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Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for
a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and
astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma
can be used to effectively neutralize the beam charge and current, so that the self-electric and
self-magnetic fields do not affect the ballistic propagation of the beam. From the practical
perspective of designing advanced plasma sources for beam neutralization, a robust theory should
be able to predict the self-electric and self-magnetic fields during beam propagation through the
background plasma. The major scaling relations for the self-electric and self-magnetic fields of
intense ion charge bunches propagating through background plasma have been determined taking
into account the effects of transients during beam entry into the plasma, the excitation of collective
plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and
dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger
self-magnetic field of the ion beam compared to the case without ionization, and a wake of current
density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal
magnetic field can be applied for controlling the beam propagation. Making use of theoretical
models and advanced numerical simulations, it is shown that even a small applied magnetic field of
about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the
presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves,
thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an
applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric
field of the beam pulse propagating through the background plasma. If controlled, this physical
effect can be used for optimized beam transport over long distances. © 2010 American Institute of
Physics. �doi:10.1063/1.3335766�

I. INTRODUCTION

Neutralization and focusing of intense charge particle
beams by background plasma form the basis for a variety of
applications to high-energy accelerators and colliders,1–3

astrophysics,4–7 inertial confinement fusion, in particular, fast
ignition8 and heavy ion fusion,9–12 magnetic fusion based on
field-reversed configurations fueled by energetic ion
beams,13 the physics of solar flares,14 high-intensity high-
energy particle beam propagation in the atmosphere and
outer-space plasmas,15 as well as basic plasma physics
phenomena.16 For instance, one of the modern approaches to
ion beam compression for heavy ion fusion applications is to
use a dense background plasma, which charge neutralizes the
ion charge bunch, and hence facilitates compression of the
charge bunch against strong space-charge forces.9,10,17–20

For heavy ion fusion applications, the space-charge po-
tential of the ion beam pulse is of order 100 V at the exit of
the accelerator and can reach 10 kV at the end of compres-

sion phase.9,10 The potential energy of the space-charge
potential is much greater than the temperature of the beam
ions, which is set by the ion source emitter and is of order
0.1 eV.9,10 Therefore, ion beams used for heavy ion fusion
applications are space-charge �perveance� dominated, i.e.,
the space-charge potential energy is large compared with
the ion beam temperature, or equivalently, the perveance
term in the equation for the beam envelope is large compared
with the emittance term.11,12 For example, for the Neutralized
Drift Compression eXperiment–I �NDCX-I�,9,10 the per-
veance Q=2�e2Zb

2nbrb
2 /�b

3MVb
2�10−3, and the emittance is

��30� mm mrad; the beam radius in the extraction region
of the ion beam source is 2.5 cm and can be reduced using an
aperture. The evolution of the beam radius, rb, can be as-
sessed by making use of the beam envelope equations,9,10

d2rb

dz2 =
Q

rb
+

�2

rb
3 . �1�

From Eq. �1�, it is evident for NDCX-I experimental param-
eters that the perveance term �the first term on the right-hand
side� dominates the emittance term �the second term on the
right-hand side�. For perveance-dominated beams, one can

a�
Paper CI2 2, Bull. Am. Phys. Soc. 54, 54 �2009�.

b�Invited speaker.
c�Current address at Sandia National Laboratories, Albuquerque, NM 87185.

PHYSICS OF PLASMAS 17, 056703 �2010�

1070-664X/2010/17�5�/056703/20/$30.00 © 2010 American Institute of Physics17, 056703-1

Downloaded 23 Apr 2010 to 198.35.2.84. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.3335766
http://dx.doi.org/10.1063/1.3335766
http://dx.doi.org/10.1063/1.3335766


readily integrate Eq. �1� neglecting the emittance term and
obtain

�drb/dz�2 = ri�
2 + 2Q ln�rb/ri� , �2�

where ri�=drb /dz �i is the initial angle of beam convergence.
For example, from Eq. �2�, it can be shown that if the beam
ballistically propagates without an initial convergence angle
�ri�=0� or an applied focusing field or neutralization, the
beam radius increases from an initial radius ri, to a twice
larger radius 2ri after propagating a distance

�
ri

2ri

dr/�2Q ln�r/ri� 	 1.5ri/�Q . �3�

For typical NDCX-I parameters,9,10 this distance is of order
1 m and is shorter than the length of the drift section. There-
fore, the beam space charge has to be effectively neutralized
during ballistic drift. For future heavy ion fusion drivers with
energy and current larger than the NDCX-I parameters9 the
perveance remains of order Q�10−3 and the drift sections
are longer than a meter.18–22 Therefore the beam space
charge has to be effectively neutralized for all future HIF
facilities. Besides neutralized drift compression, the ion
beam pulses need to be radially compressed. For heavy ion
fusion applications, the beam pulse is focused over distances
of 1–5 m, corresponding to the reactor chamber size;21,22

during focusing, an initial beam radius of 1–2 cm is reduced
to a spot radius of about 1 mm or less �see Fig. 1�. For this
weak ballistic focusing, the beam space charge has to be
neutralized well enough so that the beam convergence angle
is not affected by the self–fields of the beam pulse during the
drift, i.e., from Eq. �2� it follows that the degree of charge
neutralization, f , should satisfy the following condition:

2�1 − f�Q ln�ri/rf� � ri�
2. �4�

Substituting the estimates ri��10−2 , Q�10−3, and ri /rf

�10 into Eq. �4�, we obtain that the degree of neutralization
should be better than �1− f��10−2, or better than 99%.
That is, for a heavy ion fusion driver, the beam self-field
potential is initially of order 10 kV, whereas the self-field
potential after neutralization should be less than 100 V.

Numerical studies21,22 have shown that neutralization by
background plasma can achieve the required degree of
charge neutralization.

This paper presents a survey of the present theoretical
understanding of the neutralization of intense ion beams
by electron sources and a background plasma. The present
discussion is focused on high-energy ion beam pulses with
ion beam velocity that is large compared to the electron ther-
mal velocity, i.e.,

Vb � VTe. �5�

The typical temperature of background plasma electrons pro-
duced in a discharge is of order 3 eV, and the corresponding
electron thermal velocity VTe
�2Te /m is of order
108 cm /s; in case of filament emission the electron tempera-
ture is of order 0.1 eV. The velocity of a 1 MeV potassium
ion is 2.2�108 cm /s. For a heavy ion fusion driver, the
beam energy is envisioned to be higher than 300 MeV.
Therefore, the criterion in Eq. �5� is well satisfied for future
drivers and moderately well satisfied for current experi-
ments. Due to the fast motion of the beam pulse through the
background plasma, a return current is generated in the
plasma, in which the electron flow velocity is comparable
with the beam velocity. Thus the electron flow velocity in the
return current is faster than the thermal electron velocity, and
this electron flow determines the self-electric and self-
magnetic fields of the beam pulse propagating through the
background plasma; and the electron potential energy in the
self-electric field of the beam pulse propagating through the
background plasma is large compared with the electron
temperature. Therefore, the electron pressure terms can
be neglected for fast ion beam pulses, in contrast to the
limit of slow beams, considered, e.g., in Section 4.3.1 of
Ref. 23.

In many applications, an external magnetic field is ap-
plied for plasma confinement, or for focusing the ion beam.
Therefore, the effects of the applied magnetic field on the
degree of charge and current neutralization of an intense ion
beam pulse propagating through a background plasma have
also been investigated.24–26 It has been recently demonstrated
that even a weak magnetic field �about 100 G� can signifi-
cantly change the degree of charge and current neutralization
of an intense ion beam pulse propagating through a back-
ground plasma.

The organization of the paper is as follows. Section II
briefly describes different schemes to introduce electrons
into a positive ion beam pulse for neutralization. Advantages
of volumetric plasma present everywhere along the beam
pulse propagation are emphasized. Section III identifies the
critical plasma parameters that assure very good charge and
current neutralization of the ion beam pulse. Sections IV and
V summarize major results on the self-electric and self-
magnetic fields generated by an intense ion beam pulse
propagating in a background plasma. Sections VI–VIII de-
scribe the effects of gas ionization and solenoidal and dipole
magnetic fields, respectively, on the self-electric and self-
magnetic fields of an ion beam pulse propagating in a back-
ground plasma. Conclusions are summarized in Sec. IX.

With
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FIG. 1. �Color online� Schematics of different neutralization methods.
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II. DIFFERENT SCHEMES TO INTRODUCE
ELECTRONS INTO A POSITIVE ION BEAM PULSE
FOR NEUTRALIZATION

A. Neutralization by emitting filaments positioned
near the beam sides

A very important application of this research is heavy
ion fusion, which utilizes a neutralized drift compression
scheme to achieve high brightness beam pulses. An effective
way to achieve high current density of an ion beam pulse on
a target is to simultaneously compress the beam pulse in both
the radial and longitudinal directions. This is accomplished
by applying a velocity tilt to the beam pulse, so that the beam
tail is accelerated relative to the beam head.10,17,19,20,27 As a
result, the beam line charge density increases during the drift
compression, when the beam tail approaches the beam head.
Similarly, the beam pulse can be compressed radially by
passing the beam pulse through a focusing element, for ex-
ample, a strong solenoidal magnetic lens. Because the self-
electric field of the beam increases rapidly during compres-
sion, the beam space charge may prevent tight compression,
and thus the space charge has to be effectively neutralized. In
Ref. 28, it was shown that, because the electron response
time is fast compared with the beam pulse duration, the neu-
tralization process can be considered local for any cross sec-
tion of the beam pulse. Therefore, in the following we focus
only on the neutralization process of beam pulses with con-
stant beam velocity. Experimental details of the drift com-
pression scheme are given in Refs. 10, 17, 19, and 20
whereas a theoretical description of limiting factors of the
compression scheme are described in Refs. 20 and 27.

