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a b s t r a c t

Evaluation of ion–atom charge-changing cross-sections is needed for many accelerator applications.
A Classical Trajectory Monte Carlo (CTMC) simulation has been used to calculate ionization and charge-
exchange cross-sections. For benchmarking purposes, an extensive study has been performed for the
simple case of hydrogen and helium targets in collisions with various ions. Despite the fact that the
simulation only accounts for classical mechanics, the calculations are comparable to experimental
results for projectile velocities in the region corresponding to the vicinity of the maximum cross-
section. The shortcomings of the CTMC method for multielectron target atoms are discussed.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Ion–atom ionizing collisions are of considerable interest in
atomic physics [1] and play an important role in many applica-
tions such as heavy ion inertial fusion [2], collisional and
radioactive processes in the Earth’s upper atmosphere [3], atomic
spectroscopy, ion stopping in matter, and ion-beam lifetimes in
accelerators [4]. For example, electron clouds can form inside the
accelerator due to residual gas ionization and cause two-stream
instabilities [5]. The formation of electron clouds and the beam
loss due to stripping can cause severe limitations on parameters
of the vacuum system for the heavy ion synchrotron SIS18 at GSI
operating with heavy ion beams [6]. Beam interaction with the
remaining background gas and gas desorbing from the walls can
limit the charge bunch intensity at the Relativistic Heavy Ion
Collider (RHIC) [7], and is also a concern for the Large Hadron
Collider (LHC) [8]. Similarly, it is of great concern for the positron
damping ring of the International Linear Collider (ILC) [9], as
well as for other high current, high-intensity accelerators and
ion-beam injectors.

The recent resurgence of interest in charged particle beam
transport in background plasma is brought about by the
recognition that plasma can be used as a magnetic lens [10]. To
estimate the ionization and stripping rates of fast ions propagat-
ing through gas or plasma, the values of ion–atom ionization
cross-sections are necessary. In contrast to the electron and
proton ionization cross-sections, where experimental data or
theoretical calculations exist for practically any ion or atom, the

knowledge of ionization cross-sections by fast complex ions and
atoms is far from complete. For this reason the US Heavy Ion
Fusion Science Virtual National Laboratory has initiated measure-
ments of cross-sections in a series of experiments at GSI [11–13]
and the Texas A&M synchrotron [14,15]. When experimental
data and theoretical calculations are not available, approximate
formulae are needed; therefore, the scaling of cross-sections with
energy and target or projectile nucleus charge has been developed
to approximate these values of cross-sections over a broad range
of energies and charge states [1,12,16].

For the interaction of complex projectile and target atoms or
ions, Classical Trajectory Monte Carlo (CTMC) simulations can be
utilized [17]. Classical mechanics approaches are typically simple
to apply and yield fairly reliable total cross-sections for collision
processes at intermediate energies [18]. The CTMC was originally
developed by Abrines and Percival [19], and has been used to
investigate various collisional processes. The CTMC method
consists of computing the electron trajectory in an atom when
another ion or atom is passing by at a certain impact parameter.
The cross-section is obtained from the rate of occurrence of the
outcome of the collision. The electron can remain close to one of
the nuclei or it can move far away from both of them. If the
electrons remain close to the target or projectile nuclei, and the
electron kinetic energy is smaller than the attractive potential to
the nucleus, the electron is assumed to be trapped by target or
projectile nuclei. If the electron is trapped by the target nucleus,
no ionization or charge-exchange event occurs, but if the electron
is trapped by the projectile nucleus, the charge-exchange event
occurs. Conversely, if the electron moves away from the target and
projectile nuclei, ionization takes place. The atomic potentials
can be determined using either Thomas–Fermi theory or Har-
tree–Fock theory, which include orbital effects. The Hartree–Fock
atomic wave equations are solved using Slater determinants [20].
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The calculations show that the Thomas–Fermi model describes
well most of the potential, but does not describe accurately the
ion potential at the outer edge of an ion even for relatively high
charge Z (Z419). The difference in atomic potentials can give an
error of about 20% compared with the calculations utilizing the
more accurate Slater model [20]. Therefore, in the following, we
use primarily the latter model for the ion and atom potentials.

