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When applying the standard �f particle-in-cell simulation method to simulate linear and nonlinear
collective instabilities with coherent structures, wave-particle interaction may result in large weight
growth for resonant or nearly resonant simulation particles. In this paper, we demonstrate that the
large noise associated with the large weight of nearly resonant simulation particles can produce
significant error fields at the nonlinear stage of the instability. To overcome this deleterious effect,
we have developed a modified �f method that contains a smooth switching algorithm between the
�f and total-f methods. Before the switch, the simulation effectively makes use of the desirable
low-noise feature of the �f method for small weight to accurately follow unstable mode structures.
When the weight function becomes large during the nonlinear phase, the low-noise advantage of the
�f method ceases to be significant and the simulation is switched to the total-f method to avoid the
large noise induced by nearly resonant simulation particles. This algorithm has been successfully
applied to simulation studies of the electrostatic Harris instability driven by large temperature
anisotropy in high-intensity charged particle beams typical of applications in high current
accelerators, including high-energy density physics and heavy ion fusion. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2920201�

I. INTRODUCTION

The perturbative particle simulation method ��f method�
has become an effective low-noise particle-in-cell �PIC� al-
gorithm for simulation studies of collective dynamics of
plasmas in application areas ranging from magnetic fusion
plasmas1–8 to high-intensity charged particle beams.9–13 Re-
cently, there has been a renewed interest in the question of
growing weight and associated simulation noise in �f PIC
simulations of gradient-driven transport phenomena in mag-
netic fusion plasmas.3,4,7,8,14–16 The growing weight in this
class of applications is caused by the fact that there in no
exact steady state for collisionless plasmas which supports
heat and/or particle flux. In this paper, we report another
mechanism through which the weight function and the asso-
ciated noise in the standard �f algorithm can become large,
and we propose a modified �f algorithm to ameliorate this
deleterious effect. We show that wave-particle resonance be-
tween a simulation particle and a coherent mode structure
can result in a large weight growth for that simulation par-
ticle, which in turn creates a large local error field in the
simulation. The modified �f algorithm we have developed
can smoothly switch to the total-f method when the weight
becomes large during the nonlinear phase of the instabilities
under investigation. The concept and algorithms are illus-
trated through the numerical example of the electrostatic
Harris instability driven by large temperature anisotropy in
high-intensity charged particle beams, typical of applications
in high current accelerators, including high-energy density
physics and heavy ion fusion. It is worthwhile to point out
that the weight growth mechanism due to resonant simula-
tion particles is effective only for the interaction dynamics
with coherent structures. When the system is in a fully de-
veloped turbulent state which contains a broad spectrum of

modes, the resonance mechanism inducing weight growth is
unlikely to be prominent. This paper is organized as follows.
The basic mechanism of large weight growth due to resonant
simulation particles is discussed in Sec. II. The modified �f
algorithm is introduced in Sec. III, and illustrative numerical
examples are presented in Sec. IV.

II. LARGE WEIGHT GROWTH DUE TO RESONANT
AND NEARLY RESONANT SIMULATION
PARTICLES

In the present study, the Vlasov–Maxwell equations for
collisionless plasma are given by
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where f is the distribution function of particles in phase
space, q and m are the particles’ charge and mass, and Fext is
the externally applied force. In the quantities f , q, m, Fext,
and the velocity integrals over f occurring in Eqs. �1� and
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�3�, the species index has been suppressed to simplify the
notation. The electromagnetic fields �E ,B� are determined
self-consistently in terms of f . Equations �1�–�5� are written
for nonrelativistic dynamics in an inertial reference frame,
whose relativistic generalization in flat spacetime is straight-
forward. Moreover, Eqs. �1�–�5� are applicable to one-
component non-neutral plasmas and intense beams, as well
as to multispecies plasmas.

In the standard �f method, the distribution function f
and the fields are split into two parts,

f = f0 + �f = f0 + wF , �6�

E = E0 + �E , �7�

B = B0 + �B , �8�

where �f0 ,E0 ,B0� is a solution of the Vlasov–Maxwell equa-
tions, and ��f ,�E ,�B� are the perturbed distribution function
and fields relative to �f0 ,E0 ,B0�. The known solution
�f0 ,E0 ,B0� is allowed to depend on time, even though in
most applications it is taken to be a known equilibrium
solution with � /�t=0. The perturbed distribution function
�f �wF is constructed from the distribution function of
simulation particles F and the weight function w in phase
space. Because the simulation particles follow the same tra-
jectories as the physical particles, F satisfies the Vlasov
equation �1� as well. But F need not to be the same as f , and
does not necessarily satisfy the Maxwell equations �2�–�5�.
Some straightforward algebra shows that the dynamics of w
is determined from
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where g� f /F is a constant of the motion for each simulation
particle, i.e., dg /dt=0, because df /dt=0 and dF /dt=0.
Therefore, g is determined from the initial conditions of the
simulation particles. If F is initially the same as f , then
g�1 and the distributions of physical particles and simula-
tion particles are the same. The Maxwell equations for the
perturbed fields ��E ,�B� are

