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Abstract

Properties of the multi-species electromagnetic Weibel instability are investigated for an intense ion beam propagating through
background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear
stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.
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1. Introduction

High energy ion accelerators, transport systems and
storage rings [1,2] are used in fundamental research in high
energy physics and nuclear physics, and in applications
such as ion-beam driven high energy density physics and
fusion, spallation neutron sources, and nuclear waste
transmutation. Charged particle beams at high intensities
are often subject to various collective processes that can
deteriorate the beam quality. Therefore, it is increasingly
important to develop a detailed theoretical understanding
of the linear and nonlinear dynamics of intense charged
particle beams and beam–plasma systems, with the goal of
identifying operating regimes that minimize the deleterious
effects of collective processes on beam transport and
focusing. Considerable progress has been made in recent
theoretical investigations [3–6], often with the aid of
advanced numerical simulations. These investigations
include a wide variety of collective interaction processes,
ranging from the electrostatic Harris instability [7–13] and

the electromagnetic Weibel instability [14–19] driven by
large temperature anisotropy with T?bbTkb in a one-
component nonneutral ion beam, to wall-impedance-
driven collective instabilities [20–22], to the dipole-mode
two-stream instability (electron cloud instability) for an
intense ion beam propagating through a partially neutra-
lizing electron background [4,23–30], to the resistive hose
instability [31–36], the sausage and hollowing instabilities
[37–39], and the multispecies two-stream and Weibel
instabilities [3,40–45], for an intense ion beam propagating
through a background plasma [46–52].
In the plasma plug and target chamber regions for ion-

beam-driven high energy density physics and fusion
applications [46–52], the intense ion beam experiences
collective interactions with the background plasma. In this
paper, we investigate theoretically detailed properties of the
multi-species electromagnetic Weibel instability for an
intense ion beam propagating through background plasma
[3,42,44]. Assuming that the background plasma electrons
provide complete charge and current neutralization,
detailed linear stability properties are calculated within
the framework of a macroscopic cold-fluid model for a
wide range of system parameters. Finally, the theoretical
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formalism developed in this paper can also be applied to
the case of an intense relativistic electron beam propagat-
ing through a dense background plasma, which is of
considerable interest for investigations of the multispecies
Weibel instability in applications pertaining to fast ignition
[53–55] using high-intensity short-pulse lasers [56].

The organization of this paper is the following. The
assumptions and theoretical model are described in Section
2. The eigenvalue equation for the multispecies Weibel
instability is then analyzed in Section 3.

2. Macroscopic fluid model and eigenvalue equation

In the present analysis, we make use of a macroscopic
fluid model [1,57] to describe the interaction of an intense
ion beam ðj ¼ bÞ with background plasma electrons and
ions ðj ¼ e; iÞ. The charge and rest mass of a particle of
species j ðj ¼ b; e; iÞ are denoted by ej and mj, respectively.
In equilibrium, the steady-state ðq=qt ¼ 0Þ average flow
velocities are taken to be in the z-direction,
V0

j ðxÞ ¼ V0
zjðrÞêz ¼ bjðrÞcêz, and cylindrical symmetry is

assumed ðq=qy ¼ 0Þ. Axial motions are generally allowed
to be relativistic, and the directed axial kinetic energy is
denoted by ðgj $ 1Þmjc

2, where gjðrÞ ¼ ½1$ b2j ðrÞ&
$1=2 is the

relativistic mass factor of a fluid element. Furthermore, the
analysis is carried out in the paraxial approximation,
treating the velocity spread of the beam particles as small in
comparison with bbc. Denoting the equilibrium density
profile by n0j ðrÞ ðj ¼ b; e; iÞ, the corresponding equilibrium
self-electric field, E0ðxÞ ¼ E0

r ðrÞêr, and azimuthal self-
magnetic field, B0ðxÞ ¼ B0

yðrÞêy, are determined self-con-
sistently from

1

r

q
qr

r
q
qr

E0
r ðrÞ ¼

X

j¼b;e;i

4pejn0j ðrÞ (1)

1

r

q
qr

r
q
qr

B0
yðrÞ ¼

X

j¼b;e;i

4pejbjðrÞn
0
j ðrÞ (2)

where r ¼ ðx2 þ y2Þ1=2 is the radial distance from the axis of
symmetry. Finally, denoting the transverse pressure by
P0
?jðrÞ ¼ n0j ðrÞT

0
?jðrÞ, equilibrium radial force balance on a

fluid element of species j corresponding to a self-pinched
equilibrium is given by

q
qr

P0
?jðrÞ ¼ n0j ðrÞej½E

0
r ðrÞ $ bjðrÞB

0
yðrÞ&. (3)

Examples of specific equilibrium profiles consistent with
Eqs. (1)–(3) are given in Chapter 10 of Ref. [1].