Though frequently used, we have not found a detailed study
of the validity of the CTMC method. The validity trajectory
approximation has been studied by comparing the results of
simulations with available experimental data and the full
quantum-mechanical calculations in Ref. [1]. Additionally, a
theoretical criterion has been developed for the validity of the
classical trajectory approximation in Ref. [21]. The range of
validity of the Born approximation and the quasi-classical of
the classical approximation can be estimated by evaluating the
action Sðr; vtÞ ¼

R1
$1Fp½rðr; vtÞ&dt along the trajectory r(r,vt) ¼

[r2+(vt)2]1/2. Here, Fp(r) is the projectile atomic potential, r is the
impact parameter, and v is the projectile velocity. When Sðr;vÞ4_,
we can apply classical mechanics [1], whereas the Born approx-
imation fails. At higher velocities when Sðr;vÞo_, quantum-
mechanical effects become more significant and the CTMC results
agree less with the experimental values of cross-sections, whereas
the Born approximation is valid. Also at very low velocities,
Sðr;vÞb_, the probability of charge-exchange transitions in
classical mechanics may be significantly less than that due
to classically forbidden transitions, which can be described in
quantum mechanics using quasi-classical approximations, see
e.g., Ref. [1] for more details. Therefore, the CTMC method can be
generally applied in the narrow range Sðr;vÞ'_. To further
investigate the region of validity, an extensive study has been
performed for the simple case of hydrogen and helium targets in
collisions with various ions.

2. Description of the CTMC method

Application of the CTMC method consists of computing of the
electron trajectory in an atomwhen another ion or atom is passing
by at a certain impact parameter. For calculating the total cross-
sections, it is only necessary to determine the outcome of the
collision, i.e., the electron velocity and distances to the target and
projectile nuclei at large enough times, when one of the distances
is sufficiently large. There are three possible outcomes: the
electron remains close to one of the nuclei, or it moves far away
from both of them. If the electron kinetic energy (in the
appropriate reference frame) is smaller than the attractive
potential of the target or projectile, the electron is assumed to
be trapped by the nucleus. If the electron remains near the target,
no ionization or charge-exchange events have occurred. If the
electron is trapped by the projectile nucleus, the exchange event
has occurred. If none of these events has happened, ionization
takes place. The results have to be averaged over all possible initial
electron positions and impact parameters.

The result of the calculation should not depend on the set
of initial conditions for the electron trajectories. To properly
initialize the calculation, the initial set of electron positions
should sample a steady-state distribution in phase space of an
atom or ion without the projectile present. In order to have a
steady-state distribution, the Electron Velocity Distribution Func-
tion (EVDF) should be a function of constants of the motion:
the total energy, which is equal to the electron orbital binding
energy Eln ¼ $Inl , where Inl is the ionization potential, and the
total orbital momentum L. For the best correspondence between
quantum mechanics and classical mechanics, we choose L ¼ l+0.5
[22], where l is the quantum number characterizing the orbital

momentum. In classical mechanics, the EVDF of an electron
orbital n,l is given by the microcanonical ensemble distribution in
the phase space volume dG ¼ d3rd3v, i.e.,

f n; lðve; rÞdG ¼ Cn; ld
mv2

e

2
þFn; lðrÞ $ Enl

! "
dðL$ jve ) rjÞd3rd3v. (1)

Here Fn,l(r) is the atomic potential describing the interaction of
the atomic electron with the nucleus and the rest of the electrons,
and Cn,l is a normalization constant. In Eq. (1), it was assumed that
the direction of angular momentum is not specified and has been
averaged over all possible directions. We use spherical coordinates
d3r ¼ r2sin ydr dy df. The velocity vector can be split into two
components: one is directed along the radius vector vr, and the
rotational velocity, vb, is rotated in the plane perpendicular to vr
by an angle a (see Fig. 1). For a spherically symmetric model of an
atom, the rotation velocity, nb, is determined by angular
momentum conservation L ¼ nbr; and the radial electron
velocity is determined from energy conservation

v2
r þ ðL=rÞ2 ¼ $2In; l $ 2Fn; lðrÞ. (2)