To compensate for a large space-charge potential in the
neutralized drift compression section of the accelerator, a
sufficiently large number of electrons must be introduced.
This can be accomplished by supplying electrons from elec-
tron emitters positioned at the peripheral region of the trans-
port section.29–31 Emitted electrons from the emitters posi-
tioned near the side region of the ion beam pulse acquire
energies of order the unneutralized beam self-field potential.
In a stationary electrostatic field, the electrons are reflected
back radially toward the emitter. Therefore, the electron den-
sity is distributed over distances larger than the beam radius.
Hence, one would expect that the degree of charge neutral-
ization to be of order 50% in such a scheme31,32 �see also
Sec. 3.6.2 of Ref. 23�. Figures 2 and 3 show the results of
simulations making use of the LSP particle-in-cell code.33

Initially, when the beam pulse is far from the emitting side-
walls, the neutralization is poor, of order 50%, as predicted
by analytical estimates. As soon as the expanding beam
comes in contact with the emitting walls, the neutralization is
greatly improved �compare Figs. 3 and 2�, most probably due
to cold electrons, trapped by the beam potential during the
transient process when the self-potential decreases, as the
energetic electrons leave the beam pulse to the walls. Experi-
ments described in Ref. 30, where a filament was inserted
into the beam path, reported the degree of neutralization to
be about 90%. In the experimental studies in Ref. 29, the
self-potential was measured for the case when a nearby

emitting wire �tantalum filament� was introduced into a long
beam pulse at the edge of the beam. The measured potential
drop from the center of the beam to the beam periphery was
found to scale according to
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FIG. 2. �Color online� Color plots of �a� ion beam density, �b� electron
density, and �c� one-dimensional slice plot along the radial direction
�z=10 cm� at 100 ns after beam propagation along the neutralizing chamber
with emitting electrodes positioned at the sidewalls �r=4 cm�. Beam
parameters are K+beam ions with energy 320 keV and beam pulse duration
44 ns �with 5 ns linear rise and decay times�. The beam radial profile is
taken to be Gaussian with nb0 exp�−r2 /rb

2� where rb=1 cm; and the maxi-
mum beam current density is 0.19 A /cm2.
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�� = C���0Te/e , �6�

where ��0 is the unneutralized beam potential, Te is the
emitter temperature, and C is a coefficient, whose value de-
pends on the beam profile and location of the emitter. How-
ever, there has not been a sufficiently comprehensive theo-
retical and numerical studies performed to confirm the
scaling given by Eq. �6�.

In summary, neutralization by filament emission does
not provide the necessary �close to the 99%� high degree of
neutralization required by condition given in Eq. �4�, and is
not sufficient for space-charge neutralization of intense
heavy ion beam pulses during drift compression.

B. Neutralization by a grid immersed in the beam

If the emitting grid is immersed in the beam, the charge
neutralization is greatly improved �compare Fig. 4�c� and
Figs. 4�a� and 4�b��. One way to accomplish this is to intro-
duce a grid with high transmission ratio, e.g., a honeycomb
grid structure in the path of the beam.34,35 For the case of a
high-energy beam, the emission may occur not only due to
secondary electron emission, but also due to gas desorption
and subsequent gas ionization by the beam without grid heat-
ing to achieve thermoemission. The results of numerical
simulations for the emitting foil, transparent to the ion beam
pulse, are shown in Figs. 4�c� and 5. In the simulations we
have assumed intense emission from the emitting surfaces so

that the electron flux is limited by the Child–Langmuir law.33

In the experiments, some poor emitters may not provide a
sufficient supply of electrons. As soon as the beam intersects
the emitting foil, the beam space charge is well-neutralized,
as shown in Fig. 5. However, recent experiments34 with a
honeycomb grid did not show significant neutralization when
a honeycomb grid was introduced into the beam path in
NDCX-I.36 Neutralizing the beam space charge by means of
biased grids or electrodes in the presence of a weak applied
magnetic field ��100 G� allows the establishment of a fo-
cusing radial electric field in the transport section,37 or serves
as a high-current electrostatic plasma lens.38 Emission from
the grid inserted into the beam pulse may provide the neces-
sary high degree of beam space-charge neutralization. How-
ever, there has not been a sufficiently comprehensive experi-
mental study performed to confirm the high degree of
neutralization.

C. Neutralization by a plasma plug

Other options for neutralization include passing the
beam pulse through a background plasma, either a finite size
layer of plasma or a volumetric plasma produced everywhere
along the beam path �see Fig. 1�. Previous studies have ex-
plored the option of ion beam pulse neutralization by passing
the beam pulse through a finite layer of plasma or a plasma
plug.39 The ion beam pulse extracts electrons from the
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FIG. 3. �Color online� Color plots of �a� ion beam density, �b� electron density, and �c� one-dimensional slice plot along the radial direction �z=35 cm� at
300 ns for the same conditions as in Fig. 2�d�. One-dimensional plots of the ion beam density and electron density slice along the beam propagation direction
at r=1 cm for same conditions as in Fig. 2.
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plasma plug and drags electrons along during its motion out-
side the plasma plug region. There are several limitations of
this scheme. When the intense ion beam pulse enters the
plasma, the electrons stream into the beam pulse in the
strong self-electric and self-magnetic fields, attempting to
drastically reduce the ion beam space charge from an unneu-

tralized state to a completely neutralized state. After the ion
beam pulse exits the plasma, the beam carries along the elec-
trons, with average electron density and velocity equal to the
ion beam’s average density and velocity.40,41 However, large-
amplitude plasma waves are excited in a nonstationary peri-
odic pattern resembling butterfly-wing motion.42 Due to
these transient effects, the beam may undergo transverse
emittance growth, which would increase the size of the focal
spot.21 Smoother edges of the plasma plug density profile
lead to a more gradual neutralization process and, in turn,
results in a smaller emittance growth.21,22 There are other
limitations of this scheme in addition to a deterioration due
to transient effects during the beam entry into and exit from
the plasma plug. For typical plasma sources parameters with
the electron temperature about 3–8 eV and density of order
108–1011 cm−3, the electron Debye length is small com-
pared with the beam radius, providing a high degree of neu-
tralization. After the ion beam exits the plasma plug it is
focused by a magnetic lens. An accompanying electron beam
extracted from the plasma plug follows the ion beam and is
also transversely focused. Due to the radial compression of
the electron beam, the transverse electron temperature in-
creases inversely proportional to the beam radius-squared
�Te�1 /r2�, and can reach very high values, in the keV range
if the beam radius decreases by a factor of 10 during the
radial compression.22 Hot electrons cannot neutralize effec-
tively the beam pulse at the focal spot because the electron
Debye length becomes comparable with the beam radius.
This may result in poor beam focusing. Including gas ioniza-
tion by the beam ions improves the neutralization, but not to
the level of 99% required for reliable ballistic drift compres-
sion, mainly because the electrons, which are produced by
ionization, are concentrated in the beam path, whereas for
best neutralization of the ion beam pulse, the supply of elec-
trons should be from outside the beam21,22 �see Sec. VI for
details on the effects of gas ionization on the degree of beam
current and charge neutralization�. In view of these facts a

0 10 20 30 40
z(cm)

r(c
m
)

1

2

1

10 cm

5

50

3

4

9 -3

9 (a)

0 10 20 30 40
z(cm)

r(c
m
)

1

2

1

10 cm

5

50

3

4

9 -3

9 (b)

0 10 20 30 40
z(cm)

r(c
m
)

1

2

1

10 cm

5

50

3

4

9 -3

9 (c)

FIG. 4. �Color online� Color plots of ion beam density at three instants of
time after beam propagation along the neutralizing chamber at 30, 200, and
300 ns. Comparison of the three cases: �a� unneutralized, �b� neutralized
with emission from the sidewalls, and �c� neutralized with emission from a
grid introduced into the beam path at z=5 cm. Emission is assumed to be
space-charge limited according to the Child–Langmuir law.

FIG. 5. �Color online� One-dimensional plots of the ion beam density and
electron density slice along the beam propagation direction at r=1 cm
for the same conditions as in Fig. 4�c�. Beam is very well space-charge
neutralized after the beam passes through an emitting grid positioned at
z=5.1 cm.
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large volume background plasma is necessary everywhere
along the beam path in order to provide the required high
degree of the beam space-charge neutralization.

D. Neutralization by a volumetric plasma

Neutralized ballistic focusing typically requires the pres-
ence of a background plasma in and around the beam pulse
path for very good charge neutralization �the degree of neu-
tralization is very close to unity, �1− f��1�. Reference 22
showed that hot electrons cannot neutralize the beam well
enough. Therefore, any electron heating due to beam-plasma
interactions has to be minimized. The presence of cold,
“fresh” plasma in the beam path provides the minimum
space-charge potential and the best option for neutralized
ballistic focusing. Experimental studies of ballistic transverse
focusing have confirmed that the best neutralization results
are achieved when volumetric plasma is used everywhere
along the beam path to assure robust charge
neutralization.43,16 Hence, in the following we only study the
case when a large amount of cold background plasma is
available everywhere along the beam path.

