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Abstract

The values of ion-atom ionization and stripping cross sections are frequently needed
for many applications that utilize the propagation of fast ions through matter. When
experimental data and theoretical calculations are not available, approximate formulas
are frequently used. This paper briefly summarizes the most important theoretical
results and approaches to cross section calculations in order to place the discussion
in historical perspective and offer a concise introduction to the topic. Based on ex-
perimental data and theoretical predictions, a new fit for ionization cross sections is
proposed. The range of validity and accuracy of several frequently used approximations
(classical trajectory, the Born approximation, and so forth) are discussed using, as ex-
amples, the ionization cross sections of hydrogen and helium atoms by various fully
stripped ions. A formulary of analytical approximations for cross sections is presented.

1 Introduction

Ion-atom ionizing collisions play an important role in many applications such as heavy ion
inertial fusion [1], collisional and radiative processes in the Earth’s upper atmosphere [2],
ion-beam lifetimes in accelerators [3], atomic spectroscopy [4], and ion stopping in matter [5],
and are of considerable interest in atomic physics [6]. The recent resurgence of interest in
charged particle beam transport in background plasma is brought about by the recognition
that plasma can be used as a magnetic lens. Applications of the plasma lens ranging from
heavy ion fusion to high energy lepton colliders are discussed in Refs. [6-10]. In particular,
both heavy ion fusion and high energy physics applications involve the ion transport in
plasmas and gases: partially stripped heavy elements for heavy ion fusion; positrons for
electron-positrons colliders [9]; and high-density laser-produced proton beams for the fast
ignition of inertial confinement fusion targets [11].

To estimate the ionization and stripping rates of fast ions propagating through gas or
plasma, the values of ion-atom ionization cross sections are necessary. In contrast to the elec-
tron [12] and proton [13–15] ionization cross sections, where experimental data or theoretical
calculations exist for practically any ion and atom, the knowledge of ionization cross sections
by fast complex ions and atoms is far from complete [16–19]. When experimental data and
theoretical calculations are not available, approximate formulas are frequently used.

The raison d’etre for this paper are the frequent requests that we have had from colleagues
for a paper describing the regions of validity of different approximations and scaling laws in
the calculation of ion- atom ionization and stripping cross sections. The experimental data
on stripping cross sections at low projectile energy were collected in the late 1980s, while
comprehensive quantum mechanical simulations were performed in the late 1990s. Having
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in hand both new experimental data and simulation results enabled us to identify regions of
validity of different approximations and propose a new scaling law, which is the subject of
the present paper.

The most popular formula for ionization cross sections was proposed by Gryzinski [20].
The web of science search engine [21] shows 457 citations of the paper, and most of the
citing papers use Gryzinski’s formula to evaluate the cross sections. In this approach, the
cross section is specified by multiplication of a scaling factor and the unique function of the
projectile velocity normalized to the orbital electron velocity. The popularity of Gryzinski’s
formula is based on the simplicity of the calculation, notwithstanding the fact that his
formula is not accurate at small energies.

Another fit, proposed by Gillespie, gives results close to Gryzinski’s formula at large
energies, and makes corrections to Gryzinski’s formula at small energies [22]. Although
more accurate, Gillespie’s fit is not frequently used in applications, because it requires a
knowledge of fitting parameters not always known a priori.

In this paper, we propose a new fit formula for ionization cross section which has no fitting
parameters. The formula is checked against available experimental data and theoretical
predictions. Note that previous scaling laws either used fitting parameters or actually did
not match experiments for a wide range of projectile velocities. We also briefly review the
most important theoretical results and approaches to cross section calculations in order to
place the discussion in historical perspective and offer nonspecialists a concise introduction
to the topic. The advantages and limitations of two most widely-used approximations - the
classical mechanical calculations and the Born approximation of quantum mechanics - are
reviewed.

The organization of this paper is as follows. In Sec.II we give a brief overview of key theo-
retical results and experimental data. Further details of the theoretical models are presented
in Appendices. The new proposed fit formula for ionization cross section is presented at the
end of Sec.II, including a detailed comparison with experimental data, and in Sec.III a short
summary of theoretical approaches and their limitations is presented. Finally, a formulary
of analytical approximations for cross sections and their limitations is presented in Sec.IV
for reference purposes.

