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An Exact Magnetic-Moment Invariant of Charged-Particle Gyromotion
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For the motion of a charged particle in a uniform, time-dependent axial magnetic field B�t�ez, it is
shown that there is an exact magnetic-moment invariant of the particle dynamics M, to which the adiabatic
magnetic-moment invariant � � mv2

?=2B is asymptotic when the time scale of the magnetic field
variation is much slower than the gyroperiod. The connection between the exact invariant M and the
adiabatic invariant � enables us to characterize in detail the robustness of the adiabatic magnetic-moment
invariant �.
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The magnetic moment of a charged particle gyrating in a
magnetic field B is defined as � � mv2

?=2B, where m is
the particle mass and v? is the perpendicular particle
speed. As an adiabatic invariant of the particle motion in
a magnetic field with slow variations in space and time [1],
it is an important concept in plasma physics. Even though it
is a classical result in plasma physics [1,2], there is re-
newed interest in further development [3,4]. In this Letter,
we demonstrate that there is an exact magnetic-moment
invariant M of a charged particle’s gyromotion in a uni-
form, time-dependent magnetic field B�t�ez. We also prove
that when the time scale of the magnetic field variation is
much slower than the gyroperiod, j�@B=@t��1=B�j �
!c � jqB=mcj, the magnetic moment �, as an adiabatic
invariant, is asymptotic to the exact invariant M. Further-
more, the connection between the exact invariant M and
the adiabatic invariant � enables us to characterize in
detail the robustness of the invariance of the magnetic
moment �, which is an important theoretical underpinning
for the magnetic confinement of fusion plasmas.

For present purpose, we consider the nonrelativisitc
motion of a charged particle with mass m and charge q
in the uniform, time-dependent magnetic field B � B�t�ez
inside a long, tightly wound solenoid aligned in the ez
direction. In this geometry, the vector potential A that
generates B � r�A is

A � A��r; t�e� � 1
2B�t�re�; (1)

where r is the radial distance from the axis of the solenoid,
and e� is a unit vector in the � direction in the cylindrical
polar coordinates (r; �; z). The corresponding electric field
determined from r� E � �c�1@B=@t is

E � �
1

c
@A
@t
� �

1

2c
_B�t�re�; (2)

where the overdot denotes d=dt. In this field configuration,
the z motion of the particle is decoupled from the trans-
verse motion and is described trivially by �z � 0, corre-
sponding to constant axial velocity with _z � vz � const.
On the other hand, the Lagrangian of the transverse particle
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motion is

L �
�
q
c

A�mv?

�
	 v? �

1

2
mv2
?

�
q
c
A�r _��

1

2
m� _r2 � r2 _�2�: (3)

The transverse canonical momenta associated with Eq. (3)
are

P� �
@L

@ _�
�
qA�
c
r�mr2 _�; (4)

Pr �
@L
@ _r
� m _r: (5)

Because @L=@� � 0, P� is an invariant of the motion. This
is of course an elementary result corresponding to the
conservation of canonical angular momentum. However,
there is another invariant that is associated with the radial
dynamics, which is much less transparent. The equation for
the dynamics of r�t� is readily shown to be

�r��2�t�r �
P2
�

m2r3 ; (6)

where � � qB�t�=2mc is one-half of the instantaneous
gyrofrequency (also called the Larmor frequency). To
construct the expected invariant, we make use of the fol-
lowing result [5].

Theorem 1.—For an arbitrary function ��t� and y1, y2

satisfying

�y 1 � �y1 �
c1

y3
1

; (7)

�y 2 � �y2 �
c2

y3
2

; (8)

where c1 and c2 are real constants, the quantity

I � c1

�
y2

y1

�
2
� c2

�
y1

y2

�
2
� �y2 _y1 � _y2y1�

2 (9)

is an invariant with I � const (independent of t).
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Proof.—Calculating _I � dI=dt from Eqs. (7) and (8)
readily gives