Integrating the EVDF over phase space d3rd3v is straightforward
in cylindrical coordinates in velocity space d3v ¼ dvr davbdvb.
Substituting into Eq. (1) then gives

f n; lðve; rÞdG ¼ Cn; ld
mv2

e

2
þFn; lðrÞ $ Enl

! "
dðL$ vbrÞd

3rdadvr vb dvb

¼
LCn;l

m
dr

vrðr; lÞ
sinydydfda (3)

where the radial velocity vr(r,l) is given by Eq. (2).
To integrate over the initial positions of an electron in an atom,

we can use a Monte Carlo stochastic method where the initial
conditions are chosen randomly. In the general case, weights in
the probability calculation have to be used before summing up
the outcomes for cross-section calculations. This is because, if one
picks values of the electron velocity and radius randomly,
this does not correspond to a uniform distribution of points on
a surface of the sphere in phase space, i.e., to a microcanonical
ensemble. Therefore, instead of initializing the variable radius, we
use the phase of motion in the radial direction, or the time of
flight

Orðr; lÞ ¼
2pt
T

¼ *
2p
T

Z r

r$

dr
vrðr; lÞ

(4)

where T ¼ 2
R rþ
r$

dr=vrðr; lÞ is the period of the radial motion,
and r7 are the distances of minimum and maximum approaches.
From Eq. (3), it is evident that a uniform distribution in Or(r) is
equivalent to the microcanonical ensemble. The difficult part of
the calculation is to obtain the direction of the rotational velocity
as a function of the angles a, y, and f. The initial position of an
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Fig. 1. Schematic of electron trajectory and definition of angles (y,f,a).
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electron is given by

r ¼
x

y

z
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CA ¼ r

siny cosj
sin y sinj

cosy

0

B@

1

CA.

The spherical coordinates can be represented as two rotations of
the initial vector pointing along the z-axis, first along the y-axis by
the angle y, and then along the new z-axis by the angle j. That is,
we express

siny cosj
siny sinj

cosy

0

B@

1

CA ¼
cosj $sinj 0

sinj cosj 0

0 0 1

0

B@

1

CA
cosy 0 siny
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Correspondingly, the velocity vector is transformed by the same
two rotations, from

v ¼
cosj $sinj 0

sinj cosj 0

0 0 1

0

B@

1

CA
cosy 0 siny
0 1 0

$siny 0 cosy

0

B@

1

CA
vb cosa
vb sina

vr

0

B@

1

CA (5)

to

v ¼

vx

vy

vz

0

B@

1

CA ¼

vr siny cosjþ vbðcosj cosy cosa$ sinj sinaÞ
vr siny sinjþ vbðsinj cosy cosaþ cosj sinaÞ
vr cosy$ vbsiny cosa

0

B@

1

CA.

(6)

Note that a is the angle between the x0-axis (cosj cos y, sinj cos
y, $siny) and vb, and r corresponds to the z0-axis.

It is instructive to compare the energy and radial distribution
functions obtained from the microcanonical ensemble and quantum
mechanics. The radial distribution function in the microcanonical
ensemble is bounded by turning points, whereas the quantum
mechanical distribution function for a hydrogen-like ion is a
Gaussian. Making use of Eq. (3), the energy distribution function,
or the distribution function over absolute values of the electron
velocity for the Coulomb potential is given by

f ðve; lÞ ¼
8v3

nlve

pðv2
e þ v2

nlÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2

e $ L2ðv2
e þ v2

nlÞ
2

q (7)

where vnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Inl=m

p
. The quantum mechanical distribution

function over velocity is given by [1,30]

f qmðve; lÞ ¼
32v5

nlv
2
e

pðv2
e þ v2

nlÞ
4
. (8)

Eq. (7) gives a much larger distribution than Eq. (8) near the
turning points where the electrons move slowly, corresponding to
vELvnl/2, and vE2/L for L52. This difference reflects the fact that
in quantum mechanics the electrons can tunnel into classically
forbidden regions. In principle, it is possible to exactly match the
atomic EVDF in classical mechanics to the quantum-mechanical
result by choosing an appropriate distribution for the angular
momentum g(L) instead of the delta function, d(L$l$0.5). For
example, completely ignoring any restrictions on momentum
incidentally gives the same EVDF as Eq. (8) [1]. However, utilizing
the function g(L) is rather artificial, and cannot match both the
radial and velocity distribution functions simultaneously. There-
fore, we use only the microcanonical ensemble given by Eq. (3),
and L ¼ l+0.5. Simulations with a different value of angular
momentum, e.g., L ¼ l, give very similar results (less than 10%
difference) for the total cross-section, and are well within the
error bars of the method.