2 Overview of experimental data and proposed scaling

laws for ionization cross sections

There are several theoretical approaches to cross section calculations. These include: clas-
sical calculations that make use of a classical trajectory and the atomic electron velocity
distribution functions given by quantum mechanics [this approach is frequently referred to
as classical trajectory Monte Carlo (CTMC)]; quantum mechanical calculations based on
Born, eikonal or quasiclassical approximations, and so forth [16–19]. All approaches are
computationally intensive and the error and range of validity are difficult to estimate in
most cases. Therefore, different fittings and scalings for cross sections are frequently used in
practical applications.

Most scalings were developed using theories and simulations based on classical mechanics.
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Classical trajectory calculations are easier to perform compared with quantum mechanical
calculations. Moreover, in some cases the CTMC calculations yield results very close to
the quantum-mechanical calculations [23–26]. The reason for similar results lies in the fact
that the Rutherford scattering cross section is identical in both classical and quantum-
mechanical derivations [27]. Moreover, the ionization probabilities for hydrogen-like orbitals
calculated in the quantum mechanical and classical mechanical approaches are very similar,
as shown in Appendix B (see Fig.12). Therefore, when an ionizing collision is predominantly
a consequence of the electron scattering at small impact parameters close to the nucleus,
the quantum mechanical uncertainty in the scattering angle is small compared with the
angle itself, and the classical calculation can yield an accurate description [28–30]. Whereas
in the opposite limit, when an ionizing collision is predominantly a consequence of the
electron scattering at large impact parameters far from the nucleus, the quantum mechanical
uncertainty in the scattering angle is large compared with the angle itself, and the classical
calculation can remarkably fail in computing the ionization and stripping cross section [31,
32]. Similarly, the Born approximation can grossly overestimate the cross sections if the
transition probability is not small and the Born approximation is not valid.

In the present analysis, we consider first the ionization cross section of the hydrogen-
like electron orbitals (for example one-electron ions), with nucleus of charge ZT , colliding
with a fully stripped ion of charge Zp. Subsequently, we show that the approach can be
generalized with reasonable accuracy for any electron orbital, making use of the ionization
potential of the electron orbitals. Because different terminology is used in the literature,
we call a stripping collision a collision in which the fast ion loses an electron in a collision
with a stationary target ion or atom (in the laboratory frame); and we call an ionizing
collision a collision in which a fast ion ionizes a stationary target ion or atom [16]. Both
cases are physically equivalent to each other by changing the frame of reference, and further
consideration can be given in the frame of the atom or ion being ionized. In accelerator
applications, the electron stripping from the accelerated ions usually occurs due to collisions
with neutral atoms of residual gas, because the gas density is larger than the plasma density.
However, in heavy ion fusion or high energy density physics applications, the interaction
of intense ion beams with a background plasma is becoming increasingly important, where
electron stripping occurs due to collisions with the ions.

Atomic units are used throughout this paper with e = � = me = 1, which corresponds
to length normalized to a0 = �

2/(mee
2) = 0.529 · 10−8cm, velocity normalized to v0 =

e2/� = 2.19 · 108cm/s, energy normalized to E0 = mev
2
0 = 2Ry = 27.2eV , where Ry

is the Rydberg energy. The normalizing coefficients are kept in all equations for robust
application of the formulas. For efficient manipulation of the formulas it is worth noting that
the normalized projectile ion velocity is v/v0 = 0.2

√
E[keV/amu], where E is energy per

nucleon in keV/amu. Therefore, 25keV/amu corresponds to the atomic velocity scale. Some
papers express the normalized velocity v/v0 as βα, where β = v/c, and v0/c = α = 1/137.
Here, c is the speed of light, and α is the fine structure constant.

For a one-electron ion, the typical scale for the electron orbital velocity is vnl = v0ZT .
Here, n, l is the standard notation for the main quantum number and the orbital angular
momentum [27]. The collision dynamics is very different depending on whether v is smaller
or larger than vnl.