In the macroscopic stability analysis of the multi-species
Weibel instability presented here [3,42], we specialize to
the case of axisymmetric, electromagnetic perturbations
with q=qy ¼ 0 and q=qz ¼ 0, and perturbed quanti-
ties are expressed as dcðr; tÞ ¼ dcðrÞ expð$iotÞ where
Imo40 corresponds to instability (temporal growth).
For the perturbations, the perturbed field compo-
nents are dEðx; tÞ ¼ dErðr; tÞêr þ dEzðr; tÞêz and dBðx; tÞ ¼

dByðr; tÞêy, where

$
io
c
dByðrÞ ¼

q
qr

dEzðrÞ (4)

follows from the y-component of the r ( dE Maxwell
equation. Furthermore, some straightforward algebra
shows that the r- and z-components of the r ( dB Maxwell
equation can be expressed as

1

r

q
qr

r
q
qr

þ
o2

c2

! "
dEzðrÞ

¼ $
4pio
c2

X

j¼b;e;i

ejn
0
j ðrÞdVzjðrÞ þ

X

j¼b;e;i

ejbjðrÞcdnjðrÞ

 !

ð5Þ

o2

c2
dErðrÞ ¼ $

4pio
c2

X

j¼b;e;i

ejn
0
j ðrÞdVrjðrÞ (6)

where dVzj, dVrj and dnj are determined self-consistently in
terms of dEz from the linearized continuity and force-
balance equations. Note from Eqs. (4)–(6) that the field
perturbations have mixed polarization with both a long-
itudinal component ðdEra0Þ and transverse electromagnetic
field components (dBya0 and dEza0). This is because for
drifting charge components with bja0 the electrostatic and
ordinary-mode electromagnetic perturbations are coupled.
With regard to the linearized continuity and force

balance equations, in the present macroscopic analysis we
neglect the effects of pressure perturbations. Denoting the
density and average momentum of a fluid element of
species j by nj ¼ n0j þ dnj and Pj ¼ gjmjbjcêz þ dPj, respec-
tively, the linearized continuity and force balance equations
can be expressed as

$iodnj þ
1

r

q
qr

ðrn0j dVrjÞ ¼ 0 (7)

$iodPrj ¼ $ej $dEr þ
1

c
dVzjB

0
y þ bjdBy

! "
(8)

$iodPzj ¼ ej dEz þ
1

c
dVrjB

0
y

! "
(9)

where dPyj ¼ 0 and bjðrÞc ¼ V0
zjðrÞ. Here, we can express

dPj ¼ gjmjdVj þ dgjmjbjcêz, where dgj ¼ ðg3j =c
2ÞV0

j ) dVj ¼
ðg3j =cÞbjdVzj and gj ¼ ð1$ b2j Þ

$1=2, which gives the expected
results dPrj ¼ gjmjdVrj and dPzj ¼ g3j mjdVzj.
It has been shown previously that a sufficiently strong

self-magnetic field B0
ya0 tends to reduce the growth rate of

the Weibel instability in intense beam–plasma systems [58].
For our purposes here, in the remainder of this paper we
specialize to the case of a charge-neutralized and current-
neutralized beam–plasma system with
X

j¼b;e;i

n0j ðrÞej ¼ 0;
X

j¼b;e;i

n0j ðrÞbjej ¼ 0 (10)

where bj is taken to be independent of r for simplicity. It
then follows from Eqs. (1), (2) and (10) that E0

r ¼ 0 ¼ B0
y,

which is consistent with Eq. (3) in the cold-fluid limit.
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Setting B0
yðrÞ ¼ 0 in Eqs. (5)–(9) gives

iodVrj ¼ $
ej

gjmj
dEr $

icbj
o

q
qr

dEz

! "
(11)

iodVzj ¼ $
ej

g3j mj
dEz (12)

for the perturbed flow velocities. Combining Eqs. (6) and
(11) then gives

o2 $
X

j¼b;e;i

o2
pjðrÞ

" #

dEr ¼ $
ic

o

X

j¼b;e;i

bjo
2
pjðrÞ

 !
q
qr

dEz

(13)

where o2
pjðrÞ ¼ 4pn0j ðrÞe

2
j =gjmj is the relativistic plasma

frequency-squared. Note that Eq. (13) relates the long-
itudinal electric field dEr directly to ðq=qrÞdEz. It is clear
from Eq. (13) that dEra0 whenever

P
j¼b;e;i bjo

2
pja0.

