the beam radius, Ib is the beam current, and βb is the directed beam velocity 

normalized to the speed of light . However, in many practical applications to high energy 

density physics involving ion beam transport, the beam parameters may not be consistent with 

the above conditions. In particular, laser-produced, high-energy, short ion beam pulses are 

typically very dense, with the beam radius typically larger than the collisionless electron skin-

depth, i.e., 

br

c

peb cr ω> [12, 13]. Also, propagation of a neutralized (by co-moving electrons) ion 

beam along a strong solenoidal magnetic field with pece ωω >  can occur both in a heavy ion 

driver [9] and in the laser production of collimated ion beams [13] when a conventional (several 

Tesla) magnetic lens is used for ion beam focusing. Therefore, the extension of previous 

theoretical models [1-7] to the cases where pece ωω >  or peb cr ω>  is of particular practical 

importance. In the present work, we investigate the operation of a collective focusing lens in 

these regimes, making use of advanced numerical simulations and reduced analytical models. In 

addition, the influence of the presence of a conducting wall surrounding the beam cross section 

on the collective beam focusing is investigated.  

The present paper is organized as follows. The original analysis of a collective focusing 

lens is summarized in Sec. II. Section III presents the results of advanced numerical simulations 

demonstrating the feasibility of tight collective focusing of intense ion beams for the 

Neutralizing Drift Compression Experiment-I (NDCX-I). The effects of nonneutral collective 

focusing in a strong magnetic field, i.e., pece ωω >  are investigated in Sec. IV, and the influence 

of the finite-radius conducting wall on the collective beam focusing is described in Sec. V. 

Finally, an analysis of collective focusing lens operation in the regime where the beam radius is 

comparable to or larger than the collisionless electron skin depth, i.e., peb cr ω> , is presented in 

Sec. VI.     

 

II. THE COLLECTIVE FOCUSING LENS 

In this section we summarize the concept of a collective focusing lens proposed and 

experimentally tested by S. Robertson [1]. We consider a magnetic lens (magnetic solenoid) 

where a solenoidal magnetic field is nearly uniform inside the lens, , and decreases 

rapidly to zero outside the lens. Note that the applied solenoidal magnetic field has a non-zero 

radial component, Br, in the field fall-off region. When an ion beam carrying an equal amount of 

zB ˆ0B≅
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neutralizing electrons enters the lens along the axis of the solenodial field, both the electron and 

ion species acquire an angular momentum (Fig. 1). This occurs due to the  force, but can 

be conveniently calculated from the conservation of canonical angular momentum 

rz BV ×

crAqdtdrmP θαααθα θ −= 2 . Here, ( ),r θ  corresponds to the cylindrical polar coordinates,  

is the azimuthal component of the magnetic field vector potential, 

θA

BA =×∇ ,  and   are 

the species mass and charge, respectively, and the subscripts 

αm αq

ie,=α  denote electrons or ions, 

respectively. Provided the neutralized beam enters the lens from a region of a zero magnetic field 

and does not significantly perturb the applied magnetic field of the lens, it follows that inside the 

lens the angular rotation frequency is 2ααα θω Ω=≡ dtd , where cmBq ααα 0=Ω , and 

initially non-rotating electrons and ions are assumed. The evolution of a particle’s radial 

coordinate inside the lens is then governed by 

0
4
1 2

2

2

=−Ω+ rE
m
q

rr
dt
d

α

α
ααα .                                            (1) 

Note that the second term on the left-hand-side of Eq. (1) corresponds to the difference between 

the centrifugal force, 42 rm ααΩ , and the BV ×θ  magnetic force, 22 rm ααΩ− .  

In the original derivation for the case of a quasi-neutral ion beam, identical radial motion 

of the electrons and the ions was assumed, i.e., ),(),( tzrtzr ie =  [1]. From Eq. (1) it therefore 

follows for the case of singly-charged ions that 

0
4
1

2

2

=ΩΩ+ ierr
dt
d

αα ,                                                (2) 

and for the electric field we obtain ( ) 4rmmeE eieir ΩΩ−−= , where –e is the electron charge. 

Assuming , we readily obtain that the strong ambipolar electric field that provides the 

enhanced collective focusing is given by 

ie mm <<

e
rmE eer 4

2Ω−= .                                                       (3) 

Note that the electric field in Eq. (3) provides the balance between the magnetic  force, the 

centrifugal force, and the ambipolar electrostatic force acting on neutralizing electrons inside the 

lens. Furthermore, as pointed out in Ref. [14], the same results for the electric field [Eq. (3)] was 

obtained by Davidson in [15], where the possible equilibrium states for a plasma in a constant 

BV ×θ
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axial magnetic field were considered. Finally, a comprehensive analysis of the collective 

focusing lens including the thermal effects of the co-moving electrons can be found in [4, 5]. 

In the thin lens limit, where the radial displacement of the beam particles within the lens 

is small, and the neutralized beam drifts to a focus outside the lens, the focal length of the 

collective focusing lens is given by [1]  

( )siebrbb
coll
f LvvrvL ΩΩ≅Δ−= 24 .                                         (4) 

Here,  is the axial beam velocity,  is the length of the magnetic solenoid,  is the beam 

radius, and  is the radial velocity acquired within the lens. Note that the focal length of a 

“conventional” magnetic lens is given in the thin-lens approximation for a single-species ion 

beam by 

bv sL br

rvΔ

( )sib
m
f LvL 224 Ω≅ .                                                     (5) 

Equation (5) follows from Eq. (1), assuming that 0≅rE , provided the beam space-charge is 

weak or well-neutralized by a background plasma. Comparing Eqs. (4) and (5) it follows that for 

a given focal length, the magnetic field required for a neutralized beam is smaller by a factor of 

ei mm . 

 The quasi-neutrality condition, i.e., iie nnn <<− , that has been assumed in the above 

analysis can be expressed in terms of practical system parameters by making use of Poisson’s 

equation and Eq. (3). Here, ne and ni are the electron and ion number densities, respectively. 