Classical trajectory calculation computes an electron trajectory
in an atom when another ion or atom with velocity V is passing
by at a certain impact parameter, r. For calculation of the total

cross-section, it is necessary to determine finite result of collision:
electron velocity and distance to the target and projectile nuclei at
large enough times, when the distance between the projectile and
target nuclei is sufficiently large compared with the atom size.
There are three possible outcomes: the electron remains close
to one of the nuclei or it moves far away from both of them. If
the electron kinetic energy (in the appropriate reference frame) is
smaller than the attractive potential of the remainder of the target
atom or projectile ion, the electron is assumed to be trapped by
the respective nuclei, e.g., if

mv2

2
oUT ðrÞ

then the electron remains near the target atom, and no ionization
or charge-exchange events occur. However, if

mðv$ VÞ2

2
oUPðrÞ

then the electron is trapped by the projectile nucleus, i.e., the
charge-exchange event occurs. If the electron is far away from
both the target atom and projectile ion then both the conditions

mv2

2
4UT ðrÞ and

mðv$ VÞ2

2
4UPðrÞ

are satisfied, and the ionization event occurs. The results have to
be averaged over all possible initial electron positions. Thus, using
the CTMC approach, the ionization, siz, or charge exchange, scx,
cross-sections are given by

siz;cx ¼
2prmaxSi;j;k;m;sric

iz;cx
i;j;k;m;s

Nt
(9)

where ri is the impact parameter, rmax is the maximum impact
parameter used in the simulations, and i, j, k, m, s are indexes
labeling the simulation in impact parameter, radius, and three
spherical angels (y,f,a); Nt ¼ NiNjNkNmNs is the total number of
trajectories that are simulated, and ci,j,k,m,s ¼ 1, if the ionization/
charge-exchange event takes place for calculation of the ioniza-
tion/charge-exchange cross-section, and ci,j,k,m,s ¼ 0, otherwise.

ARTICLE IN PRESS

σ
π

Fig. 2. Normalized ionization cross-section for proton collisions with atomic
hydrogen in atomic units; the value of the cross-section is normalized to
4pa02 ¼ 3.517)10$16 cm$2; the velocity in atomic units can be calculated from
the projectile energy per unit mass from v ða:u:Þ ¼ 0:2
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3. Comparison of CTMC calculations and experimental data

Using a classical trajectory simulation, we have calculated
the ionization and charge-exchange cross-sections for collisions
of various ion projectiles with hydrogen and helium targets.
Figs. 2–4 show the charge-changing cross-sections (ionization or
charge exchange) for fully or partially stripped ions colliding with
atomic hydrogen.

3.1. Comparison of CTMC calculations and experimental data for
hydrogen target

Atomic units are used in all figures. The experimental data are
taken from Ref. [22–25].

At large velocities the CTMC cross-section should approach 5/3
of the Bohr formula [1], i.e.,

s ¼
5
3
sBohr ¼

10pa20v2
0E0Z

2
p

3v2Inl
(10)

where a0 ¼ _2=me2 ¼ 0:529) 10$8 cm, the velocity is normalized
to v0 ¼ e2=_ ¼ 2:19) 108 cm=s, and the energy is normalized
to E0 ¼ mv0

2 ¼ 2Ry ¼ 27.2 eV, where Ry is the Rydberg energy.
The normalizing coefficients are kept in all equations for robust
application of the formulae. For efficient manipulation of the
formulae, it is worth noting that the normalized projectile ion
velocity is v ða:u:Þ ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E keV=amu

p
, where E is the energy per

nucleon in keV/amu. Therefore, 25 keV/amu corresponds to the
atomic velocity scale.

It should be pointed out that the experimental values for the
cross-sections tend to the Bethe limit for vbvnl [1], i.e., to

s ¼
2pa20v2

0E0Z
2
p

v2Inl
0:566ln ðv=vnlÞ þ 1:26
$ %

(11)

which gives a slightly higher value for the cross-section than the
CTMC method.