III. CRITICAL PLASMA PARAMETERS FOR EFFECTIVE
CHARGE AND CURRENT NEUTRALIZATION

If the beam pulse propagates through a cold unmagne-
tized plasma, and the background plasma density is large
compared with the beam density, the self-electric and self-
magnetic fields of the beam pulse can be obtained by the use
of linear perturbation theory.44 The transport of relativistic
electron beams through the background plasma has been
studied in detail in various contexts.45,46 Interaction of a
stripped, pinched ion beam pulse with the plasma has also
been discussed in Ref. 28, where the assumption of current
neutrality was made in order to obtain self-consistent solu-
tions for the self-electric and self-magnetic fields of the beam
pulse. In previous studies,28 we focused on the nonlinear
case, where the plasma density, np, is comparable with or
smaller than the beam density, nb, and the degree of current
neutralization is arbitrary. The results of the theory agree
well with particle-in-cell simulations and thus confirm the
analytical formulas for the general nonlinear case, np�nb.47

This section briefly reviews the major conclusions of that
study and serves as basis for discussions of the additional
effects of gas ionization, and solenoidal and dipole magnetic
fields in subsequent sections.

In most applications, the background plasma electrons
are cold—the electron thermal velocity is small compared
with the direct beam velocity �Eq. �5��. We also consider
intense particle beams with beam radius large compared to
the Debye length. If the electron temperature is about 3 eV
and density of order 1011 cm−3, typical for most plasma
sources, the electron Debye length is very small compared
with the beam radius and is irrelevant for considered effects
here associated with electron flows in the return current.
Therefore, due to the fast motion of the beam pulse through
the plasma, a flow in the return current is generated in the
plasma with the flow velocity comparable to the beam pulse
velocity. The plasma flow in the return current is faster than

the electron thermal velocity and is responsible for the self-
electric and self-magnetic fields inside the beam pulse,
whereas the electron pressure term can be neglected, in con-
trast to the case of slow beam pulses. Particle-in-cell simu-
lations show that in most cases the electron flow is laminar
and does not become multistreaming. Thus, the cold electron
fluid equations can be used for the electron description, and
thermal effects are neglected in the present study. The elec-
tron fluid equations together with Maxwell’s equations com-
prise a complete system of equations describing the electron
response to a propagating ion beam pulse. The electron cold-
fluid equations consist of the continuity equation,

�ne

�t
+ � · �neVe� = 0, �7�

and the force balance equation,

�pe

�t
+ �Ve · ��pe = − e�E +

1

c
Ve � B� , �8�

where −e is the electron charge, Ve is the electron flow ve-
locity, pe=�emVe is the average electron momentum, m is
the electron rest mass, and �e is the relativistic mass factor.
Maxwell’s equations for the self-generated electric and mag-
netic fields, E and B, are given by

� � B =
4�e

c
�ZbnbVb − neVe� +

1

c

�E

�t
, �9�

� � E = −
1

c

�B

�t
, �10�

where Vb is the ion beam flow velocity, ne and nb are the
number densities of the plasma electrons and beam ions, re-
spectively �far away from the beam ne→np�, and Zb is the
ion beam charge state. The plasma ions are assumed to re-
main stationary with Vi=0. The assumption of immobile
plasma ions is valid for sufficiently short ion pulses with
2lb	rb

�M /m.24,25 Here, rb and 2lb are the ion beam radius
and length, respectively, and M is the plasma ion mass.

A. Criterion for charge neutralization

In Refs. 28, 48, 42, and 49 the steady-state propagation
of an ion beam pulse propagating through a background
plasma has been thoroughly explored. We have developed
reduced nonlinear models, which describe the stationary
plasma disturbance �in the beam frame� excited by the in-
tense ion beam pulse of the final length. The analytical re-
sults agree very well with the results of particle-in-cell
simulations.47,24,25,48,42,49 The model predicts very good
charge neutralization �the degree of neutralization is very
close to unity� during quasisteady-state propagation, pro-
vided the beam is nonrelativistic and the beam pulse duration

b is much longer than the electron plasma period 2� /�pe,
where �pe=�4�e2ne /m, i.e.,

�pe
b � 2� . �11�
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Thus, the degree of charge neutralization depends on the
beam pulse duration and plasma density and is independent
of the ion beam current �provided np�nb�. Figure 6 shows
the results of particle-in-cell simulations for electron density
perturbations caused by propagation of a short ��pe
b=4�
and long ��pe
b=60� ion beam pulses, and demonstrates that
the charge neutralization is very good �the degree of neutral-
ization is very close to unity� for long beam pulses. Quanti-
tative formulas for the degree of neutralization are given in
Sec. V.

B. Criterion for current neutralization

The degree of ion beam current neutralization depends
on both the background plasma density and the ion beam
current. The ion beam current can be neutralized by the elec-
tron return current. The ion beam charge is neutralized pri-
marily by the action of the electrostatic electric field. In con-
trast, the electron return current is driven by the inductive
electric field generated by the inhomogeneous magnetic flux
of the ion beam pulse in the reference frame of the back-
ground plasma28,49 �see Fig. 7�. The relationship between the
electron flow velocity and the induced magnetic field can be
obtained by applying the conservation of generalized
vorticity,50

�  � � pe −
e

c
B = 0. �12�

If � is initially equal to zero ahead of the beam, and all
streamlines inside of the beam originate from the region
ahead of the beam, then � remains equal to zero every-
where. Therefore, due to conservation of the generalized vor-
ticity, it follows from Eq. �12� for long beam pulses with
beam half length lb�rb that

B� = −
�Az

�r
	 −

c

e

�pez

�r
, �13�

where B is the azimuthal component of self-magnetic field,
Az is the vector potential, and axisymmetry is assumed. Note
that Eq. �13� also expresses the conservation of canonical
momentum in the limit of long charge bunches, lb�rb, and

pez 	
e

c
Az, �14�

if the plasma is unperturbed in front of the beam pulse, i.e.,
Ve=0, A=0 ahead of the beam pulse. Equation �12� is valid
even for short beam bunches, where the conservation of ca-
nonical momentum is not applicable.

The electron return current and self-magnetic field can
be obtained from Ampere’s law, provided the displacement
current can be neglected. Substituting Eq. �14� into Ampere’s
law gives28,49,33

−
1

r

�

�r
r

�

�r
Az =

4�

c
ZbenbVbz −

�pe
2

c2 Az. �15�

Equation �15� describes the degree of current neutralization
of the beam. Analyzing Eq. �15�, one can see that the self-
magnetic field of the beam pulse penetrates into the plasma
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FIG. 7. �Color online� Schematic of return current generation by an alter-
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over distances of order the skin depth c /�pe. If the beam
radius rb is small compared with the skin depth, rb	c /�pe,
then the electron return current is distributed over distances
of order c /�pe, which is much broader than the ion beam
current profile. The magnetic field far away from the beam
should decrease to zero. Therefore, from Eq. �15� it follows
that the total current integrated along the beam cross section
over radial distances much larger than skin depth is equal to
zero. From Ampere’s law, it follows that the electron return
current is about �perb /c times smaller than the ion beam
current. Consequently, the ion beam current is neutralized by
the electron current, provided the beam radius is large com-
pared with the electron skin depth c /�pe, i.e., provided

rb � c/�pe, �16�

and is not neutralized in the opposite limit. This condition
can be expressed as48,33

Ib �
1

4�b
IA�nb/np� = 4.25��bnb/np�kA , �17�

where �bc is the directed ion beam velocity, �b

=�1 / �1−�b
2�, and the Alfven current, IA=mc3�b�b /e

=17�b�bkA. The condition in Eq. �17� can be recast
in terms of the Budker parameter for the beam,
�b=e22��0

�nbrdr /Mbc2 using the relationship Ib / IA

	�bMb /m�b.51,52

IV. SELF-ELECTRIC FIELD AND SELF-FOCUSING
FORCE OF THE FAST ION BEAM PULSE
PROPAGATING THROUGH A BACKGROUND PLASMA

The self-force Fr�r� acting on the beam ions is often
represented by introducing the degree of charge neutraliza-
tion, f , and current neutralization, fM,12,23,48,51 i.e.,

Fr�r� =
4�e2Zb

2

r ��1 − f��
0

r

nbrdr − �1 − fM��b
2�

0

r

nbrdr� .

