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Collective effects with strong coupling between the longitudinal and transverse dynamics are of
fundamental importance for applications of high-intensity bunched beams. The self-consistent Vlasov-
Maxwell equations are applied to high-intensity finite-length charge bunches, and a generalized �f
particle simulation algorithm is developed for bunched beams with or without energy anisotropy. The
nonlinear �f method exhibits minimal noise and accuracy problems in comparison with standard particle-
in-cell simulations. Systematic studies are carried out under conditions corresponding to strong 3D
nonlinear space-charge forces in the beam frame. For charge bunches with isotropic energy, finite bunch-
length effects are clearly evident by the fact that the spectra for an infinitely long coasting beam and a
nearly spherical charge bunch have strong similarities, whereas the spectra have distinctly different
features when the bunch length is varied between these two limiting cases. For bunched beams with
anisotropic energy, there exists no exact kinetic equilibrium because the particle dynamics do not conserve
transverse energy and longitudinal energy separately. A reference state in approximate dynamic equilib-
rium has been constructed theoretically, and a quasi-steady state has been established in the simulations
for the anisotropic case. Collective excitations relative to the reference state have been simulated using the
generalized �f algorithm. In particular, the electrostatic Harris instability driven by strong energy
anisotropy is investigated for a finite-length charge bunch. The observed growth rates are larger than
those obtained for infinitely long coasting beams. However, the growth rate decreases for increasing bunch
length to a value similar to the case of a long coasting beam. For long bunches, the instability is axially
localized symmetrically relative to the beam center, and the characteristic wavelength in the longitudinal
direction is comparable to the transverse dimension of the beam.
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I. INTRODUCTION

Collective effects in high-intensity charged particle
beams are often manifest by collective excitations with
certain dynamical properties such as instabilities and
Landau damping [1–6]. In particular, collective effects
with strong coupling between the longitudinal and trans-
verse dynamics are of fundamental importance for the
applications of high-intensity bunched beams [7,8]. One
of the active research areas where it is necessary to sys-
tematically study this transverse and longitudinal coupling
is the neutralized drift compression experiment (NDCX)
[9]. The NDCX research program is focused on the capa-
bility of compressing heavy ion charge bunches both lon-
gitudinally and transversely [10–12] to reach the high
intensity and short pulse length required for creating high
energy density matter and heavy ion fusion conditions in
the laboratory [13,14]. Obviously, transverse and longitu-
dinal coupling constitutes an important aspect of the
compression dynamics. The self-consistent theoretical
framework for studying collective effects is provided by
the nonlinear Vlasov-Maxwell equations [3,15,16]. A cor-
responding numerical method, the �f particle simulation
method, has been developed [17] to solve the nonlinear
Vlasov-Maxwell equations with significantly reduced
noise. This theoretical and numerical framework has
been successfully applied to study stable beam propagation

[18], electron-ion two-stream (electron cloud) instabilities
[19–29], and collective instabilities driven by large energy
anisotropy [30–33]. However, previous studies were car-
ried out primarily for long coasting beams with a strong
nonlinear space-charge field in the transverse direction. In
this paper, we report recent progress in developing a gen-
eralized nonlinear �f simulation method to study collec-
tive effects for finite-length charge bunches with nonlinear
space-charge fields in both the longitudinal and transverse
directions.

For high-intensity bunched beams, the equilibrium and
collective excitation properties are qualitatively different
from those for coasting beams. Here, the most interesting
physics is the coupling between the transverse and longi-
tudinal dynamics induced by the nonlinear space-charge
forces in a finite-length charge bunch. One objective of this
paper is to numerically analyze, by using the �f simulation
method, the interplay between finite bunch length and the
space-charge fields on the eigenmodes of collective exci-
tations for bunched beams with isotropic energy. For sim-
plicity of presentation, the present analysis is carried out in
the beam frame. Another consequence of the coupling
effect in a finite-length charge bunch is that the particle
dynamics does not conserve transverse energy and longi-
tudinal energy separately, and there exists no exact kinetic
equilibrium �@=@t � 0� which has anisotropic energy in
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the transverse and longitudinal directions. On the other
hand, for charged particle beams accelerated to high en-
ergy, energy anisotropy in the beam frame develops natu-
rally as a result of phase space volume conservation [2].
Previous studies have shown that the nonintegrability in-
duced by the coupling between the longitudinal and trans-
verse dynamics is relatively weak, even for high-intensity
beams [34–36]. Based on this fact, we have developed a
reference state for beams with anisotropic energy, which is
not an exact, but an approximate equilibrium solution of
the Vlasov-Maxwell equations. The difference between the
exact solution and the reference state is simulated by the
generalized �f particle simulation algorithm described in
this paper. As an important application of the generalized
�f method, numerical simulations of the electrostatic
Harris instability driven by large energy anisotropy are
carried out. The effects of finite bunch length are inves-
tigated, and the results are compared with previous simu-
lation results for infinitely long coasting beams.

