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Abstract

Properties of the multi-species electromagnetic Weibel instability are investigated for an intense ion beam propagating through
background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear
stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.
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1. Introduction

High energy ion accelerators, transport systems and
storage rings [1,2] are used in fundamental research in high
energy physics and nuclear physics, and in applications
such as ion-beam driven high energy density physics and
fusion, spallation neutron sources, and nuclear waste
transmutation. Charged particle beams at high intensities
are often subject to various collective processes that can
deteriorate the beam quality. Therefore, it is increasingly
important to develop a detailed theoretical understanding
of the linear and nonlinear dynamics of intense charged
particle beams and beam—plasma systems, with the goal of
identifying operating regimes that minimize the deleterious
effects of collective processes on beam transport and
focusing. Considerable progress has been made in recent
theoretical investigations [3-6], often with the aid of
advanced numerical simulations. These investigations
include a wide variety of collective interaction processes,
ranging from the electrostatic Harris instability [7-13] and
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the electromagnetic Weibel instability [14-19] driven by
large temperature anisotropy with 7> 7T, in a one-
component nonneutral ion beam, to wall-impedance-
driven collective instabilities [20-22], to the dipole-mode
two-stream instability (electron cloud instability) for an
intense ion beam propagating through a partially neutra-
lizing electron background [4,23-30], to the resistive hose
instability [31-36], the sausage and hollowing instabilities
[37-39], and the multispecies two-stream and Weibel
instabilities [3,40—45], for an intense ion beam propagating
through a background plasma [46-52].

In the plasma plug and target chamber regions for ion-
beam-driven high energy density physics and fusion
applications [46-52], the intense ion beam experiences
collective interactions with the background plasma. In this
paper, we investigate theoretically detailed properties of the
multi-species electromagnetic Weibel instability for an
intense ion beam propagating through background plasma
[3,42,44]. Assuming that the background plasma electrons
provide complete charge and current neutralization,
detailed linear stability properties are calculated within
the framework of a macroscopic cold-fluid model for a
wide range of system parameters. Finally, the theoretical
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formalism developed in this paper can also be applied to
the case of an intense relativistic electron beam propagat-
ing through a dense background plasma, which is of
considerable interest for investigations of the multispecies
Weibel instability in applications pertaining to fast ignition
[53-55] using high-intensity short-pulse lasers [56].

The organization of this paper is the following. The
assumptions and theoretical model are described in Section
2. The eigenvalue equation for the multispecies Weibel
instability is then analyzed in Section 3.

2. Macroscopic fluid model and eigenvalue equation

In the present analysis, we make use of a macroscopic
fluid model [1,57] to describe the interaction of an intense
ion beam (j = b) with background plasma electrons and
ions (j = e,i). The charge and rest mass of a particle of
species j (j = b, e, i) are denoted by e; and my;, respectively.
In equilibrium, the steady-state (0/0r =0) average flow
Velocities are taken to be in the z-direction,
VO(X) (r)e-_ Bi(r)cé., and cylindrical symmetry is
assumed (6/60 = 0). Axial motions are generally allowed
to be relativistic, and the directed axial Kkinetic energy is
denoted by (y; — 1)m;c?, where 7;(r) = [1 — B;(r)]~"/* is the
relativistic mass factor of a fluid element. Furthermore the
analysis is carried out in the paraxial approximation,
treating the velocity spread of the beam particles as small in
comparison with f,c. Denoting the equilibrium density
profile by no(r) (j = b, e, i), the corresponding equilibrium
self-electric field, EO(X) Eo(r)e,, and azimuthal self-
magnetic field, BO(X) (r)eg, are determined self-con-
sistently from

10 6 0 0

—o 5 BN = /;i4nejnj(r) (D

10 0

~a 5 B = ; 4me; B (r)n) (r) 2)
J=b.e,l

where r = (x* + yz)l/ 2 is the radial distance from the axis of

symmetry Finally, denoting the transverse pressure by

(r) = no(r)T ;(r), equilibrium radial force balance on a
ﬂuid element of species j corresponding to a self-pinched
equilibrium is given by

2P0 = O EN — BB G

Examples of specific equilibrium profiles consistent with
Egs. (1)—(3) are given in Chapter 10 of Ref. [1].