After some straightforward algebra it follows that the quasi-neutrality is maintained provided [1] 

22

2
1

epe Ω>>ω .                                                           (6) 

It has also been assumed that the axial magnetic field perturbations due to the beam rotation are 

small. The azimuthal current density is primarily attributed to the electron rotation and is given 

inside the lens by 2eee ernj Ω−=θ . Making use of Ampere’s law, it is straightforward to show 

that the axial magnetic field perturbations are small provided [1] 

pe
b

cr
ω

<<
2
1 ,                                                         (7) 

i.e., is the beam radius is smaller than the collisionless electron skin depth.  
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III. COLLECTIVE FOCUSING LENS FOR THE NDCX-I FINAL FOCUS 

As noted earlier, it is appealing to make use of a collective focusing lens in the design of 

a heavy ion driver final focus section. As a practical example, in this section we consider the 

Neutralized Drift Compression Experiment-I (NDCX-I), which is designed to study energy 

deposition from a highly compressed intense ion beam pulse onto a target for warm dense matter 

physics studies [9]. To obtain a high-current, short ion beam pulse, a long, singly-charged 

potassium ion bunch with directed energy of ~300 KeV and carrying a current of ~30 mA is 

matched into a solenoidal transport section, which controls the transverse beam envelope. Upon 

leaving the transport section, the radially converging beam pulse (with beam radius, rb~1 cm) 

acquires a head-to-tail velocity tilt and enters a long drift section (Ld~2 m) filled with a 

background plasma (np ~1010-1011 cm-3).  The background plasma neutralizes the beam space 

charge and therefore nearly-ballistic (field-free) simultaneous longitudinal and transverse 

compression occurs inside the drift section. In the present configuration of the NDCX-I device, 

final transverse focusing is then provided by a strong magnetic lens with magnetic field Bs~8 T, 

and length ls~10 cm, which is placed downstream of the beam line after the drift section (Fig. 2). 

In order to compensate for the strong space-charge forces of the compressed ion beam pulse, the 

final focus solenoid has to be filled with a neutralizing plasma as well. In the present design, four 

cathodic-arc plasma sources (CAPS) are used to inject plasma into the final focus solenoid. The 

sources are placed out of the line-of-sight of the beamline in order to avoid interaction with the 

ion beam and angled toward the axis of the final focus solenoid (Fig. 2). Here, we emphasize 

again that filling the strong magnetic solenoid with a neutralizing plasma is itself a challenging 

problem [11], and providing improved neutralizing plasma background inside the final focus 

solenoid is still one of the critical problems in NDCX-I optimization.  

 The final beam focusing can be significantly facilitated by using the concept of a 

collective focusing lens, which requires minimum modifications to the current NDCX-I 

configuration.  Indeed, in order to test the collective focusing, one needs to lower the final focus 

solenoid magnetic field from 8 Tesla to several hundred Gauss and turn off the cathodic-arc 

plasma sources. It is then expected that the beam will drag the required neutralizing co-moving 

electrons from the background plasma that fills the drift section [16-21] and will experience 

strong collective focusing inside the magnetic solenoid.  
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Figure 2: (Color) Schematic of the NDCX-I final focus section showing regions filled with neutralizing 

plasma. The neutralizing plasma inside the drift section is created by a ferroelectric plasma source 

(FEPS). The final focus solenoid is filled with a background plasma injected by four cathodic-arc plasma 

sources (only two are shown in the figure).    
 

 

In this section we present results of advanced numerical simulations demonstrating the 

feasibility of tight collective focusing of an intense ion beam pulse for NDCX-I. Note that the 

preliminary numerical simulations of the collective final focus in the NDCX-I were performed in 

Ref. [7], and focusing limitations due to possible heating of the co-moving electrons during the 

transverse compression were discussed. However, those simulations did not take into account the 

effects of the beam’s simultaneous, longitudinal and transverse, convergence and the pulse 

shaping inside the drift section. These effects are considered in the present analysis, and the 

feasibility of a tight collective final focus for the case of a more realistic beam distribution is 

demonstrated.  
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Figure 3 shows schematic of the simulation configuration for NDCX-I. The singly-

charged beam ions (Zb=1) are injected through the upstream boundary of the simulation domain 

at zinj=0. The injected beam current is Ib=27 mA, the directed energy of the K+ beam ions is 

Eb=300 keV, the radial beam density profile is flat-top, with outer beam radius rb0=1.6 cm, and 

the duration of the ion beam injection is 500~pτ  ns. Both the transverse and longitudinal beam 

temperatures are taken to be Tb=0.094 eV, and the initial radial convergence is 

02.000 =≡Δ convbbr Lrvv . Note that this steep initial convergence angle, corresponding to a 

premature ballistic focus at Lconv=80 cm, is taken to partially compensate for the radial beam 

divergence effects associated with the finite length of the tilt gap [22]. After injection, the beam 

propagates through the induction bunching module, where the time-dependent voltage shown in 

Fig. 4 is applied in the tilt gap between zg1=8 cm and zg2=11 cm. The beam then enters a long, L-

d=231 cm, drift section filled with a neutralizing background plasma. A significant fraction of the 

simultaneous compression occurs inside the drift section. However, to provide the additional 

transverse collective focusing a short, Ls=10 cm, final focus solenoid with radius Rs=2 cm is 

placed downstream of the beamline after the drift section. It is centered at zs=276 cm, and the on-

axis magnetic field inside the solenoid is B0=700 G. Leaving the drift section, the beam is 

allowed to drag the co-moving electron background from the background plasma, and a tight 

collective final focus is expected to be observed in the simulations. 

The voltage ramp between the time instants th=130 ns and tt=530 ns in Fig. 4 provides the 

longitudinal compression of only the 400~cτ  ns portion of the entire ion beam pulse; and the 

front part of the beam that propagates through the tilt gap during t<th corresponds to the 

longitudinally uncompressed beam prepulse. Here, the subscripts “h” and “t” denote the head 

and tail of the beam pulse, respectively. The head of the compressing beam portion experiences a 

net decelerating electric force, and the tail experiences a net accelerating force. Thus, this part of 

the ion beam acquires a head-to-tail velocity tilt that causes the tail of the compressing beam 

portion to meet the head of the beam at the longitudinal focal plane. Note that the voltage ramp 

between th and tt assumed in the simulations (Fig. 4) corresponds to the so-called idealized 

voltage waveform given by [22, 23]  
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Figure 3: Schematic of the simulation configuration for NDCX-I, using the LSP code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4: The idealized tilt-gap voltage waveform used in the numerical simulations. 
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Here, 004.0== cvbbβ  is the normalized directed beam velocity upstream of the tilt gap, 

0037.0=hβ  is the normalized head velocity of the compressing beam part, and Lf=273 cm 

corresponds to the drift distance to the ideal longitudinal focal plane. It is straightforward to 

show for ballistic compression of a cold beam that different longitudinal beam slices will come 

to the same focal plane at cm, provided their velocity is determined 

according to 

2842 =+= fg
id
foc Lzz

( ) ( )tVevmtvm tiltbbsliceb Δ−= 222  at the tilt gap exit, i.e., z=zg2.  

