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a b s t r a c t

The df particle-in-cell simulation method has been extended to allow the perturbation to be defined
relative to any reference state, and a switching algorithm that can smoothly switch between the df and
total-f methods has been developed. The improved df method has been successfully applied to simulate
the collective dynamics of high-intensity bunched beams. Systematic studies of the influence of finite
bunch length on the spectra of collective excitations in high-intensity ion beams, and the linear and
nonlinear evolution of the temperature anisotropy instability has been carried out.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

High-intensity bunched ion beams are a key component of
beam-driven inertial confinement fusion designs and beam-
driven high energy density physics experiments. Even though
the collective dynamics and instabilities for long coasting beams
have been studied extensively, our basic understanding of collec-
tive effects in high-intensity bunched beams is still very limited.
In particular, collective effects induced by strong coupling be-
tween the longitudinal and transverse dynamics are of funda-
mental importance for the applications of high-intensity bunched
beams. For the ongoing Neutralized Drift Compression Experi-
ment (NDCX) at the U.S. Heavy Ion Fusion Sciences Virtual
National Laboratory [1], it is necessary to systematically study the
transverse and longitudinal coupling and its effects on collective
dynamics and instabilities. The self-consistent theoretical frame-
work for studying collective effects is provided by the nonlinear
Vlasov–Maxwell equations [2–4]. A corresponding numerical
method, the df particle-in-cell (PIC) simulation method, has been
developed [5,6] to solve the nonlinear Vlasov–Maxwell equations
with significantly reduced noise. This theoretical and numerical
framework has been successfully applied to study stable beam
propagation [7], electron-ion two-stream (electron cloud) in-
stabilities [8–14], and collective instabilities driven by large
energy anisotropy [15–18] for long coasting beams.

In order to effectively simulate the collective dynamics in high-
intensity bunched beams, we have developed two new improve-
ments to the df PIC simulation method. First, the algorithm is
extended to allow the perturbation to be defined relative to any
reference state, instead of an exact equilibrium solution as

required in the standard df simulation method [19,9]. This is
particularly critical for high-intensity bunched beams, because
exact equilibrium solution for bunched beams with temperature
anisotropy does not exist [20], due the coupling between the
longitudinal and transverse dynamics induced by the nonlinear
space–charge force. Second, a smooth-switching algorithm is
developed which can switch smoothly between the df and total-f
methods. When applying the standard df method to simulate
high-intensity bunched beams, it is found [6] that wave–particle
interactions may result in large weight growth for resonant or
nearly-resonant simulation particles, which in turn produces large
error fields and invalidates the simulation results. The switching
scheme is able to automatically switch to the total-fmethod when
the weight becomes large, and still takes full advantage of the
low-noise feature of the df algorithm when the weight is small.
With these two new improvements, we have carried out extensive
numerical studies of the collective dynamics in high-intensity
bunched beams. It is found that the interplay between beam
intensity and finite bunch geometry introduces new collective
modes, and the linear and nonlinear characteristics of the
temperature anisotropy instabilities are significantly modified
by the finite bunch geometry.

The paper is organized as follows. In Section 2, the theoretical
model and the improved df method is described. Simulation
results of collective excitations and temperature anisotropy
instabilities for high-intensity bunched beams are reported in
Section 3.

2. Theoretical model and the new df PIC algorithm

We consider a high-intensity bunched ion beam confined in
both the r- and z-directions by an external smooth-focusing force
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in the beam frame
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?x? "mo2

z zez. (1)

Here, o? and oz are the constant transverse and longitudinal
applied focusing frequencies in the smooth-focusing approxi-
mation. In the beam frame, the dynamics of the bunched
beam is described by the nonlinear Vlasov–Maxwell equations
[2]

@
@t

þ v
@
@x

" mðo2
?x? þo2

z zezÞ þ e rf"
vz

c
r?Az

! "h i @
@p

# $
f ðx;p; tÞ ¼ 0

(2)

r2f ¼ "4pe
Z

d3pf ðx;p; tÞ (3)

r2Az ¼ "
4p
c
e
Z

d3pvzf ðx;p; tÞ (4)

where f is particle distribution function in phase space, and e and
m are the particle charge and rest mass, respectively. In the new df
PIC algorithm for numerically solving the nonlinear Vlasov–Max-
well equations (2)–(4), the particle’s distribution is partitioned as

f ¼ af 0 þwF (5)

where f 0 is a known reference distribution function. The
coefficient a is a function of time and can take on values between
0 and 1. The case of a ¼ 0 corresponds to the total-f method, and
the case of a ¼ 1 corresponds to the standard the df method. The
perturbed distribution is constructed from the distribution
function F of simulation particles, the weight function w in phase
space, and the coefficient a as [6]

df ¼ ða" 1Þf 0 þwF. (6)

Because the simulation particles follow the same trajectories as
the physical particles, F satisfies the Vlasov equation (2) as well.
But F need not be the same as f.