� · �E = 4�� d3vqwF�x,v,t� , �10�
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c
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Equations �9�–�13� are exactly equivalent to the nonlinear
Vlasov–Maxwell equations �1�–�5�. No approximation has
been made in the derivation of Eqs. �9�–�13�.

We note that the �f method of the gyrokinetic system17,18

for magnetized plasmas will take a different form from
Eq. �9�,1–4,8,15,16 because the gyrocenter coordinate system is
nonfibered.19 We focus here only on the Vlasov–Maxwell
system �1�–�5� in standard phase-space coordinate systems
�fibered phase-space coordinates�, which is valid for both
magnetized and unmagnetized plasmas.

In the simulations, the weight function w is carried by
each simulation particle and advanced according to Eq. �9�.
The rate of change of w is evaluated at the phase-space lo-
cation of the simulation particle. Under certain circum-
stances, the relative phase between ��E+v��B /c� and
�f0 /�v can be “locked-in” for some simulation particles for
an extended period of time. If this resonant interaction oc-
curs, the weight for these resonant particles may approach g
or a negative value with large absolute value, depending on
the sign of the locked-in phase. For purposes of illustration,
let us study the electrostatic case. We also assume g=1 and
take f0 to be locally Maxwellian, i.e.,

f0 =
n0�x�

�2�T/m�3/2exp�−
v2

2T/m� . �14�

Under these assumptions, Eq. �9� reduces to

d

dt
ln�1 − w� =

q

T
�E · v , �15�

which gives

w�t� = 1 − �1 − w�t = 0��exp�h�t�� , �16�

h�t� = − �
0

t q�E · v

T
dt . �17�

When the phase between �E and v is locked-in, w ap-
proaches 1 if q�E ·v is positive, and w approaches −� if
q�E ·v is negative. For example, such a resonance can occur
linearly between a wave structure and a simulation particle if
the velocity of the particle is the same as the phase velocity
of the wave. Of course, this picture of exact resonance is
only an approximation. The linear resonance can be elimi-
nated by particle acceleration, and the w will not become 1
or −�, even though nonlinear trapping is still a possible sce-
nario for w to continue to approach the limiting values. Fur-
thermore, in practical numerical simulations, the limiting
values of w will not be observed because there are no exactly
resonant simulation particles for a finite number of simula-
tion particles, unless they are intentionally loaded in. An ar-
bitrarily loaded simulation particle will generally be located
a finite distance from the exact resonance condition.

What is more meaningful is to investigate the behavior
of w for a nearly resonant simulation particle. We take

q�E · v

T
= k� sin�kx − �t�v , �18�
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v = �� + 1�
�

k
, x = x0 + vt , �19�

where �� ,k� is the frequency and wavenumber of the per-
turbed field, � is the normalized strength of the field pertur-
bation, and � is a measure of the distance from the exact
resonance condition. Then Eq. �17� gives

h�t� �
��1 + ��

�
�cos�kx0� − cos�kx0 + ��t�� . �20�

The minimum value of w determined from Eqs. �16� and �20�
is approximately

wmin  − exp�2�

�
� . �21�

Plotted in Fig. 1�a� is the weight given by Eq. �20� for the
case in which �=0.1, �=0.1, and x0=0. We see clearly from
Fig. 1�a� that the weight becomes large and negative for a
nearly resonant simulation particle. If the mode is unstable,
the weight for a nearly resonant particle can be driven to
even larger negative values. For example, if we take

q�E · v

T
= k� exp��t�sin�kx − �t�v , �22�

where ��0, then

h�t� =
���1 + ��
�2�2 + �2 ����cos�kx0� − exp��t�cos�kx0 + ��t��

+ ��exp��t�sin�kx0 + ��t� − sin�k0x��� . �23�

Shown in Fig. 1�b� is the weight determined from Eqs. �17�
and �23� for the case in which �=0.1, �=0.1, x0=0, and
�=0.07�. The behavior of the weight growth in Fig. 1�b�
agrees qualitatively with the numerical simulations for the
examples considered in Sec. IV.

