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The single-particle dynamics in a time-dependent focusing field is examined. The existence of the
Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the
corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent
frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation
with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A
detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope
equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the
envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is
demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a
fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s
method, where the envelope equation needs to be numerically integrated once for every iteration, and the
Jacobi matrix needs to be calculated for the envelope perturbation.

DOI: 10.1103/PhysRevSTAB.9.054001 PACS numbers: 52.20.Dq, 45.50.�j, 52.30.Gz
I. INTRODUCTION

The Courant-Snyder invariant for an oscillator equation
with time-dependent frequency is an important concept in
accelerator physics [1,2], and is a powerful constraint used
to characterize the motion of a charged particle in
alternating-gradient field configurations. For an oscillation
amplitude u�t� satisfying

�u� ��t�u � 0; (1)

where ��t� is the time-dependent frequency coefficient, the
Courant-Snyder invariant is given by [1]

I �
u2

w2 � � _wu� w _u�2: (2)

Here, I � const (independent of t), and w � w�t� is any
solution of the envelope equation

�w� ��t�w�
1

w3 � 0: (3)

This classical result has been derived many times using
different methods. The earliest derivation of the invariant
known today was due to Ermakov [3], who obtained the
invariant by eliminating ��t� from Eqs. (1) and (3). It was
derived by Courant and Snyder in 1958 [1] using the basic
techniques for solving Hill’s equation. It was rediscovered
by Lewis [4] using the asymptotic method developed by
Kruskal [5]; Eliezer and Gray [6] demonstrated a physical
interpretation of the invariant; a derivation using a linear
canonical transformation was given by Leach [7]; and
Lutzky rederived the result using Noether’s theorem [8].
A short review of various derivation methods can be found
in Ref. [9]. Other interesting extensions and applications
related to the Courant-Snyder invariant can be found in
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Refs. [10–12]. We note that the basic concept of the
Courant-Snyder invariant may have appeared in other for-
mats. For example, Kulsrud obtained two equations for w
which are equivalent to Eq. (3) [13]. The concept of an
envelope function w and its notation, we believe, can be
attributed to a paper by Birkhoff [14], which predated the
1911 Solvay Conference, where, according to commonly
accepted history, the concept of adiabatic invariant for a
time-dependent harmonic oscillator was first discussed by
Lorentz and Einstein [15].

In this paper, we first examine the time-dependent har-
monic oscillator equation from the viewpoint of the sym-
metry group G for Eq. (1). It is shown that the symmetry
group for Eq. (1) is generated by an 8D Lie algebra
(infinitesimal generator) g, which contains the 3D subal-
gebra gb that corresponds to the Courant-Snyder invariant
[16]. The symmetry group analysis for a harmonic oscil-
lator with constant frequency was first carried out by
Anderson et al. [17], and Wulfman et al. [18] classified
the corresponding Lie algebra and studied the properties of
the Lie group. The envelope equation appears naturally as
the determining equation for gb. We then investigate the
symmetry group of the envelope equation itself. It is inter-
esting that the determining equation for the Lie algebra gw
of the symmetry group Gw for the envelope equation is an
envelope equation itself. Utilizing this unique structure, a
theorem regarding the symmetry and the invariant for
envelope equations is derived. As an application to accel-
erator physics, the symmetries of the envelope equation
enable a fast numerical algorithm for finding matched
solutions without using the conventional iterative
Newton’s method, where the envelope equation needs to
be numerically integrated once for every iteration, and the
1-1 © 2006 The American Physical Society
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Jacobi matrix needs to be calculated for the envelope
perturbation.
II. SYMMETRY GROUP FOR THE OSCILLATOR
EQUATION

A symmetry group can be used to reduce the order of
differential equations and to generate invariants [19,20].
Here, we search for vector fields v in �t; u� space

v � ��t; u�
@
@t
���t; u�

@
@u

(4)

as infinitesimal generators (Lie algebra) g for the symme-
try transformation group G, which leaves Eq. (1) invariant.
Here, @@t and @

@u are the coordinate frames for the vector field
in the �t; u� space. The vector field v will induce a vector
field in �t; u; _u; �u� space, i.e., the prolongation of v denoted
by pr�2�v,

pr�2�v � �
@
@t
��

@
@u
��u @

@ _u
��uu @

@ �u
; (5)