 It should be pointed out that the ideal simultaneous compression assuming perfect beam 

neutralization and the idealized voltage waveform [Eq.(8)] is still degraded by thermal effects, 

and the time-dependent effects of the longitudinal beam dynamics associated with a finite length 

of the tilt gap [22, 24-26]. That is, traversing the finite-length tilt gap, the beam particles receive 

a time-dependent divergence angle [22, 25]. Note again that the steep initial convergence angle, 

is taken to partially compensate for this divergence. However, due to the time-dependent nature 

of the effect, simultaneous longitudinal and transverse beam compression is still degraded due to 

variations in the z-location of the transverse focal plane for different beam slices [25, 26]. These 

finite-size tilt gap effects are adequately described by the present simulations, and the details of 

the tilt gap model can be found in Ref. [27]. Among the deleterious technical effects that can 

limit simultaneous beam compression is a discrepancy between the ideal voltage waveform in 

Eq. (8) and the waveform generated by the induction bunching module in NDCX-I. This effect is 

considered in detail in Ref. [22, 26], and is outside the scope of the present work. 

It has previously been demonstrated that a dense background plasma with np>nb can 

provide a high degree of beam charge and current neutralization [28]. Furthermore, it can be 

shown that collective streaming processes do not have a significant influence on ion beam 

dynamics due to the thermal effects of the background plasma electrons. Therefore, it is 

appealing to use a fluid model for the background plasma, instead of a full kinetic description to 

simulate the ion beam pulse shaping during its simultaneous compression inside the long drift 

section. However, the kinetic effects of the co-moving electrons are of particular importance for 

the collective focusing of the beam pulse. Accordingly, the entire simulation domain is divided 

into two parts. The simulation of the long upstream part, from z=0 to zL=251 cm, utilizes a 

conductivity model for a background plasma, where a sufficiently high value of the conductivity 

is chosen to provide complete beam neutralization. The downstream part, from zL=251 cm to 
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zend=301 cm, that includes a short downstream part of the drift section and the final focus section, 

is simulated by making use of a fully kinetic model for the background plasma electrons and 

ions. For this downstream simulation we take the plasma density to be np=1011 cm-3, electron 

temperature Te=3 eV, and the massive plasma ions are assumed to be cold. The beam ions are 

treated as a kinetic species throughout the entire simulation domain. We emphasize again that the 

use of a fluid model for most of the neutralizing plasma inside the drift section allows for a 

considerable reduction in the total computational time, and the details of the space-time 

resolution can be found in Ref. [27].  

The results of the numerical simulations performed with the LSP code [29] are shown in 

Figs. 5 and 6. Figure 5 illustrates the strong radial focusing electric field generated by the beam 

inside the solenoid in accordance with the analytical predictions in Eq. (3). Recall, that one of the 

conditions for quasi-neutral collective focusing to occur requires the electron plasma frequency 

to be higher than the electron cyclotron frequency inside the solenoid [Eq. (6)]. Due to the fact 

that the neutralized pre-compression provides beam density nb~1010 cm-3 near the exit of the drift 

section, this condition is nearly satisfied. A plot of the beam density at the transverse focal plane 

is shown in Fig. 6(a). It is readily seen that a tight transverse collective focus with on-axis (peak) 

density of the compressed beam pulse ncomp≈5.5×1012 cm-3 occurs in the simulations. The time 

evolution of the ion beam current at ztf=281.6 cm corresponding to the transverse focal plane is 

shown in Fig. 6(b), which demonstrates strong ~80X longitudinal compression, with peak 

current Ip=2.2 A, and a compressed ion beam pulse duration of a few nanoseconds. Note that the 

present illustrative simulations demonstrate the feasibility of a very tight collective focusing of 

the ion beam pulse in NDCX-I, and the compressed beam parameters are similar to the results of 

the simulations performed for the case where a 8 T final focus solenoid is used, and complete 

beam neutralization is assumed from the drift section entrance to the target plane [9].  

In conclusion, it is important to point out that the long prepulse part of the ion beam in 

the NDCX-I can produce a significant amount of the background electrons by preheating the 

target. Therefore, it may be important to remove those electrons from the beam line. Otherwise 

they may possibly leak into the final focus solenoid, thus reducing the collective focusing of the 

compressing part of the beam pulse. Note that the entire ion beam pulse undergoes simultaneous 

compression in the planned NDCX-II facility [10, 30]. Therefore, the absence of the prepusle 

part of the ion beam makes the concept of final collective focusing even more attractive for the  
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Figure 5: (Color) Results of the LSP simulations for the radial dependence of the radial electric field at 

the center of the final focus solenoid, z=276 cm, corresponding to t=2535 ns (blue dots). The analytical 

results in Eq. (3) are shown by the solid magenta line.  
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Figure 6: (Color) The ion beam parameters at the transverse focal plane. Shown are plots of (a) the ion 

beam density corresponding to t=2580 ns, and (b) the time evolution of the ion beam current at the 

transverse focal plane corresponding to z=281.6 cm. The results are obtained using the LSP code.  

 

 



NDCX-II device. The proposed NDCX-II experiment is aimed at operating with a Lithium ion 

beam (Li+) at higher a energy, Eb ≈ 3 MeV, and the final beam focusing will involve strong 

magnetic focusing by a final focus solenoid with Ls~10 cm and B0~10 T. Utilizing the collective 

focusing concept can allow for the use of a significantly less intense magnetic lens with 

( ) 90021
0 == iec mmBB G. However, note that in order to provide quasi-neutral collective 

focusing [see Eq. (6)], a beam density of [ ] [ ] 31026310 104109.410 −−− ×=×> cmGBcmn cb  has to be 

reached at the exit of the drift section. 

 

IV. NONNEUTRAL COLLECTIVE FOCUSING  

The original analysis of a collective focusing lens [1] assumed quasi-neutral compression, 

which is provided by the condition that the electron cyclotron frequency corresponding to the 

magnetic field inside the solenoid, , is less than the electron plasma frequency of the incident 

neutralized beam,  (Sec. II). However, it is of particular importance for several practical 

applications including the Neutralized Drift Compression Experiment-I (NDCX-I) to investigate 

the collective focusing effect in a strong magnetic field with . In this case, the quasi-

neutrality condition inside the beam can break down, and it is important to determine the 

distribution of the radial electric field inside the beam, which is now supported by a pronounced 

charge separation. 

eΩ

0
peω

0
pee ω>Ω

 In this section we investigate general features of nonneutral collective focusing in a 

strong magnetic field. We demonstrate for the case of sufficiently heavy and high-energy beam 

ions that the transverse dynamics of the co-moving electron beam, which determines the radial 

electric field inside the ion beam, can be described as follows. When the magnetic field is weak, 

, the electrons background follows the beam ions. The ion beam is well-

neutralized, and a moderately strong magnetic V×B force along with the centrifugal force acting 

on electrons are balanced by an ambilpolar (quasi-neutral) radial electric field [see Eq. (3)]. 

