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The electrostatic two-stream instability for a cold, longitudinally-compressing charged par-

ticle beam propagating through a background plasma has been investigated both analytically

and numerically. Small-signal coupled equations describing the evolution of the perturba-

tions are derived, and the asymptotic solutions are obtained. The results are confirmed by

direct numerical solution of the linearized fluid equations. It is found that the longitudinal

beam compression strongly modifies the space-time development of the instability. In par-

ticular, the dynamic compression leads to a significant reduction in the growth rate of the

two-stream instability compared to the case without an initial velocity tilt.

I. INTRODUCTION

To achieve the high focal spot intensities necessary for high energy density physics and heavy

ion fusion applications, the ion beam pulse must be compressed longitudinally by factors of ten

to one hundred before it is focused onto the target. The longitudinal compression is achieved by

imposing an initial velocity profile tilt on the drifting beam in vacuum [1]. To achieve maximum

longitudinal compression, the space charge of the beam is neutralized by propagation through a

dense neutralizing background plasma [2–4]. If the space charge is fully neutralized by the plasma,

the final compression is limited only by the initial longitudinal temperature of the beam ions

and possible collective processes (such as the two-stream instability [5–8]) which may prevent full

neutralization. The beam’s longitudinal thermal spread which could stabilize the instability also

inhibits full longitudinal compression. Therefore, in this paper, we make use of macroscopic fluid

model [9] to investigate both analytically and numerically the electrostatic two-stream instability

for a cold, longitudinally-compressing charged particle beam propagating through a background

plasma. It is found that the longitudinal beam compression alone strongly modifies the space-time

development of the two-stream instability. In particular, it is found that the dynamic compression

leads to a significant reduction in the growth rate of the two-stream instability compared to the

case without an initial velocity tilt.
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The analysis presented here is similar to the analysis for a uniform infinite beam pulse [5].

In that case it is well known that the propagation of cold beam through a cold, background

plasma is absolutely unstable. The effects that limit the the instability growth are the thermal

spread of the beam particles and possible density gradients [10]. In the case considered here, the

instability growth is limited by the velocity tilt. Indeed, for small beam density, the instability

requires that the resonance condition ω = kVb be satisfied for a continuous growth. Here ωpe is

the electron plasma frequency associated with the plasma electrons, k is the axial wavenumber

of the perturbation , and Vb is the beam velocity. As shown in Section VI, the perturbation

frequency changes with time due to the time-dependent beam velocity and beam density profile,

and it eventually detunes out of resonance and the instability ceases. The present analysis takes

into account the effects of the velocity tilt and allows the level of saturation to be determined. A

similar analysis has been used to study the filamentation for a radially converging heavy ion beam

[11]. The effects of radial convergence on the two-stream instability has also been studied [12].

This paper is organized as follows. In Section II, we consider the unperturbed propagation of

the electron beam in the background plasma. In Section III, small-signal equations are derived that

describe the evolution of the density perturbations around the flow described by the unperturbed

equations. In Section IV, we obtain the asymptotic solution of the resulting equations. In Section V,

the development of the instability and its saturation are examined from the point of view of the

wave dynamics, where the plasma waves are represented as quasi-particles characterized by their

position x(t), wavenumber k(t) and energy (or frequency) ω(t). In Section VI, numerical solutions

of the linearized equations are obtained and compared with the analytical results. Finally, the

results are summarized in Sec. VII.

II. UNPERTURBED PROPAGATION

It is assumed that a semi-infinite electron beam with a sharp leading edge enters the chamber

containing background plasma at time t = 0 and x = 0 with velocity V 0
b and density n0

b . The

beam is uniformly compressing in the longitudinal direction as it propagates inside the chamber

and reaches the maximum compression at time t = Tf at the point x = Xf = TfV 0
b away from

the beam entry point x = 0 into the chamber. The unperturbed beam propagation is illustrated

in Fig. 1, where the beam phase space is plotted at different times during the compression. The

transition from solid to dashed lines in Fig. 1 identifies the end of the real beam pulse with finite

initial length L0
b . The frequently used parameter, the longitudinal ”velocity tilt” ∆V 0

b /V 0
b , is
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related to the compression distance Xf and the initial beam pulse length L0
b by

∆V 0
b /V 0

b = L0
b/Xf . (1)