From Eqs. (4), (11) and (13), we then obtain for the
perturbed radial flow velocity

$iogjmjdVrj ¼ $ej bj þ
P

j¼b;e;i bjo
2
pjðrÞ

o2 $
P

j¼b;e;io
2
pjðrÞ

" #
ic

o
q
qr

dEz.

(14)

Making use of Eqs. (7), (12) and (14) to express dVzj and
dnj directly in terms of dEz and ðq=qrÞdEz, some
straightforward algebra shows that the Maxwell equation
(5) can be expressed as [42]

1

r

q
qr

r 1þ
X

j¼b;e;i

b2j o
2
pjðrÞ

o2
þ

ð
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j¼b;e;i bjo
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pjðrÞÞ
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j¼b;e;i o
2
pjðrÞ

 !
q
qr

dEz

" #

þ
o2

c2
$
X

j¼b;e;i

o2
pjðrÞ
g2j c2

 !

dEz ¼ 0 ð15Þ

where gj ¼ ð1$ b2j Þ
$1=2 is the relativistic mass factor, and

o2
pjðrÞ ¼ 4pn0j ðrÞe

2
j =gjmj.

Eq. (15) is the desired eigenvalue equation for axisym-
metric, electromagnetic perturbations with polarization
dE ¼ dErêr þ dEzêz and dB ¼ dByêy, with the terms
proportional to

P
j¼b;e;ib

2
jo

2
pjðrÞ and

P
j¼b;e;i bjo

2
pjðrÞ pro-

viding the free energy to drive the Weibel instability.
Eq. (15) can be integrated numerically to determine the
eigenvalue o2 and eigenfunction dEzðrÞ for a wide range of
beam–plasma density profiles n0j ðrÞ. As discussed in Section
3, analytical solutions are also tractable for the case of flat-
top (step-function) density profiles. As a general remark,
when

P
j¼b;e;i b

2
jo

2
pjðrÞa0 and

P
j¼b;e;i bjo

2
pjðrÞa0, Eq. (15)

supports both stable fast-wave solutions (Imo ¼ 0,
jo=ck?j41) and unstable slow-wave solutions (Imo40,
jo=ck?jo1). Here, jk?j*jq=qrj is the characteristic radial
wavenumber of the perturbation. Moreover, Eq. (15) also
supports stable plasma oscillation solutions with predomi-
nantly longitudinal polarization associated with the factor
proportional to ½o2 $

P
j¼b;e;i o

2
pjðrÞ&

$1. Finally, for a
perfectly conducting cylindrical wall located at r ¼ rw, the
eigenvalue equation (15) is to be solved subject to the

boundary condition

dEzðr ¼ rwÞ ¼ 0. (16)

3. Multispecies Weibel instability for step-function density
profiles

As an example that is analytically tractable, we consider
the case illustrated in Fig. 1 where the density profiles are
uniform both inside and outside the beam with

n0j ðrÞ ¼ n̂ij ¼ const:; j ¼ b; e; i (17)

for 0prorb, and

n0j ðrÞ ¼ n̂oj ¼ const:; j ¼ e; i (18)

for rborprw. Here, the superscript ‘‘i’’ (‘‘o’’) denotes
inside (outside) the beam, and n̂ob ¼ 0 is assumed.

