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Abstract
A one-dimensional kinetic model based on the Vlasov-

Maxwell equations is used to describe nonlinear wave and
soliton excitations in coasting charged particle beams. An-
alytical solutions are obtained for nonlinear traveling wave
pulses, and particle-in-cell simulations are presented that
describe stability properties and long-time evolution.

INTRODUCTION
High energy accelerators and transport systems [1] have

a wide variety of applications ranging from basic research
in high energy and nuclear physics, to ion-beam-driven
high energy density physics and fusion. While progress
has been made in 3D analytical and advanced numerical
studies of intense charged particle beam propagation, it is
important to develop an improved understanding of the col-
lective processes and nonlinear dynamics. There is consid-
erable interest in the development and application of sim-
plified one-dimensional kinetic models to describe the non-
linear longitudinal dynamics of long coasting beams [2-6].
The present paper makes use of the one-dimensional ki-
netic model recently developed by Davidson and Startsev
[5, 6] to describe nonlinear wave and soliton excitations
in coasting charged particle beams. This kinetic descrip-
tion incorporates an improved g-factor model that includes
the effects of transverse density profile shape at moderate
beam intensities. In the present paper, the nonlinear evo-
lution of wave and soliton excitations is examined for dis-
turbances moving both faster and slower than the effective
sound speed, incorporating the important effects of wave
dispersion. Analytical solutions are obtained for nonlin-
ear traveling wave pulses, and the results of particle-in-cell
simulations are presented that describe the stability proper-
ties and long-time evolution.

THEORETICAL MODEL
We adopt the one-dimensinal kinetic model developed in

[5, 6] that describes the self-consistent nonlinear evolution
of the longitudinal distribution function Fb(z, pz, t), the av-
erage self-generated axial electric field < Ez > (z, t),
and the line density λb(z, t) =

∫
dpzFb(z, pz, t). Here,

(z, pz, t) denote variables in the beam frame, and it is as-
sumed that the beam intensity is sufficiently low that the
beam edge rb and rms radius Rb =< x2 + y2 >1/2 exhibit
a negligible dependence on line density λb. Finally, the ax-
ial spatial variation in the number density nb(x, y, z, t) and
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the line density λb(z, t) is assumed to be sufficiently slow
that k2

zr2
w " 1, where ∂/∂z ∼ kz ∼ L−1

z is the inverse
length scale of z-variations.

Within the context of this model we envision a nonlinear
disturbance moving with characteristic pulse speed vp =
const. Transforming from beam-frame variables (z, pz, t)
to wave-frame variables (z′, p′z, t′), where z′ = z − vpt,
p′z = pz − mbvp and t′ = t, the kinetic equation for
Fb(z′, p′z, t′) and < Ez > (z′, t′) = −(∂/∂z′)Ψ(z′, t′)
can be expressed as

∂

∂t′
Fb + v′z

∂

∂z′
Fb − eb

∂Ψ
∂z′

∂

∂p′z
Fb = 0, (1)

ebΨ = mbv
2
b0ηb + mbv

2
b2r

2
w

∂2

∂z′2
ηb, (2)

where the constant velocities vb0 and vb2 are defined by

v2
b0 =

e2
bλb0g0

mb
, v2

b2 =
e2

bλb0g2

mb
, (3)

and ηb is the (dimensionless) line-density perturbation

ηb =
δλb

λb0
=

λb − λb0

λb0
. (4)

The constant geometric factors g0 and g2 are defined in
[5, 6] for a wide range of axi-symmetric density profiles
nb, and λb0 =

∫
dp′zFb0 = const. is identified with

the ambient line density in the absence of perturbation
(Ψ = 0 = ηb and ∂/∂z′ = 0). In Eq. (4), λb(z′, t′) =∫

dp′zFb(z′, p′z, t′) is the line density, where the distribu-
tion function Fb(z′, p′z, t′) evolves according to Eq. (1).