It is also assumed that the electron beam propagation in the background plasma is both charge

V

Vb
0

Lb
0 Xf0
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FIG. 1: Plot of the beam phase space at different times during the compression. Line 1 corresponds to t = 0.

neutralized and current neutralized, where the quasi-neutrality conditions are given by

n̄e + n̄b = n0, (2)

n̄eV̄e + n̄bV̄b = 0. (3)

Here, n̄j and V̄j denote the dynamically changing unperturbed density and flow velocity of the

beam electrons (j=b) and background plasma electrons (j=e), and n0 = const. (independent of x

and t) is the uniform density of the background plasma ions (assumed singly-ionized). The quasi-

neutrality condition is slightly violated due to the finite electron mass in the force balance equation

for the plasma electrons

eĒ = −me

(

∂V̄e

∂t
+ V̄e

∂V̄e

∂x

)

. (4)

The zero-order solution for the beam density and velocity are given by

n̄b(t) =
n0

bTf

Tf − t
, (5)

V̄b(t, x) =
V 0

b Tf − x

Tf − t
. (6)

Here, it is also assumed that δ ≡ n0
b/n0 � 1. Substituting Eqs. (2), (3) and (6) into Eq. (4), we

obtain for the unneutralized electric field

eĒ = 2me
n0

b

n0

(Xf − x)

[(1 − t/Tf ) + (n0
b/n0)]2Tf (Tf − t)

. (7)
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Using Poisson’s equation ∂Ē/∂x = 4πeδn̄ = 4πe(δn̄b−δn̄e), we obtain for the unneutralized charge

density

δn̄(x, t)

n̄b(t)
= − 2

ω2
peT

2
f

1
[(

1 − t
Tf

)

+
n0

b

n0

]2 , (8)

where ω2
pe ≡ 4πn0e

2/me is the plasma frequency-squared of the background plasma electrons. In

what follows we make use of two small parameters

ε ≡ 1/(ωpeTf ) � 1 and δ ≡ n0
b/n0 � 1. (9)

It will be shown that the resonant two-stream instability develops and saturates everywhere in the

chamber except close to the compression point x = Xf during the time interval when 1−t/Tf ∼ 1 �
n0

b/n0. It follows from Eq. (8) that δn̄(x, t)/n̄b(t) ' 2ε2 during this time interval and therefore for

perturbations with amplitude |δñ(x, t)|/n̄b(t) � ε2, the beam can be considered as fully neutralized

by the background plasma.

III. SMALL-SIGNAL EQUATIONS

In this section, we derive the coupled equations that describe the perturbation in charge density

of the beam electrons and background electrons. Quantities are expressed as nb = n̄b + ñb, vb =

V̄b + ṽb, ne = n̄e + ñe, ve = v̄e + Ṽe where unperturbed quantities n̄b, V̄b, n̄e and V̄e are determined

from Eqs. (2), (3), (5) and (6). Substituting Eqs. (5) and (6) into the linearized continuity equation

for the beam particles, we obtain

(Tf − t)
∂ñb

∂t
− ñb + (TfV 0

b − x)
∂ñb

∂x
= −Tfn0

b

∂ṽb

∂x
. (10)

From the linearized momentum equation for the beam particles, we obtain

(Tf − t)
∂ṽb

∂t
− ṽb + (TfV 0

b − x)
∂ṽb

∂x
= − e

me
(Tf − t)Ẽ. (11)

Here, E is linearized near Ē = 0. Combining Eqs (10) and (11), and introducing the normalized

variables,

tωpe = t̄, xωpe/V
0
b = x̄, ñb/n0 = ˜̄nb, ṽb/V

0
b = ˜̄vb and eẼ/meωpeV

0
b = ˜̄E, (12)

we obtain

[(1 − εt̄)∂t̄ + (1 − εx̄)∂x̄ − 2ε][(1 − εt̄)∂t̄ + (1 − εx̄)∂x̄ − ε]˜̄nb

= α2ε2(1 − εt̄)∂x̄
˜̄E = −α2ε2(1 − εt̄)(˜̄nb + ˜̄ne), (13)
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where α ≡ ωpbTf , and use has been made of Poisson’s equation ∂x̄
˜̄E = −˜̄nb − ˜̄ne.

