
Generalized Kapchinskij-Vladimirskij solution for wobbling and tubmling
beams in a solenoidal focusing lattice with transverse deflecting plates∗

H. Qin and R. C. Davidson† , Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Abstract
For applications of high-intensity beams in heavy ion in-

ertial confinement fusion and high energy density physics,
solenoidal focusing lattice and transverse wobblers can be
used to achieve uniform illumination of the target and for
suppressing deleterious instabilities. A generalized self-
consistent Kapchinskij-Vladimirskij solution of the nonlin-
ear Vlasov-Maxwell equations is derived for high-intensity
beams in a solenoidal focusing lattice with transverse wob-
blers. The cross-section of the beam is an ellipse with dy-
namical centroid, titling angle, and transverse dimensions
that are determined from 5 envelope-like equations.

INTRODUCTION
Important application areas of high-intensity ion beams

include heavy ion inertial fusion and high energy density
physics. To deliver enough kinetic energy to the target
for the purpose of reaching high-gain conditions for iner-
tial confinement fusion or creating matter in the high en-
ergy density regime, the intensity of the driver beams is
required to approach the space-charge limit of accelerators
and beam transport systems [1].
Another requirement is that the high-intensity beams

need to generate a smooth, uniform illumination of the
target to suppress deleterious instabilities, such as the
Rayleigh-Taylor instability, normally associated with ac-
celeration and non-uniformity of the target [2]. Currently,
there are two complementary techniques envisioned to
achieve this goal. First, we can induce beam spinning dy-
namics in the transverse plane by using a solenoidal lattice,
which can also be used to focus the beam onto the target.
The spinning of the beamwill smooth out the intensity non-
uniformity over the beam cross-section. If the target size is
larger than the beam focal spot size, we can also generate a
wobbling dynamics of the beam centroid to scan the target
to provide uniform illumination. The wobbling dynamics
of the beam centroid can be generated by transverse kicks
of the beam particles by a series of transverse deflecting
plates driven by rf potential. Such devices are called “wob-
blers”. The rf potential on the wobbler plates depends on
time so that different slices of the beam are deflected dif-
ferently and delivered to different locations on the target to
achieve the smoothing effect. (see Fig. 1).
The purpose of this paper is to provide a self-consistent

kinetic description of a high-intensity beam in a solenoidal
lattice with wobblers. The dynamics of high-intensity
beams is described by the nonlinear Vlasov-Maxwell equa-
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Figure 1: Solenoidal lattice with wobblers.

tions [3]. In this paper, we derive a generalized self-
consistent Kapchinskij-Vladimirskij (KV) solution for the
system. Recall that the classical KV solution [4] is the only
known exact solution of the nonlinear Vlasov-Maxwell
equations in an alternating-gradient quadrupole focusing
lattice. The classical KV solution is a delta-function of the
weighted sum of the two Courant-Snyder invariants in the
two transverse directions. The cross-section of the beam
is an ellipse with dynamical transverse dimensions given
by the envelope functions, which are determined from the
corresponding envelope equations.
For the generalized KV solution in a solenoidal lattice

with wobblers derived in this paper, the beam cross-section
is also an ellipse. But the centroid (µ, v), tilting angle
θ, and transverse dimensions (A, B) of the ellipse are all
functions of time, and they are determined by 5 envelope-
like equations (see Fig. 2).
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Figure 2: Wobbling and tumbling beam with centroid
(µ, v), tilting angle θ, and transverse dimensions (A, B).