�18�

However, for the case of ion beam propagation through a
dense background plasma, the degree of charge neutraliza-
tion is very close to unity, and the use of Eq. �18� is incon-
venient. The electrons neutralize the ion beam pulse to such
a high degree that the remaining self-electric field is small
and is associated with the electron inertia terms caused by
the electron flow in the return current, Ve�Vbnb /np. Not-
withstanding the fact that the electron inertia terms are small,
the electron inertia terms are large compared with electron
pressure effects for the case of fast beams, provided that the
criterion in Eq. �5� is satisfied. For heavy ion fusion applica-
tions, we are primary interested in nonlinear models, where
the beam density is comparable with the plasma density and
describe the plasma disturbance excited by an intense �finite
length� ion beam pulse. For this case, the simplest way to
analyze the self-electric field and self-focusing force of the
ion beam pulse propagating in a background plasma is to
perform the calculations in the beam frame. For analyzing
the electron response to the beam pulse, the beam propaga-
tion through background plasma can be considered as a

steady-state phenomena because in most applications ion
beam dynamics is slow compared with the electron response
time. Therefore, the magnetostatic and electrostatic approxi-
mations

Eb = − �b, �19�

are adequate.53 Here, superscript b denotes the beam frame,
as apposed to the laboratory frame. No subscripts or super-
scripts are used to denote values in the laboratory frame.
From Eq. �3�, the self-electric field can be obtained from the
electron flow velocity in the electron return current, which
gives

eEz
b = m�Vb − Vez�

�Vez

�z
. �20�

Here, we have neglected small radial terms in the limit of
long beam pulses, lb�rb and Vez is given by Eqs. �14� and
�15�.28 From Eq. �20� it follows that the electrostatic poten-
tial is

ez
b = − m�VbVez − Vez

2 /2� , �21�

and the radial self-electric field is given by

eEr
b = m�Vb − Vez�

�Vez

�r
. �22�

In the beam frame, the magnetic force acting on beam ions
vanishes, and the total radial force is28

Fr = ZbeEr
b = mZb�Vb − Vez�

�Vez

�r
. �23�

Equation �23� together with Eqs. �14� and �15� for the elec-
tron flow velocity in the electron return current, and the
quasineutrality condition ne=np+Zbnb, determine the self-
focusing force. Note that this model is valid in the general
nonlinear case where the background plasma density is com-
parable with the beam density, np�Zbnb, or even in the limit
of tenuous plasma, np	Zbnb.28 The self-focusing force is
strongly affected by electron inertia effects. However, this
force can also be important for fast, narrow ion beam pulses.

In the case of complete current neutralization, ZbnbVb

=neVe and np�Zbnb, Eq. �23� becomes

Fr =
mVb

2Zb
2

np

�nb

�r
. �24�

Increase in the plasma density results in a decrease in the
self-focusing force. Therefore, the pinching effect can be
mitigated by introducing more plasma into the beam trans-
port region. Note again, for fast ion beams, that adding finite
electron temperature effects yields a small correction due to
the electron pressure, i.e.,

Fr =
Zb

2�mVb
2 − Te�

np

�nb

�r
,

according to Eq. �5�.
It is instructive to describe self-electric field in the labo-

ratory frame because most simulations are performed in the
laboratory frame, where physical boundaries are stationary.
In the laboratory frame, the self-electric field is given by
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E = Eb −
Vb � B

c
. �25�

Here, the z-component of the electric field is the same in
both the laboratory and beam frames, but the radial compo-
nent is different, i.e.,

Er = Er
b +

1

c
VbB�. �26�

Substituting Eqs. �22� and �14� into Eq. �26�, it follows that
the terms Er

b and �1 /c�VbB� nearly cancel each other, and the
remaining small nonlinear term �proportional to Zbnb /np�
gives the radial self-electric field

eEr = − mVez
�Vez

�r
. �27�

Note that the radial self-electric field in the laboratory frame
is positive �defocusing�, whereas the electric field in the
beam frame is negative �compare Eqs. �20� and �15��. More-
over, the radial self-electric field vanishes completely in the
linear approximation �in the limit lb�rb�.28 The electric field
in the laboratory frame can be represented as a sum of the
inductive and electrostatic parts28

E = −
1

c

�

�t
A − � , �28�

where both the vector potential and the electrostatic potential
can be expressed as functions of the flow velocity in the
return current,28 A=cmVezez and =mVez

2 /2. Correspond-
ingly, the z-component of the electric field in the laboratory
frame is dominated by the inductive part, whereas the radial
component is given by the electrostatic part of the electric
field. That is, an electromagnetic code is required to describe
the self-focusing force in the laboratory frame; and an elec-
trostatic code is not sufficient, even for the case of a nonrel-
ativistic beam and a weak self-magnetic field.

The self-focusing force in the laboratory frame can be
expressed as28

Fr = eZb�Er −
VbzB�

c
� , �29�

and is dominated by the magnetic component of the force. In
Eq. �29�, Er is given by Eq. �27�, and Vez and B� are given by
Eqs. �14� and �15�.

V. THE DEGREE OF CHARGE NEUTRALIZATION
AND EFFECTIVE PERVEANCE OF THE NEUTRALIZED
FAST ION BEAM PULSE PROPAGATING
THROUGH BACKGROUND PLASMA

The degrees of charge and current neutralization can be
calculated by making use of Eqs. �14�, �15�, �27�, and �29�
and depend on the radial profile of the beam density. Ana-
lytical formulas have been developed in Ref. 48. Here, we
focus on nonrelativistic, space-charge-dominated beams,
which have a flat-top radial density profile with a sharp
boundary at the outer beam radius, rb. It is convenient to
introduce the average degree of charge neutralization �f�
over the beam cross section defined by

�f� = 1 −
2�0

rb�Zbnb + np − ne�rdr

Zbnbrb
2 . �30�

Making use of Poisson’s equation, we obtain from Eq. �30�

�f� = 1 −
Er�rb�

2�eZbnbrb
. �31�

The general expression for �f� for arbitrary ratios of nb /np

and rb�pe /c is given in Ref. 48. In the limits nb /np�1 and
rb�pe /c�1, it reduces to

�f� = 1 − �b
2Zbnb

np

c

rb�pe
. �32�

It can be readily shown48 that the maximum deviation from
quasineutrality occurs when rb�c /�pe, and the degree of
nonquasineutrality is bounded by �Zbnb+np−ne� / �Zbnb�
	0.25�b

2. Therefore, for nonrelativistic, long ion beam
pulses, there is almost complete charge neutralization. For
heavy ion fusion parameters, �b	0.2 and degree of charge
neutralization are more than 99%.

The effective electric self-field perveance in the presence
of plasma scales as 1− �f�, where �f� is the average charge
neutralization defined in Eq. �32�. Moreover, the total effec-
tive perveance including both self-electric and self-magnetic
effects scales as12

Qeff

Q0
=

1 − �f� − �b
2�1 − fm�rb��

1 − �b
2 , �33�

where the magnetic neutralization fm�rb�=−Ie�rb� / Ib�rb� is
calculated at the beam edge, and Ie�r� is the electron current,
Ie�r�=−e�0

rneVez2�rdr, and Ib�r� is the ion beam current,
Ib�r�=Zbe�0

rnbVbz2�rdr, both within radius r. The general
expression for Qeff for arbitrary ratios of Zbnb /np and
rb�pe /c is given in Ref. 48. In the limits, Zbnb /np�1 and
rb�pe /c�1, it reduces to

Qeff = −
me

M

Zbnb

np

rb�pe

2c
. �34�

The effective perveance Qeff in Eq. �34� has a different sign
for the perveance than Olson’s electrostatic result31 for a
plasma plug, Qe=Zbme /M. The effective perveance in Eq.
�34� is greatly reduced for the case of beam propagation in
dense plasma with np�Zbnb.

VI. EFFECTS OF GAS IONIZATION ON THE DEGREE
OF BEAM CURRENT AND CHARGE
NEUTRALIZATION

Gas ionization can considerably affect the degree of
beam current neutralization. In the case of a preformed back-
ground plasma, the electric field accelerates electrons in the
head of the beam pulse to produce the return current, and
then decelerates electrons in the tail of the beam pulse to
remove the return current behind the beam pulse. The radial
electric field pushes electrons toward the beam center, and is
compensated by the magnetic part of the Lorentz force
eVezB /c �see Fig. 8�. If an electron is produced inside the
beam pulse in the tail region, then the longitudinal electric

056703-9 Physics of neutralization of intense high-energy ion… Phys. Plasmas 17, 056703 �2010�

Downloaded 23 Apr 2010 to 198.35.2.84. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



field accelerates such an electron in the opposite direction to
the main flow of electrons comprising the background
plasma. Moreover, the radial electric field pushes such elec-
trons into the beam center because their force is not now
compensated by the self-magnetic part of the Lorentz force
eVezB /c. As a result, a wake in the electron flow velocity
appears behind the ion beam pulse. Electrons flow in the
direction opposite to the beam velocity in this wake region
�see Fig. 9�. In this case, the current associated with such
electrons enhances the beam current rather than diminishes
the beam current, as in the usual case for a self-generated
return current. An analytical description of the return current
when ionization effects need to be taken into account be-
comes complicated because the value of the return current is
not only a function of the local plasma density and vector

potential, but is also determined by the entire preceding por-
tion of the beam pulse.54

In summary, the effects of gas ionization can lead to
considerable enhancement of the self-magnetic field in the
tail of the beam pulse.

VII. EFFECTS OF AN APPLIED SOLENOIDAL
MAGNETIC FIELD ALONG THE BEAM PROPAGATION
ON THE DEGREE OF CURRENT AND CHARGE
NEUTRALIZATION

The application of a solenoidal magnetic field along the
beam propagation allows additional control and focusing of
the beam pulse.37 Here, we consider the case when the ion
beam pulse exits a diode located in vacuum, in a magnetic
field free region, and enters a background plasma, separated
from diode by an electrostatic field.9,10 After propagating in a
background plasma in the drift section for a few meters, the
beam pulse is focused onto the target by a magnetic lens.
A strong magnetic lens �final focusing magnet� with a mag-
netic field up to several Tesla can effectively focus an intense
ion beam pulse in short distances of the order of a few tens
of centimeters, as it is accomplished in the NDCX-I
experiments.9,18 However, due to the very strong magnetic
field in the solenoid, the leaking of the magnetic field outside
the solenoid can affect the degree of charge and current neu-
tralization far away from the final focusing magnet. The
plasma is produced by plasma sources inside the solenoidal
magnetic field everywhere along the beam path in order to
provide neutralization in the solenoid region. Even a small

-eEr-eEz

Bϕ
FIG. 8. �Color online� Schematic of the generation of a current wake behind
an ion beam pulse due to gas ionization.
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FIG. 9. �Color online� The electron density and ion density, magnetic field, and current density of the ion beam pulse are calculated in two-dimensional slab
geometry using the LSP code �Ref. 22�. The background plasma density is np=1011 cm−3. The beam velocity is Vb=0.2c; the beam current is 1.2 kA
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b�pe=75. Shown are color plots of �a� the ion density produced by beam ionization,
�b� the electron density produced by beam ionization, �c� the magnetic field component By generated by the ion beam pulse, and �d� the current density.
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solenoidal magnetic field, typically less than 100 G, strongly
changes the self-magnetic and self-electric fields in the beam
pulse propagating in a background plasma.27,63 Such values
of magnetic field can be present over distances of a few
meters from the strong solenoid, and thereby affect the fo-
cusing of the beam pulse. Moreover, an additional small so-
lenoidal magnetic field can be applied to optimize propaga-
tion of the beam pulse through a background plasma over
long distances in the drift section.