When the weight function become large, the low-noise
advantage for small weight is diminished, because the noise
level in the simulation is proportional to w2��f / f�2. Larger
weight values in the simulations introduce larger noise. In
the numerical example presented in Sec. IV, the large noise
introduced by the nearly resonant simulation particles pro-
duces a large error field, which eventually invalidates the
simulation. Theoretically, the allowed range of weights is
−� 	w
1. The weight is allowed to approach −�, which
corresponds to the case in which F=0. Particles with −�
	w�−1 do not represent any theoretical difficulty because
�f =wF should always be finite. For a weight in the range of
−� 	w�−1, the corresponding value of F is small in size.
However, numerically the noise level approaches infinity as
w →−�, and such nearly resonant simulation particles are
problematic for the reason indicated earlier.

III. MODIFIED �f ALGORITHM WITH SWITCH
BETWEEN �f AND TOTAL-f METHODS

To overcome the noise issue brought about by the large
weight of nearly resonant simulation particles, we have de-
veloped a modified �f method that can switch smoothly be-
tween the �f and total-f methods. Before the switch, the
simulation still makes effective use of the low-noise feature
of the �f method for small weight to follow the detailed
evolution of the unstable mode structures. When the weight
function becomes large during the nonlinear phase, the
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FIG. 1. Weight function of a nearly resonant simulation particle for the case
of �a� a constant amplitude wave structure �=0.1, �=0.1, and x0=0 and �b�
an unstable wave with �=0.07�.

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

0( ) /t t τ−

α

FIG. 2. Switching function ��t� given by Eq. �28� for the case in which
n=3, a�=90.
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low-noise advantage of the �f method is reduced and the
simulation is switched to the total-f method to avoid the
large noise induced by nearly resonant simulation particles.
In this modified algorithm, the particle’s distribution is par-
titioned as

f = �f0 + wF , �24�

where every term in Eq. �24� except for � has the same
meaning as in Eq. �6� for the standard �f method. The new
feature here is the coefficient �, which is a function of time
and can take on values between 0 and 1. The case of �=0
corresponds to the total-f method, and the case of �=1 cor-
responds to the standard �f method. The perturbed fields are
determined from the perturbed Maxwell equations using the
perturbed distribution, which is constructed from �, w, and F
as

�f = �� − 1�f0 + wF . �25�

It is straightforward to show that the governing equation for
the evolution of w is given by

dw

dt
=

w − g

f0

df0

dt
+

w − g

�

d�

dt

=
q

m
��E +

v � �B

c
� ·

�w − g�
f0

� f0

�v
+

w − g

�

d�

dt
. �26�

Compared with Eq. �9� for the standard �f method, the dy-
namics of w is now coupled to that of �, which can be either

prescribed or determined from some rules coupled back to
the amplitude of w. When � varies smoothly from 1 to 0
during the simulation, the �f method is smoothly switched to
the total-f method. The coefficient � can also be allowed to
depend on phase-space coordinates, and the extra freedom
associated with � is introduced to achieve some additional
numerical advantages. In the present study, � is chosen to
depend only on time t to realize a smooth switch for all
simulation particles simultaneously. If the dynamics of � is
chosen to depend on the phase-space coordinates as well,
then different simulation particles will be switched at differ-
ent time.

There are many ways to select the function ��t� to
achieve the desired switching from the �f method to the
total-f method; however, the simulation results should be
independent of how the switch function is selected, because
the system of equations is always equivalent to the original
Vlasov–Maxwell equations. For example, we can choose the
switch function to satisfy

d ln �

dt
= �

0, t − t0 	 0,

− a� t − t0

�
�n

, 0 
 t − t0 	 � ,

− a , � 	 t − t0,
� �27�

which gives

� =�
1, t − t0 	 0,

exp�−
a�

n + 1
� t − t0

�
�n+1
 , 0 
 t − t0 	 � ,

exp�−
a�

n + 1
− a�t − t0 − ��
 � 0, � 	 t − t0.

�28�

Here, t0 is the starting time of the switch, and � is the
duration of the switch. The starting time t0 can be either
prescribed before the simulation started or the switching
can be triggered automatically when the weight growth
reaches a certain threshold. The power index n and ampli-
tude parameter a in Eqs. �27� and �28� are chosen to satisfy
a� / �n+1��1, so that ��0 after the switching �t− t0���.
An example of ��t� given by Eq. �28� is plotted in Fig. 2 for
the case in which n=3, a�=90.