GENERALIZED KV SOLUTION
In a solenoidal focusing lattice with wobblers, a parti-

cle’s dynamics in the laboratory-frame coordinate system
(x, y) is determined from [3]

x′′ = 2Ωy′ + Ω′y −
∂ψ

∂x
− Fx (s) , (1)

y′′ = −2Ωx′ − Ω′x −
∂ψ

∂y
− Fy (s) , (2)

where ψ = eφ/γ3mβ2c2 is the normalized space-charge
potential, Ω(s) = eB(s)/2γmβc2 is the normalized Lar-
mor frequency of the solenoidal lattice, and Fx (s) and
Fy (s) are the transverse deflection force components due
to the wobblers. The nonlinear Vlasov-Maxwell equations
for the beam distribution function f (s, x, y, vx, vy) and
space-charge potential ψ are [3]

∂f

∂s
+ vx

∂f

∂x
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∂f

∂y
+

(

2Ωy′ + Ω′y −
∂ψ

∂x
− Fx

)

∂f

∂vx

+

(

−2Ωx′ − Ω′x −
∂ψ

∂y
− Fy

)

∂f

∂vy
= 0, (3)

(

∂2

∂x2
+

∂2

∂y2

)

ψ = −
2πKb

Nb

∫

f dvxdvy , (4)

where Nb =
∫

fdvxdvydxdy is the line density of the
beam particles, and Kb = 2Nbe/γ3mβ2c2 is the self-
field perveance. We assume that there is no coupling be-
tween different slices of the beam, and that the nonlinear
Vlasov-Maxwell equations describe the transverse dynam-
ics of each slice of the beam. It is further assumed that the
conducting wall is far away from the beam.
Our objective is to find a self-consistent solution of

Eqs. (3) and (4). We start from the dynamics of the beam
centroid. We define the beam centroid (µ, ν) by the solu-
tions of the centroid equations

µ′′ = 2Ων′ + Ω′ν − Fx (s) , (5)
ν′′ = −2Ωµ′ − Ω′µ − Fy (s) . (6)

Note that the beam centroid is subject to the focusing lattice
and the wobbler forces, but not to the self-generated space-
charge force. Substracting Eqs. (5) and (6) from Eqs. (1)
and (2), we obtain

x̃′′ = 2Ωỹ′ + Ω′ỹ −
∂ψ

∂x̃
, (7)

ỹ′′ = −2Ωx̃′ − Ω′x̃ −
∂ψ

∂ỹ
, (8)

x̃ ≡ x − µ , ỹ ≡ y − ν . (9)

Here x̃ and ỹ are the particle displacements relative to the
beam centroid (see Fig. 2), and we have assumed that ψ
depends on (x, y) only through (x̃, ỹ), i.e., ψ = ψ(x̃, ỹ).
We will confirm, for the solution found, that this assump-
tion is indeed satisfied. Now, we transform the dynamical

equations to the Larmor frame defined by
(

X
Y

)

= R (θ)

(

x̃
ỹ

)

, (10)

R (θ) =

(

cos θ sin θ
− sin θ cos θ

)

, θ = −
∫ s

s0

Ωds . (11)

A straightforward calculation shows that in the Larmor
frame, defined by the (X, Y ) coordinates, the dynamical
equations of motion are given by

X ′′ = −Ω2X −
∂ψ

∂X
, (12)

Y ′′ = −Ω2Y −
∂ψ

∂Y
, (13)

and the Vlasov-Maxwell’s equations can be expressed as
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)
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)

ψ = −
2πKb

Nb

∫

f dVXdVY . (15)

Following the spirit of the KV formulation, we search for a
solution to Eqs. (14) and (15) with

ψ (s, X, Y ) =
−Kb

A + B

[

X2

A
+

Y 2

B

]

, (16)

for
X2

A2
+

Y 2

B2
≤ 1.

Here A and B are time-dependent envelope functions in
the transverse (X, Y ) plane. For this form of ψ,Maxwell’s
equation (15) becomes

∫

f dVXdVY =
Nb

πAB
, for

X2

A2
+

Y 2

B2
≤ 1. (17)

We now select A, B, and f such that Eqs. (14) and (17)
are satisfied. First, we note for ψ given by Eq. (16), the
space-charge force is linear, and the (X, Y ) dynamics are
decoupled, i.e.,

X ′′ = −Ω2X −
2KbX

(A + B)A
, (18)

Y ′′ = −Ω2Y −
2KbY

(A + B)B
. (19)

Equations (18) and (19) are linear equations for X and
Y with time-dependent focusing coefficients. Obviously,
there is one Courant-Snyder invariant [5] for each trans-
verse direction,