In the macroscopic stability analysis of the multi-species
Weibel instability presented here [3,42], we specialize to
the case of axisymmetric, electromagnetic perturbations
with 0/00 =0 and 0/0z=0, and perturbed quanti-
ties are expressed as oY(r,t) = dy(r) exp(—iwt) where
Imw>0 corresponds to instability (temporal growth).
For the perturbations, the perturbed field compo-
nents are 6E(x,1) = 0E,(r,1)é, + 0E.(r,t)e, and 0B(x,1) =

0By(r, 1)éy, where

——5Bg(r) g (3E () 4)

follows from the 6-component of the V x dE Maxwell
equation. Furthermore, some straightforward algebra
shows that the r- and z-components of the V x dB Maxwell
equation can be expressed as

10 0
(r@r 6r+ >5E(r)

4o (Z V) + ejﬁj(r)cénj(r)> ©)

2
¢ i=b,e,i j=b,e,i

4
7;“’ R G (6)

J=b.e,i

—(SE (r)=

where 6V ;, 0V ,; and on; are determined self-consistently in
terms of JE. from the linearized continuity and force-
balance equations. Note from Egs. (4)~(6) that the field
perturbations have mixed polarization with both a long-
itudinal component (0 E, #0) and transverse electromagnetic
field components (6By#0 and JE.#0). This is because for
drifting charge components with ;0 the electrostatic and
ordinary-mode electromagnetic perturbations are coupled.

With regard to the linearized continuity and force
balance equations, in the present macroscopic analysis we
neglect the effects of pressure perturbations. Denoting the
density and average momentum of a fluid element of
species j by nj = n) + on; and P; = y,m;f;cé. + 6P, respec-
tively, the linearized continuity and force balance equations
can be expressed as

. 1o
—iwon; + P (rm;oV,) =0 (7)
—iwdP,; = —e <—5E,, LY V.B)+ ﬂjaB@) ®)
: . PRAA
. 1 0
—1wé)P_7 = 6_/' 5E_7 + E (SVU'B() (9)

where 0Py =0 and ,(r)c = (r) Here, we can express
OP; = 7,m;0V; +5yjm,ﬁ]ce7, where oy = (// /cz)VO oV; =
y3/c)ﬁ/5 Viandy; = (1 - ﬁ )~'/2, which gives the expected
results 6P, = y;m;0V,; and 5P_ =7 SmiSV .

It has been shown prevrously that a sufﬁcrently strong
self-magnetic field B) #0 tends to reduce the growth rate of
the Weibel instability in intense beam—plasma systems [58].
For our purposes here, in the remainder of this paper we
specialize to the case of a charge-neutralized and current-
neutralized beam—plasma system with

ST e =0, Y e =0 (10)
Jj=b.e,i Jj=b.e,i

where f; is taken to be independent of r for simplicity. It
then follows from Egs. (1), (2) and (10) that E0 =0= B(,,
which is consistent with Eq. (3) in the cold- ﬂuid limit.
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Setting B)(r) = 0 in Egs. (5)(9) gives

iw(sv,,z—y <5E —%6355> (1)
J ]

e/

iwdV . = SE. (12)

V} m/

for the perturbed flow velocities. Combining Eqgs. (6) and

(11) then gives
(Z Biw (r))
(13)

[wz— Z w;j(r) OE, =
Jj=b,e,i

where @2 (r) = 4nn)(r)e; /y;m; is the relativistic plasma
frequency-squared. Note that Eq. (13) relates the long-
itudinal electric field 0E, directly to (0/0r)dE.. It is clear
from Eq. (13) that OE,#0 whenever Y, fior#0
From Egs. (4), (11) and (13), we then obtain for the
perturbed radial flow velocity

ﬂ Zj bezﬁjwp/(r) iC 6
I w2 ZJ bei pj(r) w or

OE..