From Eq. (5), it is simple to derive the governing equation for
the evolution of w
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Here, df & f" f0 and dAz & Az " Az0 are the field perturbations
relative to the reference potentials (f0, Az0), which are chosen to
satisfy

r2f0 ¼ "4pe
Z

d3pf 0ðx;p; tÞ (10)
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c
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For the perturbed fields, Maxwell’s equations are given by
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where df is calculated from Eq. (6).
If possible, it is desirable to choose the reference state (f0, Az0,

f 0) as an exact solution, either time-dependent or time-indepen-
dent, to the Vlasov–Maxwell equations (2)–(4), such that the
ðdf 0=dtÞ0 term in Eq. (7) vanishes. For most applications using
the standard df method, (f0, Az0, f 0) are chosen to correspond

to an equilibrium solution with @=@t ¼ 0. For bunched beams,
if the energy is isotropic in the beam frame, the reference state
can be chosen to be an exact equilibrium solution. However,
for bunched beams with energy anisotropy, exact equilibrium
solution does not exist due to the lack of independent longitu-
dinal and transverse invariants of the particle dynamics [20].
In this case, we can choose a time-independent reference
distribution (f0, Az0, f 0) that is close to a quasi-equilibrium
state.

The term g in Eq. (7) is defined as g & f=F, which is a constant
of the motion for each simulation particle, i.e., dg=dt ¼ 0, because
df=dt ¼ 0 and dF=dt ¼ 0. Therefore, g is determined from the
initial conditions of the simulation particles. If F is initially loaded
in to be the same as f, then g & 1 and the distributions of physical
particles and simulation particles are the same.

Different from the standard df method, the dynamics of w is
now coupled to that of a, which can be either prescribed or
determined from some rules coupled back to the amplitude of w:
When a varies smoothly from 1 to 0 during the simulation, the df
method is smoothly switched to the total-f method. The purpose
of the switch is to overcome the noise brought on by the large
weight of nearly-resonant simulation particles [6]. Before the
switch, the simulation still makes effective use of the low-noise
feature of the df method for small weight to follow the detailed
evolution of the unstable mode structures. When the weight
function becomes large during the nonlinear phase, the low-noise
advantage of the df method is reduced and the simulation is
switched to the total-f method to avoid the large noise induced by
nearly-resonant simulation particles. The coefficient a is generally
allowed to depend on phase space coordinates, such that different
simulation particles will be switched at different time.

In the present study, a is chosen to depend only on time t to
realize a smooth switch for all simulation particles simulta-
neously. There are many ways to select the function aðtÞ to achieve
the desired switching from the df method to the total-f method;
however, the simulation results should be independent of how the
switch function is selected under the condition that the noise due
to large weight is suppressed, because system of equations is
always equivalent to the original Vlasov–Maxwell equations. For
example, we can chose the switch function to satisfy
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where t0 is the starting time of the switch, and t is the duration
of the switch. The starting time t0 can be either prescribed before
the simulation is started, or the switching can be triggered
automatically when the weight growth reaches a certain thresh-
old. The power index n and amplitude parameter a in Eq. (14) are
chosen to satisfy at=ðnþ 1Þb1, which ensures that a ’ 0 after the
switching ðt " t04tÞ. An alternative switching scheme, which
uses the weight equation of the standard df method, can be found
in Ref. [21].

3. Collective excitations and instabilities for high-intensity
bunched beams

For a single-species beam, we can neglect Az in the beam frame
because jAzj5jfj. To investigate collective excitations in high-
intensity bunched beams, we first assume that the beam
distribution is isotropic in the beam. Under this assumption,
thermal equilibrium is one example of an exact equilibrium
solution of the Vlasov–Maxwell equations (f0, f 0) that can be
used as the reference state for the df method. Thermal
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equilibrium is specified by
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Here, H is the invariant energy, T ¼ const: is the (isotropic)
temperature, and n̂ is the beam number density at ðr; zÞ ¼ ð0;0Þ.
The equilibrium potential f0 is determined self-consistently from
the Poisson equation
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which is readily solved numerically in the assumedmodel geometry
of a perfectly conducting cylindrical pipe with wall radius rw. The
finite bunch length changes the characteristics of the linear
eigenmodes in beams [22]. Shown in Fig. 1 are the spectra of the
axisymmetric ð@=@y ¼ 0Þ linear eigenmodes obtained from the
simulations for bunched beams with normalized space–charge
intensity sb & 4pn̂e2=2mo2