IX =
X2

W 2
X

+ (WXX ′ − XW ′

X)
2

= const. ,

IY =
Y 2

W 2
Y

+ (WY Y ′ − Y W ′

Y )
2

= const.,



where WX and WY are determined through the envelope
equations

A′′ + Ω2A −
2Kb

(A + B)
=

ε2
X

A3
, (20)

B′′ + Ω2B −
2Kb

(A + B)
=

ε2
Y

B3
, (21)

WX ≡
A

√
εX

, WY ≡
B

√
εY

. (22)

Here, the constants εX and εY are the emittance in the two
transverse directions. Since IX and IY are constants of the
motion, any function of the form f (IX , IY ) is a solution
of the nonlinear Vlasov equation (14). To satisfy Eq. (17),
we select

f =
Nb

AB
δ

(

IX

εX
+

IY

εY
− 1

)

, (23)

It is straightforward to show that

∫

f dVXdVY =







Nb

πAB
, X2

A2 + Y 2

B2 ≤ 1 ,

0, X2

A2 + Y 2

B2 > 1 .

(24)

To summarize, the nonlinear Vlasov-Maxwell equations
(3) and (4) in a solenoidal lattice with wobblers admit a
solution in the form of Eqs. (23) and (16), and the solution
is specified by solving the envelope-like equations (5), (6),
(11), (20), and (21). In general, the envelope-like equations
can be viewed as a set of ordinary differential equations in
time, to which the nonlinear Vlasov-Maxwell equations in
phase space reduce for the class of solutions constructed
here.
One interesting feature of the solution is that the beam

needs not have a circular cross-section, even though it does
include circular cross-section solutions as a special case.
Previous studies for a solenoidal lattice normally consider
only beams with circular cross-section. In particular, we
can use the solution derived here to study how the beam
can be perturbed away from an equilibrium with circular
cross-section.
To illustrate this point, let’s consider the case whereΩ =

const. and εX = εY = ε. The equilibrium solution of
Eqs. (20) and (21) is

A = B = R , (25)

Ω2R −
Kb

R2
=

ε

R3
. (26)

Consider a small perturbation with

A = R + δA , (27)
B = R + δB . (28)

Linearizing Eqs. (20) and (21) in terms of δA and δB, and
assuming (δA, δB) ∼ exp (iωt) , we obtain the matrix

equation
(

−ω2 + Ω2 + Kb

2R2 + 3ε
R4

Kb

2R2

Kb

2R2 −ω2 + Ω2 + Kb

2R2 + 3ε
R4

)

·
(

δA
δB

)

= 0 , (29)

which gives two eigenvalues

ω1 =

√

4Ω2 −
2Kb

R2
, (30)

ω2 =

√

4Ω2 −
3Kb

R2
. (31)

For the first eigenvalue, ω = ω1, the polarization of the
mode is δA = δB, which implies that the cross-section of
the beam is a pulsating circle. In the space-charge limit, the
mode frequency is ω = ω1 =

√
2Ω. For the second eigen-

value, ω = ω2, the polarization of the mode is δA = −δB.
In this case, the cross-section of the beam is a pulsating el-
lipse, deviating from a circular shape. In the space-charge
limit, the frequency of this mode approaches ω = ω1 = Ω.

CONCLUSION AND FUTURE WORK
For high-intensity beams in a solenoidal lattice with

wobblers described by the nonlinear the Vlasov-Maxwell
equations, a class of generalized KV solutions is found.
The self-consistent solutions are specified by 5 envelope
equations for the beam centroid (wobbling dynamics), the
titling angle (tumbling dynamics), and the transverse di-
mensions in the wobbling and tumbling frame. Solenoidal
lattice is one of the two techniques that can induce coupling
between the transverse dynamics to achieve the smoothing
effect in the transverse dimension. The other technique is
to use a skew-quadrupole lattice. A similar class of solu-
tions of the nonlinear Vlasov-Maxwell equations for high-
intensity beams in a skew-quadrupole lattice with wobblers
has also been discovered [6], and will be reported in future
publications.
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