Note that we are not relying on the collective lens effect
proposed by S. Robertson,55 where plasma or electron
sources are absent inside the solenoidal magnetic field re-
gion, and neutralizing electrons are dragged by the ion beam
pulse into the solenoid region, which is electron free in the
absence of the beam pulse. For this case, the electrons cross
the magnetic field lines, and thus a fast electron rotation with
frequency �ce /2 is established inside the solenoidal magnetic
field region. Here, �ce=eBz /mc is the electron cyclotron
frequency. The magnetic force and centrifugal force yield a
net focusing force acting on the electrons, i.e.,
−e�cerBz /2c+m�ce

2 r /4=−m�ce
2 r /4. The focusing force act-

ing on the electrons is counterbalanced by the space-charge
radial electric field eEr=−m�ce

2 r /4, which in turn focuses the
beam ions. For a collective lens to operate properly, no elec-
trons should be present inside the solenoid.56 Therefore, col-
lective lens configurations have to be carefully designed to
prevent electrons produced near the target from penetrating
into the solenoid region.

Moreover, if an ion beam pulse propagates together with
neutralizing, comoving electrons after exiting the plasma re-
gion, and encounters “fresh” new plasma, a very fast two-
stream electron-electron instability is likely to develop; and
the resulting electric field fluctuations will slow down the
fast electrons comoving with the beam, and prevent them
from following the beam pulse. If electrons comoving with
the beam have a spread in velocity and are confined to the
beam pulse by a positive potential,41,53 as soon as the beam
enters the background plasma, the self-potential is reduced
and the fast electrons leave the beam pulse. Therefore, in the
plasma region, electrons initially moving with the beam ve-
locity cannot follow the beam pulse; and neutralization is
provided by the “fresh” plasma electrons originating in front
of the beam pulse. This phenomenon is observed in particle-
in-cell simulations. Therefore, in the following we consider
only the case where the beam propagates through fresh back-
ground plasma.

In Refs. 57 and 58, the response of a magnetized plasma
to injection of an intense ion beam was studied while ne-
glecting electron inertia effects, which corresponded to mag-
netic fields of a few Tesla in ion ring devices. In the present
paper, we analyze the opposite limit, corresponding to small
values of magnetic field. In the collisionless limit and with-
out an applied solenoidal magnetic field, the return current is
driven by an inductive electric field which is balanced by
electron inertia effects. Taking electron inertia effects into
account allows us to study the transition from the limit where
the solenoidal magnetic field is small, i.e., where the pres-
ence of the applied solenoidal magnetic field begins to affect
the return current in the plasma, and determines the range of

magnetic field values that strongly affect the self-electric and
self-magnetic fields of a beam pulse propagating in a back-
ground plasma. This allows us to study the beam pulse evo-
lution over a wide range of solenoidal magnetic field
strengths, from approximately zero, to very large values,
such as when the beam pulse encounters an applied solenoi-
dal magnetic lens.

In Refs. 24 and 25 it was shown that application of a
solenoidal magnetic field strongly affects the degree of cur-
rent and charge neutralization when

�ce � �pe�b, �35�

or equivalently,

B � 320 G �b
�np/1010 cm−3. �36�

The threshold value of B given in Eq. �36� corresponds to
relatively small values of the magnetic field for nonrelativis-
tic beams. When the criterion in Eq. �36� is satisfied, appli-
cation of the solenoidal magnetic field leads to three unex-
pected effects. The first effect is the dynamo effect, in which
the electron rotation generates a self-magnetic field that is
much larger than in the limit with no applied magnetic field.
The second effect is the generation of a much larger self-
electric field than in the limit with no applied field. The third
unexpected effect is that the joint system consisting of the
ion beam pulse and the background plasma acts as a para-
magnetic medium if �ce	2�pe�b, i.e., the solenoidal mag-
netic field is enhanced inside of the ion beam pulse.

Application of the solenoidal magnetic field can be used
for active control of beam transport through background
plasma by enhancing or reducing the self-focusing force.
Without the applied solenoidal magnetic field, the radial self-
force is always focusing because the magnetic attraction of
parallel currents in the beam always dominates the radial
electric field, which is screened by the plasma better than the
self-magnetic field. However, when a solenoidal magnetic
field is applied, the radial electric force can become larger
than the magnetic force, resulting in beam defocusing. For
larger values of the solenoidal magnetic field, corresponding
to

�ce � 2�pe�b, �37�

or equivalently,

B � 640 G �b
�np/1010 cm−3 �38�

the beam generates whistler and lower hybrid waves.24,25,63

Note that here we are only interested in fast electron waves
which modify the electron return current and not in slow
waves and instabilities on the ion time scale. When whistler
or lower hybrid waves are excited, the particle-in-cell simu-
lations show that the structure of the self-electromagnetic
field becomes rather complex, and the transport of very in-
tense beam pulses can be strongly affected by the wave
generation.20,59 The intense whistler wave excitations can be
used for diagnostic purposes.

In Ref. 63, it was also demonstrated, in the regime where
�ce�2�b�pe and kqs

−1�rb�kem
−1, where kem,qs are given in Eq.

�46�, that the positive charge of the ion beam pulse becomes
overcompensated by the plasma electrons, and the associated
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strong transverse-focusing self-electric field has the domi-
nant influence on the beam ions, compared with the self-
magnetic field. It was also shown, for the case where the
beam radius is small compared to the electron skin depth,
that the self-focusing force is significantly enhanced com-
pared to the self-focusing force acting on the beam particles
in the absence of an applied magnetic field. In addition, the
local diamagnetic plasma response is observed in the nu-
merical simulations, and is also predicted analytically for
�ce�2�b�pe. Note that these results differ significantly from
the case �ce	2�b�pe, where the transverse electric field is
defocusing, and the plasma response is paramagnetic. The
qualitatively different local plasma responses are separated
by the critical field case where �ce=�ce

cr =2�b�pe, corre-
sponding to the resonant excitation of large-amplitude
wave-field perturbations. The threshold magnetic field in the
inequality �ce�2�b�pe corresponds to a relatively weak
magnetic field of the order of 10 G �for NDCX-I9,18� and
100 G �for NDCX-II19�. Therefore, the magnetic fringe fields
of the final-focus solenoid above this value can penetrate
deep into the drift section. In particular, these fringe fields
provide conditions for enhanced beam self-focusing, which
can have a significant influence on the transverse beam dy-
namics for the parameters characteristic of NDCX-II.63

In the presence of an applied solenoidal magnetic field,
the system of equations describing the self-electric and self-
magnetic fields becomes much more complicated. A strong
solenoidal magnetic field inhibits radial electron transport,
and the electrons move primarily along the magnetic field
lines. For high-intensity beam pulses propagating through a
background plasma with pulse duration much longer than the
electron plasma period, one is tempted to assume validity of
the quasineutrality condition, ne=np+Zbnb. In the limit of a
strong applied solenoidal magnetic field, the plasma elec-
trons are attached to the magnetic field lines, and their mo-
tion is primarily along the magnetic field lines. For one-
dimensional electron motion, the charge density continuity
equation, �� /�t+� •J=0, combined with the quasineutrality
condition ��=np+Zbnb−ne
0�, yields zero net current,
J
0. Therefore, in the limit of a strong solenoidal magnetic
field, the beam current can be expected to be completely
neutralized.

However, the preceding description fails to account for
the electron rotation that develops in the presence of a sole-
noidal magnetic field. Due to the small inward radial electron
motion, the electrons can enter into the region of smaller
solenoidal magnetic flux. Due to the conservation of canoni-
cal angular momentum, the electrons start rotating with a
very high azimuthal velocity �see Fig. 10�. This electron ro-
tation produces many unexpected effects.

A. Dynamo effect—enhancement of the self-magnetic
and self-electric fields of the ion beam pulse
due to application of weak solenoidal magnetic field

The first effect is the dynamo effect.60 Under the condi-
tions where electron magnetohydrodynamic equations can be
used neglecting electron inertia terms, the magnetic field is
attached to the electron flow.24,25,61 Then, the electron rota-

tion bends the solenoidal magnetic field lines and generates
an azimuthal self-magnetic field in the beam pulse. The dy-
namo effect remains if electron inertia effects are taken into
account as well.24,25 Moreover, the electron rotation can gen-
erate a self-magnetic field that is much larger than in the
limit with no applied field. The second effect is the genera-
tion of a large radial electric field. Because the eVeBz /c
force should be balanced by a radial electric field, the elec-
tron rotation results in a plasma polarization, and produces a
much larger self-electric field than in the limit with no ap-
plied solenoidal magnetic field. The total force acting on the
beam particles now can change from always focusing in the
limit with no applied solenoidal magnetic field, to defocusing
at higher values of the solenoidal magnetic field. In particu-
lar, an optimum value of magnetic field for long-distance
transport of an ion beam pulse, needed, for example, in in-
ertial confinement fusion applications,62 can be chosen where
the forces nearly cancel. The third unexpected effect is that
the joint system consisting of the ion beam pulse and the
background plasma acts as a paramagnetic medium, i.e., the
solenoidal magnetic field is enhanced inside of the ion beam
pulse.