If v � vnl, the electron interaction with the projectile ion occurs for a very short time and
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the interaction time decreases as the velocity increases. Therefore, the ionization cross section
also decreases as the velocity increases. In the opposite case v � vnl, the electron circulation
around the target nucleus is much faster than the interaction time, and the momentum
transfer from the projectile ion to the electron averages out due to the fast circulation.
Thus, the cross section decreases as the projectile velocity decreases. This is why the cross
section typically has a maximum at v = vmax ∼ vnl, but as we shall see below, vmax also
depends on the charge of the projectile. The description of cross sections in the limiting cases
of very high and very low velocities can be significantly simplified. Historically, the study of
cross sections started in the beginning of 20th century and proceeded with refinments until
present time, as can be seen in the following historical overview.

2.1 Behavior of cross sections at large projectile velocities v � vnl

2.1.1 Thompson’s treatment

In the first treatment, Thompson calculated the ionization cross section in the limit v � vnl

[33]. This treatment neglected completely the orbital motion of the target electrons and
assumed a straight-line trajectory of the projectile. In this approximation, the velocity kick
acquired by the electron during the collision is entirely in the direction perpendicular to
the ion trajectory, because the final action of the force along the trajectory cancels out due
to symmetry, i.e., the electron velocity change during the approaching phase is equal to
minus the electron velocity change during the departing phase. The momentum acquired
by the electron ( meΔv) from passing-by projectile moving with the speed v and impact
parameter ρ is given by the integral over time of the force perpendicular to ion trajectory
F⊥ = e2Zpρ/(ρ2 + v2t2)3/2, where t = 0 corresponds to the distance of the closest approach.
Time integration of the force yields

Δv(ρ) =
2e2Zp

mevρ
. (1)

From Eq.(1) it follows that only collisions with sufficiently small impact parameters result in
ionization. The minimum impact parameter for ionization of an initially stationary electron
(ρmin) is meΔv(ρmin)

2/2 = Inl. During a collision with impact parameter ρmin the energy
transfer from the projectile to the electron is equal to the ionization potential Inl = Z2

T E0/2,
or Δv(ρmin) = vnl. Substitution of Eq.(1) gives the total ionization cross section πρ2

min [28,33]

σBohr(v, Inl, Zp) = 2πZ2
pa

2
0

v2
0E0

v2Inl
. (2)

Similarly, Eq.(2) can be derived by averaging the Rutherford cross section over all scattering
angles leading to ionization. Although the first derivation of Eq.(2) was done by Thompson
[33] the formula is frequently referred to as the Bohr formula [16].

As shown in following, taking finite orbital electron velocity into account gives a cross
section which is about 5/3 times larger than the Bohr formula in Eq.(2). This is a conse-
quence of the fact that for an electron with nonzero velocity less energy transfer is required
for ionization.

4



2.1.2 Gerjuoy’s treatment

The following treatments account for the effect of finite electron orbital velocity. The most
complete and accurate calculations were done by Gerjuoy [34]. He calculated the differential
cross section dσ/dΔE(ve, v, ΔE) of energy transfer ΔE in the collision between the projectile
ion and a free electron (the target atomic potential was neglected) with given initial speed
ve (and arbitrary direction), by averaging the Rutherford cross section over all orientations
of electron orbital velocity ve. The total cross section is then calculated by integration over
the energy transfer for energies larger than the ionization potential, and weighted by the
electron velocity distribution function f (ve). This gives

σ(v, Inl, Zp) = Z2
p

∫ ∞

0

σInl
(v, ve) f (ve) dve, (3)

where

σInl
(v, ve) =

∫ ∞

Inl

dσ

dΔE
(v, ve, ΔE)dΔE. (4)

A rather complicated analytical expression for dσ/dΔE(ve, v, ΔE) is given in Appendix A.
For large projectile ion velocities (v � vnl), the differential cross section can be expressed
as [34]

dσhigh−energy
classical

dΔE
(v, ve, ΔE) = 2πa2

0

E2
0

ΔE3mev2

(
2mev

2
e

3
+ ΔE

)
. (5)

Substituting Eq.(5) into Eq.(3) and Eq.(4) gives

σhigh−energy
classical (v, Inl, Zp) =

5

3
Bnlσ

Bohr(v, Inl, Zp), (6)