Repeating the same procedure for the background plasma electrons, we obtain

[(1 − εt̄)(1 − εt̄ − δ)∂t̄ − δ(1 − εx̄)∂x̄ + 2ε(1 − εt̄ + δ)]

×[(1 − εt̄)(1 − εt̄ − δ)∂t̄ − δ(1 − εx̄)∂x̄ + δε]˜̄ne

= −(1 − εt̄ − δ)3(1 − εt̄)(˜̄nb + ˜̄ne) + 2ε2δ(1 − εt̄ − δ). (14)

It will be shown later that the solutions to Eqs. (13) and (14) have the form ˜̄nj = aj exp[−i(t̄− x̄)],

j = b, e, where the slowly varying amplitudes aj satisfy |∂t̄aj | � δ|aj |. In this case we can neglect

all terms that contain δ in Eq. (14). We also assume that the perturbation amplitude is larger

than the unneutralized charge density (˜̄ne � ε2δ) represented by the last term in Eq. (14) [see also

Eq. (8)], and therefore the last term in Eq. (14) can be neglected. Hence, Eqs. (13) and (14) can

be simplified to give

[(1 − εt̄)∂t̄ + (1 − εx̄)∂x̄ − 2ε][(1 − εt̄)∂t̄ + (1 − εx̄)∂x̄ − ε]˜̄nb = −α2ε2(1 − εt̄)(˜̄ne + ˜̄nb), (15)

∂2
t̄
˜̄ne + ˜̄ne = −˜̄nb. (16)

Next, we change variables from x̄, t̄ to

X = εx̄ and τ = t̄ − x̄ (17)

in Eqs. (15) and (16). With this change of variables, Eqs. (15) and (16) become

[(1 − X)∂X − τ∂τ − 2] [(1 − X)∂X − τ∂τ − 1] ˜̄nb

= −α2(1 − X − ετ)(˜̄ne + ˜̄nb), (18)

(∂2
τ + 1)˜̄ne = −˜̄nb. (19)

Substituting ˜̄nj = aj exp[−iτ ], j = e, b, into Eqs. (18) and (19), for τ >> 1 we obtain the amplitude

equation for ae

[(1 − X)∂X + τ(i − ∂τ )]2]∂τ (∂τ − 2i)ae = −α2(1 − X − ετ)(∂τ − i)2ae. (20)

A similar equation can be obtained by substituting kVb = (ωp/V
0
b −i∂x)V̄b(x, t) and ω = ωpe+i∂t

into the two-stream dispersion relation for a beam-plasma system

ω2
pe

ω2
+

ω2
pb

(ω − kVb)2
= 1. (21)
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The resulting equation is

[

∂

∂t
+ Vb(x, t)

∂

∂x
+ i

ωpe

V 0
b

[Vb(x, t) − V 0
b ]

]2(∂ae

∂t
− 2iωpe

)

∂ae

∂t
=

= −ω2
pb(x, t)

(

∂ae

∂t
− iωpe

)2

ae(x, t). (22)

Substituting Eqs. (5) and (6) into Eq. (22), we obtain Eq. (20). In the limit where |∂X | � τ and

|∂τ | � 1, Eq. (20) can be integrated to give

ae = c(X) exp

(

iα2 1 − X + ετ log(ετ)

2τ

)

. (23)

It will be shown later that ∂X ∼ α, and therefore both conditions |∂X | � τ and |∂τ | � 1 are

equivalent to τ � α. To determine c(X) in Eq. (23), we need to find a solution in the region

τ ∼ α and then take the limit τ � α. In the region τ ∼ α, we can neglect ετ ∼ δ1/2 � (1 − X) in

Eq. (18), which gives

[(1 − X)∂X − τ∂τ − 2] [(1 − X)∂X − τ∂τ − 1] ˜̄nb = −α2(1 − X)(˜̄ne + ˜̄nb). (24)

(∂2
τ + 1)˜̄ne = −˜̄nb. (25)

IV. ASYMPTOTIC SOLUTION

We now introduce the variable Y = log[1/(1 − X)], and carry out the integral transform of

Eqs. (24) and (25) according to ˜̄ne =
∫

C dsn̂e(s, Y )exp(−isτ). This gives

[∂Y + s∂s − 1][∂Y + s∂s](1 − s2)n̂e = α2 exp(−Y )s2n̂e. (26)