The dynamics of � prescribed in Eq. �27� imposes a
constant drive, smoothly ramped-up from t= t0, for the
weight function to approach w=g= f /F, which is the total-f
method. Our previous studies of the Harris instability had
implemented a rapid switch from the �f method to the total-f
method.12,13 It is now clear that such a rapid switch would be
consistent with a singular drive in Eq. �27�, which provides a
source of numerical discontinuity in the simulation.

IV. NUMERICAL EXAMPLE OF ELECTROSTATIC
HARRIS INSTABILITY DRIVEN BY STRONG
TEMPERATURE ANISOTROPY

In this section, we give numerical examples of the
weight growth due to nearly resonant simulation particles
and the modified �f method using the electrostatic Harris
instability driven by strong temperature anisotropy in high-
intensity charged particle beams. Our main objective here is
limited to the demonstration of the weight growth issue and
the effectiveness of the switching algorithm. Detailed phys-
ics studies of the Harris instability in high-intensity beams
using the new switching algorithm will be presented in future
publications. We consider a single-species, long coasting
beam confined in the transverse �x ,y� directions by an ap-
plied smooth-focusing force
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Fext = − m��
2 x�. �29�

Here, �� is the constant transverse applied focusing
frequency in the smooth-focusing approximation, and
x�=xex+yey. In the beam frame, the dynamics of the coast-
ing beam is described by the electrostatic nonlinear Vlasov–
Poisson equations20

� �

�t
+ v ·

�

�x
− ���

2 x� +
q

m
� 	 ·

�

�v

 f�x,v,t� = 0,

�30�

�2 = − 4�� d3vqf�v,p,t� . �31�

Equations �30� and �31� are a special case of the nonlinear
Vlasov–Maxwell system �1�–�5�.

Energy anisotropy develops naturally in charged particle
beams due to phase-space volume conservation when the
beam is accelerated. The large temperature anisotropy char-
acteristic of charged particle beams in particle accelerators
has long been thought of as a possible free energy source to
drive collective instabilities. Recently, a systematic study

was carried out for this instability,12,13,21–23 showing that both
sufficiently large temperature anisotropy and sufficiently
large beam intensity are required for instability to occur. The
instability is essentially an electrostatic Harris instability
driven by the coupling between the transverse and longitudi-
nal particle dynamics. To simulate the instability using the �f
method, we choose the equilibrium f0 in the beam frame to
be the anisotropic thermal equilibrium distribution

f0 =
n̂

�2�mT���2�mTz�1/2exp�−
H�

T�

−
Hz

Tz
� . �32�

H� =
1

2
mv�

2 +
m

2
��

2 r2 + q0�r�, Hz =
1

2
mvz

2. �33�

Here, n̂=const is the on-axis �r=0� number density of beam
particles, and T� and Tz are the constant transverse and lon-
gitudinal temperatures, respectively. The equilibrium poten-
tial 0�r� is determined from Poisson’s equation,

�20 = − 4�qn̂ exp�−
m��

2 r2 + q0

2T�

	 , �34�

which is to be solved numerically inside a perfectly conduct-
ing cylindrical pipe with wall radius rw. The numerical ex-
ample considered here corresponds to a high-intensity
charged particle beam with normalized beam intensity
�p

2 /2��
2 =4�n̂e2 /2m��

2 =0.8 and temperature anisotropy
Tz /T�=1 /36. The rms beam radius is rb=0.28rw.

The standard �f method has been applied successfully to
simulate the linear phase of the instability, and important
physics features, such as the mode structures and growth
rates, have been systematically recovered.12,13,21–23 The low-
noise property of the �f method is indispensable in these
studies. However, when the simulation is carried out extend-
ing into the nonlinear phase, large weight growth due to the
nearly resonant simulation particles is observed. Plotted in
Fig. 3�a� is the weight function for 5000 randomly chosen

nearly-resonant particles

(b)

(a)

FIG. 3. �a� Weight for 5000 randomly chosen simulation particles at
t=262 /�� using the standard �f method. �b� Weight time history of a nearly
resonant simulation particle.

FIG. 4. Potential perturbation at one spatial location using the standard �f
method. The simulation result is accurate during the unstable linear growth
phase before t=180 /��, but is dominated by large error fields introduced by
the noise associated with the large weight for nearly resonant simulation
particles during the nonlinear phase after t=200��.
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simulation particles at t=262 /��, where large-amplitude
weights for some simulation particles are evident. Analysis
shows that the large weights are produced by the resonance
between particles and the unstable wave structure in the
transverse direction. Plotted in Fig. 3�b� is the time history of
the weight for one of the nearly resonant simulation par-
ticles. The weight growth before t=240 /�� agrees qualita-
tively with the theoretical estimate given in Fig. 1�b� and
obtained from Eq. �23�. Even though the population of nearly
resonant simulation particles is relatively small, the noise
associated with the large weights can still generate large er-
ror fields locally. The simulation results for the perturbed
potential at one spatial location are presented in Fig. 4, from
which we observe that the simulation is accurate for the un-
stable linear growth before t=180 /��, and valuable infor-
mation about the instability has been generated. However,
the signal during the nonlinear phase after t=200 /�� is
dominated by the error fields, and the simulation crashes
shortly after t=280 /��.