Consistent with Eq. (10),
P

j¼b;e;i n̂
i
jej ¼ 0 ¼

P
j¼b;e;i n̂

i
jbjej

and
P

j¼e;i n̂
o
j ej ¼ 0 ¼

P
j¼e;i n̂

o
j bjej are assumed. We also

take bj ¼ 0 ðj ¼ e; iÞ in the region outside the beam
ðrborprwÞ. The subsequent analysis of the eigenvalue
equation (15) is able to treat the three cases: (a)
beam–plasma-filled waveguide ðrb ¼ rwÞ; (b) vacuum re-
gion outside the beam (rborw and n̂oj ¼ 0, j ¼ e; i); and (c)
plasma outside the beam (rborw and n̂oj a0, j ¼ e; i).
Referring to Fig. 1 and Eq. (15), it is convenient to

introduce the constant coefficients

T2
i ðoÞ ¼

o2

c2
$
X

j¼b;e;i

ôi2
pj

g2j c2

" #

( 1þ
X

j¼b;e;i

b2j ô
i2

pj

o2

2

4

þ
ð
P

j¼b;e;ibjô
i2

pjÞ
2

o2½o2 $
P

j¼b;e;iô
i2

pj &

3

5
$1

ð19Þ

for 0prorb, and

T2
oðoÞ ¼ $

o2

c2
$
X

j¼e;i

ôo2
pj

c2

" #

(20)

for rborprw, where ôi2
pj ¼ 4pn̂ije

2
j =gjmj, j ¼ b; e; i, and

ôo2
pj ¼ 4pn̂oj e

2
j =mj, j ¼ e; i. We denote the eigenfunction

inside the beam ð0prorbÞ by dEI
zðrÞ, and the eigenfunction

outside the beam ðrborprwÞ by dEII
z ðrÞ. Eqs. (15), (19)
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Fig. 1. Schematics of the density profiles of the beam ions ðn̂ibÞ and the
plasma ions and electrons inside (n̂ii and n̂ie) and outside (n̂oi and n̂oe )
the beam.
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and (20) then give

1

r

q
qr

r
q
qr

dEI
z þ T2

i dE
I
z ¼ 0; 0prorb (21)

and

1

r

q
qr

r
q
qr

dEII
z $ T2

odE
II
z ¼ 0; rborprw (22)

in the two regions. Eqs. (21) and (22) are Bessel’s equations
of order zero. The solutions to Eqs. (21) and (22) that are
regular at r ¼ 0, continuous at r ¼ rb, and vanish at the
conducting wall are given by [42]

dEI
zðrÞ ¼ AJ0ðTirÞ; 0prorb (23)

dEII
z ðrÞ ¼ AJ0ðTirbÞ

K0ðTorwÞI0ðTorÞ $ K0ðTorÞI0ðTorwÞ
K0ðTorwÞI0ðTorbÞ $ K0ðTorbÞI0ðTorwÞ

,

rborprw ð24Þ

where A is a constant, J0ðxÞ is the Bessel function of the
first kind of order zero, and I0ðxÞ and K0ðxÞ are modified
Bessel functions of order zero.

The remaining boundary condition is obtained by
integrating the eigenvalue equation (15) across the beam
surface at r ¼ rb. Making use of Eqs. (17) and (18), and
assuming be ¼ 0 ¼ bi in the region outside the beam
ðrborprwÞ, we operate on Eq. (14) with

R rbð1þ!Þ
rbð1$!Þ drr ) ) )

for ! ! 0þ. This readily gives the boundary condition

1þ
X

j¼b;e;i

b2j ô
i2
pj

o2
þ

ð
P

j¼b;e;i bjô
i2

pjÞ
2

o2½o2 $
P

j¼b;e;i ô
i2

pj &

0

@

1

A q
qr

dEI
z

# $

r¼rb

¼
q
qr

dEII
z

# $

r¼rb

ð25Þ

which relates the change in dBy ¼ ðic=oÞðqdEz=qrÞ at r ¼ rb
to the perturbed surface current. Substituting Eqs. (23) and
(24) into Eq. (25) then gives

1þ
X

j¼b;e;i

b2j ô
i2
pj

o2
þ

ð
P

j¼b;e;ibjô
i2

pjÞ
2

o2½o2 $
P

j¼b;e;iô
i2

pj &

0

@

1

ATirb
J 0
0ðTirbÞ

J0ðTirbÞ

¼ Torb
K0ðTorwÞI 00ðTorbÞ $ K 0

0ðTorbÞI0ðTorwÞ
K0ðTorwÞI0ðTorbÞ $ K0ðTorbÞI0ðTorwÞ

ð26Þ

where TiðoÞ and ToðoÞ are defined in Eqs. (19) and (20),
and I 00ðxÞ ¼ ðd=dxÞI0ðxÞ, J 0

0ðxÞ ¼ ðd=dxÞJ0ðxÞ, etc.
Eq. (26) constitutes a closed transcendental dispersion

relation that determines the complex oscillation frequency
o for electromagnetic perturbations about the step-func-
tion profiles in Eqs. (17) and (18). As noted earlier, the
dispersion relation has both fast-wave and slow-wave
(Weibel-type) solutions, as well as a predominantly long-
itudinal (modified plasma oscillation) solution, and can be
applied to the case of a beam–plasma-filled waveguide, or
to the case where the region outside the beam ðrborprwÞ
corresponds to vacuum ðn̂oj ¼ 0; j ¼ e; iÞ or background
plasma ðn̂oj a0; j ¼ e; iÞ.