The paper is organized as follows. After the develop-
ment of the generalized �f particle simulation algorithm in
Sec. II, collective excitations in bunched beams with iso-
tropic energy are studied in Sec. III. Then, in Sec. IV, the
reference state for bunched beams with temperature an-
isotropy is constructed, and properties of the anisotropy-
driven instability are investigated.

II. THEORETICAL MODEL AND THE
GENERALIZED �f SIMULATION METHOD

We consider a single-species, bunched beam confined in
both the r and z directions by an external smooth-focusing
force in the beam frame

 F foc � �m!
2
?x? �m!2

zzez: (1)

Here, !? and !z are the constant transverse and longitu-
dinal applied focusing frequencies in the smooth-focusing
approximation. In the beam frame, the dynamics of the
bunched beam is described by the nonlinear Vlasov-
Maxwell equations [3]
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Z
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where f is particle distribution function in phase space, and
e and m are the particle charge and rest mass, respectively.

This set of equations is a simplified version of the
nonlinear Vlasov-Maxwell equations in the general case

[3,25]. For boundary conditions, a perfectly conducting
cylindrical pipe is located at radius r � rw, and periodic
boundary conditions are adopted in the longitudinal direc-
tion. The simulation dimension in the longitudinal direc-
tion is between z � �zmax and z � zmax. Since Eqs. (2)–
(4) form a nonlinear integrodifferential system, analytical
techniques for solving Eqs. (2)–(4) are limited. Systematic
studies of the nonlinear dynamics determined by Eqs. (2)–
(4) require an effective numerical tool. For this purpose, we
use the low-noise nonlinear �f method [17,23,24]. The
total distribution function is divided into two parts, f �
f0 � �f, where f0 is a known reference distribution func-
tion, and the numerical simulation is carried out to deter-
mine the detailed nonlinear evolution of the perturbed
distribution function �f. This is accomplished by advanc-
ing the weight function defined by w � �f=f. The dy-
namical equation for w is given by
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Here, �� � ���0 and �Az � Az � Az0. For the per-
turbed fields, Maxwell’s equations are given by

 r2�� � �4�e
Z
d3pwf�x;p; t�; (8)

 r2�Az � �
4�
c
e
Z
d3pvzwf�x;p; t�; (9)

where the reference potentials (�0, Az0) are chosen to
satisfy

 r2�0 � �4�e
Z
d3pf0�x;p; t�; (10)

 r2Az0 � �
4�
c
e
Z
d3pvzf0�x;p; t�: (11)

It is desirable to pick (�0, Az0, f0) as self-consistent
solutions to the Vlasov-Maxwell equations (2)–(4), such
that the �df0=dt�0 term in Eq. (5) vanishes. For most
applications, (�0, Az0, f0) are chosen to correspond to an
equilibrium solution with @=@t � 0, and the generalized
�f particle simulation algorithm reduces to the standard
nonlinear �f method [24]. For bunched beams, if the
energy is isotropic in the beam frame, the reference state
can be chosen to be an exact equilibrium solution.
However, for bunched beams with energy anisotropy, exact
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equilibrium solutions do not exist due to the lack of inde-
pendent longitudinal and transverse invariants of the par-
ticle dynamics, and we can only choose a reference
distribution f0 that is close to a quasiequilibrium state.
Furthermore, for a single-species beam, we neglect Az in
the beam frame because jAzj � j�j.

The nonlinear particle simulations are carried out by
iteratively advancing the particle motions and momenta,
including the weights they carry according to Eq. (5), and
updating the fields by solving the perturbed Maxwell’s
equations (8) and (9). Even though it is a perturbative
approach, the �f method is fully nonlinear and simulates
completely the original nonlinear Vlasov-Maxwell equa-
tions. Compared with conventional particle-in-cell simula-
tions, the noise level in �f simulations is significantly
reduced. The �f method reduces the noise level of the
simulations because the statistical noise for the total dis-
tribution function in the conventional particle-in-cell (PIC)
method is only associated with the perturbed distribution
function in the �f method . If the same number of simu-
lation particles is used in the two approaches, then the
noise level in the �f method is reduced by a factor of
f=�f relative to the PIC method. To achieve the same
accuracy for the perturbed fields, the number of simulation
particles used in the �f method is reduced by a factor of
�f=�f�2 [17,23,24]. The �f method can also be used to
study linear eigenmode and stability properties, provided
the factor �1� w� in Eq. (5) is approximated by unity, and
particle orbits are advanced by the unperturbed force only.