In carrying out the CTMC calculations it is important to choose
reasonable parameters for the simulation to avoid unnecessarily
long simulations, and to check convergence over all para-
meters used in the simulations. These parameters include the
initial separation distance between the nuclei of the target
and projectile, the maximum impact radius, and the number of
simulations. We can sample the initial velocity either randomly
or regularly. This does not make a difference for most calculations
unless the probability of a process is very rare. A stochastic
method for choosing the initial coordinates was used for most
simulations, using 100,000–150,000 trajectories. The maximum
values of the impact parameter for He, Li, C, and O projectiles were
5.7, 6.5, 11, and 12au, respectively. For most runs with hydrogen
targets, we used an initial separation distance between the nuclei
of the target and projectile of 25 a.u. For larger ions, such as
oxygen and carbon, this distance increased further for simulations
at lower projectile velocities because, due to the larger projectile
charge, the projectile can start attracting electrons from atomic
hydrogen from a larger distance. The ionization process is rare at
low velocities, and only a few special initial conditions contribute
to the process. Therefore, these cross-sections are difficult to
simulate, e.g., see Ref. [1] for a more detailed description of the
ionization process at lower velocity.

The simulation results typically underestimate the experi-
mental data. This is mainly due to the contribution of classically
forbidden transitions, which can occur in quantum mechanics.
However, the CTMC results and the experimental data curves peak
at around the same value of the projectile velocity. For velocities
between 1.3 and 2.3 a.u., the simulations appear to provide a good
approximation to the experimental values, within 10% for the
proton on hydrogen case, see Fig. 2.
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Fig. 3. Normalized ionization cross-sections for fully stripped ions colliding with atomic hydrogen; the value of the cross-section is normalized to 4pa02Zp2 ¼ Zp
2

3.517)10$16 cm$2 . The experimental results for He, Li, and C and O are from Refs. [23,24] and [25], respectively.
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For charge-exchange cross-sections, the CTMC method predicts
reasonably well the value of the cross-section for projectile
velocity in the range vA[0.9,3]. At smaller velocities, there are
important quantum-mechanical effects which lead to much larger
cross-sections for collisions where the projectile is identical to the
target nucleus, or much smaller cross-sections for other projec-
tiles, as evident from Fig. 4.

We have also simulated cross-sections for more complex
projectile ions, Ar+3 and Ar+7. The ion potential was obtained
from a modified (for ions) Thomas–Fermi theory [22]. In normal-
ized atomic units, the potential is given by

VpðrÞ ¼

Z
r
Ks

rZ
1
3

b

 !

þ
Zp

Rion
if roRion

Zp

r
if rXRion

8
>>>><

>>>>:

(12)

where

KsðxÞ ¼ 1$
x
S1

& '3
" #

:
1

1þ 0:02747
ffiffiffi
x

p
þ 1:243x$ 0:1486x1:5 þ 0:2302x2

( )

is an approximation to the Thomas–Fermi potential, and b ¼
0.8853, Z ¼ 18 (argon nucleus charge), and S1 ¼ 3.96175 is obtained
from the Thomas–Fermi model to match the asymptotic behavior of
the ion potential at large radius Rion ¼ bS1/Z

1/3 ¼ 1.3383.
In Fig. 5 the normalized values of cross-sections of Ar+3 and Ar+7

ions are plotted against the projectile velocity and compared with
the experimental data [26] and the previous results for H+ and Li+3

ions. For the most part the two Ar ion cross-sections resemble
the others in their basic shape and curvature. For instance, note
the similarities between Li+3 and Ar+3. However, also note that the
CTMC results for Ar+3 cross-sections do not approach the 5/3 Bohr
limit at high velocities unlike those of other ions. This is because of
the large contribution to ionization for impact parameters inside the

ion radius, roRion, where much larger forces act on the electron
than just the Coulomb force, Zp/r

2. Fig. 6 shows a comparison with
available experimental data for charge-exchange cross-sections for
collisions of argon ions (Ar+3) with hydrogen.

3.2. Comparison of CTMC calculations and experimental data for
helium target

Similar simulations have been performed for helium. In this
case, we used a simple approximation for the potential acting on
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Fig. 4. Normalized charge-exchange cross-sections for collisions of fully stripped ions with atomic hydrogen. The experimental results are from Ref. [23] for H and He, Ref.
[24] for Li, and Ref. [25] for C.
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π

Fig. 5. Ionization cross-sections of argon ions (Ar+3 and Ar+7) compared with fully
stripped ions of the same charge (H+ and Li+3) on atomic hydrogen. The
experimental values for Ar ions are taken from Ref. [26].
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an electron inside the helium atom taken from Ref. [27], and
normalized atomic units is given by

VtðrÞ ¼ ðrbþ 1Þ
ðze$2rbÞ

2r
þ
1
r

(13)

where b ¼ 1.65 and z ¼ 2. The ionization potential for neutral He
is 24.59eV ¼ 0.904 a.u. Since there are two electrons that can
be ionized, we calculate the total cross-sections for one electron
and then multiply it by a factor of two (independent electron
approximation). The results are shown in Fig. 7. The experimental
values were taken from [28].