—iwy;m;joV,; = —e;

(14)

Making use of Eqgs. (7), (12) and (14) to express 6V ; and
on; directly in terms of JE. and (0/0r)dE., some
straightforward algebra shows that the Maxwell equation
(5) can be expressed as [42]

2 2
l g rl 1+ Z ﬂj wﬁj(}’) + (Zj:b,e,[ ﬁ,wﬁl(;’)) E(SEZ
rer ©’ ? — Zi:b,e,i ij(r) or

Jj=b.e,i
w? (1)
+ ?—’ZA 2 SE. =0 (15)
j=bei ']
where 7, =10- ﬁ )~'/2 is the relativistic mass factor, and

(r) 47m0(r)ez/y/mj

Eq (15) is the desired eigenvalue equation for axisym-
metric, electromagnetic perturbations with polarization
O0E = J0E.¢. +0FE.¢. and 6B = dByey, with the terms
proportional to Y, Bjw’(r) and 3., . Bw2(r) pro-
viding the free energy to drive the Weibel instability.
Eq. (15) can be integrated numerically to determine the
eigenvalue »’ and eigenfunction S E.(r) for a wide range of
beam—plasma density profiles n?(r). As discussed in Section
3, analytical solutions are also tractable for the case of flat-
top (step-function) density profiles. As a general remark,
when Y, . B2 () #0 and 3., .. B2 (r)#0, Eq. (15)
supports both stable fast-wave solutions (Imw =0,
|w/ck,|>1) and unstable slow-wave solutions (Im w>0,
|w/ck,|<1). Here, |k |~|0/0r| is the characteristic radial
wavenumber of the perturbation. Moreover, Eq. (15) also
supports stable plasma oscillation solutions with predomi-
nantly longitudinal polarization dssociated with the factor
proportional to [w? — D imbei @ (r) Finally, for a
perfectly conducting cyhndrlcal wall located at r = ry, the
eigenvalue equation (15) is to be solved subject to the

boundary condition

OE.(r=ry)=0. (16)

3. Multispecies Weibel instability for step-function density
profiles

As an example that is analytically tractable, we consider
the case illustrated in Fig. 1 where the density profiles are
uniform both inside and outside the beam with

n](.)(r) = ”ji- =const., j=bh,e,i (17)
for 0<r<ryp, and
njo(r) = fzj" =const.,, j=e,i (18)

for rp<r<ry. Here, the superscript “i” (“0”") denotes
inside (outside) the beam, and 7) =0 is assumed.
Consistent with Eq. (10), >_._,,; e, =0=> )i ﬁ-e,
and ), ;je;=0=73",_, 7i/B;e; are assumed. We also
take B; =0 (j=e,i) in the region outside the beam
(rp<r<ry). The subsequent analysis of the eigenvalue
equation (15) is able to treat the three cases: (a)
beam—plasma-filled waveguide (r, = ry); (b) vacuum re-
gion outside the beam (r, <ry and nj0 =0,j=e,i); and (c)
plasma outside the beam (r, <ry, and ﬁ;’ #0,j = e,i).

Referring to Fig. 1 and Eq. (15), it is convenient to
introduce the constant coefficients

5 A Q2 2 A2
o= %= ¥ ] cie Y B
¢ Jj=b.e,i VJ ¢ Jj=b.e,i @
(Z/ beilj p/ (19)
w*[w? — Z/‘=b,e,iij]

for 0<r<ry, and

2 2

for ry<r<ry, Wwhere co —4nne /y,mj, j=b,e,i, and
ij = 4nn ez/mj, j=e,l. We denote the eigenfunction
inside the bedm (0<r<r,) by SEX(r), and the eigenfunction
outside the beam (r,<r<ry) by SE"(r). Egs. (15), (19)

Ai
ne
ni ~o "o
n; ne, ng
Ni
Ny

0 r M

b

Fig. 1. Schematics of the density profiles of the beam ions (ﬁib) and the
plasma ions and electrons inside (; and #,) and outside (4) and 7))
the beam.
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and (20) then give

1
1o 95E’+T25E’_0 0<r<ry (21)
ror Oor

and

19 6 SET — T25E" = rp<r<ry (22)

7 or 6

in the two regions. Eqgs. (21) and (22) are Bessel’s equations
of order zero. The solutions to Egs. (21) and (22) that are
regular at r = 0, continuous at r = r,, and vanish at the
conducting wall are given by [42]

SE!(r) = AJo(Tir), 0<r<r, (23)
K (T()rW)]O(T()r) - KO(TOV)IO(TOVW)

SET(r) = AJo(T ;1) —2 ,
20 = AT e Io(Tors) — Ro(Tur)Io(Tors)

rp<r<ry (24)

where A is a constant, Jo(x) is the Bessel function of the
first kind of order zero, and /y(x) and K((x) are modified
Bessel functions of order zero.