_I � 2�y1 _y2 � _y1y2�

�
c1y2

y3
1

�
c2y1

y3
2

� �y1 �y2 � �y1y2�

�

� 2�y1 _y2 � _y1y2�
y2� �y1 � �y1� � y1� �y2 � �y2�

� �y1 �y2 � �y1y2��

� 0:

Even though it is straightforward to prove the theorem
directly, the form of the invariant is difficult to guess
from elementary considerations. The invariant I in the
form of Eq. (9) was first obtained by analyzing the sym-
metry properties of Eqs. (7) and (8) [5]. Symplectic struc-
ture and symmetry properties of the general
nonautonomous Hamiltonian systems were studied by
Struckmeier and Riedel [6,7]. A constructive proof of
Theorem 1 using elementary methods can be given through
the following transformation [8]. Letting y1�t� � y2�t�z�t�,
we rewrite Eq. (7) as

�y 2z� 2 _y2 _z� y2 �z� �y2z �
c1

y3
2z

3 : (10)

If we choose y2�t� to satisfy Eq. (8), then Eq. (10) becomes

c2z

y3
2
�

c1

y3
2z

3 � 2 _y2 _z� y2 �z � 0;

which can be integrated once when multiplied by y3
2 _z to

give

c2z
2 � c1

1

z2 � y
4
2 _z2 � const: (11)

Equation (11) is identical to Eq. (9). What is demonstrated
by the above constructive proof is that there is a close
connection (or a symmetry) between the solutions of
Eqs. (7) and (8).

There are two ways to interpret the invariant I. First, it
can be viewed as an invariant for a two-particle system
despite the fact that the dynamics of the two particles is
decoupled. Struckmeier and Riedel derived an exact in-
variant for 3D Hamiltonian systems ofN particles confined
within a general velocity-dependent potential [9,10].
Another interpretation is that it is an invariant of the
single-particle dynamics y1�t�, constructed using a precal-
culated auxiliary function y2�t�. At first glance, one may
suspect the fact that I in the form of Eq. (9) is a valid
invariant for the dynamics of y1�t� described by Eq. (7)
because I depends on the solution of y2�t�. However, it is
readily demonstrated that I is indeed a valid invariant for
y1�t� by the fact that y2�t� is completely independent of
Eq. (7). It is only necessary to pick a set of arbitrary initial
conditions and c2 to solve for y2�t� once, and this particular
function can then be used to construct invariants for all of
the particle dynamics described by Eq. (7) with different
08500
initial conditions and constant c1. The functionality of y2�t�
occurring in I is similar to a special function defined by an
ordinary differential equation, such as the Bessel function.
It is of course common for an invariant to depend on one or
several special functions and their derivatives.
Furthermore, the invariant I can be viewed as a generalized
Courant-Snyder invariant [11–13], which is a basic result
regarding charged-particle dynamics in a transverse focus-
ing lattice in particle accelerators. The Courant-Snyder
invariant was rediscovered by Lewis [14], and is some-
times referred as the Lewis invariant by different authors.

From Theorem 1, the transverse motion of the charged
particle has an exact invariant I� given by

I� �
P2
�

m2

�
w2
�

r2

�
� �

�
r2

w2
�

�
� � _rw� � _w�r�2; (12)

where � is an arbitrary real constant and w��t� is any
function of time satisfying

�w� ��2�t�w� �
�

w3
�
: (13)

The invariant I� in Eq. (12) will be recognized as a linear
combination of the constants of the motion, A2

x and A2
y,

used in accelerator physics [12,13], where Ax and Ay are
the constant amplitude scale factors for the transverse
particle orbits in a time-varying magnetic field B�t�ez,
and �A2

x and �A2
y are the corresponding (conserved)

phase-space areas.
For present purpose, we assume qB�t�> 0. Of course,

any function of P� and I� is also an invariant of the single-
particle motion. Of particular interest is the invariant M
defined by

M �
q
4c

�
I1 �

2P�
m

�

�
qw2

1

4c

��
_r� r

_w1

w1

�
2
� r2

��
qB

2mc
� _�

�
�

1

w2
1

�
2
�
; (14)

where I1 is equal to I� in Eq. (12) with � � 1, and use has
been made of Eq. (4). In the subsequent analysis, we refer
toM as the exact magnetic-moment invariant. [For the case
of qB�t�< 0, the definition of M is identical to Eq. (14)
with I1 replaced by �I1, and the � in Eqs. (17)–(21) is
replaced by ��.]