3.3. Comparison of CTMC calculations and experimental data for
potassium projectile

The cross-sections for charge-changing collisions of fast
potassium ions with different target atoms are needed to estimate
the generation of electrons in the accelerator section of ion beams
in the High-Current Experiment (HCX) and the Neutralized Drift
Compression Experiment (NDCX) at Lawrence Berkeley National
Laboratory (LBNL) [2,10]. Therefore, these total cross-sections
have been measured in Ref. [29]. The sum of ionization and
charge-exchange cross-sections for several gas targets (H2, N2, He,
Ne, Kr, Xe, Ar, and water vapor) impacted by a 1MeV K+ beam

were measured. In a high-current ion beam, the self-electric field
of the beam is high enough that the ions produced from gas
ionization or charge exchange by the ion beam are quickly swept
aside in the accelerator. The flux of expelled ions is measured by a
retarding field analyzer. This allowed accurate measurements
of the total charge-changing cross-sections (ionization plus charge
exchange) of the beam interacting with gas. The cross-sections
for H2, He, and N2 have been simulated using the CTMC method
and compared with experimental results, showing a very good
agreement.

Fig. 8 shows the CTMC theoretical prediction for charge-
changing cross-sections as a function of the projectile energy.
In the low-energy region, i.e., when the projectile velocity is
much slower than the least tightly bound electron in the target
molecule, the charge-exchange process dominates over ionization.
When the projectile velocity becomes much larger than the
velocity of the least tightly bound electron in the target atom,
the charge-exchange cross-section decreases rapidly [30]. The
ionization cross-section decreases with increasing projectile
energy, approaching for large energies, the (lnE)/E dependence
of the Bethe formula (11) [1]. Therefore, in the high-energy region,
i.e., when the projectile velocity is much larger than the least
tightly bound electron in the target molecule, ionization
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Fig. 6. Charge-exchange cross-sections for collisions of argon ions (Ar+3) with
atomic hydrogen. The experimental values were taken from Ref. [26].
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Fig. 7. Charge-changing cross-sections for fully stripped ions on helium corresponding to: (a) ionization, and (b) charge exchange. The experimental values were taken from
[28]. The value of the cross-section is normalized to pa02(ZpE0/Inl)2 ¼ 1.224pZp2a02 ¼ 0.719)10$16Zp

2 cm$2; the projectile velocity in atomic units can be calculated from the
projectile energy per unit mass from v ða:u:Þ ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E keV=amu

p
[1].

σ

Fig. 8. Charge-exchange cross-sections and ionization cross-sections of atomic H
and He target ions interacting with K+ ions, predicted using CTMC calculations. The
HCX parameters (1MeV K+ ion) correspond to 25 keV/amu.
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dominates over the charge-exchange mechanism and has a larger
cross-section.

Fig. 9 illustrates that the contribution of collisions with
impact parameter less than potassium ion radius (inside the
potassium ion) is important for cross-sections estimates, because
the potassium ion cross-sections are significantly larger than
the proton cross-sections. This difference is much larger than the
difference for argon ions, shown in Fig. 6. Therefore, it is
important to accurately model the potassium ion atomic
potential near the outer edge of the ion radius. The atomic
potential of potassium ion can be determined either by
Thomas–Fermi theory or Hartree–Fock theory, which include
orbital effects.

The Thomas–Fermi distribution of the electron density, ne, in
atomic units as a function of the potential, f, is given by [22]

ne ¼
1

3p2
½2ðf$f0Þ&

3=2 (14)

and the potential is determined from the Poisson equation

r2f ¼
8

ffiffiffi
2

p

3p ðf$f0Þ
3=2. (15)

The constant f0 has to be determined from the condition at the
ion radius r ¼ r0, where f ¼ f0 and the electron density becomes
zero. Because there are no electrons beyond the ion radius, the
potential at this point should be f(r) ¼ zion/r, which gives
f0 ¼ zion/r0. The values of r0,f0 are obtained numerically. For a
potassium ion K+, it follows that zion ¼ 1, Z ¼ 19, and the ion
radius is r0 ¼ 5.22 a.u.