�u � �t � ��u � �t� _u� �u _u2; (6)

�uu � �3�u _u �u���u � 2�t� �u� �uu _u3 � ��uu � 2�tu� _u2

� �2�ut � �tt� _u��tt; (7)

where the superdot (_) denotes d=dt, and u, _u, and �u are
considered as independent variables. In Eq. (5),
� @@t ;

@
@u ;

@
@ _u ;

@
@ �u� denote the coordinate frames for vector field

fields in the �t; u; _u; �u� space. The determining equation for
v to be an infinitesimal generator for G is

pr�2�v� �u� ��t�u� � �uu � ��� � _�u � 0: (8)

Substituting the expression for �uu, we obtain

��uu _u3 � ��uu � 2�tu� _u2 � �3��uu� 2�ut � �tt� _u

� ��u � 2�t��u��tt � ��� _��u � 0: (9)

Since Eq. (9) should be valid everywhere in �t; u; _u� space,
the coefficients of _u3, _u2, and _u should individually vanish,
i.e.,

�uu � 0; (10)

�uu � 2�tu � 0; (11)

3��uu� 2�ut � �tt � 0; (12)

����u � 2�t�u��tt � ��� _��u � 0: (13)

Equations (10)–(13) can be used to find the solutions for �
and �. After some algebra, we obtain
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� � a�t�u� b�t�; (14)

� � _a�t�u2 � c�t�u� d�t�; (15)

where a�t�, b�t�; c�t�, and d�t� satisfy

�a� �a � 0; (16)

�d� �d � 0; (17)

b
:::
� 4� _b� 2 _�b � 0; (18)

_c�
�b
2
� 0: (19)

Equations (16)–(19) have 8 degrees of freedom. Therefore,
the Lie algebra g is 8D, which is the maximum dimension
that a second-order ordinary differential equation can have
for the Lie algebra of its symmetry group. The Lie algebra
g is composed of four subalgebras defined as

ga �
�
au

@
@t
� _au2 @

@u

�������� �a� �a � 0
�
; (20)

gb �
�
b
@
@t
�

_b
2
u
@
@u

��������b
:::
� 4� _b� 2 _�b � 0

�
; (21)

gc �
�
c0

@
@u

��������c0 2 R
�
; (22)

gd �
�
d
@
@u

�������� �d� �d � 0
�
: (23)

In order for the above sets to be subalgebras, it is necessary
that each set is closed under the Lie bracket. For ga, gc, and
gd, this can be trivially confirmed. Indeed, any pair of
vector fields taken from ga, gc, or gd commute with each
other. To prove that gb is a Lie subalgebra, we take
v1; v2 2 gb and

v1 � b1
@
@t
�

_b1

2
u
@
@u
; (24)

v1 � b2
@
@t
�

_b2

2
u
@
@u
; (25)

where b1 and b2 satisfy Eq. (18). The Lie bracket between
v1 and v2 is

�v1; v2� � b3
@
@t
� _b3

u
2

@
@u
; (26)

b3 � �b1
_b2 � b2

_b1�: (27)
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Calculating the derivatives of b3 and substituting them into
the left-hand side of Eq. (18), we obtain

b
:::

3 � 4� _b3 � 2 _�b3 � �b1b
::::

2 � b2b
::::

1� � 2� _b1b
:::

2 � _b2b
:::

1�

� 4��b1
�b2 � b2

�b1� � 2 _��b1
_b2 � b2

_b1� � 0: (28)

The final equality in Eq. (28) is verified by using the fact
that both b1 and b2 satisfy Eq. (18). Therefore, �v1; v2� 2
gb, and gb is a Lie subalgebra. Finally, the Lie algebra g of
the symmetry group G can be decomposed as follows:

g � ga 	 gb 	 gc 	 gd;

where 	 denotes the sum between two linear subspaces.
Furthermore, the subalgebras ga, gb, gc, and gd are inde-
pendent, and their dimensions are 2, 3, 1, 2, respectively.