The remaining boundary condition is obtained by
integrating the eigenvalue equation (15) across the beam
surface at r = r,. Making use of Egs. (17) and (18), and
assuming f, =0=f; in the region outside the beam
(ry<r<ry), we operate on Eq. (14) with fr”(HS) drr--

»(1—¢)
for ¢ — 0. This readily gives the boundary condition

'\lz ~P2N2
i—peiDi®
1+ Z ﬁ] 2 + (Z]_b,e, ﬁj p/)A _ [6 5E§:|
hei @ D[ =3 )] Or r=r,
{aaréEH} (25)
r=ry

which relates the change in 6By = (ic/w)(00E./Or) atr = ry
to the perturbed surface current. Substituting Egs. (23) and
(24) into Eq. (25) then gives
(Zj=b,e,iﬁ/d’lpj)2
N
2 j=bei @]

J6(T rb)
Jo(T )

it

1 J P
* Z 2 T [0 —
KO(TOVW)IE)(Torb) * § K6(Torb)10(ToVW)
KO(TOVW)IO(Torb) - KO(Torb)IO(TorW)

where T;(w) and T,(w) are defined in Egs. (19) and (20),
and Ij(x) = (d/dx)Io(x), Jo(x) = (d/dx)Jo(x), etc.

Eq. (26) constitutes a closed transcendental dispersion
relation that determines the complex oscillation frequency
w for electromagnetic perturbations about the step-func-
tion profiles in Egs. (17) and (18). As noted earlier, the
dispersion relation has both fast-wave and slow-wave
(Weibel-type) solutions, as well as a predominantly long-
itudinal (modified plasma oscillation) solution, and can be
applied to the case of a beam—plasma-filled waveguide, or
to the case where the region outside the beam (r, <r<ry)
corresponds to vacuum (ﬁ]‘-’ =0,j =e,i) or background
plasma (7] #0, j = e, ).

Jj=b.e,i

= To}’}, (26)

3.1. Beam—plasma-filled waveguide (rp = ry)

For the case where the beam—plasma system extends to
the conducting wall (r, =ry), the solution 5E§(r) =
AJo(T;r) in Eq. (23) is applicable over the entire interval
0<r<ry. Applying the boundary condition 5E£(r =ry) =
0 then gives the dispersion relation

Jo(Tiry) =0 27)

which also follows from Eq. (26) in the limit r, — ry,. We
denote by p,, the nth zero of Jy(py,) = 0, and introduce the
effective perpendicular wavenumber (quantized) defined by
kK =p3,/ra.,n=1,2,.... The solutions to Eq. (27) are
then determined from

THw)=ki, n=12,... (28)

or equivalently,

2 A2
1+Zﬁjij+ (Z —beiPiD p] _‘*’2
A2 212
Jj=b,e,i wZ[wZ - Zj:b,e,iwll)j] ¢ kl
~ Q2
= DO 9)
Fohei Vi CkL

where use has been made of Eq. (19). In the absence of
axial flow (B, =0, j=b,e,i), note that the solution to
Eq. (29) leads to the familiar fast-wave solution @’ =

kL + Y e 0 with y,=1. For 3, p/@#0 and
Z ﬁ] ;éO however, Eq. (29) supports two other solu-

tions correspondmg to the Weibel instability and plasma
oscillation solution.