Here, 

( ) 0
pece z ωω <<

( )zceω  denotes the local value of the electron cyclotron frequency. As the magnetic field 

strength increases to , the quasineutrality condition breaks down, ( )( ) 0~ pece z ωω 1~iibe nnZn − , 

in order to provide a sufficiently strong radial electric field required for force balance on the 

electrons. Finally, with a further increase in the magnetic field strength, , strong ( ) 0
pece z ωω >>
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charge separation occurs, , and we demonstrate that the force balance on the electrons 

yields that the condition 

ibe nZn >>

( ) ( ) 2zz cepe ωω ≈  is maintained during the electron compression. 

Here, ( )zpeω  is the local value of the electron plasma frequency.  

It is interesting to note that the latter condition, i.e., ( ) ( ) 2zz cepe ωω ≈ , implies that the 

co-moving electron beam compression does not follow the magnetic field lines (Fig. 7). Indeed, 

the radius of a constant magnetic flux tube is given by cefluxR ω1∝ , whereas the electron 

beam executes steeper compression with ceeR ω1∝ (assuming that the electron line density 

remains constant during the compression). This result is significantly different from the one that 

would be predicted by the “drift approximation” [31], which is often used for description of 

magnetized plasma flows, and would imply that the electron flow follows the magnetic field 

lines. The drift approximation, assumes that charged particles exhibit fast rotation around 

magnetic field lines with thermal velocities, and their guiding centers slowly drift in the direction 

perpendicular to the magnetic field due to E×B drift, magnetic drifts, etc. However, for the 

present system, the strong electric field drags electrons across the magnetic field lines, and the 

azimuthal electron rotation around the lens axis (“guiding center” motion), is much faster than 

the gyro-rotation attributed to the initial electron thermal velocity. Indeed, for the parameters 

considered in Sec. III, the energy of the azimuthal electron rotation provided by the strong 

electric field inside the solenoid, ∫−=−=
r

ree drEereEVm
0

2 22θ  , corresponds to a few keV [see 

Fig. 5], whereas the initial thermal energy is 3 eV. Therefore, the drift approximation is not valid 

for the present system, and the transverse dynamics of the electron flow is determined by the 

radial force balance on the electrons, as described below.  

We start the analysis by determining the conditions for a pronounced charge separation to 

occur inside an ion beam that carries an equal amount of electron background into a strong 

solenoidal magnetic field. Figure 8 illustrates a neutralized ion beam that propagates through an 

increasing solenoidal magnetic field, B(z). For simplicity, we assume a uniform radial beam 

density distribution for the initial beam state, with the flat-top density nb0 and outer beam radius 

rb0. The ion beam is moving from a region of zero magnetic field, where its charge and current 

are completely neutralized by a co-moving monoenergetic electron beam. We denote the electron 

cyclotron frequency corresponding to the maximum value of the magnetic field B0 inside the  
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Figure 7: (Color) Steep compression of the neutralizing electron backround in a strong solenoidal 

magnetic field. Shown is the plot of the electron density. The solid curves correspond to the magnetic 

field lines, and the bold dashed lines outline the ion beam. The neutralizing electrons are provided by a 
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lasma layer with radius Rp=3.8 cm located from z=0 cm to z=15 cm (see Fig. 9 for details). Steep 

electron compression across the magnetic field lines is evident for z>53 cm. The maximum magnetic 

field at z=60 cm corresponds to , and infinitely massive beam ions are assumed. Other  05 pee ω=Ω
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arameters of this LSP simulation are the same as in Figs. 9-11.      
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Figure 8: (Color) (a) Schematic illustration of a neutralized ion beam propagating along a strong 

solenoidal magnetic field with . The two possible regimes of collective beam focusing 

correspond to: (a) quasi-neutral collective focusing where quasi-neutrality is maintained inside the beam 

during compression, and (b) nonneutral collective focusing associated with a pronounced build-up of 

negative charge near the beam axis.  

0
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solenoid by cmeB ee 0≡Ω , and assume that ebpee mne 0
20 4πω =>Ω . Note that the condition 

 itself does not necessarily imply that the quasi-neutrality is not maintained during 

transverse compression. Indeed, for the case of light, low-energy beam ions, and weak 

longitudinal gradients of the solenoidal magnetic field, quasi-neutrality will be maintained inside 

the beam, provided the increase in the electron plasma frequency due to the ion beam 

compression occurs more rapidly than the increase in the magnetic field, i.e., provided 

0
pee ω>Ω

( ) ( )zz ce
b
pe ωω >> .                                                           (9)   

Here, ( ) eib
b
pe mznZe24πω = , ( ) cmzeB ece =ω , and ( )zni  is the local value of the ion beam 

density. For simplicity, we assume a short ion beam pulse with characteristic length that is much 

smaller than the longitudinal length-scale for variation of the magnetic field. The condition in 

Eq. (9) can then be expressed as 

( )
( )zr

zR

ce

pe

b

i

ω
ω 0

0

<< ,                                                          (10) 

and the evolution of the ion beam outer radius, Ri(z), for the case of a quasi-neutral compression 

is given by 

 2

2

2

2

4 b

cei

b

e
b

i

v
R

m
m

Z
dz

Rd ω
−= .                                                     (11) 

In the limit of a high-energy heavy-ion beam and steep magnetic field gradients, Eqs. (10)-(11) 

may not have a self-consistent solution. In this case quasi-neutrality inside the beam is no longer 

maintained, and nonneutral collective focusing occurs.  

In order to determine the transverse beam dynamics for the case of nonneutral collective 

focusing, one needs to investigate the distribution of the strong radial electric field inside the 

beam. For this purpose we have performed advanced numerical simulations with the particle-in-

cell code LSP, and a schematic of the present simulations is shown in Fig. 9. In an attempt to 

provide quiescent neutralization of the ion beam as it leaves the background plasma layer, cold 

plasma electrons are assumed, and a gradual decrease in the plasma density is introduced near 

the downstream end of the layer. That is, we take np=1011 cm-3 for z<12 cm and then the plasma 

density is linearly decreased to zero over a distance of ledge=8 cm. We point out that the present 

numerical simulations demonstrate a high degree of beam charge neutralization as it leaves the  
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Figure 10: Thermal spreading of the co-moving neutralizing electron beam at the time instant t=200 ns. 