In order to quantify the above-mentioned effects, the
system of Maxwell equations, Eqs. �9� and �10� and the elec-
tron fluid equations, Eqs. �7� and �8� have to be solved taking
into account electron rotation and corresponding perturbation
of the applied solenoidal magnetic field �Bz=��rA� /r�r.
The displacement current is small compared to the electron
current, and Ampere’s equations take the form

−
1

r

�

�r
�r

�Az

�r
� =

4�e

c
�ZbnbVb − neVez� , �39�

�

�r
�1

r

��rA��
�r

� =
4�e

c
neVe�, �40�

where Ve is the azimuthal component of the electron veloc-
ity. The electron flow velocity can be found using the con-
servation of the generalized vorticity,

� �

�t
+ Ve����

ne
� = ��

ne
· ��Ve, �41�

where the generalized vorticity is defined by �=�� �mVe
−eA /c�. Projecting Eq. �41� along the longitudinal and azi-
muthal axes, we readily obtain24,25

Vb

magnetic field lineion beam pulse

magnetic flux

FIG. 10. �Color online� Schematic of perturbations of magnetic field lines in
response to the propagating ion beam pulse. A small radial electron displace-
ment generates a fast poloidal rotation. The poloidal rotation then twists the
magnetic field and generates the poloidal magnetic field and large radial
electric field.

056703-12 Kaganovich et al. Phys. Plasmas 17, 056703 �2010�

Downloaded 23 Apr 2010 to 198.35.2.84. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



Vez =
e

mc
Az −

B0

4�mVbne

1

r

��rA�
�r

, �42�

Ve��1 +
�ce

2

�pe
2 � =

e

mc
A� −

B0

4�mVbne

�Az

�r
. �43�

In deriving Eqs. �42� and �43�, it has been taken into account
that in the linear approximation, nb�ne, the radial compo-
nent of the equation for the electron momentum gives
Er=−VeB0 /c. Furthermore use has been made of Poisson’s
equation.24,25 The last term on the right-hand side of Eq. �42�
describes the magnetic dynamo effect, i.e., the generation of
a self-magnetic field due to rotation �B�BzVe /Vez�. The
last term on the right-hand side of Eq. �43� describes the
generation of electron rotation due to the radial displacement
caused by a not fully compensated current and remnant self-
magnetic field. The second term inside the parenthesis on the
left-hand side of Eq. �43� describes the departure from
quasineutrality condition.24,25 Figure 11 shows very good
agreement between analytical theory and the PIC simulation
results. Enhancement in the self-magnetic field �factor of 3�
and self-electric field �factor of 10� produced by the ion
beam pulse due to the application of a weak solenoidal mag-
netic field is shown. The paramagnetic effect of the enhanced
solenoidal magnetic field inside of the ion beam pulse is also
evident. The maximum enhancement is observed when24,25

�ce→2�pe�b. However, in this range of the applied solenoi-
dal magnetic field, whistler waves are excited, and the struc-
ture of the self-magnetic field becomes more complicated.
Moreover, the slice approximation for long thin beams used
in Eqs. �42� and �43� is not valid when the waves are excited
by the beam24,25 in the regime

�ce � 2�b�pe. �44�

In this case, the slice approximation is not valid because the
profiles for the self-electric and self-magnetic fields in the
presence of a whistler wave excitation depend on the entire
profile of the beam pulse and not only on the local cross
section.63

B. Whistler wave excitation and effects
of self-focusing on ion beam propagation
through a background plasma along a solenoidal
magnetic field

If the condition in Eq. �44� is satisfied, whistler wave can
be excited by the ion beam pulse. The whistler wave disper-
sion relation is63,64

�wh
2 =

kx
2kz

2�ce
2

�kx
2 + �pe

2 /c2��kx
2�1 + �ce

2 /�pe
2 � + �pe

2 /c2�
, �45�

where the approximation of a long thin beam pulse has been
assumed, kx�kz, ���ce ,�pe, and the ion response is ne-
glected. Whistler waves are in resonance with the ion beam
pulse when their phase velocity coincides with the ion beam
velocity, �h�kx ,kz�=kzVb. The necessary condition for reso-
nance is given by Eq. �44� �see Fig. 12�. The solution to
Eq. �45� gives two values for the transverse wave number kx,
a small value kem corresponds to long wavelength electro-

magnetic perturbations, and a high value kqs corresponds to
short wavelength electrostatic perturbations with

kem,qs
2 =

�pe
2

c2

�ce
2 − 2�b

2�pe
2 � ��ce

2 ��ce
2 − 4�b

2�pe
2 �

2�b
2��pe

2 + �ce
2 �

. �46�

As evident from Fig. 12, the group velocity, ��wh /�kz of the
long wavelength electromagnetic perturbations is greater
than the beam velocity, whereas the group velocity of the
short wavelength electrostatic perturbations is smaller than
the beam velocity. Therefore, long wavelength electromag-
netic perturbations propagate ahead of the beam, whereas the
short wavelength electrostatic perturbations lag behind the
beam. Both waves have transverse group velocity ��wh /�kx.
Hence, the waves also propagate sideways from the beam
pulse. Typical results are shown in Fig. 13. Propagating in
magnetized ionospheric or magnetospheric plasma, charged
particle beams can excite whistler wave-field perturbations,

φ
d

φ
d

φ
d

φ
d

FIG. 11. �Color online� The azimuthal self-magnetic field, the self-magnetic
field perturbation in the solenoidal magnetic field, and the radial electric
field in a perpendicular slice of the beam pulse. The beam parameters are �a�
nb0=np /8=3�1010 cm−3, Vb=0.33c, and the beam density profile is taken
to be Gaussian with rb=1 cm. The applied magnetic field is �a�
Bz0=300 G; c�ce /Vb �pe=0.57, and �b� Bz0=900 G; c�ce /Vb �pe=1.7.
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and therefore can be used as compact on-board emitters in
the very-low-frequency range, replacing large-apertures elec-
tromagnetic antennas.65,66 Analytical and numerical studies
of the whistler branch excitation by a density-modulated
electron beam propagating through a background plasma
along a uniform magnetic field, including linear and nonlin-
ear effects, have been recently reported in Refs. 67–69 in the
limit of a very thin ion beam, rb�kqs

−1. Reference 63 per-
formed analytical calculations of whistler wave excitation in
slab geometry. Analytical calculations have been verified by
comparing with the results of particle-in-cell simulations,

which showed very good agreement. Particle-in-cell simula-
tions in cylindrical geometry were also carried out, and
showed that the analytical formulas obtained for the self-
focusing force can be applied in cylindrical geometry as
well.

The analysis in Ref. 63 showed that wave excitation
does not affect the self-focusing force in the limit of strong
solenoidal magnetic field and not very thin beams, i.e.,

�ce � 2�b�pe and rb � kqs
−1 = �1 + �ce

2 /�pe
2 �1/2�bc

�ce
.

�47�

In this limit the degree of beam current neutralization is high.
However, the self-magnetic field in the wave excitation can

(a)

α=1

B

Vb

Whistler

Quasi -
electrostatic wave

Vgem

Vgqs

Beam frame

(b)

Long wavelength
(electromagnetic)

Vgz>Vb Vgz<Vb

α=ωce/2βbωp

k

ω/ckz

ωpe/c

Short wavelength
(quasi-electrostatic)

βc

Vb=Vgz
Vgx=0

ωh/ckz
Waves are
excited (α>1)

kem kqs

No waves

FIG. 12. �Color online� �a� The phase velocity of the whistler wave is
plotted as a function of wave vector �solid curve� and is intersected by
different values of the normalized beam velocity �b �dashed lines�. �b� Sche-
matic illustration of the whistler waves excited by the ion beam pulse. In the
beam frame of reference, the long-wavelength electromagnetic wave field
propagates ahead of the beam pulse, and the short-wavelength electrostatic
wave field lags behind the beam pulse.

FIG. 13. �Color online� Plots of the steady-state amplitude of the transverse
magnetic field perturbations By. The beam-plasma parameters correspond to
Zb=1, lb=10c /�pe, �b=0.33, and np=2.4�1011 cm−3. The applied mag-
netic field, Bz=1600 G, corresponds to �ce / �2�b�pe�=1.54. The frames in
the figure show �a� excitation of primarily long-wavelength electromagnetic
waves by a wide-aperture ion beam with rb=2.5c /�pe and �b� excitation
of primarily short-wavelength quasielectrostatic waves by a thin beam
with rb=0.5c /�pe. The normalization factor in �a� and �b� is given by
B0=4�nb0Zbe�brb. The arrows schematically illustrate the direction of the
wave packet group velocity. The dashed lines correspond to the contours of
constant beam density corresponding to the effective beam radius rb.
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be comparable with the remaining self-magnetic field. Nev-
ertheless, the total self-magnetic field is small, and does not
influence the self-focusing force. Moreover, we can use Eq.
�22� to determine the radial self-electric field in the beam
frame. Because the self-magnetic field is well neutralized,
the self-electric field in the laboratory frame,

Er = Er
b +

1

c
VbzB� 	 Er

b, �48�

is the same as in the beam frame and therefore is electro-
static. The self-focusing force acting on the beam ions is
given by Eq. �24�. Variation of the self-focusing force acting
on beam ions as a function of applied magnetic is shown in
Fig. 14.