The Hartree–Fock atomic wave equations are solved using
Slater determinants [20]. An electron orbital wave function with
quantum numbers (n,l,m) are represented as a linear combination
of the Slater functions [31]

wn;l;mðrÞ ¼
X

p

bp
ð2apÞnpþ1=2

½ð2npÞ!&1=2
rnp$1e$aprYl;mðf; yÞ (16)

where bp and ap are the variational parameters of the pth
expansion coefficients of Hartree–Fock function, np is the principal
number of the electron orbital in the decomposition, and Yl,m
represents the spherical harmonic, which is dependent on the
angular momentum, l, and magnetic moment, m. The radial
electron density can be calculated from the electron wave

function in Eq. (16), averaging over angles, which gives

rn; lðrÞ ¼
X

p

bp
ð2apÞnpþ1=2

½ð2npÞ!&1=2
rnp$1e$apr

( )2

. (17)

In Eq. (17), the normalization condition is
R1
0 rn; lðrÞr

2dr ¼ 1.
The potential is determined from the Poisson equation with
ne(r) ¼

P
n,lrn,l(r), which can be expressed in atomic units as

fðrÞ ¼
Z
r
$

R r
0

P

n;l
rn;lðr

0Þr02 dr0

r
$
Z 1

r

X

n;l

rn;lðr
0Þr0 dr0. (18)

Here, the orbital contributions to the electron density, rn,l(r), are
given by Eq. (17). Taking the derivative of the potential gives the
electric field

EðrÞ ¼
ZðrÞ
r2

(19)
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σ σ

Fig. 9. Comparison of ionization cross-section (a), and (b) charge-exchange cross-sections for proton and potassium ion projectiles colliding with atomic hydrogen. The
experimental data are from Refs. [1,3].

φ

Fig. 10. Comparison of Thomas–Fermi and Slater models for the potassium ion
potential, rf(r), and profile of charge, Z(r), inside a sphere of radius r. Note the
differences between the two models at the outer edge of the ion. The orbital
structure is evident for the Slater model.
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where ZðrÞ ¼ Z $
R r
0

P
n;l
rn;lðr

0Þr02 dr0 is the total charge inside a
sphere of radius r.

Calculations show that Thomas–Fermi theory does not de-
scribe accurately the ion potential at the outer edge of the
potassium ion, even though the potassium nucleus has relatively
high charge Z (Z ¼ 19), and the Thomas–Fermi model describes
well most of the potential, as shown in Fig. 10. In contrast to the
highly charged argon ions in Fig. 5, the difference in atomic
potentials for singly charged potassium ions is more important,
and gives an error of about 20% compared with the calculations
utilizing more accurate Slater model in Ref. [20] as shown in
Table 1.

The results of simulations using the CTMC method for the
ionization and charge-exchange cross-sections for the interaction
of 1MeV K+ with H2, He, and Ne are summarized in Table 1. For a
1MeV K+ beam, the values of the charge-exchange cross-sections
are 2–4 times higher than the ionization cross-sections; the total
cross-section agrees well with the experimental data [29], as
shown in Table 2.

4. Challenges in CTMC calculations of multielectron events

We have attempted to simulate multielectron target or
projectile ions classically by taking into account several electrons
simultaneously, similar to previous calculation where only the
single electron trajectory was simulated. As a first step, simula-
tions of a helium atom have been performed. However, the
problem with simulations using the CTMC approach for multi-
electron atoms or ions is that in classical mechanics multielectron
atoms are not stable, for example, the simplest helium atom
has very few stable electron trajectories [32]. Classically, the
two helium electrons are allowed to exchange energy, so that for
practically all initial conditions corresponding to the ground state
of the helium atom, one electron drops down to a lower orbit with
a smaller energy, and the other electron acquires enough energy
to escape to infinity from the nucleus, and the atom auto-ionizes
itself even without interaction with the projectile. Quantum
mechanically, this cannot occur if the system is in its ground state.