Valid simulation results for both the linear and nonlinear
phases have been obtained using the modified �f algorithm
with the switch between the standard �f and total-f methods
described in Sec. III. Show in Fig. 5 is the time history of the
perturbed potential at the same location as in Fig. 4. The
smooth switch in the form of Eq. �27� with n=3, �=30 /��,
and a=3�� is automatically triggered when the maximum
absolute value of weight for all particles is larger than 1. In
this simulation, the switch is triggered at t= t0=162 /��. We
can clearly identify the well-behaved linear growth and non-
linear saturation dynamics in Fig. 5. The fact that the switch-
ing algorithm can eliminate the deleterious weight growth
for the nearly resonant simulation particles is clearly demon-
strated in Fig. 6, which shows the time history of the weight
for the same nearly resonant simulation particle as in Fig.
3�b�. After the switch is turned on, the weight function
smoothly approaches 1 and the simulation method is there-
after switched to the total-f method during the nonlinear
phase. Before the deleterious weight growth becomes signifi-
cant, it is advantageous to use the �f method to reduce the
simulation noise. If we start to use the total-f method from
the very beginning, then the simulation is dominated by dis-

smooth switch triggered

FIG. 5. Potential perturbation at one spatial location using the modified �f
method with a smooth switch.

smooth switch triggered

FIG. 6. Weight history of the same nearly resonant simulation particle as in
Fig. 3�b� using the modified �f algorithm.

(b)

(a)

FIG. 7. Density perturbation from t=0 to t=115 /�� using the �f method
�a� and the total-f method �b�.
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crete particle noise before the unstable coherent structure is
able to grow. Plotted in Fig. 7 is the comparison between the
density perturbation by the �f method and the total-f method
from t=0 to t=115 /��. The initial density perturbation im-
posed for both cases is at the 10−4 level. Figure 7�b� shows
that the simulation result using the total-f method is domi-
nated by the discrete particle noise at the 10−2 level, which is
determined by the number of simulation particles per cell
�about 100� in the simulation. On the other hand, the simu-
lation result in Fig. 7�a� using the �f method is able to cap-
ture the instability at the initial linear phase when the pertur-
bation level is still small.

V. CONCLUSIONS AND FUTURE WORK

When applying the standard �f PIC simulation method
to simulate nonlinear collective dynamics with coherent
structures, wave-particle resonance may result in large
weight growth for resonant or nearly resonant simulation
particles. Using the example of the electrostatic Harris insta-
bility driven by large temperature anisotropy in high-
intensity beams typical of applications in high current accel-
erators, including high-energy density physics, and heavy ion
fusion, we have demonstrated that the large noise associated
with the large weight of nearly resonant simulation particles
can produce significant error fields at the nonlinear stage of
the instability. To overcome this difficulty, we have devel-
oped a modified �f method that contains a smooth switching
algorithm between the �f and total-f methods. Before the
switch, the simulation still effectively makes use of the low-
noise feature of the �f method for small weight to follow
accurately the unstable mode structures. When the weight
function becomes large during the nonlinear phase, the low-
noise advantage of the �f method ceases to be prominent and
the simulation is switched to the total-f method to avoid the
large noise induced by nearly resonant simulation particles.
This algorithm has been successfully applied to simulation
studies of the electrostatic Harris instability driven by large
temperature anisotropy. In this paper, we have only reported
the use of the modified �f algorithm to realize a simulta-
neous, smooth switch for all of the simulation particles from
the �f method to the total-f method. However, the method
developed in Sec. III is much more general. The switching
function � in Eq. �27� can be allowed to depend on phase-
space coordinates, which implies that the switch for different

simulation particles can be turned on at different times, de-
pending on the phase-space locations of the simulation par-
ticles. Another possible application is to use the algorithm to
switch back to the �f method from the total-f method. This
capability is desirable when the dynamical system reaches a
new quasi-steady-state, and the construction of a new unper-
turbed solution can be numerically beneficial. Progress in
these directions will be reported in future publications.
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