Plots correspond to (a) longitudinal electron phase-space (vez/c, z), and (b) the transverse electron velocity 

spreading (ver/c, z). The black dashed line in Frame (a) illustrates the ion beam velocity. The velocity 

spreading of the initial cold background plasma electrons located inside the plasma layer from z=-5 cm to 

 

Figure 9: Collective focusing in a strong solenoidal magnetic field with . (a) Schematic of the 

LSP simulations; and (b) Longitudinal profile of the applied axial magnetic field.  
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z=15 cm is attributed to electron heating due to beam-plasma interaction. The results are obtained using 

the LSP code. 
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plasma layer, and the velocity spread in the electron distribution is of order the ion beam velocity 

(Fig. 10). A more detailed discussion describing the beam neutralization in the present 

simulations can be found in Ref. [27]. The ion beam is injected from the left grounded 

conducting boundary of the simulation domain. To model the beam, we take rb0=1 cm, nb0=1010 

cm-3, Zb=1, βb=0.0042, lb≈5 cm, and infinitely massive beam ions are assumed for simplicity. 

The maximum value of the magnetic field inside the focusing solenoid is B0=1600 G, which 

corresponds to , and the longitudinal profile of the on-axis magnetic field is shown in 

Fig. 9(b). Finally, a transverse cylindrical conducting boundary is present at rw=3.8 cm. 

05 pee ω=Ω

The results of the numerical simulations at an illustrative time t=500 ns, when the beam 

is at the center of the magnetic solenoid, are shown in Fig. 11. As the co-moving electrons enter 

the magnetic solenoid the electrons acquire a strong azimuthal rotation due to conservation of 

canonical angular momentum [Fig. 11(a)]. The resulting BV×  magnetic focusing force, along 

with the centrifugal force, are compensated by the strong radial self-electric field [Fig. 11(b)]. 

However, for the parameters considered here 50
epe

b
pe Ω==ωω , the condition in Eq. (9) is 

violated, and a strong charge separation occurs in order to support the radial self-electric field 

[Fig. 11(c)]. Simulations show [Fig. 11(b)] that inside the electron beam, i.e., r<Re(z), the radial 

electric field is nearly linear, and is given by the electron force-balance equation  

                       ( ) ( ) erzmerVmcBVE ceeeeer 422
0 ωθθ −=+−= .                           (12)  

Here, Re(z) is the characteristic outer radius of the electron beam, and Re<Ri [Fig. 11(c)]. For the 

case of a sufficiently long beam with , it follows from Eq. (12) that the electron beam 

density is uniform, and is specified by  

0bb rl >>

e

ib

pe

ce

n
nZ

−=1
2
1

2

2

ω
ω

,                                                  (13) 

where ( ) ( ) eepe mznez 22 4πω = . For the case of strong nonneutral compression with , 

we readily obtain that the condition 

ibe nZn >>

( ) ( ) 2zz cepe ωω ≈  is maintained during the compression, 

which implies that electron compression does not follow the magnetic field lines. Finally, note 

that much better agreement between the analytical predictions in Eq. (12) and the results of the 

simulations in Fig. 11(b) is observed here, compared to the results presented in Sec. III (see Fig. 

5). This is primarily due to the fact that in the present simulations (see Fig. 9) the magnetic  

 19



 

z (cm)

r (
cm

)

Re

(c)

50 55 60 65 70
0

0.2

0.4

0.6

0.8

1.0 40.0

0.4

20.0

ne (1010cm-3)

Ion 
beam

-25

-20

-15

-10

-5

0

5

10

0 0.1 0.2 0.3 0.4
r (cm)

E r
 (k

V/
cm

)

 

 

 

 

 

 

 

0
r (cm)

0.1 0.2 0.3

-0.0

0.04

0.08

0.12

V
eθ

/c

(a)

Re

(b)

 

 

 

 

 

 

 

Figure 11: (Color) Nonneutral collective focusing. Shown are plots of (a) the electron phase-space 

(Veθ/c,r), where the blue dots correspond to the results of the LSP simulations, and the estimate Veθ=ωcer/2 

is shown by the solid pink line; (b) radial dependence of the radial electric field at the center of the 

magnetic solenoid, z=60 cm, where the blue dots correspond to the results of the LSP simulations, and the 

analytical estimate in Eq. (12) is shown by the solid magenta line; and (c) electron density obtained in the 

LSP simulations. The dashed black lines in Frame (c) outline the ion beam, and Re corresponds to the 

characteristic electron beam radius. The time for the results shown in the figure corresponds to t=500 ns. 

 

solenoid is moved further downstream from the drift section in order to decrease the value of the 

fringe magnetic fields inside the plasma layer. 

The nonlinear electric field in the region ie RrR <<  can be determined from Poisson’s 

equation  

( )zenZ
r

r
rr ibπϕ 41

−=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ,                                         (14) 

which is to be solved subject to the boundary condition, 

         
( )

( ) ( )
e

zRz
m

r
ece

e
zRr e

4

2ωϕ
=

∂
∂

=

.                                           (15) 

In Eq. (14), the longitudinal derivatives have been neglected provided the beam is sufficiently 

long with . Note that the solution to Eqs. (14)-(15) is, in general, nonlinear even for a 

uniform ion beam density profile. As a result, the aberration effects caused by nonlinearities in 

the focusing electric field can significantly degrade the transverse focal spot.  

0bb rl >>

 In order to complete the description of the generated radial electric field, one needs to 

determine the evolution of the electron beam radius. The electron beam is being dragged into a 
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strong solenoidal magnetic field by the intense ion beam. The rotational energy of the electrons 

and the electrostatic field energy arise from the directed energy of the ion beam; and the 

magnetic pressure force is globally balanced by the longitudinal variations of the electrostatic 

potential. However, the density profile of the co-moving electron beam can still spread in the 

longitudinal direction as the beam propagates in the increasing magnetic field [Fig. 11(c)]. 