In order to avoid artificial auto-ionization in classical me-
chanics, we can modify the electron repulsion force between two
electrons to reduce the energy exchange between them at close
collisions, for example, the force can be modified to F(r) ¼

$r/(r2+d2)3/2, where d is a constant of order unity in atomic units.
Fig. 10 shows the results of simulation runs for different values
of d and different simulation time intervals. The most typical time
intervals for cross-section simulations are between 12.5 and
50.0 a.u. Therefore, Fig. 11 shows approximate upper and lower
bounds on stable orbits. Each point on the graph represents
10,000 trajectories, except for the d ¼ 0.7 and 0.8 points on the
curve for simulation time ¼ 50.0, which used 100,000 trajectories.
The number of orbits in which auto-ionization occurred was
recorded and expressed as a fraction of the total trajectories
simulated. Fig. 10 shows that for typical simulation time scales,
the addition of d term in the electron repulsion force term is an
effective way to decrease the number of trajectories which auto-
ionize. However, an effective algorithm needs to be developed to
make sure that artificial auto-ionization does not contribute to the
charge-changing collisions.

5. Conclusions

As evident from figures showing comparisons between the
simulations and experimental data, the CTMC simulations match
the experimental results for projectile velocities between 1 and 3
atomic units, which correspond to the region near the maximum
value of the cross-section. The CTMC method can underestimate
the value of cross-sections outside this velocity range. An effective
algorithm needs to be developed to make sure that artificial auto-
ionization in collisions of two electrons in classical mechanics
does not contribute to charge-changing collisions.
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Table 1
Ionization and charge-exchange cross-sections for the interaction of 1MeV K+ with H2, He, and Ne.

Gas Charge exchange cross-section (10$16 cm2) Ionization cross-section (10$16 cm2)

Slater TF Slater TF

H2 5.92 9.68 3.00 3.74
He 4.10 5.98 1.10 0.994
Ne 9.46 3.91

TF denotes the calculation using Thomas–Fermi model of potassium ion, and Slater indicates the more accurate model given by Eq. (18).

Table 2
Comparison of the calculated values of the total cross-sections (sum of the
ionization and charge exchange cross-sections) with the experimental data [29] for
the interaction of 1MeV K+ with H2, He, and Ne.

Gas Experiment (10$16 cm2) CTMC, Slater model (10$16 cm2)

H2 13.571.5 8.9
He 5.6270.57 5.20
Ne 11.971.0 13.4

δ

Fig. 11. Fraction of auto-ionizing two-electron helium atom orbits for two
simulation time intervals.

I.D. Kaganovich et al. / Nuclear Instruments and Methods in Physics Research A 606 (2009) 196–204 203



Author's personal copy

Acknowledgments

This research was supported by the Office of Fusion Energy
Sciences of the US Department of Energy and the National
Undergraduate Fellowship program.

References

[1] I.D. Kaganovich, E.A. Startsev, R.C. Davidson, New J. Phys. 8 (2006) 278.
[2] B.G. Logan, et al., Nucl. Instr. and Meth. A 577 (2007) 1.
[3] H.-D. Betz, Rev. Mod. Phys. 44 (1972) 465.
[4] H. Beyer, V.P. Shevelko, Atomic Physics with Heavy Ions, Springer, Berlin, 1999.
[5] R.A. Bosch, Phys. Rev. ST Accel. Beams 6 (2003) 074201.
[6] A. Smolyakov, W. Fischer, C. Omet, P. Spiller, GSI Report no. GSI-Acc-Report-

2005-11-001, 2005.
[7] W. Fischer, M. Bai, J.M. Brennan, M. Blaskiewicz, P. Cameron, H.C. Hseuh,

H. Huang, W. MacKay, T. Roser, T. Satogata, L.A. Smart, D. Trbojevic, S.Y. Zhang,
Proceedings of the European Particle Accelerator Conference, Paris, France,
2002, p. 1485.

[8] T. Demma, S. Petracca, F. Ruggiero, G. Rumolo, F. Zimmermann, Phys. Rev. ST
Accel. Beams 10 (2007) 114401.

[9] L. Wang, F. Zimmermann, SLAC Report no. SLAC-PUB-12642, 2007.
[10] P.K. Roy, S.S. Yu, E. Henestroza, et al., Phys. Rev. Lett. 95 (2005) 234801.
[11] R.E. Olson, R.L. Watson, V. Horvat, K.E. Zaharakis, J. Phys. B 35 (2002) 1893;

R.E. Olson, R.L. Watson, V. Horvat, A.N. Perumal, Y. Peng, Th. Stöhlker, J. Phys.
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