Eq. (29) is a cubic equation for . It is convenient to
introduce the dimensionless quantities Q, Ki, (/32) and (f)
defined by

2 a)2 2 Czki
Q= ——— K = = 2
Zj:b,e,i @ Z/':b,e,i ©pj
5 2
ﬂzd)l (/’b’
Mzzﬁ;l B) = ;l%%. (30)
Ej:b,e,i a, E =b, €l

Rearranging terms, the dispersion relation (29) for a
beam—plasma-filled waveguide can be expressed as

KA[QY — Q°(1 = (B) + (B — (B
=[Q* — (1 — (FNIRHQ* - 1) 31)

where use has been made of Z —hei @ ”'2//] =(1— ()
D imbei @ ”A In the absence of axial streaming (ﬁj =0 and
(/3) =0= /32)) the dispersion relation (31) gives directly
the fast wave solution, Q> =1 + K3, or equivalently,
* = k% + D imbei @ 1’;, as expected. On the other hand,
for (5°) ;éO and (ﬁ);éO and sufﬁ01ently short wavelength
perturbations that Ki = 2k /3, ., @3> 1, the disper-
sion relation (31) can be approxmlated by

Q= QX1 — (B - (B — (B =0. (32)
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The solutions to the quadratic Eq. (32) for Q7 are given by

b 1/2
L+ <1 4B — <ﬁ>2)>

—(1—¢
( D (1—(BH)

(33)

It is readily shown from the definitions in Eq. (30) that
(B*)=(p)>. Therefore the upper sign in Eq. (33) corre-
sponds to stable plasma oscillations (2>>0) modified by
axial streaming effects. On the other hand, for ([32) > (p)?
the lower sign in Eq. (33) corresponds to Q> <0. Because
Q% <0 for the lower sign in Eq. (33), it follows that Re Q =

0 and
1/2 1/2
o

(34)

(1 LAY = B

1/2
D (1 —(pH)

ImQ = ijﬂ

The upper sign in Eq. (34) corresponds to temporal growth
(Weibel instability) with Im Q> 0. Whenever the inequality

4% — (BY)
(1—(pH)

is satisfied, note that the growth rate for the unstable
(upper) branch in Eq. (34) is given approximately by
2y py271/2
mo =W =BT (36)
(1= ()Y

In dimensional units, when the inequality in Eq. (35) is
satisfied it follows from Egs. (30) and (36) that the growth
rate of the Weibel 1nstab111ty for short-wavelength pertur-
bations (czk >Z/:b,e,: w ) in a beam—plasma-filled wave-
guide can be approximated by

/2
(B — (B]' 2 o)
= TN :bzel O R (37)

The quantity I'w defined in Eq. (37) provides a convenient
unit in which to measure the growth rate of the Weibel
instability in the subsequent numerical analysis of the
general dispersion relation (26).

For a beam—plasma-filled waveguide, the exact solutions
for w? (or Q%) are of course determined from the cubic
dispersion relation (29), or equivalently Eq. (31). With
regard to the Weibel instability growth rate estimate in Eq.
(36) or Eq. (37), it is important to recognize the relative size
of the contributions from the various beam—plasma species
to the instability drive terms in Eq. (37). For present
purposes, we consider a positively charged ion beam (j = b)
propagating through background plasma electrons and
ions (j = e, i). The charge states are denoted by e, = +Zje,
e, = —e, and e¢; = +Z;e, and the plasma electrons are
assumed to carry the neutralizing current (5, #0), whereas
the plasma ions are taken to be stationary (f; = 0). The
conditions for charge neutralization, >, ; ﬁ}e_,- =0, and

<1 (35)

Imw>~Tw

current neutralization, ijb’e,iﬁ}e_/ﬁj =0, then give
Al = Zyhy, + Zi!

BvZoity

po=— 02 (38)
anb + Z,‘}’li

Except for the case of a very tenuous beam (Z,,ﬁf7 <Z,ﬁf),
note from Eq. (38) that f8, can be a substantial fraction of
By-

In the subsequent analysis of the dispersion relations (26)
and (29), it is useful to define

2 _ 02 2 _ ~ 02
Q= Z Oy Q) = Z @y (39)
j=b,e,i Jj=e,i
where a)A = 47m e’ /y]mj, 7, =(1- ,[312)_1/2 and
cb; = 47m e ?/m;. Note from Egs. (30) and (39) that

D jmbei Oy /yj = Q;: - ([{Z)QI’;2 . Careful examination of the
expression for I'w in Eq. (37) for f; = 0 shows that
(Bioh, + Byl )iy + (By — B.)’ A;x;,b
)
2 jmbei O

1
Iz =
V= ()

(40)

For & b a) <wp6,

approx1mat10n by

it follows that Eq. (40) is given to good

1

2~
Ry = e O+ (B -
Note from Eq. (41) that I'y involves the (slow) plasma
frequencies of both the beam ions and the plasma ions.