3.1. Beam–plasma-filled waveguide ðrb ¼ rwÞ

For the case where the beam–plasma system extends to
the conducting wall ðrb ¼ rwÞ, the solution dEI

zðrÞ ¼
AJ0ðTirÞ in Eq. (23) is applicable over the entire interval
0prprw. Applying the boundary condition dEI

zðr ¼ rwÞ ¼
0 then gives the dispersion relation

J0ðTirwÞ ¼ 0 (27)

which also follows from Eq. (26) in the limit rb ! rw. We
denote by p0n the nth zero of J0ðp0nÞ ¼ 0, and introduce the
effective perpendicular wavenumber (quantized) defined by
k2? ¼ p20n=r

2
w; n ¼ 1; 2; . . . . The solutions to Eq. (27) are

then determined from

T2
i ðoÞ ¼ k2?; n ¼ 1; 2; . . . (28)

or equivalently,

1þ
X

j¼b;e;i

b2j ô
i2
pj

o2
þ

ð
P

j¼b;e;ibjô
i2

pjÞ
2

o2½o2 $
P

j¼b;e;iô
i2

pj &
¼

o2

c2k2?

$
X

j¼b;e;i

ôi2
pj

g2j c2k
2
?

ð29Þ

where use has been made of Eq. (19). In the absence of
axial flow (bj ¼ 0, j ¼ b; e; i), note that the solution to
Eq. (29) leads to the familiar fast-wave solution o2 ¼
c2k2? þ

P
j¼b;e;i o

i2
pj with gj ¼ 1. For

P
j b

2
j ô

i2
pja0 andP

j bjô
i2

pja0, however, Eq. (29) supports two other solu-
tions corresponding to the Weibel instability and plasma
oscillation solution.
Eq. (29) is a cubic equation for o2. It is convenient to

introduce the dimensionless quantities O2, K2
?, hb

2i and hbi
defined by

O2 ¼
o2

P
j¼b;e;i ô

i2

pj

; K2
? ¼

c2k2?P
j¼b;e;iô

i2

pj

hb2i ¼
P

j¼b;e;i b
2
j ô

i2

pj
P

j¼b;e;i ô
i2

pj

; hbi ¼
P

j¼b;e;i bjô
i2

pj
P

j¼b;e;i ô
i2

pj

. ð30Þ

Rearranging terms, the dispersion relation (29) for a
beam–plasma-filled waveguide can be expressed as

K2
?½O

4 $ O2ð1$ hb2iÞ þ ðhbi2 $ hb2iÞ&

¼ ½O2 $ ð1$ hb2iÞ&O2ðO2 $ 1Þ ð31Þ

where use has been made of
P

j¼b;e;i ô
i2

pj=g
2
j ¼ ð1$ hb2iÞP

j¼b;e;i ô
i2

pj . In the absence of axial streaming (bj ¼ 0 and
hbi ¼ 0 ¼ hb2i), the dispersion relation (31) gives directly
the fast wave solution, O2 ¼ 1þ K2

?, or equivalently,
o2 ¼ c2k2? þ

P
j¼b;e;i ô

i2

pj , as expected. On the other hand,
for hb2ia0 and hbia0, and sufficiently short-wavelength
perturbations that K2

? ¼ c2k2?=
P

j¼b;e;i ô
i2

pjb1, the disper-
sion relation (31) can be approximated by

O4 $ O2ð1$ hb2iÞ $ ðhb2i $ hbi2Þ ¼ 0. (32)
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The solutions to the quadratic Eq. (32) for O2 are given by

O2 ¼
1

2
ð1$ hb2iÞ 1+ 1þ

4ðhb2i $ hbi2Þ
ð1$ hb2iÞ2

! "1=2" #

. (33)

It is readily shown from the definitions in Eq. (30) that
hb2iXhbi2. Therefore the upper sign in Eq. (33) corre-
sponds to stable plasma oscillations ðO240Þ modified by
axial streaming effects. On the other hand, for hb2i4hbi2

the lower sign in Eq. (33) corresponds to O2o0. Because
O2o0 for the lower sign in Eq. (33), it follows that ReO ¼
0 and

ImO ¼ +
1ffiffiffi
2

p ð1$ hb2iÞ1=2 1þ
4ðhb2i $ hbi2Þ
ð1$ hb2iÞ2

! "1=2

$ 1

" #1=2
.