Here, use has been made of the fact that the integral transform of the operator −τ∂τ → ∂ss =

1 + s∂s. To solve Eq. (26), we introduce new variable p = Y − log(s) = log[1/s(1 − X)]. In the

new variables, Eq. (26) can be rewritten as

∂2
s n̂b = α2 exp(−p)

s(1 − s2)
n̂b, (27)

where use has been made of ˜̄nb = −(∂2
τ + 1)˜̄ne, and therefore n̂b = −(1 − s2)n̂e. In obtaining

Eqs. (26) and (27), it is assumed that the contour C is chosen so that the integrals exist and all

integrand functions and their derivatives are zero on both ends of the contour C.

The WKB solution of Eq. (27) valid for α � 1 is given by

n̂b = b̄±(p) exp

[

±2α exp(−p/2)

∫

√
s

exp(−p/2)

dz

(1 − z4)1/2

]

, (28)
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where b̄±(p) are two arbitrary functions. Using Eq. (28), we can express the solution for ˜̄nb as

˜̄nb =
∑

±

∫

C±

dsf±[s(1 − X)] exp

[

−iτs ± 2αs
√

1 − X

∫ 1

√
1−X

dz

(1 − s2z4)1/2

]

, (29)

where the functions f± and integration contours C± are determined from the boundary conditions

at X = 0. Taking the limit X → 0 in Eq. (29), we obtain

˜̄nb(τ, 0) =
∑

±

∫

C±

dsf±(s) exp (−iτs) , (30)

∂X ñb(τ, 0) =
∑

±

∫

C±

ds

[

−sf ′
±(s) ± α

s√
1 − s2

f±(s)

]

exp (−iτs) . (31)

The boundary condition consistent with ˜̄vb(τ,X = 0) = 0 that follow from Eq. (10) are

˜̄nb(τ, 0) = f(τ)H(τ), (32)

∂X ˜̄nb(τ, 0) = (1 + τ∂τ )˜̄nb(τ, 0), (33)

where H(τ) is the Heaviside step-function defined by

H(τ) =

{

1 for τ ≥ 1,

0 for τ < 0.
(34)

Consistent with Eqs. (33) are the initial conditions and boundary conditions for the perturbed

electron density, ˜̄ne(τ = 0) = ∂τ ˜̄ne(τ = 0) = 0 and (∂2
τ + 1)˜̄ne(τ,X = 0) = −1. The solution for ˜̄nb

that satisfies the boundary conditions in Eq.(33) is given by

˜̄nb =

∫ +∞+i∆

−∞+i∆

ds

4π
f̂ [s(1 − X)] exp (−iτs)

∑

±
exp

[

±2αs
√

1 − X

∫ 1

√
1−X

dz

(1 − s2z4)1/2

]

, (35)

where f̂(s) =
∫∞
0 dτ exp(isτ)f(τ), and ∆ is such that integration contour in Eq. (35) is above all

singularities of the function f̂(s).

Since α � 1 is assumed, the integral in Eq. (35) can be evaluated using the method of steepest

descend. First, we shift the integration contour into the lower half-plane. The resulting contour

C ′ is shown in Fig. 2. The contour C ′ goes around the cuts and poles of the integrand in Eq. (35).

The main contribution to the integral is from the points where the function

H±(s) = −is ± 2βs
√

1 − X

∫ 1

√
1−X

dz

(1 − s2z4)1/2
(36)

reaches an extremum. Here, we also take the limit β = α/τ � 1, which allows determination of

the extremum points analytically. The function H±(s) has root branch points at sI
b = ±1 and

sII
b = ±1/

√
1 − X , and is analytic everywhere in the complex s-plane with cuts made as shown in
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FIG. 2: Integration contour and location of extremum points for the functions H±(s) in Eq. (36).

Fig. 2. The imaginary part of the functions H± experience discontinuous jumps across the cuts.