III. COLLECTIVE EXCITATIONS FOR BUNCHED
BEAMS WITH ISOTROPIC ENERGY

Since the conventional concept of collective excitations
or eigenmodes of charged particle beams refers to pertur-
bations around a self-consistent equilibrium, the first step
in the present study is to identify possible equilibrium
solution (�0, f0) with @=@t � 0 satisfying
 �
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In this section, we choose f0 to be a function of the energy
invariant H according to

 f0 � f0�H� �
n̂

�2�mT�3=2
exp
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�
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Here, n̂ is the beam number density at �r; z� � �0; 0�.
Equation (13) gives a constant isotropic temperature T �
const. Under this assumption, the equilibrium Poisson
equation (12) becomes

 r2�0 � �4�en̂ exp
�
�
m�!2

?r
2 �!2

zz2�

2T
�
e�0

T

�
; (15)

which is to be solved for �0 in a perfectly conducting
cylindrical pipe with wall radius rw. It can be shown [3]
that the condition for the beam to be confined by the
applied focusing field is

 sb � 1�
!2
z

2!2
?

: (16)

Here, the dimensionless parameter sb � 4�n̂e2=2m!2
?

measures the relative strength of the space-charge force
compared with the applied transverse focusing force. Even
though the kinetic equilibrium is taken to be the well-
known thermal equilibrium distribution in Eq. (13), the
dynamics of a single particle on constant-energy surfaces is
nonintegrable due to the coupling between the transverse
and longitudinal dynamics induced by the 3D nonlinear
space-charge force [35]. The coupling is a function of the
space-charge strength and the bunch length. When the
space-charge intensity is reduced to zero, or the bunch
length is increased to infinity, the transverse and longitu-
dinal space-charge forces decouple and the particle dynam-
ics is integrable [36]. Detailed studies of the chaotic

FIG. 1. Numerically solved equilibrium potential �0 and den-
sity n0 profile as functions of �r; z� for a charge bunch with sb �
0:27, !z=!? � 0:074, and T?=Tz � 1. The aspect ratio of the
charge bunch is zb=rb � 10.
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behavior of the particle orbits can be found in Refs. [34–
36].

The Poisson equation (15) can be readily solved numeri-
cally. Since the source term on the right-hand side of
Eq. (15) depends on the potential nonlinearly, an iterative
method is needed. Illustrated in Fig. 1 are the numerically
solved equilibrium potential �0 and density profile n0 as
functions of �r; z� for a bunched beam with sb � 0:27,
!z=!? � 0:074, and T?=Tz � 1. The aspect ratio of the
charge bunch is zb=rb � 10, and rb=rw � 0:35. Here, the
effective bunch size in the transverse direction (rb� and that
in the longitudinal direction (zb� are defined by

 r2
b �

Rrw
0 drr3n�r; 0�Rrw
0 drrn�r; 0�

; (17)

 z2
b �

R
1
0 dzz

2n�0; z�R
1
0 dzn�0; z�

: (18)

Next, we numerically study finite bunch-length effects
on the linear eigenmodes of collective excitations for
different space-charge intensities. In the simulations, an
initial perturbation with an arbitrary dependence on r and z
coordinates is introduced at t � 0. The system is evolved

FIG. 2. Spectra of axisymmetric linear eigenmodes for bunched beams with normalized space-charge intensity sb � 0:27 and
different bunch aspect ratios zb=rb � 0:71, 1.5, 2.5, 5, 10, and 100. The values of rb=rw are kept at rb=rw � 0:35 for all cases.
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using the linear �f algorithm described in Sec. II. For the
results presented in this section, the simulations are carried
out from t � 0 to t � 250=!?. The simulations were
performed on the IBM SP3 computer at the National
Energy Research Scientific Computing Center with 128
processors, 10� 106 particles, and 8� 1010 particle�
steps. Shown in Fig. 2 are the Fast-Fourier-
Transformation spectra of the axisymmetric �@=@� � 0�
linear eigenmodes obtained from the simulations for
bunched beams with normalized space-charge intensity
sb � 0:27, but for different bunch aspect ratios, zb=rb �

0:8, 1.5, 2.5, 5, 10, and 100. Figure 2(a) is the case where
!? � !z, corresponding to a nearly spherical charge
bunch. Because the charge bunch is located inside a per-
fectly conducting cylindrical pipe, the bunch is not exactly
a sphere. The spectrum in Fig. 2(a) peaks around !=!? �
2, 4, 6, 8, . . ., which is qualitatively similar to the case of an
infinitely long coasting beam [3]. This is because ! �
!? � !z is the only dominant characteristic frequency
in the system. Because the space-charge forces depress
the betatron frequency of the charged particles, the spectra
peak below, instead of exactly on, the even integers. As the

FIG. 3. Spectra of axisymmetric linear eigenmodes for bunched beams with normalized space-charge intensity sb � 0:5 and
different aspect ratios zb=rb � 0:72, 1.5, 2.5, 5, 10, and 100. The values of rb=rw are kept at rb=rw � 0:26 for all cases.
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beam aspect ratio increases, additional eigenmodes emerge
in between !=!? � 2, 4, 6, 8, . . .. For example, there is
one major peak in the interval 0<!=!? < 2 for zb=rb �
1:5 [Fig. 2(b)], and two major peaks appear in the same
interval for zb=rb � 2:5 [Fig. 2(c)]. These additional
modes are the result of a coupling between the transverse
and longitudinal dynamics induced by the finite length of
the charge bunch. As the bunch length increases, more
eigenmodes appear in the intervals between even integers
[Fig. 2(d)]. However, as the bunch length becomes large,
these additional eigenmodes congregate towards even in-
tegers [Fig. 2(e)]. When the bunch length approaches in-
finity, the spectrum of an infinitely long coasting beam [3]
is recovered [Fig. 2(f)]. The effects of finite bunch length
are clearly evident from the fact that the spectra for an
infinitely long coasting beam and a nearly spherical charge
bunch are qualitatively similar, and the fact that the spectra
undergo significant changes when the bunch length varies
between these two limiting cases.

Similar behavior of the spectra is also found at higher
space-charge intensity. Plotted in Fig. 3 are the spectra for
the case where sb � 0:5 for different bunch lengths. The
basic features observed for the case where sb � 0:27 in
Fig. 2 are still evident in Fig. 3. By comparison, we observe
that higher space-charge intensity produces a larger spread

in the spectral peaks, and as a consequence, different
eigenmodes are coupled more effectively. The width of
the spectral peaks corresponds to damping in the time
domain, which is likely a manifestation of the effects of
space charge on collisionless damping of the mode exci-
tations, caused by Landau damping due to wave-particle
interactions and by the spatial spread in (depressed) trans-
verse and longitudinal betatron frequencies. The larger the
space-charge intensity, the stronger the damping of the
collective excitations.

To further understand the interplay between space-
charge effects and finite bunch-length effects, we turn to
the simulation results presented in Fig. 4. Shown in Fig. 4
are the spectra for bunches with the same aspect ratio
zb=rb � 1:5, but different space-charge intensities corre-
sponding to sb � 0:01, 0.27, 0.5, and 0.8. Figure 4(a) cor-
responds to the case where sb � 0:01, in which the space-
charge effects are reduced to a minimum. Because the
space-charge spreading of the spectral peaks is minimized,
families of eigenmodes are clearly revealed. As the space-
charge intensity increases, the spread ‘‘smears out’’ the
families of eigenmodes. For a bunched beam with high
space-charge intensity at sb � 0:8 [Fig. 4(d)], discrete
eigenmodes can hardly be recognized, except for the first
several major peaks.

FIG. 4. Spectra for charge bunches with the same aspect ratio zb=rb � 1:5, but different normalized space-charge intensities
corresponding to sb � 0:01, 0.27, 0.5, and 0.8. The values of rb=rw are 0.33, 0.35, 0.26, 0.24, respectively.
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IV. COLLECTIVE EXCITATIONS FOR BUNCHED
BEAMS WITH ENERGY ANISOTROPY

Energy anisotropy develops naturally for charged parti-
cle beams due to phase space volume conservation when
the beam is accelerated [2]. To model bunched beams in
accelerators, it is desirable to consider equilibria with
anisotropic temperature in the transverse and longitudinal
directions. However, as discussed previously [36], exact
kinetic equilibria do not exist for anisotropic bunched
beams. Approximate kinetic equilibria with anisotropic
energy can be constructed for long bunches, or other cases
where the coupling induced by the nonlinear space-charge
field is relatively weak. For these cases, the transverse
energy H? and longitudinal energy Hz defined by

 H? �
p2
?