(34)

The upper sign in Eq. (34) corresponds to temporal growth
(Weibel instability) with ImO40. Whenever the inequality

4ðhb2i $ hbi2Þ
ð1$ hb2iÞ2

51 (35)

is satisfied, note that the growth rate for the unstable
(upper) branch in Eq. (34) is given approximately by

ImO ¼
½hb2i $ hbi2&1=2

ð1$ hb2iÞ1=2
. (36)

In dimensional units, when the inequality in Eq. (35) is
satisfied it follows from Eqs. (30) and (36) that the growth
rate of the Weibel instability for short-wavelength pertur-
bations ðc2k2?b

P
j¼b;e;i ô

i2

pjÞ in a beam–plasma-filled wave-
guide can be approximated by

Imo ’ GW ,
½hb2i $ hbi2&1=2

ð1$ hb2iÞ1=2
X

j¼b;e;i

ôi2

pj

 !1=2

. (37)

The quantity GW defined in Eq. (37) provides a convenient
unit in which to measure the growth rate of the Weibel
instability in the subsequent numerical analysis of the
general dispersion relation (26).

For a beam–plasma-filled waveguide, the exact solutions
for o2 (or O2) are of course determined from the cubic
dispersion relation (29), or equivalently Eq. (31). With
regard to the Weibel instability growth rate estimate in Eq.
(36) or Eq. (37), it is important to recognize the relative size
of the contributions from the various beam–plasma species
to the instability drive terms in Eq. (37). For present
purposes, we consider a positively charged ion beam ðj ¼ bÞ
propagating through background plasma electrons and
ions ðj ¼ e; iÞ. The charge states are denoted by eb ¼ þZbe,
ee ¼ $e, and ei ¼ þZie, and the plasma electrons are
assumed to carry the neutralizing current ðbea0Þ, whereas
the plasma ions are taken to be stationary ðbi ¼ 0Þ. The
conditions for charge neutralization,

P
j¼b;e;i n̂

i
jej ¼ 0, and

current neutralization,
P

j¼b;e;i n̂
i
jejbj ¼ 0, then give

n̂ie ¼ Zbn̂
i
b þ Zin̂

i
i

be ¼
bbZbn̂

i
b

Zbn̂
i
b þ Zin̂

i
i

. ð38Þ

Except for the case of a very tenuous beam ðZbn̂
i
b5Zin̂

i
iÞ,

note from Eq. (38) that be can be a substantial fraction of
bb.
In the subsequent analysis of the dispersion relations (26)

and (29), it is useful to define

Oi2
p ,

X

j¼b;e;i

ôi2
pj ; Oo2

p ,
X

j¼e;i

ôo2
pj , (39)

where ôi2

pj ¼ 4pn̂ije
2
j =gjmj, gj ¼ ð1$ b2j Þ

$1=2 and

ôo2

pj ¼ 4pn̂oj e
2
j =mj. Note from Eqs. (30) and (39) that

P
j¼b;e;i ô

i2

pj=g
2
j ¼ Oi2

p $ hb2iOi2

p . Careful examination of the

expression for GW in Eq. (37) for bi ¼ 0 shows that

G2
W ¼

1

ð1$ hb2iÞ

ðb2eô
i2

pe þ b2bô
i2

pbÞô
i2
pi þ ðbb $ beÞ

2ôi2

peô
i2

pbP
j¼b;e;i ô

i2
pj

" #

.