Equating the derivative to zero, H ′
±(s0) = 0, we find that the extremum points are located near

the branch points. One can show that only the extremum points near sb = ±1 give exponentially

growing contributions to the integral in Eq. (36). Expanding the functions H±(s) near s ≈ ±1 and

keeping leading-order terms in the small parameter β, we obtain

H+(s ' +1) ' −is + β
√

2(1 − X)F [arccos(
√

1 − X)|1/2] − β
√

2(1 − X)
√

1 − s,

H−(s ' −1) ' −is + β
√

2(1 − X)F [arccos(
√

1 − X)|1/2] − β
√

2(1 − X)
√

1 + s, (37)

where F (x|α) =
∫ x
0 dθ/

√

1 − α sin2 θ is a elliptic integral of the first kind.

From H ′
±(s0

±) = 0 we find that s0
+ = 1+β2(1−X)/2, which is located below the right cut, and

s0
− = −1−β2(1−X)/2, which is located above the left cut, as shown in Fig. 2. The corresponding

extremum values of function H±(s0
±) valid up to the second order in β are given by

H±(s0
±) = ∓i

(

1 − β2(1 − X)

2

)

+ β
√

2(1 − X)F [arccos(
√

1 − X)|1/2]. (38)

With the same accuracy, it can be shown that, 1/
√

−H ′′
+(s0

+) = −β
√

1 − X exp(−iπ/4) and

1/
√

−H ′′
−(s0

−) = β
√

1 − X exp(iπ/4). The extra minus sign multiplies the contribution from s0
+

because the integration contour direction is reversed at this point. For the simple boundary con-

dition in Eq. (33), f(τ) = 1, it follows that f̂(s) = i/s and we can express the asymptotic growing



9

solution as

˜̄nb(τ,X) ' α
√

2πτ3(1 − X)
sin[τ − α2(1 − X)/2τ + π/4]

× exp
{

α
√

2(1 − X)F [arccos(
√

1 − X)|1/2]
}

. (39)

The easiest way to determine ˜̄ne(τ,X) is to solve the equation

(∂2
τ + 1)˜̄ne(τ,X) = −˜̄nb(τ,X) (40)

with initial conditions ˜̄ne(0, X) = 0 and ∂τ ˜̄ne(0, X) = 0, and with ˜̄nb(τ,X) given by Eq. (39). In

the limit α � 1, the solution to Eq. (40) is given by

˜̄ne(τ,X) ' 1

2(1 − X)
Re

{

exp(iτ)

(

1 − Erf

[
√

iα2(1 − X)

2τ

])}

× exp
{

α
√

2(1 − X)F [arccos(
√

1 − X)|1/2]
}

, (41)

where Erf [x] is the error function defined by Erf [x] = 2/
√

π
∫ x
0 dx exp(−x2). The solutions in

Eqs. (39) and (41) are valid far enough away from the beam head that τ � α
√

1 − X. At the

end of the compression, t = Tf and τ = α2(1 − X). At this time, the density perturbation can be

expressed as

˜̄nb(t = Tf , X) ' qb
expG(X)

α2(1 − X)2
sin[α2(1 − X) + π/4 − φb], (42)

˜̄ne(t = Tf , X) ' qe
expG(X)

(1 − X)
sin[α2(1 − X)) + π/4 − φe], (43)

where the gain function G(x) is defined by

G(X) = α
√

2(1 − X)F [arccos(
√

1 − X)|1/2]. (44)

In Eqs. (42) and (43) qb = 1/
√

2π ≈ 0.40, φb = 1/2, and qe exp[−i(φe +π/4)] = (1−Erf [
√

i/2])/2.

Numerically, we find qe ≈ 0.29 and φe ≈ 0.12.

V. PHYSICAL DISCUSSION

As evident from Eqs. (42)–(43), the saturated amplitude of the density perturbations is deter-

mined mostly by the gain function in Eq. (44). It is interesting to examine the development of the

instability and its saturation from the point of view of wave dynamics where the plasma waves are

represented as quasi-particles characterized by their position x(t), wave-number k(t) and energy
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(or frequency) ω(t). The quasi-particle dynamics are described by the equations

dx

dt
=

∂ω

∂k
= − ∂D/∂k

∂D/∂w
, (45)

dk

dt
= −∂ω

∂x
=

∂D/∂x

∂D/∂w
, (46)

dω

dt
=

∂ω

∂t
= − ∂D/∂t

∂D/∂w
, (47)

where, for a beam propagating through background plasma, the dispersion function D is defined

by

D = 1 −
ω2

pe

ω2
−

ω2
pb(t)