2m
�
m
2
!2
?r

2 � e ~�0�r; z�; (19)

 Hz �
p2
z

2m
�
m
2
!2
zz

2 � eh�0i�z�; (20)

are approximately conserved [36]. Here, h�0i, ~�0, and �0

are defined by

 h�0i�z� � �0�z� ��0�0�; (21)

 

~� 0�r; z� � �0�r; z� � h�0i�z�; (22)

 �0�z� �
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0 r�0�r; z�dr
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w=2
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For present purposes, we choose the reference distribution
function f0 in the beam frame to be the anisotropic thermal
equilibrium distribution

 f0 �
n̂

�2�mT?��2�mTz�
1=2

exp
�
�
H?
T?
�
Hz

Tz

�
: (24)

Here, T? and Tz are the constant transverse and longitudi-
nal temperatures, respectively. The reference density pro-
file n0�r; z� and reference potential �0�r; z� are determined
self-consistently from Eq. (10).

There are two terms that determine the dynamics of w in
Eq. (5). The �df0=dt�� term is explicitly related to the
perturbed fields, and the second term �df0=dt�0 is related
to the fact that the reference state f0 is not an exact
equilibrium solution of the Vlasov-Maxwell equations.
To carry out the �f particle simulations, we need to
calculate the �df0=dt�0 term first. Some straightforward
algebra gives

 

1

f0

�
df0

dt

�
0
� �

_H?
T?
�

_Hz

Tz
� _Hz

�
1

T?
�

1

Tz

�
; (25)

where

 

_H z � evz
@ ~�0�r; z�

@z
; (26)

and the superscript dot (_) denotes �d=dt�0. For a well-
chosen reference state �f0; �0�, the dynamics associated
with �df0=dt�0 has a longer time scale for variation than
that of �df0=dt��. A typical simulation result is shown in
Fig. 5 for the case where sb � 0:27, zb=rb � 10, and
Tz=T? � 0:1. For this choice of parameters corresponding
to relatively low beam intensity, the charge bunch does not
exhibit the Harris instability [30–33]. The separation of
time scales is clear in Fig. 5. The fast time-scale dynamics
is dominantly the !  2!? collective excitation, and the
slow time-scale dynamics is associated with �df0=dt�0 and
the overall nonlinear evolution of the system. When t!
1, the perturbation relative to the reference state non-
linearly approaches a quasi-steady state. The perturbed
potential �� at the quasi-steady state is plotted in Fig. 6
as a function of �r; z�. The perturbed potential and fields at
quasi-steady state, combined with the reference state, gives
a more accurate quasiequilibrium for the anisotropic
charge bunch.

FIG. 5. Evolution of �� at one spatial location
�r=rw; z=zmax� � �0:1; 0:5� for the case where sb � 0:27,
zb=rb � 10, Tz=T? � 0:1, rb=rw � 0:35, zb=zmax � 0:36, and
!z=!? � 0:039.
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As another application of the general �f particle simu-
lation method for bunched beams, we present here initial
simulation results for the electrostatic Harris instability
driven by large temperature anisotropy in a finite-length
charge bunch. The large temperature anisotropy character-
istic of charged particle beams in particle accelerators has
long been thought as a possible free energy source to drive
collective instabilities. Recently, a systematic study has
been carried out for this instability in long coasting beams
[30–33], showing that both sufficiently large temperature
anisotropy (small Tz=T?� and sufficiently large beam in-
tensity �sb� are required for instability. The essential phys-
ics of this instability is the coupling between the transverse
and longitudinal particle dynamics. For long coasting
beams, the coupling is provided by the wave excitation

generated by the instability. For bunched beams, the refer-
ence state for a finite-length charge bunch provides an
extra channel for the coupling to take place. Indeed, we
expect to see additional features of the instability due to the
finite bunch length.