Furthermore, the presence of a finite-radius conducting wall surrounding the beam cross-section, 

which connects the neutralizing region (e.g., neutralizing plasma) and the region of a magnetic 

field (e.g., final focus solenoid) can provide additional reflection of outer-edge electrons, thereby 

reducing the total negative charge of the neutralizing electron beam (see Sec. V). Consistent with 

these facts, a fraction of the electron beam particles with negative values of longitudinal velocity 

has been observed in the simulations. For simplicity, in the present approximate estimate, we 

neglect the longitudinal broadening of the electron beam density profile and the finite-radius 

conducting wall effects, and assume that . Making use of this line-density 

conservation of the co-moving electron beam, we obtain from Eq. (13) for the case of strong 

nonneutral compression, i.e.  , that 

2
00

2 ~ bbee rnRn

ibe nZn >>

 ( )z
rzR

ce

pe
be ω

ω 0

02~)( .                                                     (16) 

Equations (14)-(16) together with Eq. (12) provide an approximate self-consistent 

estimate of the radial focusing electric field inside the ion beam. In conclusion, we discuss the 

validity of Eq. (12) that demonstrates the balance between the BV ×  magnetic focusing force, 

the centrifugal force, and the self-electric radial force acting on the background electrons. 

Equation (12) follows from the more general Eq. (1), provided the electron inertial term, i.e., the 

first term on the left-hand-side of Eq. (1), can be neglected. Making use of Eq. (16), it follows 

that the force-balance equation (12) is valid provided    

 cebm vl ω>> ,                                                           (17) 

where  is the characteristic length-scale for variations of the applied magnetic field.  ml

 

V. EFFECTS OF THE CONDUCTING WALL ON COLLECTIVE FOCUSING 

In this section we investigate the collective focusing of an ion beam pulse, taking into 

account the effects of the finite-radius conducting wall surrounding the beam cross-section 
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extending over the region of the beam initial neutralization (e.g., background plasma) and the 

magnetic field region (Fig. 9). We demonstrate that the presence of such a conducting boundary 

can lead to a lack of neutralizing electron background in the outer-edge region of the ion beam. 

 For simplicity, we again assume infinitely massive beam ions, and a flat-top radial 

density profile of the ion beam with the outer radius Ri(z)=rb=const, and the number density 

ni(z)=nb=const. In the previous section it has been shown for the case of an arbitrary ratio of 

pece ωω  that the radial electric field inside the co-moving electron beam is approximately linear 

in the radial coordinate r [see Eq. (12)]. Therefore, assuming that the beam is sufficiently long 

with  and neglecting by the longitudinal derivatives in Poisson’s equation, it follows 

that the electron beam density can be approximated by a flat-top distribution with radius Re 

(Re<rb) and number density ne. In what follows, we investigate a steady-state solution, in which a 

long coasting ion beam carrying a neutralizing electron background propagates from the 

neutralizing plasma into the magnetic solenoid. In particular, we estimate the degree of space-

charge beam neutralization inside the magnetic solenoid. 

0bb rl >>

Inspecting the motion of the on-axis (non-rotating) electrons, which follow the ion beam 

at an approximately constant velocity bez vV ≅ , it follows that the on-axis electrostatic potential is 

approximately constant everywhere along the axis downstream of the neutralizing plasma, i.e. 

( ) constzzr p ≅≥= ,0ϕ . Here, zp denotes the longitudinal coordinate of the downstream plasma 

boundary. Next, provided the neutralizing background plasma is sufficiently dense and cold, we 

neglect the potential variations (typical order the electron temperature) inside the plasma, and 

therefore ( ) constzzr wp =≅≤ ϕϕ , , where φw is the wall potential. It now readily follows that  

  ( ) ( ) 0,,0 =≥=≅≥= pwp zzrrzzr ϕϕ  ,                                       (18) 

where rw is the conducting wall radius, and without the loss of generality we assumed that the 

wall is grounded, i.e., φw=0. It is interesting to note that even if variations in the velocity of on-

axis electrons around vb are present (due to time-depended effects, etc.), for many practical 

applications the associated perturbations in the on-axis electrostatic potential are typically much 

smaller than the potential variations across the beam inside the magnetic solenoid, and therefore, 

the condition in Eq. (18) will still hold. For instance, for the parameters characteristic of NDCX-

I, the beam velocity correspond to the electron energy of a few eV, whereas the electrostatic 

potential variations across the beam are the order of a few kV. The condition in Eq. (18) provides 
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a constraint on the amount of the electron background that can be dragged into the solenoidal 

field.  

We now calculate the electron line density at the center of the magnetic solenoid 

corresponding to the maximum electron cyclotron frequency, eΩ . From Eq. (12) it follows that 

inside the electron beam the electrostatic potential is given by 

 ( )
e

rm
r ee

8

22Ω
=ϕ , eRr <<0 ,                                                 (19) 

and making use of Poisson’s equation for a long beam, , we obtain 0bb rl >>

2
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+= ,                                                             (20) 

where ebbp mnZe22 4π=Ω . For flat-top radial profiles of the ion and electron beam densities, it 

is straightforward to calculate the distribution of electrostatic potential in the region Re<r<rw, and 

show that the condition in Eq. (18) can be expressed as 

( ) ( ) 0ln2ln2
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Making use of Eq. (20), after some algebra we obtain 
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where  and  are the ion and electron line densities, respectively. 

Equation (22) determines the global degree of the ion beam charge neutralization inside the 

magnetic solenoid for an arbitrary ratio of 

2
bbbb rnZN π= 2

eee RnN π=

pe ΩΩ . For the case of quasi-neutral beam 

propagation corresponding to 1<<ΩΩ pe , from Eq. (11) we obtain that the beam charge is well-

neutralized 

( )
1

ln4
1 2

2

<<
Ω

Ω
≅−

bwp

e

e

b

rrN
N

,                                             (23) 

provided the conducting wall is not in close proximity to the beam. The numerical solution to Eq. 

(22) as a function of 22 2 pe ΩΩ  obtained for different values of bw rr  is shown in Fig. 12. It is 

readily seen that the total amount of neutralizing electrons that penetrate into the magnetic field 

decreases with an increase in the strength of the applied magnetic field.  
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Figure 12: (Color) Numerical solutions to Eq. (22) demonstrating the global degree of ion beam charge 

neutralization inside the magnetic solenoid. The blue, purple, and brown curves correspond to rw/rb=2, 

rw/rb=4, and rw/rb=105, respectively.  
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Figure 13: (Color) Time evolution of the ion and electron line densities at the center of the magnetic 

solenoid (z=60 cm) obtained using the LSP simulations. The blue curve shows the ion beam line density, 

and the red and green curves show the electron beam line density for the cases where the maximum value 

of the solenoidal magnetic field is B0=500 G and B0=1600 G, respectively. The corresponding horizontal 

dashed lines illustrate the solutions to Eq. (22) with rw/rb=3.8. 