According to the basic result of Noether’s theorem,
every infinitesimal divergence symmetry corresponds to
an invariant [19]. Here, an infinitesimal divergence sym-
metry is defined as a vector field satisfying

pr�2�v�L� � L
d�
ds
�
dB�t; u�
dt

(29)

for some function B�t; u�. In Eq. (29), L is the Lagrangian
for Eq. (1). It can be shown that

pr�2�v�L� �
dA
dt
� �

dL
dt

(30)

for some function A�t; u�, from which it follows that I �
B� A� L� is an invariant if v is an infinitesimal diver-
gence symmetry. It can also be demonstrated that every
infinitesimal divergence symmetry belongs to the Lie al-
gebra g for the symmetry group G of Eq. (1). Since we
have obtained the Lie algebra g, to determine all of the
invariants of Eq. (1), it is only necessary to verify which
subspace of g consists of infinitesimal divergence symme-
tries. It can be shown that the infinitesimal divergence
symmetries are those from the 5D subalgebra gb 	 gd of
the 8D Lie algebra g.

For the 2D subalgebra gd, it is straightforward to show
that the invariant is

I � u _d� _ud; (31)

which is the well-known Wronskian for linear equations.
For the 3D Lie algebra gb, the invariant is found to be

I �
� �b

4
�
�
2
b
�
u2 �

b
2

_u2 �
_b

2
u _u: (32)

We now show that this is indeed the Courant-Snyder
invariant. Let

b � 2w2; (33)

Eq. (18) becomes

ww:::� 3 _w �w�4�w _w� _�w2 � 0; (34)
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which is equivalent to

3 _wh� _hw � 0; (35)

h � �w� �w�
1

w3
: (36)

In other words,

h �
"� 1

w3

for an arbitrary real constant ". Thus, we obtain the enve-
lope equation

�w� �w�
"

w3 � 0: (37)

Since b is real, thew defined in Eq. (33) is either real (for
b > 0) or purely imaginary (for b < 0). When w is purely
imaginary, h is purely imaginary as well, and " needs to be
real. Therefore, Eq. (37) with a real " is valid for both
purely imaginary and real w. The "=w3 term in Eq. (37)
implies that w cannot go through 0. Therefore, w is either a
real function for all t or a purely imaginary function for all
t, which means that b is either a positive definite function
or a negative definite function. This fact was first proved by
Struckmeier using a different method [21].

In terms of w, the infinitesimal generator is

vb � 2w2 @
@t
� 4w _wu

@
@u
; (38)

and the invariant in Eq. (32) becomes the familiar Courant-
Snyder invariant [1,2]

I �
�

_w2 �
"

w2

�
u2 � w2 _u2 � 2w _wu _u: (39)

In this sense, we can refer to the symmetry group generated
by the subalgebra gb as Courant-Snyder symmetry. From
the point of view of w, the Lie algebra of the Courant-
Snyder symmetry is 3D because " is an arbitrary constant
in addition to the two arbitrary constants needed to specify
a particular solution for w. Not surprisingly, Eq. (18) is
exactly the same as that for the well-known � function in
Courant-Snyder theory [1,2].

The 3D subalgebra ga 	 gc does not produce any invari-
ant. The 1 degree of freedom associated with gc corre-
sponds to

v � c0u
@
@u
;

which generates the symmetry group of the scaling trans-
formation ~u � exp�c0��u. This is obviously due to the fact
that Eq. (1) is linear. The subalgebra of ga has 2 degrees of
freedom, but it does not appear to have any appreciable
importance.
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FIG. 1. The matched solution wg is constructed from an arbi-
trary special solution ws for a FODO focusing lattice.
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III. SYMMETRY GROUP FOR THE ENVELOPE
EQUATION

We now apply the symmetry group analysis directly to
the envelope equation (37) itself. The symmetry group Gw
for Eq. (37) should be a subgroup of the symmetry groupG
for Eq. (1), because the special case of Eq. (37) for " � 0 is
Eq. (1). Carrying out a similar procedure to that for deriv-
ing Eqs. (16)–(19), we obtain the Lie algebra gw forGw as

vw � 2w2
1

@
@t
� 4w1 _w1

@
@w

; (40)

where w1 satisfies the envelope equation

�w 1 � �w1 �
"1

w3
1

� 0; (41)

and "1 is an arbitrary real constant. Further analysis shows
that vw is an infinitesimal divergence symmetry with the
invariant

I � "
�
w1

w

�
2
� "1

�
w
w1

�
2
� �w _w1 � _ww1�

2: (42)

We summarize the above result in the following theorem.
Theorem 1.—For an arbitrary function ��t� and w1, w2

satisfying

�w 1 � �w1 �
"1

w3
1

; (43)