(ω − kVb(x, t))2
, (48)

and the quasi-particle dynamics is on the surface D = 0. Substituting Eq. (48) into Eqs. (45)–(47),

we obtain the closed system of equations for x(t) and p(t) = k(t)Vb(x, t)/ω(t)

dx

dt
=

Vb(x, t)

1 + (1 − p)3/δ(t)
, (49)

dp

dt
=

[

p − p2

1 + (1 − p)3/δ(t)

]

1

Vb(x, t)

∂Vb(x, t)

∂t
−
[

p(1 − p)/2

1 + (1 − p)3/δ(t)

]

1

δ(t)

∂δ(t)

∂t
, (50)

where δ(t) = ω2
pb(t)/ω

2
pe, and

ω

ωpe
=

[

1 +
1

(1 − p)2/δ(t)

]1/2

. (51)

It follows from Eq. (51) that for δ � 1 the maximum growth rate occurs for p ∼ 1, which

corresponds to perfect resonance. Equation (50) describes the detuning from resonance for partic-

ular quasi-particle under consideration. For a uniform non-compressing beam with Vb = const.,

Eqs. (49) and (50) are easily solved to give

p = p0, (52)

x − Vbt

1 + (1 − p)3/δ
= x0, (53)

with general solution p(x, t) given by

x − Vbt

1 + (1 − p)3/δ
= f(p). (54)

We are interested in obtaining self-similar solutions which correspond to asymptotic solutions

independent of the initial conditions. Such a solution is given by

(1 − p)3 = δ

[

Vbt − x

x

]

. (55)
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For δ1/3[x/(Vbt − x)]2/3 � 1, we obtain from Eq. (51)

ω

ωpe
= 1 +

(i
√

3 − 1)

2

δ1/3

2

[

x

Vbt − x

]2/3

, (56)

where only the unstable solution with positive imaginary part of the frequency is retained. From

Eq. (56), we obtain the gain function

G(x, t) =

∫ t

x/Vb

Imω(x, t̄)dt̄ =
3
√

3

4

ωpe

Vb
δ1/3x2/3(Vbt − x)1/3. (57)

The gain function in Eq. (57) coincides with the gain function obtained by direct solution of the

linearized fluid equations [5]. If follows from Eq. (57) that the gain function never saturates.

This is because the quasi-particle’s detuning p − 1 does not change with time [see Eq. (52)], and

quasi-particles which were in resonance will stay in resonance indefinitely.

For the case where the beam velocity Vb(x, t) changes dynamically according to Eq. (6), it

follows that Eqs. (49) and (50) become

dp

dT
= p − p(1 + p)/2

1 + (1 − p)3/δ
, (58)

dY

dT
=

1

1 + (1 − p)3/δ
, (59)

where Y = log[1/(1 − x/Xf )] and T = log[1/(1 − t/Tf )]. Introducing q defined by p = 1 + qδ1/3 in

Eq. (50), we obtain equations for q valid to leading order in the small parameter δ, i. e.,

δ1/3

(

dq

dT
+

5

6
q

)

= −q3, (60)

dξ

dT
= −q3, (61)

ω

ωpe
= ω̂ =

[

1 +
δ1/3

q2

]1/2

, (62)

where ξ = T − Y . As shown below, the instability in this case saturates when q ∼ δ1/6 � 1, which

justifies retaining only leading-order terms in Eqs. (60) and (61). The solution to Eqs. (60) and

(61) is given by

exp(−2T )

[

δ1/3(T )

q2
+ 1

]

= I. (63)

ξ = ξ0 − δ(T )1/2

∫ T

0
dT̄

exp[(T̄ − T )/2]
[

exp(2T̄ )I − 1)
]3/2

, (64)

where I and ξ0 are invariants of the motion. Making use of Eqs. (62), (63) and (64), we obtain the

asymptotic solution for ω̂(ξ, T ) = ω/ωpe, which is independent on initial conditions, i. e.,

ξ = −2δ(T )1/2

∫ 1

exp(−T/2)

dη

[η4ω̂2 − 1)]3/2
. (65)
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The gain function G(x, t) is given by

G(x, t) =

∫ t

x/Vb

Imω(x, t̄)dt̄ = ωpeTf exp(−Y )Im

∫ ξ

0
dξ̄ exp(−ξ̄)ω̂(ξ̄, Y ). (66)

It can be shown from Eq. (65) that Imω̂ ∼ (δ)3/2/ξ3 for ξ/δ1/2 � 1 so that we can neglect the

exponential contribution in Eq. (66) to the integral, and also extend the upper integration limit to

infinity for ξ � δ1/2. In addition, we can also replace T → Y on the right-hand side of Eq. (65).