(40)

For ôi2

pb, ô
i2

pi5ôi2

pe, it follows that Eq. (40) is given to good

approximation by

G2
W ’

1

ð1$ b2eÞ
½b2eô

i2

pi þ ðbb $ beÞ
2ôi2

pb&. (41)

Note from Eq. (41) that GW involves the (slow) plasma
frequencies of both the beam ions and the plasma ions.
In the remainder of Section 3 we consider the case of a

cesium ion beam with Zb ¼ 1 and bb ¼ 0:2 propagating
through a neutralizing background argon plasma with
Zi ¼ 1, n̂ii ¼ ð1=2Þn̂ie ¼ n̂ib, and be ¼ 0:1 (see Eq. (38)).
Illustrative stability results obtained from Eq. (26) are
shown in Figs. 2–4 for the case of a beam–plasma-filled
waveguide, where the exact dispersion relation assumes the
simple form in Eq. (29) with k2? ¼ p20n=r

2
w, n ¼ 1; 2; . . . , and

J0ðp0nÞ ¼ 0. In particular, Figs. 2 and 4 show plots of the
normalized growth rate ðImoÞ=GW for the unstable branch
versus radial mode number n for the choice of parameters
corresponding to Oi

prb=c ¼ 1=3 (Fig. 2) and Oi
prb=c ¼ 3

(Fig. 4). The corresponding plots of the radial eigenfunc-
tion dEzðrÞ versus r=rw are also shown for mode number
n ¼ 5. Comparing Figs. 2 and 4, we note that the
normalized growth rate for small values of n tends to be
smaller for larger values of Oi

prb=c. In general, for
sufficiently large n, the instability growth rate asymptotes
at Imo ’ GW, as expected from the estimate in Eq. (37).
Fig. 3 shows a plot of the normalized real frequency
ðReoÞ=Oi

p versus radial mode number n obtained from
Eq. (26) for the stable fast-wave branch. The system
parameters in Fig. 3 is identical to those in Fig. 2, with
Oi

prb=c ¼ 1=3. As expected, in Fig. 3 ðReoÞ=Oi
p asymptotes

at ck?=Oi
p for large values of n, where k2? ¼ p20n=r

2
w.
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3.2. Vacuum region outside of beam–plasma channel
ðrborw; n̂

o
j ¼ 0, j ¼ e; iÞ

We now consider the case where there is a vacuum region
outside the beam–plasma channel, i.e., rborw and n̂oj ¼ 0,
j ¼ e; i. In this case T2

oðoÞ ¼ $o2=c2 and Oo2
p ¼ 0 follow

from Eqs. (20) and (39), and the full transcendental dispersion
relation (26) must be solved numerically. As before, both
stable (fast-wave and plasma oscillation) and unstable
(Weibel-like) solutions are found. For brevity, we focus here
on the unstable solutions to Eq. (26). Typical numerical
solutions to Eq. (26) are illustrated in Figs. 5 and 6 for the

choice of system parameters rw ¼ 3rb, bb ¼ 0:2, be ¼ 0:1,
n̂ii ¼ n̂ie=2 ¼ n̂ib, Oo

p ¼ 0 and Oi
prb=c ¼ 1=3 (Fig. 5) and

Oi
prb=c ¼ 3 (Fig. 6). Shown in Figs. 5 and 6 are plots of the

normalized growth rate ðImoÞ=GW versus radial mode
number n, and plots of the eigenfunction dEzðrÞ versus r=rw
for mode number n ¼ 5. Note from Figs. 5 and 6 that the
signature of the instability growth rate for the case of a
vacuum region outside the beam–plasma channel is qualita-
tively similar to that in Figs. 2 and 4 for the case of a
beam–plasma-filled waveguide. However, the normalized
growth rate in Fig. 6 is somewhat larger for lower values of
radial mode number n than that in Fig. 4.
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Fig. 2. Plots of (a) Weibel instability growth rate ðImoÞ=GW versus mode radial number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5 obtained
from Eq. (26). System parameters are rb ¼ rw, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib, and Oi

prb=c ¼ 1=3.
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Fig. 3. Plots of (a) stable fast-wave oscillation frequency ðReoÞ=Oi
p versus radial mode number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5

obtained from Eq. (26). System parameters are rb ¼ rw, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib, and Oi
prb=c ¼ 1=3.