When the magnetic field variation is slow compared
with the gyroperiod, i.e.,

B � B�"t�; (15)

where "� 1, the magnetic moment � � mv2
?=2B�t� �

m� _r2 � r2 _�2�=2B�t� is a well-known adiabatic invariant.
We now prove that� is asymptotic to the exact invariantM
for small ". Let � � ��"t� and T � "t. Then Eq. (13) for
� � 1 becomes
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"2 d
2w1

dT2 ��2�T�w1 �
1

w3
1

: (16)

Expressingw1 � u0 � u1"� u2"
2 � 	 	 	 , it is straightfor-

ward to show from Eq. (16) that

u0 �
1

�1=2
; (17)

u1 � 0; (18)

u2 � �
3

4�2

d2

dT2 ��
1=2�; . . . ; (19)

where ��T� � qB�T�=2mc> 0 is assumed. Therefore,

w1 �
1

�1=2
�O�"2�; (20)

_w 1 � O�"�: (21)

Substituting w1 and _w1 into Eq. (14), we readily obtain

M �
q

4c�

 _r2 � r2 _�2� �O�"� � ��O�"�; (22)

which shows the relationship between the adiabatic invari-
ant � and the exact invariant M for "� 1. Equation (22)
also enables us to establish two very important properties
of the adiabatic invariant �. These two properties allow us
to quantify the exact meaning of the adjective ‘‘adiabatic.’’
The first property of � pertains to the change of � at any
time t relative to its value at t � 0. From Eq. (22),

��t� � M�O�"�; (23)

��0� � M�O�"�: (24)

Because M is an exact invariant, it follows that

���t� � ��t� ���0� � O�"� (25)

for all t. In other words, the change of� is always small for
all t. This is a powerful statement for two reasons. First,
from the definition of � and Eq. (6),

d�
dt
� �

_B
B

�
mv2

?

2
�
P��

2
�
mr2�2

4

�
� O�"�: (26)

In general, we would expect ���O�"1�n� for t�
O�"�n�, if � did not have the extra dynamical properties
described above. Second, in order to qualify to be called an
adiabatic invariant, it is only required that the change of the
quantity be O�"� for 0  t  O�1="� [15]. What we have
proved is a stronger result that �� � O�"� for all t

The second important property of � concerns the dif-
ference between the final state and the initial state when �
evolves from an initial constant value to a final constant
value. This property can be stated as follows. If
08500
�>�0 > 0; lim
T!�1

��T� � ��;

lim
T!�1

��T� � ��;
(27)

and

lim
T!�1

di�
dTi

exists for i � 1; (28)

then for any integer n,

���1� ����1� � o�"n�: (29)

This type of characterization of an adiabatic invariant was
first adopted by Kulsrud [16]. To prove Eq. (29) under the
conditions in Eqs. (27) and (28), we carry out a perturba-
tive analysis of Eq. (16) to order n for any integer n. Let
w1 �

P
nun"

n and S �
P
nSn"

n � 1=w3
1. Obviously, S0 �

1=u3
0 and S1 � 0. For n � 2,

un�2 � Sn � �un�2;

Sn � �
3S0

u0
un �

1

u3
0

Xn�1

i;j;k�0

Sn�1��i�j�k�uiujuk;
(30)

where Sl � 0 for l < 0. From this iteration relation and the
fact that u1 and u2 are homogeneous polynomials in terms
of _� and ��, we can deduce that un is a homogeneous
polynomial in terms of di�=dTi �i � 1; . . . ; n�.
Furthermore, because limT!�1di�=dTi exists for i � 0,
it follows that

lim
T!�1

di�
dTi
� 0; �i � 1�: (31)

There exists a Tn such that when T > Tn and T <�Tn,��������d
i�

dTi

��������<"n�1; �i � 1; . . . ; n�: (32)

Therefore, for T > Tn and T <�Tn, we obtain

w1 �
1

�1=2
� o�"n�; (33)

w01 � o�"n�; (34)

and for t > Tn=" and t <�Tn=",

M � ��t� � o�"n�: (35)

In Eq. (34), w01 � dw1=dT. Consequently,

��t� ����t� � o�"n� (36)

for t > Tn=", and we have proved the result stated in
Eq. (29).