Integrating Eq. (66) by parts and taking into account that Im[ω̂(ξ)]ξ ∼ 1/ξ2 → 0 for ξ → ∞, and

Im[ω̂(ξ)]ξ ∼ ξ2/3 → 0 for ξ → 0, we obtain

G = ωpeTf exp(−Y )Im

∫ ∞

0
dξω̂(ξ, Y ) = −ωpeTf exp(−Y )Im

∫ ω̂(∞,Y )

ω̂(0,Y )
dω̂ξ(ω̂, Y )

= −2α
√

1 − XIm

∫ 1

√
1−X

dη
√

η4 − 1/ω̂2
|ω̂(∞,Y )
ω̂(0,Y ) , (67)

where α = δ
1/2
0 ωpeTf = ωpbTf . Equation (65) has several solutions. The solution with positive

imaginary part to the frequency, which corresponds to instability, corresponds to ω̂2(∞, Y ) = 1

and ω̂2(0, Y ) = ∞. Therefore, using Eq. (67), we obtain

G(X) = 2α
√

1 − X

∫ 1

√
1−X

dη
√

1 − η4
= α

√

2(1 − X)F [arccos(
√

1 − X)|1/2], (68)

where X = x/Xf . The gain function in Eqs. (68) is identical to Eq. (44). The region where it is

valid, ξ � δ1/2 or τ = ωp(t − x/Vb) � α
√

1 − x/Xf , also coincides with region where Eq. (44)

is valid. The fact that we have obtained identical expressions for the gain function demonstrates

the consistency of the approximations used in the derivations. The method of quasi-particles also

clarifies the dynamics of the instability in physically intuitive way.

VI. NUMERICAL SOLUTION

As anticipated in Eq. (23), the amplitude c(X) = |ae| = exp(G) is primarily a function of X

and satisfies ∂X ∼ α. The gain function can be expressed as

G(X) = α
√

2(1 − X)F [arccos(
√

1 − X)|1/2] (69)

To check the approximations, we have solved the linearized system of equations in Eqs. (13) and

(14) numerically using the FEMLAB package [13]. For the numerical analysis the parameters

are taken to be ε = 1/(ωpeTf ) = 10−3 and δ = n0
b/n0 = 10−3. These parameters correspond to

α2 = δ/ε2 = (ωpbTf )2 = 1000. To compare with the theoretical results in Secs. IV and V, f(τ) = 1
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FIG. 3: Logarithm of the electron density perturbation log |˜̄ne| at time t = 0.85Tf plotted as a function of

distance X = x/Xf .

is chosen for the boundary conditions in Eqs. (33). The numerical results are shown in Figs. 3–7.

Figure 3 shows the logarithm of the electron density perturbation, log | ˜̄ne|, at time t = 0.85Tf

plotted as a function of the distance X = x/Xf . The lower curve in Fig. 3 is the numerical

solution of the linearized fluid equations with no approximations. The upper curve in Fig. 3 is the

numerical solution of the same equations with the approximation (1 − X − ετ) → (1 − X) on the

right-hand side of Eq. (19). Figure 4 shows the time dependence of the electron density perturbation

0 0.2 0.4 0.6 0.8

0
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30

lo
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n 
| e

~

x/X f

FIG. 4: Logarithm of the electron density perturbation log |˜̄ne| plotted as a function of distance x/Xf at

different times t/Tf = 0.25 (1), 0.35 (2), 0.45 (3), 0.55 (4), 0.65 (5), 0.75 (6), and 0.85 (7).

log |˜̄ne(X, τ)|. It is evident from the Fig. 4 that the amplitude, | ˜̄ne(X, τ)|, is indeed only a function

of X away from the beam head where τ > α
√

1 − X. Figure 5 shows the logarithm of the electron
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FIG. 5: Logarithm of the electron density perturbation log |˜̄ne| plotted as a function of distance x/Xf at

t = 0.85Tf obtained numerically (blue curve) and compared with the analytical result in Eq. (69) (red

curve).

density perturbation, log | ˜̄ne|, plotted as a function of distance X = x/Xf at t = 0.85Tf obtained

numerically and compared with the analytical solution in Eq. (68). As evident from Fig. 5, the

agreement is very good. The gain function in Eq. (69) scales linearly with parameter α = ωpbTf .