Shown in Fig. 7 is the time history of an unstable,
azimuthally symmetric perturbation relative to the refer-
ence state �f0; �0� at one spatial location �r=rw; z=zmax� �
�0:1; 0:5� for a high-intensity anisotropic charge bunch
with sb � 0:8, Tz=T? � 1=36, and zb=rb � 15. The insta-
bility growth rate is measured to be Im! � � � 0:25!?,
and the real frequency is !r � Re!  !?. The simula-
tion presented here is carried out for the linear phase of the
instability, using the �f method in the linearization ap-
proximation (Sec. II). Because the dynamics of the refer-
ence state associated with �df0=dt�0 is slow in comparison
with the instability evolution, the �df0=dt�0 term is ne-
glected for simplicity in the initial studies presented here.
Simulations were performed for different bunch lengths
corresponding to zb=rb � 10, 15, 20, 30, and 40 to inves-
tigate the effects of finite bunch length on the instability.
The growth rate � as a function of bunch aspect ratio is
plotted in Fig. 8. We observe that the growth rate reaches its
maximum value at zb=rb � 20 and decreases as zb=rb
increases. The measured growth rates are somewhat larger
than those in long coasting beams [30,31], which can be
attributed to the stronger coupling between the longitudinal
and transverse dynamics produced by the finite bunch
length. The longitudinal structure of the instability shows
interesting variations as well. The perturbed potential ��
is plotted versus the longitudinal coordinate z=zmax in
Fig. 9 for different bunch aspect ratios. For zb=rb � 10,
the unstable structure maximizes at the beam center
[Fig. 9(a)]. For larger bunch aspect ratios, the unstable
structure localizes symmetrically in the vicinity of

FIG. 8. Growth rate � as a function of bunch aspect ratio zb=rb
for a high-intensity anisotropic charge bunch with sb � 0:8 and
Tz=T? � 1=36. The values of rb=rw and zb=zmax are kept at
rb=rw � 0:26 and zb=zmax � 0:40.

FIG. 7. Time history of an unstable perturbation at one spatial
location �r=rw; z=zmax� � �0:1; 0:5� for a high-intensity aniso-
tropic charge bunch with sb � 0:8, Tz=T? � 1=36, zb=rb � 15,
rb=rw � 0:26, and zb=zmax � 0:40.

FIG. 6. Quasi-steady-state perturbed potential �� as a func-
tion of �r; z�.
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z=zmax � �0:5 [Fig. 9(d)]. The localization is more promi-
nent for larger bunch length. As zb=rb ! 1, the unstable
structure becomes highly localized such that the beam
intensity is approximately uniform across the unstable
structure in the longitudinal direction, and the coupling
due to the nonuniformity of the equilibrium in the longi-
tudinal direction is significantly reduced. This explains
why the growth rate decreases for increasing bunch length.
In addition to the growth rate, the characteristic wave
number at maximum growth in Fig. 9(d) is kzrb � 5:2,
which agrees well with the results obtained from the study
for long coasting beams [30,31].

V. CONCLUSIONS

Collective effects associated with the strong coupling
between the longitudinal and transverse particle dynamics
are of fundamental importance for applications of high-
intensity bunched beams. In the present study, we have
applied the nonlinear Vlasov-Maxwell equations to this
interesting topic, and developed a generalized �f particle
simulation method for high-intensity bunched beams with
or without energy anisotropy. Systematic numerical studies
of finite bunch-length effects on collective excitations were
carried out. The finite bunch-length effect is clearly dem-

onstrated by the fact that the spectra for an infinitely long
coasting beam and a nearly spherical charge bunch are
qualitatively similar, and the spectral features are distinctly
different when the bunch length is varied between these
two limiting cases. For bunched beams with energy anisot-
ropy, an approximate quasiequilibrium reference state was
constructed and a quasi-steady state was established in the
simulations. Collective excitations relative to the reference
state have also been successfully simulated using the gen-
eralized �f algorithm. In particular, the electrostatic Harris
instability driven by large energy anisotropy at moderately
high beam intensity was investigated in the linear regime.
The observed growth rates are somewhat larger than those
for infinitely long coasting beams. However, the instability
growth rate decreases for increasing bunch length. For long
bunches, the instability is localized symmetrically in the
vicinity of z=zmax � �0:5, and the characteristic unstable
wave numbers in the longitudinal direction is kzrb � 5:2
for the cases studied.

In future studies, we will investigate in detail the effects
of spectrum spreading induced by the 3D nonlinear space-
charge forces on the collective excitations. Detailed inves-
tigations of the anisotropy-driven Harris instabilities will
also be carried out in the nonlinear regime, allowing for
nonaxisymmetric �@=@� � 0� perturbations.

FIG. 9. Unstable perturbed potentials �� (in normalized unit) as functions of z for different bunch aspect ratios with sb � 0:8 and
Tz=T? � 1=36. The values of rb=rw and zb=zmax are kept at rb=rw � 0:26 and zb=zmax � 0:40.
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