As a final point, it should also be emphasized that the
existence of the exact invariants I1 and P� represents
powerful constraint conditions that can be used to deter-
mine exact expressions for the transverse orbits r�t� for
general initial conditions at t � 0. To illustrate this point,
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we denote the particular solution to Eq. (13) for � � 1 by
w1�t�. For a prescribed functional form for ��t�, and
specified initial conditions w1jt�0 and dw1=dtjt�0, the
solution for w1�t� can be determined numerically from
Eq. (13). We now introduce the stretched time variable
��t� and the scaled radial coordinate R��� defined by

� �
Z t

0

dt

w2
1�t�

; R �
r
w1
: (37)

For � � 1, Eq. (9) can then be expressed as�
d
d�
R2

�
2
� 4

�
R2 �

1

2
I1

�
2
�

�
I2

1 �
4P2

�

m2

�
: (38)

From Eqs. (37) and (38), R2��� � I1=2 exhibits simple
harmonic motion proportional to cos�2�� and sin�2��, and
the exact solution for r2�t� can be expressed as

r2�t� � w2
1�t�

�
1

2
I1 �

1

2

�
I2

1 �
4P2

�

m2

�
1=2

� cos
�
2
Z t

0

dt

w2
1�t�
��0

��
; (39)

where �0 is a constant phase factor.
In conclusion, for the case of a uniform, time-dependent

magnetic field B�t�ez, we have demonstrated that there is
an exact invariant I� associated with the transverse particle
dynamics. An exact magnetic-moment invariant M was
constructed, to which the adiabatic invariant � �
mv2

?=2B is asymptotic when the time scale of the gyro-
motion is fast in comparison with the time scale for varia-
tion in B�t�. The relation between the exact invariantM and
the adiabatic invariant � has enabled us to quantify several
important properties regarding the robustness of the adia-
batic invariant �. Besides its importance to the theory of
magnetic confinement, there are other interesting applica-
tions of the theory developed here. One example is the
concept of subharmonic heating and cooling. It is well
known that charged particles in a magnetic field can be
heated or cooled by ramping-up or ramping-down the
magnetic field. However, this magnetic pumping effect
offers a limited heating or cooling capability, because the
field cannot be ramped-up or -down indefinitely. It is ideal
if particles can be heated or cooled in a periodically vary-
ing magnetic field. But, the approximate invariance of the
magnetic moment indicates that to leading order, a parti-
cle’s kinetic energy is conserved in one full cycle of the
magnetic field. The exact magnetic-moment invariant M
can be used to calculate the next-order kinetic energy
variation, which can be increasingly significant with in-
creasing pumping frequency. Such a magnetic heating or
cooling technique may prove valuable in plasma physics
and accelerator physics applications. The case considered
08500
here does not include spatial inhomogeneities in the mag-
netic field. The general case with space-time variations in
B�x; t� will be the subject of a subsequent investigation.
Here, we make the following conjecture: under the most
general conditions for the magnetic moment � �
mv2

?=2B�x; t� to be an adiabatic invariant, for most parti-
cles there exist exact invariants of the transverse particle
dynamics, to which the magnetic moment is asymptotic.
Such invariants correspond to the invariant tori of the
Kolmogorov-Arnold-Moser theorem when the deviation
from an integrable system is small enough. The
Kolmogorov-Arnold-Moser theorem guarantees the exis-
tence of these surfaces by proving the convergence of the
perturbation series for the tori. The methods adopted in this
Letter are a direct construction of the invariant tori using
independent special functions determined from several
differential equations describing the symmetry properties
of the perturbed system.
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