? ¼ 0:27, but for different bunch aspect
ratios, zb=rb ¼ 0:71, 2:5;10, and 100. Here rb and zb are the rms
radius and half-length of the beam. The spectra are obtained by
taking the fast Fourier transform (FFT) of the time history of
perturbed potential at (r=rw; z=zmaxÞ ¼ ð0:15;0:25). Fig. 1(a) is the
case where o? ¼ oz, corresponding to a nearly spherical charge
bunch. The spectrum in Fig. 1(a) peaks aroundo=o? ¼ 2;4;6;8; . . .,
which is qualitatively similar to the case of an infinitely-long
coasting beam [2]. This is because even though the finite bunch
length introduces a new characteristic frequency in the longitudinal
direction, the degenerate frequency o ¼ o? ¼ oz is the only
dominant characteristic frequency in the system. Because the
space–charge forces depress the betatron frequency of the
charged particles, the spectra peak below, instead of exactly on,
the even integers. As the beam aspect ratio increases, additional

eigenmodes emerge in between o=o? ¼ 2;4;6;8; . . .. For example,
there are two major peaks appearing in the interval 0oo=o?o2
for zb=rb ¼ 2:5 (Fig. 1(b)). These additional modes are the result of a
coupling between the transverse and longitudinal dynamics
induced by the finite length of the charge bunch. As the bunch
length increases, more eigenmodes appear in the intervals between
even integers (Fig. 1(c)). However, as the bunch length becomes
large, these additional eigenmodes congregate towards even
integers (Fig. 1(c)). When the bunch length approaches infinity,
the spectrum of an infinitely-long coasting beam [2] is recovered
(Fig. 1(d)). Even though the spectra for a nearly spherical charge
bunch and an infinitely-long coasting beam are qualitatively
similar, we note that the similarity is merely a consequence of the
degeneracy in the characteristic frequencies for the case in Fig. 1(a).
The effects of finite bunch length are evident in Fig. 1 from the fact
that the spectra undergo interesting changes when the bunch
length varies between these two limiting cases.

The large energy anisotropy characteristic of charged particle
beams in particle accelerators has long been thought as a possible
free energy source to drive the electrostatic Harris instability
[15–18]. To simulate this instability, it is desirable to start from
quasi-steady equilibria with anisotropic distribution function in
the transverse and longitudinal directions. However, as discussed
previously [20], exact kinetic equilibria do not exist for anisotropic
bunched beams. It is necessary to construct a reference state
which is an approximate kinetic equilibria with anisotropic
distribution function. For those cases where the transverse–lon-
gitudinal coupling is weak, the transverse energy H? and long-
itudinal energy Hz defined by

H? ¼
p2?
2m

þ
m
2
o2

?r
2 þ eff0ðr; zÞ (18)
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p2z
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þ
m
2
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Fig. 1. Spectra of axisymmetric linear eigenmodes for bunched beams with normalized space–charge intensity sb ¼ 0:27 and different bunch aspect ratios zb=rb ¼ 0:71; 2:5,
10, and 100. The values of rb=rw are maintained at rb=rw ¼ 0:35 for all cases. The spectra are obtained by taking the fast Fourier transform (FFT) of the time history of
perturbed potential at (r=rw ; z=zmaxÞ ¼ ð0:15;0:25).

H. Qin et al. / Nuclear Instruments and Methods in Physics Research A 606 (2009) 37–41 39



Author's personal copy

are approximately conserved [20]. Here, hf0i, ff0; and f0 are
defined as

hf0iðzÞ ¼ f0ðzÞ " f0ð0Þ (20)

ff0 ðr; zÞ ¼ f0ðr; zÞ " hf0iðzÞ (21)

f0ðzÞ ¼
R rw
0 rf0ðr; zÞdr

r2w=2
. (22)

As an example, we choose the reference distribution function f 0 in
the beam frame to be the anisotropic thermal equilibrium
distribution

f 0 ¼
n̂

ð2pmT?Þð2pmTzÞ1=2
exp "

H?

T?
"
Hz

Tz

% &
. (23)

Here, T? and Tz are the constant transverse and longitudinal
temperatures, respectively. The reference density profile n0ðr; zÞ
and reference potential f0ðr; zÞ are determined self-consistently
from Eq. (10).

There are two terms that determine the dynamics of w in
Eq. (7). The ðdf 0=dtÞd term is driven by the perturbed fields, and
the second term ðdf 0=dtÞ0 is the deviation of the reference state f 0
relative to an exact equilibrium solution of the Vlasov–Maxwell
equations. Some straightforward algebra gives [20]
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where

_Hz ¼ evz
@ff0 ðr; zÞ

@z
(25)

and super-dot (') denotes ðd=dtÞ0 defined in Eq. (9). For a well-
chosen reference state ðf 0;f0Þ, the dynamics associated with
ðdf 0=dtÞ0 has a longer time-scale for variation than that of
ðdf 0=dtÞd.