3 5 7 9 11

0.2

0.4

0.6

0.8

1

1.2

1

n

(I
m

ω
)/

 Γ
w

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

r/rw

^ δE
z 

(r
)

Fig. 4. Plots of (a) Weibel instability growth rate ðImoÞ=GW versus radial mode number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5 obtained
from Eq. (26). System parameters are rb ¼ rw, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib, and Oi

prb=c ¼ 3.
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3.3. Plasma outside of beam–plasma channel ðrborw; n̂
o
ja0,

j ¼ e; iÞ

We now consider the dispersion relation (26) for the case
where there is plasma outside the beam–plasma channel,
i.e., rborw and n̂oj a0, j ¼ e; i. In this case
T2

oðoÞ ¼ $ðo2=c2 $ Oo2
p =c2Þ, where Oo2

p ¼
P

j¼e;i ô
o2
pj . Typi-

cal numerical solutions to Eq. (26) for the unstable branch
are illustrated in Figs. 7 and 8 for the choice of system
parameters rw ¼ 3rb, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib ¼

n̂oe ¼ n̂oi , and Oi
prb=c ¼ 1=3 (Fig. 7) and Oi

prb=c ¼ 3 (Fig. 8).
Shown in Figs. 7 and 8 are plots of the normalized
growth rate ðImoÞ=GW versus radial mode number n,
and plots of the eigenfunction dEzðrÞ versus r=rw for
mode number n ¼ 5. Comparing Fig. 5 with Fig. 7, and
Fig. 6 with Fig. 8, it is evident that the inclusion of
plasma outside the beam–plasma channel does not
significantly change the instability growth rate relative to
the case where there is vacuum outside the beam–plasma
channel.
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Fig. 5. Plots of (a) Weibel instability growth rate ðImoÞ=GW versus radial mode number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5 obtained
from Eq. (26). System parameters are rb ¼ rw=3, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib, O

i
prb=c ¼ 1=3 and Oo

p ¼ 0.
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Fig. 6. Plots of (a) Weibel instability growth rate ðImoÞ=GW versus radial mode number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5 obtained
from Eq. (26). System parameters are rb ¼ rw=3, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib, O

i
prb=c ¼ 3 and Oo

p ¼ 0.
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Fig. 7. Plots of (a) Weibel instability growth rate ðImoÞ=GW versus radial mode number n, and (b) eigenfunction dÊzðrÞ versus r=rw for n ¼ 5 obtained
from Eq. (26). System parameters are rb ¼ rw=3, bb ¼ 0:2, be ¼ 0:1, n̂ii ¼ n̂ie=2 ¼ n̂ib ¼ n̂oe ¼ n̂oi , O

i
prb=c ¼ 1=3.
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4. Conclusions

In this paper we made use of a macroscopic cold-fluid
model to investigate detailed properties of the multi-species
electromagnetic Weibel instability (Sections 2 and 3) for an
intense ion beam propagating through a background
plasma that provides complete charge and current neu-
tralization. Detailed growth-rate properties have been
calculated for a wide range of system parameters. To
summarize, it is clear from the analysis in Section 3 that the
multispecies Weibel instability with characteristic growth
rate GW can be particularly virulent for a sufficiently
intense (high density) ion charge bunch propagating
through background plasma that provides complete charge
and current neutralization. On the other hand, the multi-
species Weibel instability is unlikely to have a deleterious
effect on the beam quality provided

GWtpo1 (42)

where tp ¼ Lp=Vb is the interaction time of the beam ions
with the background plasma, and Lp is the length of the
plasma column. Equivalently, GWtpo1 gives

Lpoa
c

ôi
pb

¼ 2:3( 107a
A

1=2
b

½n̂ibðcm$3Þ&1=2
cm (43)

where use is made of Eq. (41), and the constant a is defined
in the nonrelativistic case by

a ¼ 1$
Zbn̂

i
b

n̂ie

 !2

þ
Zi

Zb

mb

mi

Zbn̂
i
b

n̂ie
1$

Zbn̂
i
b

n̂ie

 !2

4

3

5
$1=2

. (44)

For singly-ionized Aluminum beam ions (Zb ¼ 1 and
Ab ¼ 13) in background Argon plasma (Ai ¼ 18) and
n̂ib=n̂

i
e ¼ 1=2, we obtain from Eqs. (43) and (44) that

Lpo1:27m; 12:7m; 127m (45)

for

n̂ib ¼ 1012 cm$3; 1010 cm$3; 108 cm$3. (46)

Therefore, from Eqs. (43)–(46), the exponentiation length
for the multispecies Weibel instability is moderately long,
even for beam densities in the range 1010 cm$321012 cm$3.

Finally, it should be pointed out that the relative
importance of the electrostatic two-stream and electro-
magnetic Weibel instabilities for similar system parameters
has been briefly discussed in Ref. [3].
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