The results of the analytical calculation in Eq. (22) have been found to be in a very good 

agreement with the results of the numerical simulations (Fig. 13). The parameters of these 

simulations are the same as in Sec. IV. The only difference is that the pulsed type of the beam 

injection used in Sec. IV has been replaced with a continuous injection in order to model a quasi-

steady-state. Note that in the present numerical simulations, all conducting boundaries coincide 

with the domain boundaries, and no conducting surfaces are used to represent the boundaries of 

the magnetic solenoid. However, it is important to point out that by biasing the conducting 

surfaces of the solenoid relative to the chamber wall surrounding the neutralizing plasma, it is 

possible to control the amount of the neutralizing electrons inside the magnetic solenoid. Note 

that in this case the condition in Eq. (18) takes the form  

( ) ( ) Vzzrrzzr pwp Δ+>=≅>= ,,0 ϕϕ ,                                           (24) 

where  is the voltage difference between the solenoid and the plasma chamber.  VΔ

 

VI. COLLECTIVE FOCUSING OF A HIGH-INTENSITY ION BEAM WITH rb≥c/ωpe 

As noted earlier, to assure small perturbations in the applied solenoidal magnetic field 

produced by the azimuthal component of the electron current, the beam radius has to be smaller 

than the collisionless electron skin-depth, i.e., peb cr ω<< . In this section, we present an 

analytical self-consistent calculation of the magnetic field perturbation, and discuss the collective 

focusing lens operation for arbitrary values of cr pebω .  

Conservation of canonical angular momentum for the co-moving electrons gives (sec. II)  

θθ A
c
eVm ee = ,                                                           (25) 

where Veθ is the azimuthal component of the electron velocity, and initially non-rotating 

electrons are considered. Assuming that the beam radius is smaller than the beam pulse length, 

and smaller than the characteristic length-scale for variations of the applied solenoidal magnetic 

field, i.e.,  , we obtain from Ampere’s equation mbb llr ,<<

( ) θθ
π

eeVen
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rA
rrr

41
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⎜
⎝
⎛

∂
∂

∂
∂ .                                         (26) 

Furthermore, assuming for simplicity a uniform radial beam density profile with bie nnn ==  for 

, and  for , Eq. (26) is to be solved subject to the boundary condition  brr ≤ 0== ie nn brr >
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where Bs is the applied solenoidal magnetic field. Combining Eqs. (25) and (26) gives  
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∂ 1 ,                                               (28) 

where crr pebω= . Solving Eqs. (27)-(28), it follows that the longitudinal component of the 

total magnetic field, i.e., ( ) rrArBz ∂∂= −
θ

1 , is given by 

( )
( )crI

crI
BB

peb

pe
sz ω

ω

0

0= ,                                                  (29) 

where I0(x) is the modified Bessel function of order zero. Plots of the total magnetic field Bz(r), 

i.e., the sum of the beam-generated and the applied magnetic fields, for different values of 

cr pebω  are shown in Fig. 14. Note that attenuation of the longitudinal magnetic field results in a 

decrease in the focusing electric field since cBVE zer 2θ−= . Furthermore, nonlinearities in the 

magnetic field profile provide aberrations that can degrade the transverse focus. However, it is 

interesting to note that even for large values of cr pebω , the outer edge of the beam still 

experiences pronounced collective focusing (Fig. 14). It is therefore of great interest to carry out 
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detailed self-consistent studies including the effects of the beam radial profile evolution, in order 

to estimate the applied magnetic field required to collimate or focus the intense ion beam. 

 

VII. CONCLUSIONS 

 In the present work the collective focusing scheme in which a weak magnetic lens 

provides strong focusing of an intense ion beam pulse carrying an equal amount of neutralizing 

electron background has been investigated. This collective focusing can allow for the use of 

weak (several hundred Gauss) magnetic fields instead of the several Tesla fields used for a 

conventional magnetic lens, thereby significantly facilitating the technical realization of ion 

beam focusing for several applications to high energy density physics. As a practical example, 

the feasibility of tight collective focusing of intense ion beams for the Neutralizing Drift 

Compression Experiment-I (NDCX-I) has been demonstrated by making use of advanced 

numerical simulations with the LSP code.  

 The original analysis of collective focusing [1], assuming quasi-neutral transverse beam 

compression with pece ωω << , has been extended to the case of nonneutral collective focusing, 

that can occur when the beam propagates in a strong solenoidal magnetic field with 

ceeib
b
pe mnZe ωπω <= 24 . This case can be of particular importance for several practical 

applications, including laser-production of high-energy ions, where a strong solenoidal magnetic 

field is used to collimate the divergent ion beam; and a heavy-ion fusion driver, where a strong 

magnetic solenoid is often used for final beam focusing. For the case of nonneutral collective 

focusing, the electron background executes a steeper compression compared to that of the beam 

ions, and as a result an excess of negative charge develops near the solenoidal axis. It has been 

shown for the case of strong nonneutral compression, with  near the beam axis, that ibe nZn >>

2cepe ωω ≈  is maintained inside the electron beam, and that the electron beam radius 

decreases approximately as ceeR ω1∝ . The focusing radial electric field inside the electron 

beam, , is found to be linear with eRr < ( ) erzmE ceer 42ω−= . However nonlinearities in the 

region  cause aberrations, and can degrade the quality of the transverse ion beam 

focus.  

ie RrR <<
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In addition, the influence of a finite-radius conducting wall surrounding the beam cross 

section on the collective focusing has been investigated for the case where the conducting wall 

connects the region of initial beam neutralization and the region with magnetic field. It has been 

shown for the case of quasi-neutral compression provided by pece ωω <<  that the presence of the 

wall does not degrade the charge neutralization of the ion beam as it propagates into the 

magnetic field region. However, with an increase in the magnetic field strength of the solenoid, 

pece ωω ≥ , the presence of a finite-radius conducting wall leads to a decrease in the global degree 

of beam charge neutralization. That is the total amount (line density) of the neutralizing electron 

background inside the solenoid can become notably less than the total amount of ion beam 

charge.  

Finally, the original analysis of collective focusing [1], assuming small perturbations of 

the applied solenoidal magnetic field implied by peb cr ω<< , has been extended to the case of 

an arbitrary ratio of crbpeω . The perturbation in the solenoidal magnetic field produced by the 

azimuthal component of the electron beam current has been calculated self-consistently, and 

nonlinearities in the total magnetic field along with the significant suppression of the applied 

magnetic have been demonstrated for peb cr ω≥ . However, it has been found that even for large 

values of cr pebω , the outer edge of the ion beam pulse still experiences efficient collective 

focusing.     

 

ACKNOWLEDGEMENTS  

The authors are grateful to E. P. Lee for pointing out the effect of the finite-radius 

conducting wall surrounding the beam cross section. 

This research was supported by the U.S. Department of Energy under Contract No. DE-

AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. 