C. The degree of charge neutralization and effective
perveance of the neutralized fast ion beam
pulse propagating through background plasma along
a solenoidal magnetic field

Substituting Eq. �22� for the radial self-electric field into
Eq. �31� for the average degree of charge neutralization �f�
gives in the limit Zbnb /np�1,

�f� 
 1 + 2�b
2 c2

rbrg�pe
2 . �49�

Here, rg=nb / ���nb /�r�� is the effective radial scale of the ion
beam density profile at the beam edge. Note that the second
term on the right-hand side of Eq. �49� is positive because in
this regime electrons overcompensate positive ion charge
and the radial electric field at the beam edge is negative.
From Eq. �49�, it is evident that the electric field increases
and the degree of charge neutralization for the case
rb�c /�pe.

63 Equation �49� can be used only for rb ,rg�kqs
−1

= �1+�ce
2 /�pe

2 �1/2�bc /�ce and �ce�2�b�pe. The maximum
deviation from quasineutrality occurs for the smallest pos-
sible beam radius and sharpest ion beam density gradients.
As a function of the parameter �ce /�pe, the minimum value
of kqs

−1=�bc /�pe occurs when �ce��pe. Substituting the val-
ues rb�rg��bc /�pe into Eq. �49� one finds that �f��2, and
the beam can become non-neutralized, as observed in nu-
merical simulations.24,25 Therefore, even for nonrelativistic,
long ion pulses, complete charge neutralization is not guar-
anteed in the presence of a solenoidal magnetic field, if
rb�rg��bc /�pe. However, for heavy ion fusion parameters,
rb�c /�pe and �b	0.2 and the degree of charge neutraliza-
tion can exceed more than 99% by increasing the plasma
density according to Eq. �49�.

The effective self-electric perveance in the presence of
plasma scales as 1− �f�, where �f� is the average charge neu-
tralization defined in Eq. �32�. Because the contribution to
the self-focusing force by the self-magnetic field can be ne-
glected in the limit �ce�2�b�pe, the total effective per-
veance including both self-electric and self-magnetic effects
is given approximately by the self-electric perveance. Sub-
stituting Eq. �49� for �f� into Eq. �33� gives for Qeff,

Qeff 
 −
m

M

rb

rg

Zb
2nb

np
. �50�

The effective perveance in Eq. �50� can be greatly reduced
for the case of beam propagation in dense plasma with
rb�c /�pe.

VIII. EFFECTS OF A DIPOLE MAGNETIC FIELD
ACROSS THE BEAM PROPAGATION ON THE DEGREE
OF CURRENT AND CHARGE NEUTRALIZATION

A dipole magnetic field can be used to deflect the beam.
Due to the large ion beam space charge, it is necessary to fill
the dipole region with a background plasma to neutralize the
beam space charge. The question arises as to whether the
plasma can still neutralize the ion beam space-charge density
effectively. In this case, it is necessary to take into account
the plasma flows in all directions simultaneously: along the
dipole magnetic field, and across the magnetic field, in order

FIG. 14. �Color online� Plots of the normalized radial force acting on beam
ions propagating through plasma for different values of ��ce /�b�pe�2 calcu-
lated from Eqs. �23�–�27� for ��ce /�b�pe�2	4 and Eq. �45� for
��ce /�b�pe�2→�. The force is normalized to Zbnb0mVb

2�pe /npc �see
Eq. �36��. The beam density profile is a Gaussian, nb0 exp�−r2 /rb

2� with �a�
rb=0.5c /�pe and �b� rb=2c /�pe.
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to properly take into account of all of the drifts and flows set
up in a dipole magnetic field, when the beam pulse moves in
background plasma. The neutralization of beams and propa-
gating plasmoids across the magnetic field has been studied
extensively both in simulations and experimentally, see e.g.,
Ref. 70 and references therein. Here, we discuss only the
effects associated with the self-electric and self-magnetic
fields of fast, intense ion beam pulses of finite length. Three-
dimensional simulations show that the beam space-charge
density is well-neutralized by the plasma flow along the di-
pole magnetic field �due to connection to the emitting side-
walls�. However, because the electron motion across the
magnetic field is greatly reduced by the dipole magnetic
field, the current is almost completely unneutralized, as
shown in Fig. 15. The unneutralized current generates a
time-varying self-magnetic field in the laboratory frame,
which in turn produces an inductive electric field Ez, as
shown in Fig. 15�e�. The longitudinal electric field Ez pro-

duces drifts in the x-direction and polarizes the plasma, as
evident in Fig. 15�f�. The transverse electric field in the
x-direction has different signs for the beam head and the
beam tail. After the beam exits the dipole region, the current
becomes neutralized as shown in Fig. 15�d�. However, some
complex structures appear at the dipole boundary, as evident
by comparing the color plots of the beam density in Fig.
15�b� and the current density in Fig. 15�d�. Therefore, an
intense ion beam can be effectively deflected by a dipole
magnetic field directed perpendicular to the beam propaga-
tion direction. However, the self-magnetic field of the beam
pulse is not neutralized by the plasma inside the dipole re-
gion, and a transverse electric field is generated due to the
plasma polarization. This can result in a pinching effect and
an unwanted emittance growth of the beam pulse. An addi-
tional comprehensive study needs to be performed in order to
quantify these effects.
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FIG. 15. �Color online� Beam propagation in a dipole magnetic field. Plots correspond to �a� the magnetic field By of the dipole, �b� the beam density in the
dipole region, �c� the current density jz in the dipole region, �d� the current density jz outside the dipole region, �e� the longitudinal, inductive electric field Ez,
and �f� the transverse electric field Ex. The background plasma density is np=1011 cm−3; the beam velocity is Vb=0.2c; the beam current is 1.2 kA
�48.0 A /cm2�, which corresponds to the ion beam density nb=0.5np; and the ion beam charge state is Zb=1. The beam dimensions �rb=2.85 cm and

b=1.9 ns� correspond to a beam radius rb=1.5c /�pe and pulse duration 
b�pe=75.
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IX. CONCLUSIONS

In this paper we have reviewed several neutralization
schemes for intense ion beam pulses, including neutraliza-
tion by emitting filaments positioned near the beam sides,
neutralization by gas ionization, neutralization by a grid im-
mersed in the beam, and neutralization by passing the beam
pulse through a background plasma, either a finite size layer
of plasma or a volumetric plasma produced everywhere
along the beam path. All schemes except for neutralization
by a volumetric plasma cannot provide the necessary very
high degree of neutralization ��99%� required for ballistic
drift compression of intense ion beam pulses. Therefore, neu-
tralized ballistic focusing typically requires the presence of a
background plasma in and around the beam pulse path for
very good charge neutralization. Correspondingly, the main
focus of this paper is on the neutralization of intense ion
beam pulses by volumetric background plasma. In plasma
sources, the electron temperature is about 3 eV, and the
plasma density is of order 1011 cm−3. For these plasma pa-
rameters, the electron Debye length is very small compared
with the beam radius, and the electrons neutralize effectively
the ion beam space charge. Due to the fast motion of the
beam pulse through the background plasma, a return current
is generated in the plasma, in which the electron flow veloc-
ity is comparable with the beam velocity. Thus the electron
flow in the return current is faster than the thermal electron
velocity, and this electron flow determines the self-electric
and self-magnetic fields of the beam pulse propagating
through the background plasma. Furthermore, the electron
potential energy in the self-electric field of the beam pulse
propagating through the background plasma is large com-
pared with the electron temperature. Therefore, the electron
pressure terms can be neglected for fast ion beam pulses, in
contrast to the limit of slow beams. Therefore, for the cases
considered here, the electron Debye length is not relevant to
the neutralization physics associated with such fast electron
flow in the return current.