NONLINEAR TRAVELING-WAVE AND
SOLITON SOLUTIONS

Equations (1) and (2) can be used to investigate the de-
tailed nonlinear evolution of the system in the wave frame
for a wide variety of initial distributions Fb(z′, p′z, 0), in-
cluding the use of advanced numerical simulations. In this
section, we illustrate that the Eqs. (1) and (2) support a
broad range of nonlinear traveling-wave and soliton-like
solutions analogous to Bernstein-Greene-Kruskal (BGK)
solutions in electrically-neutral plasmas. Solutions are
time-stationary in the wave frame (∂Fb/∂t′ = 0 =
∂Ψ/∂t′), and the corresponding distribution Fb(z′, p′z) de-
pends exclusively on the phase-space variables (z ′, p′z)
through the single-particle Hamiltonian H ′ defined by

H ′ =
1

2mb
p

′2
z + ebΨ(z′), (5)



where H ′ is a constant of the motion with dH ′/dt′ = 0.
Here, Ψ(z′) is defined by Eq. (2), where ηb(z′) = [λb(z′)−
λb0]/λb0 and λb(z′) =

∫
dp′zFb(H ′).

For ∂/∂t′ = 0, two classes of particles are distinguished.
Theses are untrapped (or ’passing’) particles that are not
reflected by the potential Ψ(z′), and trapped (or ’reflected’)
particles that are reflected by Ψ(z′). The total line density
is λb(z′) = λU

b (z′) + λT
b (z′), where

λU
b (z′) =

(mb

2

)1/2
× (6)∫ ∞

[ebΨ]max

dH ′ [F
U<
b (H ′) + FU>

b (H ′)]
(H ′ − ebΨ)1/2

,

λT
b (z′) =

(mb

2

)1/2
× (7)∫ [ebΨ]max

ebΨ
dH ′ FT

b (H ′)
(H ′ − ebΨ)1/2

.

In Eqs. (6) and (7), [ebΨ]max is the maximum value of
ebΨ(z′), FU<

b (H ′) [FU>
b (H ′)] is the distribution of left

traveling (right-traveling) untrapped particles with v′
z =

vz − vp < 0 (v′z = vz − vp > 0), and F T
b (H ′) is the dis-

tribution of trapped particles. It is clear that there is wide
latitude in the specification of the untrapped-and trapped-
particle distributions used for determination of the corre-
sponding self-consistent potential Ψ(z ′) from Eq. (2).

As an example, we consider the special case where there
are no trapped particles (F T

b = 0), and no right-moving
untrapped particles (F U>

b = 0), and take the distribution
of the left-moving untrapped particles to be

FU<
b (H ′) =

(
2H0

mb

)1/2

λb0δ(H ′ − H0), (8)

where H0 ≡ mbv2
p/2 and vp is the (positive) pulse speed

relative to the beam frame. From Eqs. (6)–(8), it readily
follows that λT

b (z′) = 0 and

λU
b (z′) =

λb0

(1 − ebΨ/H0)1/2
. (9)

Equation (9) gives

ebΨ
H0

= 1 − 1
(1 + ηb)2

, (10)

which expresses ebΨ/H0 in terms of ηb = (λU
b −λb0)/λb0.

Equation (10) can be substituted into Eq. (2) to give a
closed nonlinear equation for ηb(z′). We introduce the
Mach number M defined by

M = vp/vb0, (11)

where vp is the pulse speed, and vb0 = (e2
bλb0g0/mb)1/2 is

the effective sound speed. Substituting Eq. (10) with H0 =
mbv2

p/2 into Eq. (2) and rearranging terms gives

v2
b2

v2
b0

r2
w

∂2

∂z′2 ηb = − ∂

∂ηb
V (ηb), (12)

where V (ηb) is the effective potential defined by

V (ηb) =
1
2
η2

b

(
1 − M2 + ηb

1 + ηb

)
, (13)

and ηb = (λb − λb0)/λb0 > −1 is assumed.
For purposes of illustration, we consider values of M 2

close to unity, in which case Eq. (12) supports weakly non-
linear solutions consistent with |ηb| < 1 and r2

w∂2/∂z
′2 ∼

k2
zr2

w < 1. Expanding for small ηb, Eq. (12) gives

v2
b2

v2
b0

r2
w

∂2

∂z′2 ηb = −(1 − M2)ηb − 3
2
M2η2

b (14)

correct to quadratic order. Two cases can be distinguished
in analyzing Eq. (14). For M 2 = 1 + ε for small ε > 0, the
solution to Eq. (14) can be expressed as

ηb(z′) =
(

M2 − 1
M2

)
(15)

×sech2

[
1
2
(M2 − 1)1/2 vb0

vb2rw
(z − vpt)

]
,

where z′ = z−vpt. Equation (15) is the familiar soliton so-
lution encountered in the analysis of the Korteweg-deVries
equation, which corresponds to an isolated pulse traveling
with velocity vp in the beam frame.