 

REFERENCES  

[1] S. Robertson, Phys. Rev. Lett. 48, 149 (1982). 

[2] S. Robertson, Phys. Fluids 26, 1129 (1983). 

[3] G. A. Krafft, C. H. Kim, and L. Smith, Nuclear Science, IEEE Transactions on 32, 2486 

(1985).  

 28



[4] G. A. Krafft, Ph.D. thesis, UC Berkeley, 1986. 

[5] S. Robertson, J. Appl. Phys. 59, 1765 (1986).  

[6] R. Kraft, B. Kusse, and J. Moschella, Phys. Fluids 30, 245 (1987). 

[7] M. Dorf, I. D. Kaganovich, E. A. Startsev and R. C. Davidson, Poceedings of the 1st 

International Accelerator Conference , in press (2010). 

[8] S. S. Yu, R. P. Abbott, R. O. Bangerter, J. J. Barnard, R. J. Briggs, D. Callahan, C. M. Celata, 

R. C. Davidson, C. S. Debonnel, S. Eylon, A. Faltens, A. Friedman, D. P. Grote, P. 

Heitzenroeder, E. Henestroza, I. Kaganovich, J. W. Kwan, J. F. Latkowski, E. P. Lee, B. G. 

Logan, P. F. Peterson, D. Rose, P. K. Roy, G.-L. Sabbi, P. A. Seidl, W. M. Sharp and D. R. 

Welch, Nucl. Instrum. Methods Phys. Res. A 544, 294 (2005). 

[9] P. A. Seidl, A. Anders, F. M. Bieniosek, J. J .Barnard, J. Calanog, A. X. Chen, R. H. Cohen, 

J. E. Coleman, M. Dorf, E. P. Gilson, D. P. Grote , J. Y. Jung, M. Leitner, S. M. Lidia, B. G. 

Logan, P. Ni, P. K. Roy, K. VandenBogert, W. L. Waldron, and D.R. Welch, Nucl. Instrum. 

Methods Phys. Res. A 606, 75 (2009). 

[10] A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. sharp, A Faltens, 

E. Henestroza, J. –Y. Jung, J. W. Kwan, E. P. Lee, M. A. Leitner, B. G. Logan, J.-L. Vay, 

W. L Waldron, R. C. Davidson, M. Dorf, E. P. Gilson and I. D. Kaganovich, Phys. Plasmas 

17, 056704 (2010). 

[11] P. K. Roy, P. A. Seidl, A. Anders, F. M. Bieniosek, J. E. Coleman, E. P. Gilson, W. 

Greenway, D. P. Grote, J. Y. Jung, M. Leitner, S. M. Lidia, B. G. Logan, A. B. Sefkow, W. 

L. Waldron and D. R. Welch, Nucl. Instrum. Methods Phys. Res. A 606, 22 (2009). 

[12] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T.W. Phillips, M. A. 

Stoyer, E. A. Henry,T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. 

Offenberger, D.M. Pennington, K. Yasuike,A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. 

Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000). 

[13] K. Harres, I. Alber, A. Tauschwitz, V. Bagnoud, H. Daido, M. Günther, F. Nürnberg, A. 

Otten, M. Schollmeier, J. Schütrumpf, M. Tampo, and M. Roth, Phys. Plasmas 17, 023107 

(2010). 

[14] D. B. Boercker, D. M. Sanders, J. Storer, and S. Falabella, J. Appl. Phys. 69, 115 (1991). 

[15] R. C. Davidson, Phys. Fluids 19, 1189 (1976). 

[16] S. Jr. Humphries, Appl. Phys. Lett. 32, 792  (1978).  

 29

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Kraft%2C+Robert&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Kusse%2C+Bruce&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Moschella%2C+John&possible1zone=author&maxdisp=25&smode=strresults&aqs=true


[17] S. Jr. Humphries, T R. Lockner, J. W. Poukey, and J. P. Quintenz, Phys. Rev. Lett. 46, 995 

(1981). 

[18] R. Kraft and B. Kusse, J. Appl. Phys. 61, 2425 (1987). 

[19] D. Callahan, Fusion Eng. Design 32–33, 441 (1996).  

[20] D. R. Welch, D. V. Rose, W. M. Sharp, C. L. Olson, and S. S. Yu, Laser Particle Beams 20, 

621  (2002). 

[21] W. M. Sharp, D. A. Callahan, M. Tabak, S. S. Yu, P. E. Peterson, D. V. Rose, and D. R. 

Welch, Nucl. Fusion 44, 221 (2004). 

[22] A. B. Sefkow, Ph.D. thesis, Princeton University, 2007. 

[23] C.H. Kim and L. Smith, Particle Accelerators 18, 101 (1985). 

[24] A. B. Sefkow and R. C. Davidson, Phys. Rev. ST Accel. Beams 10, 100101 (2007). 

[25] A. B. Sefkow, R. C. Davidson, E. P. Gilson, I. D. Kaganovich, A. Anders, J.  Coleman, M. 

Letner, S. M. Lidia, P. K. Roy, P. A. Seidl, P. L. Waldron, S. S. Yu and D. R. Welch, Phys. 

Plasmas 16, 056701 (2009). 

[26] I. D. Kaganovich, R. C. Davidson, M. Dorf, E.A. Startsev, A. B. Sefkow, J. J. Barnard, A. 

Friedman, E. P. Lee, S. M. Lidia, B. G. Logan, P. K. Roy, P. A. Seidl and D. R. Welch , 

Proceedings of the 2009 Patricle Accelerator Conference, in press (2009). 

[27] M. Dorf, Ph.D. thesis, Princeton University, 2010. Available online at 

        http://noneutral.pppl.gov. 

[28] I. D. Kaganovich, R. C. Davidson, M. A. Dorf, E. A. Startsev, A. B Sefkow, A. F. Friedman 

and E. P. Lee, Phys. Plasmas 17, 056703 (2010). 

[29] LSP is a software product of ATK Mission Research, Albuquerque, NM 87110. 

[30] A. Friedman, J.J. Barnard, R.J. Briggs, R.C. Davidson, M. Dorf, D.P. Grote, E. Henestroza, 

E.P. Lee, M.A. Leitner, B.G. Logan, A.B. Sefkow, W.M. Sharp, W.L. Waldron, D.R. Welch 

and S.S. Yu, Nucl. Instrum. Methods Phys. Res. A 606, 6 (2009). 

[31] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill Inc., US, 

1973). 

 

 30

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Kraft%2C+Robert&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Kusse%2C+Bruce&possible1zone=author&maxdisp=25&smode=strresults&aqs=true