Shown in Fig. 2(a) is the time history of an unstable,
azimuthally-symmetric perturbation relative to the reference
state ðf 0;f0Þ at the spatial location ðr=rw; z=zmaxÞ ¼ ð0:1;0:25Þ for
a high-intensity anisotropic charge bunch with sb ¼ 0:8,
Tz=T? ¼ 1

36, and zb=rb ¼ 40. Here rw is the wall radius and zmax is
half-length of the simulation domain. The instability growth rate
is measured to be Imo ¼ g ¼ 0:1o?, and the real frequency is
or ¼ Reo ( o?. The simulation presented in Fig. 2 is carried
out for the linear phase of the instability, using the df method in
the linearization approximation. Because the dynamics of the
reference state associated with ðdf 0=dtÞ0 is slow in comparison
with the instability evolution, the ðdf 0=dtÞ0 term is neglected to
emphasize the structure of the instability during the linear stage.
Note that the unstable structure localizes symmetrically in the

vicinity of z=zmax ¼ )0:6 (Fig. 2(b)). The localization is found to be
more prominent for larger bunch length. As zb=rb ! 1, the
unstable structure becomes highly localized such that the beam
intensity is approximately uniform across the unstable structure
in the longitudinal direction, and the instability characteristics
are asymptotic to those of long coasting beams with uniform
density. This is consistent with the fact that the growth rate
decreases for increasing bunch length, which has been
numerically confirmed [22].

We now turn to the long-term nonlinear evolution of the
instability with dynamic background evolving from the initial
reference state. Shown in Fig. 3 is the time history of the potential
perturbation at ðr=rw; z=zmaxÞ ¼ ð0:12;0:20Þ. It is clear that the
dynamics contain two time-scales. The fast time-scale dynamics
corresponds to the evolution of the temperature anisotropy
instability, and the slow time-scale dynamics corresponds to the
background dynamics of the anisotropic reference state. The fast
time-scale instability has three phases. Before t ¼ 170=o? is the
linear growth phase. Plotted in Fig. 4(a) is mode structure
as a function of z=zb at time t ¼ 115=o?, which represents the
linear mode structure. The mode structure relative to the slow
time-scale background dynamics shows the same localization
feature as in Fig. 3(b). The nonlinear saturation phase spans from
t ¼ 170=o? to 250=o?, during which the amplitude of the
instability nonlinearly saturates, but the perturbation maintain
approximately the same frequency and spatial structure. After
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Fig. 2. (a) Time history of an unstable perturbation at one spatial location ðr=rw; z=zmaxÞ ¼ ð0:1;0:25Þ for a high-intensity anisotropic charge bunch with sb ¼ 0:8;
Tz=T? ¼ 1=36, zb=rb ¼ 40. (b) Unstable perturbation potential df plotted as a function of z=zb at time t ¼ 43=o? .

Fig. 3. Time history of an unstable perturbation at one spatial location
ðr=rw; z=zmaxÞ ¼ ð0:12;0:20Þ for a high-intensity anisotropic charge bunch with
sb ¼ 0:8, Tz=T? ¼ 1=36, zb=rb ¼ 40, rb=rw ¼ 0:26, and zb=zmax ¼ 0:40.
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t ¼ 250=o?, the instability energy cascades partially to long
wavelengths, and merges with the background dynamics, which
eventually evolves into a quasi-steady state with the structure
displayed in Fig. 4(b). The deviation of the quasi-steady state
relative to the initial reference state is at the 15% level.

4. Conclusions

To effectively simulate the collective dynamics in high-
intensity bunched ion beams, we have extended the nonlinear
df PIC simulation method to allow the perturbation to be defined
relative to any reference state, and have developed a switching
algorithm which can smoothly switch between the df and total-f
methods. Using the extended df method, we have systematically
studied the influence of finite bunch length on the spectra of
collective excitations in high-intensity beams, and the linear and
nonlinear evolution of the energy anisotropy instability. It is found
that the finite bunch length introduces new collective modes by
coupling the longitudinal and transverse dynamics through the
nonlinear space–charge force, and the spectra undergo interesting
changes when the bunch length varies. For the energy anisotropy
instability, the unstable mode is symmetrically localized in
two regions away from the bunch center in the longitudinal
direction. Nonlinearly, the instability saturates at the 10% level,
and couples to the background dynamics of the reference state. A
quasi-steady state is reached at the final stage, and the deviation
of the quasi-steady state relative the initial reference state is at
the 15% level.
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Fig. 4. (a) Unstable mode structure as a function of z=zb at time t ¼ 115=o? , which represents the linear mode structure. (b) Perturbed potential as a function of z=zb of the
quasi-steady state at t ¼ 390=o? .
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