In the remainder of Section 3 we consider the case of a
cesium ion beam with Z, =1 and f, = 0.2 propagating
through a neutralizing bdckground argon plasma with
Z, =1, fﬂ =(1/2)n, =ny, and f,=0.1 (see Eq. (38)).
Illustratlve stability results obtained from Eq. (26) are
shown in Figs. 2-4 for the case of a beam—plasma-filled
waveguide, where the exact dispersion relation assumes the
simple form in Eq. (29) with k% = p3 /r2,n=1,2,..., and
Jo(po,) = 0. In particular, Figs. 2 and 4 show plots of the
normalized growth rate (Im w)/I'w for the unstable branch
versus radial mode number # for the choice of parameters
corresponding to Q;)r;,/c= 1/3 (Fig. 2) and Q;rh/c= 3
(Fig. 4). The corresponding plots of the radial eigenfunc-
tion 0E.(r) versus r/ry are also shown for mode number
n=75. Comparing Figs. 2 and 4, we note that the
normalized growth rate for small values of n tends to be
smaller for larger values of Ql’;r/, /c. In general, for
sufficiently large n, the instability growth rate asymptotes
at Imw >~ I'y, as expected from the estimate in Eq. (37).
Fig. 3 shows a plot of the normalized real frequency
(Rew)/QI'; versus radial mode number n obtained from
Eq. (26) for the stable fast-wave branch. The system
parameters in Fig. 3 is identical to those in Fig. 2, with
Q ,1h/c = 1/3. As expected, in Fig. 3 (Re a))/Q’ asymptotes
at ck 1 /Q’ for large values of n, where k5 = p, /r2.

ﬁe) wpb] (41)
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Fig. 2. Plots of (a) Weibel instability growth rate (Im w)/I'w versus mode radial number_ n, and (b) eigenfunction 6E2(r) versus r/ry for n =5 obtained
from Eq. (26). System parameters are 1, = ry, f, = 0.2, f, = 0.1, i = 1, /2 = fty, and Qrp/c = 1/3.
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Fig. 3. Plots of (a) stable fast-wave oscillation frequency (Re w)/Q; versus radial mode number n, and (b) eigenfunction SE.(r) versus r/ry forn=735
obtained from Eq. (26). System parameters are r, = ry, ff, = 0.2, f, = 0.1, i} = /,/2 = i1}, and Q[’,rb/c =1/3.
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Fig. 4. Plots of (a) Weibel instability growth rate (Im w)/I'w versus radial mode_: numbe; n, and (b) eigenfunction SE.-(r) versus r/ry for n =5 obtained
from Eq. (26). System parameters are 1, = 1, f, = 0.2, f, = 0.1, i = 1, /2 = fij, and Qrp/c = 3.

3.2. Vacuum region outside of beam—plasma channel
(ry<rw; ] =0, j=e,i)

We now consider the case where there is a vacuum region
outside the beam-—plasma channel, i.e., r,<r, and ﬁj" =0,
j=ei. In this case T?(w) = —w?/c* and QZZ =0 follow
from Egs. (20) and (39), and the full transcendental dispersion
relation (26) must be solved numerically. As before, both
stable (fast-wave and plasma oscillation) and unstable
(Weibel-like) solutions are found. For brevity, we focus here
on the unstable solutions to Eq. (26). Typical numerical
solutions to Eq. (26) are illustrated in Figs. 5 and 6 for the