In this paper we have summarized a nonlinear theory
describing the quasisteady-state propagation of an intense
fast ion beam pulse in a background plasma, neglecting
small electron thermal effects. The results of the theory have
been verified by detailed comparison with particle-in-cell
simulations. It has been shown that in the absence of applied
magnetic field, the beam charge is well neutralized �the de-
gree of charge neutralization is close to unity� during
quasisteady-state propagation of the beam pulse through
background plasma, provided that the beam pulse duration 
b

is much longer than the electron plasma period, 2� /�pe, i.e.,
�pe
b�2�. Therefore, in this limit, the quasineutrality con-
dition holds, ne	Zbnb+np, where np is the background
plasma ion density. Note, that the beam charge is well neu-
tralized during quasisteady-state propagation of the beam
pulse even through a tenuous plasma, np�Zbnb, after initial
transient processes of neutralization during beam entry into
the plasma. Tenuous plasma can provide good charge neu-
tralization due to the accumulation of electrons from the
large volume of plasma surrounding the beam pulse.28 Fur-
thermore, in the general nonlinear case with np�Zbnb, the

degree of current neutralization is given by Ampere’s law,
combined with the conservation of the generalized vorticity
or canonical momentum, and the quasineutrality condition,
ne	Zbnb+np, i.e.,

B� = −
�Az

�r
= −

c

e

�pez

�r
, �51�

−
1

r

�

�r
r

�

�r
Az =

4�

c
ZbenbVbz −

�pe
2

c2 Az. �52�

It was shown that the ion beam current is effectively neutral-
ized by the plasma electron current, provided the beam ra-
dius is large compared with the electron skin depth c /�pe,
i.e., rb�c /�pe, and is not current neutralized in the opposite
limit. This condition can be expressed as

Ib � 4.25��bnb/np�kA , �53�

where �bc is the directed beam velocity.
Nevertheless, the degree of charge neutralization is close

to unity, and the remaining self-focusing force may affect the
ballistic propagation of the beam pulse over long distances.
Therefore, the self-focusing force has to be considered in the
design of neutralized drift compression systems. Analytical
formulas have been derived for the self-focusing force taking
the effects of an applied solenoidal magnetic field into ac-
count. The self-focusing force is inversely proportional to the
plasma density and can be greatly reduced by increasing the
plasma density. The requirement for high plasma density has
been demonstrated in many numerical studies.20–22,33,59,63 For
ballistic propagation and focusing of intense ion beams, the
degree of neutralization has to be high enough so that the
remaining weak radial self-focusing force does not alter the
ballistic trajectories of the beam ions. The analytical for-
mulism that has been developed allows us to estimate the
required plasma density for ballistic focusing of the beam
ions.

The radial self-focusing force is strongly affected by
electron inertia effects; in the absence of an applied solenoi-
dal magnetic field, the radial self-focusing force is controlled
by the electron flow in the return current,

Fr = m�Vb − Vez�
�Vez

�r
. �54�

Here, Vez=eAz /mc, which is determined from the equation
for current neutralization, Eq. �52�. For the case of complete
current neutralization, ZbnbVb=neVe and np�Zbnb, the radial
self-focusing force is given by

Fr =
mVb

2Zb
2

np

�nb

�r
. �55�

Note again that adding finite electron temperature effects
yields a small correction due to the electron pressure for fast
ion beam pulses, i.e.,

Fr =
Zb

2�mVb
2 − Te�

np

�nb

�r
,

according to Eq. �5�.
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The background plasma can provide the necessary very
high degree of neutralization for drift compression ��99%�,
provided the plasma density exceeds the beam density every-
where along the beam path, i.e., provided np�Zbnb. In the
laboratory frame, the longitudinal electric field accelerates
the electrons to produce the return current in the head region
of the beam pulse, and decelerates electrons in the tail of the
beam in order to remove the return current behind the beam
pulse. The nature of this electric field is inductive, i.e., it is
generated by the nonstationary self-magnetic field of the
beam pulse. The radial electric field is given by

eEr = − mVez
�Vez

�r
. �56�

Note that the radial electric field in the laboratory frame is
positive �defocusing�. The radial electric field can be de-
scribed by an effective potential, which is determined from
the kinetic energy of the electron flow in the return current.
Thus the radial electric field is given by nonlinear terms, and
can be neglected in the linear approximation.

The self-focusing force in the laboratory frame can be
expressed as

Fr = eZb�Er −
VbB�

c
� , �57�

and is dominated by the self-magnetic component of the
force, i.e., the degree of charge neutralization is much higher
than degree of current neutralization for long nonrelativistic
beam pulses.

In the beam frame the beam propagation is typically a
steady-state phenomenon. Therefore, the magnetostatic and
electrostatic approximations can be used. The electric field in
the beam frame is given by the potential

ez
b = − m�VbVez − Vez

2 /2� , �58�

and the radial self-electric field is given by

eEr
b = m�Vb − Vez�

�Vez

�r
. �59�

Note that the radial self-electric field in the laboratory frame
is positive �defocusing�, whereas the self-electric field in the
beam frame is negative �focusing�.

In the presence of an applied solenoidal magnetic field,
the system of equations describing the self-electric and self-
magnetic fields becomes much more complicated. The theory
predicts that there is a sizable enhancement of the self-
electric and self-magnetic fields when �ce→2�pe�b. There-
fore, application of a solenoidal magnetic field can be used
for active control of intense ion beam transport through a
background plasma.

Electromagnetic waves are generated oblique to the di-
rection of beam propagation whenever

�ce � 2�b�pe. �60�

In the limit of a nonrelativistic beam with �b�1, and strong
magnetic field with �ce�2�b�pe, long wavelength electro-
magnetic perturbations are excited with wave number
kem��b�pe

2 /�cec, and short wavelength electrostatic pertur-

bations with kqs��ce / ��bc��ce
2 /�pe

2 +1�1/2� are also excited.
The electromagnetic waves have long wavelength compared
with the skin depth,

�em =
cBz

2enpVb
, �61�

whereas the short-wavelength electrostatic perturbations
have short wavelength compared with the effective skin
depth,

�qs =
2�mVbc

eBz
��ce

2 /�pe
2 + 1�1/2. �62�

The group velocity, ��wh /�kz of the long-wavelength electro-
magnetic perturbations is larger than the beam velocity,
whereas the group velocity of the short-wavelength electro-
static perturbations is smaller than the beam velocity. There-
fore, the long-wavelength electromagnetic perturbations
propagate ahead of the beam, whereas the short-wavelength
electrostatic perturbations lag behind the beam pulse. Both
wave excitations have transverse group velocity ��wh /�kx.
Therefore, wave perturbations also propagate sideways from
the beam pulse. The long-wavelength electromagnetic pertur-
bations excited by the tail of the beam pulse can propagate
along the beam and influence the dynamics of the beam
head. The system reaches a quasisteady state when the wave
packet of the initial transient excitation propagates suffi-
ciently far outside the beam.63 It was found, for a sufficiently
long ion beam pulse, that the time scale for achieving a qua-
sisteady state can be of order the beam pulse duration, and is
therefore much longer than the inverse plasma frequency.63

The analysis in Ref. 63 determined that waves do not
affect the self-focusing force in the limit of strong solenoidal
magnetic field, and for beams satisfying

�ce � 2�b�pe, and rb � kqs
−1 = �1 + �ce

2 /�pe
2 �1/2�bc

�ce
.

�63�

In this limit the self-magnetic field is small and does not
influence the self-focusing force. Hence, the radial electric
field in the beam frame is the same as the electric field in the
laboratory frame and is electrostatic. The self-focusing force
acting on beam ions in this case is given by

Fr =
mVb

2Zb
2

np

�nb

�r
, �64�

provided np�Zbnb.
In absence of a solenoidal magnetic field, the degrees of

charge and current neutralization can be calculated by mak-
ing use of Eqs. �52�, �59�, and �64�, and the values depend on
the radial profile of the beam density. An analytical estimate
has been developed in Ref. 48. In the limits, nb /np�1 and
rb�pe /c�1, it reduces to

�f� = 1 − �b
2 nb

np

c

rb�pe
. �65�

It can readily be shown48 that the maximum deviation from
quasineutrality occurs when rb�c /�pe, and the degree of
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nonquasineutrality is bounded by �Zb
2Zbnb+np−ne� / �Zbnb�

	0.25�b
2. Therefore, for nonrelativistic, long ion beam

pulses, there is almost complete charge neutralization. For
typical heavy ion fusion parameters, �b	0.2, and the degree
of charge neutralization is more than 99%.

The general expression for the effective self-electric per-
veance in the presence of background plasma, Qeff, for arbi-
trary ratios of nb /np and rb�pe /c, is also given in Ref. 48. In
the limits, nb /np�1 and rb�pe /c�1, it reduces to

Qeff = −
Zbme

M

nb

np

rb�pe

2c
. �66�

If a solenoidal magnetic field is applied with strength such
that �ce�2�b�pe, and rb� �1+�ce

2 /�pe
2 �1/2�bc /�ce, the ra-

dial self-electric field is negative and the ion beam space
charge is overcompensated by the electrons. The average de-
gree of charge neutralization �f� in the limit Zbnb /np�1 is
given approximately by

�f� = 1 + 2�b
2 c2

rbrg�pe
2 . �67�

Here, rg=nb / ���nb /�r�� is the effective radial scale of the ion
beam density profile at the beam edge. Note that the second
term on the right-hand side of Eq. �67� is positive because in
this regime the electrons overcompensate the positive ion
charge and the radial self-electric field at the beam edge is
negative. The maximum deviation from quasineutrality oc-
curs when rb�rg��bc /�pe, and the beam can become non-
neutralized, as observed in numerical simulations.24,25 There-
fore, even for nonrelativistic, long ion pulses, complete
charge neutralization is not guaranteed in the presence of a
solenoidal magnetic field, if rb�rg��bc /�pe. However,
for typical heavy ion fusion parameters, rb�c /�pe and
�b	0.2, and the degree of charge neutralization can exceed
more than 99% by increasing the plasma density to values
satisfying rb�c /�pe according to Eq. �67�.

Because the self-magnetic field contribution to the self-
focusing force can be neglected in the limit �ce�2�b�pe, the
total effective perveance including both self-electric and
self-magnetic effects is given approximately by the self-
electric perveance,

Qeff 
 −
m

M

rb

rg

Zb
2nb

np
. �68�

In conclusion, a background plasma can provide the neces-
sary very high degree of neutralization for drift compression
of intense ion beam pulses ��99%�, provided the plasma
density exceeds the beam density everywhere along the
beam path, np�Zbnb, in absence of an applied solenoidal
magnetic field, and rb�c /�pe, if a solenoidal magnetic field
is applied.
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