This scaling is confirmed in Fig. 6 where the logarithm of the electron density perturbation, log | ˜̄ne|,
is plotted as a function of distance X = x/Xf at t = 0.80Tf , together with the analytical solution

for the case where the beam density is reduced by a factor of four (α2 = 250) compared to the

case shown in Fig. 5. Figure 7 shows a comparison of the gain function in Eq. (68) with the gain

0 0.2 0.4 0.6 0.8 1

0

4

8

12

lo
g|

n 
| e

~

x/X f

FIG. 6: Logarithm of the electron density perturbation log |˜̄ne| plotted as a function of distance x/Xf at

t = 0.80Tf obtained numerically (blue curve) and compared with the analytical result in Eq. (69) (red curve)

for α2 = 250.
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FIG. 7: Comparison of the instability gain as a function of x/Xf for a beam with (solid curve) and without

(dashed curve) velocity tilt for δ = n0

b/n0 = 10−3 and α2 = (ωpbTf )2 = 1000.

function for a beam with zero velocity tilt [Eq. (70)], i.e.,

Gnotilt(X, t = Tf ) = α
3
√

3

4

X2/3(1 − X)1/3

δ1/6
. (70)

As evident from Fig. 7, for δ1/6 � 1 the velocity tilt significantly reduces the growth rate compared

to the case of a beam with zero initial velocity tilt.

VII. CONCLUSIONS

The electrostatic two-stream instability for a cold, longitudinally-compressing electron beam

propagating through a background plasma has been investigated both analytically and numeri-

cally. Small-signal coupled equations describing the evolution of the density perturbations were

derived, and the asymptotic solutions were obtained. The results were confirmed by direct numeri-

cal solution of the linearized fluid equations. It was shown that the longitudinal beam compression

strongly modifies the space-time development of the instability. In particular, the dynamic com-

pression leads to a significant reduction in the growth rate of the two-stream instability compared

to the case without an initial velocity tilt by a factor Gmax/Gnotilt
max ∼ (ωpb/ωpe)

1/3 � 1. The

number of e-foldings is proportional to the number of beam-plasma periods 1/ωpb during the com-

pression time Tf . The two-stream instability is complectly mitigated by the effects of dynamical

beam compression when ωpbTf . 1.

In the present, we considered the case of a semi-infinite beam [see Fig. 1]. For a beam with finite

initial length L0
b , the trailing beam end will trace the trajectory xend(t) = V 0

b t[1 + L0
b/Xf ] − L0

b .

In this case, the present analysis is applicable everywhere between the leading and trailing edges
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of the beam, max{0, xend(t)} ≤ x ≤ xhead(t) = V 0
b t, where the beam can drive the background

plasma unstable. Behind the beam, for 0 ≤ x < xend(t) the plasma will be left with remnant

collective oscillations with constant amplitude, which are excited by the propagating beam.

In this paper, we considered only low-density electron beam propagation in a background

plasma. In this case, the unstable interaction is between the beam electrons and the plasma

electrons. In the general case of a beam with arbitrary charge species and mass, the instability

may also involve the background plasma ions, because of the non-zero relative velocity between the

background ions and the neutralizing plasma electrons. This will occur if the beam ions are suffi-

ciently heavy that the beam plasma frequency is smaller than the background ion plasma frequency,

ωpb � ωpi. In this case, the two-stream instability between the background plasma electrons and

the background plasma ions is expected to lead to a heating of the background electrons to ther-

mal velocities comparable with the average flow velocity of the neutralizing background electrons

∼ (nb/ne)Vb. During this initial stage, the beam ions are relatively unaffected. At later times, a

two-stream instability between the beam ions and the (heated) background electrons may develop.

This later stage of instability, which directly effects the beam particles, can also be described by

analysis presented in this paper.
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