�w 2 � �w2 �
"2

w3
2

; (44)

where "1 and "2 are real constants, the quantity

I � "1

�
w2

w1

�
2
� "2

�
w1

w2

�
2
� �w2 _w1 � _w2w1�

2 (45)

is an invariant.
This result was obtained by Lutzky in a less general form

[8], and it can be verified in a straightforward manner by
direct calculation. The invariant in Eq. (45) allows us to
solve for the general solutions for w1 in terms of a particu-
lar solution for w2. Let q � w1=w2, we obtain

I � "1
1

q2 � "2q
2 �

�
dq
d 

�
2
;  �

Z 1

w2
2

dt: (46)

Equation (46) can be solved for q in terms of  as

q2 �
I �

�����������������������
I2 � 4"1"2

p
sin��2

�����
"2
p
� � C��

2"2
; (47)

or equivalently,

w1 � w2

�I � �����������������������
I2 � 4"1"2

p
sin��2

�����
"2
p
� � C��

2"2

�
1=2
:

(48)

Here,I and C are constants. Equation (48) recovers the
Courant-Snyder theory, Eqs. (2) and (3), as a special case
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when "1 � 0, and "2 � 1. Another application of Theorem
1 and Eq. (48) is in the numerical solution of the envelope
equation (3). For the special case of a periodic focusing
lattice ��t� � ��t� T�, where T � const is the period, it is
desirable to find matched solutions to construct the �
functions [1,2]. Normally, this is done by an iterative
Newton’s method [22], where Eq. (3) needs to be solved
numerically once for every iteration step. Using Eq. (48)
for the case where "1 � "2 � 1, we can develop a more
efficient algorithm, where Eq. (3) needs to be numerically
solved only once. First, we pick arbitrary initial conditions
for w�t � 0� � w0 and _w�t � 0� � _w0 at t � 0, and solve
Eq. (3) numerically for w from t � 0 to one lattice period
at t � T. Denote this particular solution by wp�t�.
Applying Eq. (48), the general solution for wg is

wg � wp

�
I �

��������������
I2 � 4
p

sin��2� � C��
2

�
1=2
; (49)

 �
Z t

0

1

w2
p
dt: (50)

By selecting the constants I and C such that

wg�0� � wg�T� and _wg�0� � _wg�T�; (51)

we obtain the matched solution to Eq. (3) for a periodic
focusing lattice ��t� � ��t� T�. Of course, the matching
conditions specified by Eq. (51) give two nonlinear alge-
braic equations for I and C, which need to be solved using
a root searching algorithm, such as Newton’s method.
However, we do not need to numerically integrate Eq. (3)
in the root searching iterations, whereas for the conven-
tional algorithm, Eq. (3) needs to be solved numerically
once for every iteration step, and the Jacobi matrix needs to
be calculated for the envelope perturbation.

As an example of this algorithm, we choose a typical
focusing-off-defocsuing-off (FODO) lattice used in parti-
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cle accelerator applications with a fringe field modeled by
an Enge function [23]. The focusing lattice ��t� is plotted
in Fig. 1. The (dimensionless) amplitude of the lattice is
�̂T2 � 15 and the filling factor is � � 0:3. The particular
solution wp is generated numerically for the arbitrarily
selected initial condition wp�0� � 0:5T1=2 and _wp�0� �
0. Obviously, wp is not matched. Also plotted in the figure
is the matched solution wg constructed from wp using the
algorithm described above. This algorithm only works for
the zero space-charge � function. It does not apply to the
more general envelope equations with space charge, be-
cause the space-charge force depends on the envelope
function nonlinearly and Theorem 1 does not apply.

IV. CONCLUSIONS

We analyzed the symmetry groups of the oscillator
equation and envelope equation with time-dependent fre-
quency. It was shown that the symmetry group for the
oscillator equation with time-dependent frequency is gen-
erated by an 8D Lie algebra, which contains a subalgebra
gb corresponding to the Courant-Snyder invariants. The
envelope equation emerged naturally as the determining
equation for the subalgebra gb. Similar analysis revealed
that the symmetry group of the envelope equation itself is
another envelope equation. This unique structure enables a
fast numerical algorithm for finding matched solutions
without using the conventional iterative Newton’s method,
where the envelope equation needs to be numerically
integrated once for every iteration, and the Jacobi matrix
needs to be calculated for the envelope perturbation.
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