choice of system parameters ry = 3rp, f, =0.2, f, =0.1,
A =,/2=hy, Q=0 and Qry/c=1/3 (Fig. 5) and
Q,rp/c =3 (Fig. 6). Shown in Figs. 5 and 6 are plots of the
normalized growth rate (Imw)/TI'y versus radial mode
number #, and plots of the eigenfunction dE.(r) versus r/ry
for mode number n = 5. Note from Figs. 5 and 6 that the
signature of the instability growth rate for the case of a
vacuum region outside the beam—plasma channel is qualita-
tively similar to that in Figs. 2 and 4 for the case of a
beam—plasma-filled waveguide. However, the normalized
growth rate in Fig. 6 is somewhat larger for lower values of
radial mode number 7 than that in Fig. 4.
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Fig. 5. Plots of (a) Weibel instability growth rate (Im w)/I'w versus radial mode number n, and (b) eigenfunction SE.(r) versus r/ry for n =5 obtained
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Fig. 6. Plots of (a) Weibel instability growth rate (Im w)/I'w versus radial mode number n, and (b) eigenfunction SE.(r) versus r/ry for n =5 obtained
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Fig. 7. Plots of (a) Weibel instability growth rate (Im w)/I'w versus radial mode number n, and (b) eigenfunction SE.(r) versus r/ry for n =5 obtained
from Eq. (26). System parameters are 1, = rv/3, f, = 0.2, B, = 0.1, A = A, /2 = ), = fig = A7, Qrp/c = 1/3.

3.3. Plasma outside of beam-plasma channel (r, <ry; i #0,
J=ei)

We now consider the dispersion relation (26) for the case
where there is plasma outside the beam—plasma channel,
ie, r<ry and AY#0, j=e,i. In this case
Ti(w) = —(@?/c? — Q7 /?), where Q02 =3, d);jz. Typi-
cal numerical solutions to Eq. (26) for the unstable branch
are illustrated in Figs. 7 and 8 for the choice of system

parameters ry = 3rp, f, =02, f, = 0.1, Al = iL/2 =it} =

i) =ny, and Ql’;rb/c = 1/3 (Fig. 7) and Q;rb/c = 3 (Fig. 8).
Shown in Figs. 7 and 8 are plots of the normalized
growth rate (Imw)/I'w versus radial mode number n,
and plots of the eigenfunction JE.(r) versus r/ry for
mode number n = 5. Comparing Fig. 5 with Fig. 7, and
Fig. 6 with Fig. 8, it is evident that the inclusion of
plasma outside the beam—plasma channel does not
significantly change the instability growth rate relative to
the case where there is vacuum outside the beam—plasma
channel.
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4. Conclusions

In this paper we made use of a macroscopic cold-fluid
model to investigate detailed properties of the multi-species
electromagnetic Weibel instability (Sections 2 and 3) for an
intense ion beam propagating through a background
plasma that provides complete charge and current neu-
tralization. Detailed growth-rate properties have been
calculated for a wide range of system parameters. To
summarize, it is clear from the analysis in Section 3 that the
multispecies Weibel instability with characteristic growth
rate I'w can be particularly virulent for a sufficiently
intense (high density) ion charge bunch propagating
through background plasma that provides complete charge
and current neutralization. On the other hand, the multi-
species Weibel instability is unlikely to have a deleterious
effect on the beam quality provided

Iwty<1 (42)

where 7, = L,/ V) is the interaction time of the beam ions
with the background plasma, and L, is the length of the
plasma column. Equivalently, I'wt, <1 gives

1/2

A
Lp<fx,\i =23x 1070C+12 cm (43)
O [ (cm—3)]"/

where use is made of Eq. (41), and the constant « is defined
in the nonrelativistic case by

| _ Lty

Al

Al
Z,m 2,h}

(44)

Zym; 7 ;
For singly-ionized Aluminum beam ions (Z, =1 and
Ap =13) in background Argon plasma (4; =18) and
i, /7, = 1/2, we obtain from Eqgs. (43) and (44) that

L,<127m, 12.7m, 127m (45)
for
Ay =107em™, 10%em™3, 10%em™. (46)

Therefore, from Eqgs. (43)—(46), the exponentiation length
for the multispecies Weibel instability is moderately long,
even for beam densities in the range 10'°cm—>—10"2 cm .

Finally, it should be pointed out that the relative
importance of the electrostatic two-stream and electro-
magnetic Weibel instabilities for similar system parameters
has been briefly discussed in Ref. [3].
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