For M2 = 1 − ε for small ε > 0, Eq. (14) supports
nonlinear periodic traveling wave solutions for ηb(z−vpt).
For sufficiently small amplitude, we neglect the quadratic
term in Eq. (14), which gives

ηb(z′) = η̂b cos[k0(z − vpt) + φ0], (16)

where η̂b and φ0 are constant, and

k2
0r

2
w

v2
b2

v2
b0

= (1 − M2) = 1 − v2
p

v2
b0

. (17)

Making the identification vp = ω0/k0, where ω0 and k0

are the frequency and wavenumber of the traveling wave in
the beam frame, Eq. (17) gives

ω2
0 = k2

0v2
b0 − k4

0r
2
wv2

b2, (18)

where k2
0r

2
w % 1 is assumed. Note that Eqs. (16) and (17)

correspond to a wave disturbance moving with phase ve-
locity ω0/k0 slightly slower than the sound speed vb0.

SIMULATION RESULTS
The one-dimensional kinetic g-factor model in Eqs. (1)–

(4) has been implemented in the nonlinear code BEST [1].
We have carried out initial numerical studies of nonlinear
wave propagation in such a system, confirming the exis-
tence of solitons when M > 1 [Figs. 1 and 2]. In the sim-
ulations presented here, the initial distribution function is
taken to be a shifted Maxwellian in the beam frame with

Fb0(z, pz) =
1

(2πmbkbT )1/2

[
exp

{
− p2

z

2mbkbT

}
(19)

+ ηb0(z) exp
{
− [pz − mbvb0ηb0(z)]2

2mbkbT

} ]
,



where the thermal spread is vth/vb0 = 0.1, and ηb0 ! 1
is assumed. For such a small thermal spread, the beam
could be considered cold. Therefore, the evolution of
a small-amplitude density perturbation |ηb(z, t)| ! 1
could be well approximated by a Korteweg-deVris equa-
tion [6]. Figure 1 shows the time evolution of an initial si-
nusoidal perturbation with nonlinearity parameter ηmax

b0 =
δλmax

b /λb0 = 0.05 at t = 0 [curve (a)] and dispersion
parameter vb2rw/vb0L = 10−2. As time progresses, the
perturbation profile steepens due to the nonlinearity [curve
(b)]. When the front steepening is stabilized by dispersion,
a modulational instability at the back of the wavefront de-
velops [curve (c)], and results in the formation of a train of
solitons with different amplitudes [curve ( d)]. This type of
behavior was also observed in the original numerical sim-
ulations of the Korteweg-deVries equation by Zabusky and
Kruskal [7].
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Figure 1: An initial sinusoidal perturbation with ηmax
b0 =

δλmax
b /λb0 = 0.05 and vb2rw/vb0L = 10−2 (a) steepens

due to the nonlinearity (b). A modulational instability at
the back of the wavefront develops (c), and results in the
formation of a train of solitons with different amplitudes
(d).

Figure 2 shows the time evolution of a perturbation ini-
tially in the form given by Eq. (15) but with an amplitude
twice too large, i.e., ηmax

b0 = δλmax
b /λb0 = 0.08 and

vb2rw/vb0L = 5 × 10−3. As time progresses, the initial
perturbation splits into two solitons and a small-amplitude
oscillatory perturbation [curves (b) and (c)]. This behav-
ior can be expected from the general solution of Korteweg-
deVries equation, which identifies the number of solitons
as t → ∞ as the number of bound states in the quantum-
mechanical potential V (z) = −ηb0(z)/6, where ηb0(z) ≡
ηb(z, t = 0) is the initial perturbation. The oscillatory re-
mainder in Fig. 2 would be exactly zero if the quantum-
mechanical potential V (z) was reflectionless.

CONCLUSIONS
A one-dimensional kinetic model based on the Vlasov-

Maxwell equations has been used to describe nonlinear
wave and soliton excitations in coasting charged particle
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Figure 2: An initial perturbation in the form given
by Eq. (15) but with twice larger amplitude ηmax

b0 =
δλmax

b /λb0 = 0.08 and vb2rw/vb0L = 5 × 10−3 (a) splits
into two solitons, (b) and (c), and a small-amplitude oscil-
latory perturbation.

beams. Analytical solutions were obtained for nonlinear
traveling wave pulses, and initial particle-in-cell simula-
tions were presented that describe stability properties and
long-time evolution.
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