Bnl ≡ 3

5

(
2Knl

3Inl

+ 1

)
, (7)

where σBohris given by Eq.(2), and Knl ≡< mev
2
e/2 >nl is the average orbital electron kinetic

energy. For hydrogen-like electron orbitals, the average electron kinetic energy is equal to the
ionization potential Knl = Inl [27], and Bnl = 1. The Bnl factors are introduced to account for
the difference in the electron velocity distribution functions (EVDF) from the EVDF of the
hydrogen-like electron orbitals. The data for Knl are calculated for many atoms in Ref. [35].
For example, the average kinetic energy for the helium atom is Knl ≡< mev

2
e/2 >= 1.43E0,

whereas Inl = 0.91E0, and therefore BHe = 1.22.
Taking finite orbital electron velocity into account gives a cross section which is about 5/3

times larger than the Bohr formula in Eq.(2). This is a consequence of the fact that for an
electron with nonzero velocity less energy transfer is required for ionization. To calculate Knl

the electron velocity distribution function can be obtained from a microcanonical ensemble.
Classical mechanics gives the EVDF as a microcanonical ensemble, where

f (ve) = Cv2
e

∫
δ

(
mev

2
e

2
− ZT

r
+ Inl

)
r2dr. (8)
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Here, C is a normalization constant defined so that
∫

f (ve) dve = 1, and δ(...) denotes the
Dirac delta-function. Interestingly, the EVDF for a one-electron ion is identical in both the
quantum-mechanical and classical calculations [27, 35] with

f (ve) =
32v5

nl

π

v2
e

[v2
e + v2

nl]
4 , (9)

where vnl is the scale of electron orbital velocity

vnl = v0

√
2Inl/E0. (10)

Although a microcanonical distribution provides the same velocity distribution as in quantum
theory for hydrogen-like shells, this is not the case for other electron shells. Moreover, the
spatial distribution of the charge density is poorly approximated even for hydrogen, vanishing
identically for r > 2a0 rather than decreasing exponentially [18]. Substituting the general
differential cross section dσ/dΔE(ve, v, ΔE) from Eq.(88) of Appendix A and the EVDF in
Eq.(9) into Eq.(3) yields

σGGV (v, Inl, Zp) = πa2
0Z

2
p

E2
0

I2
nl

GGGV

(
v

vnl

)
. (11)

Here, the scaling function GGGV (x) is given by Eq.(95) in Appendix A. Approximate formulas
are presented in Eq.(66) using the tabulation of the function G(x) presented in Ref. [36] for
x > 1, and in Ref. [37] for x < 1. The notation GGV stands for the classical trajectory
calculation in Eq.(66) due to Gerjuoy [34] using the fit of Garcia and Vriens [36].

2.1.3 Bethe’s treatment

The classical calculations underestimate the cross sections for very high projectile velocities
v � vnl. The scattering angle of the projectile due to collision with the target atom is of
order θc = Δp/Mv, where Δp is the momentum transfer in the collision, and M is the mass
of the projectile particle. The minimum energy transfer from the projectile is determined
by the ionization potential, with ΔE = vΔp > Inl, and Δp > Δpmin ≡ Inl/v. Here, we use
the fact that the momentum transfer Δp is predominantly in the direction perpendicular
to the projectile velocity. The projectile particle with wave vector k = Mv/� undergoes
diffraction on the object of the target atomic size anl with the diffraction angle of order
θd = 1/(kanl) = �/(Mvanl) [28]. At large projectile velocities v � vnl, it follows that
Δpmin ≡ Inl/v � �/anl, because vnl = Inlanl/� for hydrogen-like electron orbitals. And for
small Δp ∼ Δpmin, it follows that θc = Δp/Mv � θd = �/(Mvanl). Therefore, the collision
can not be described by classical mechanics in the limit v � vnl.

Bethe made use of the Born approximation of quantum mechanics to calculate cross
sections [38] (see Appendix B for details). This yields for v � vnl

σBethe = σBohr(v, Inl, Zp)

[
0.566 ln

(
v

vnl

)
+ 1.261

]
. (12)

If the projectile speed is much larger than the electron orbital velocity v � vnl, the loga-
rithmic term on the right-hand side of Eq.(12) contributes substantially to the cross section,
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and as a result the quantum mechanical calculation in Eq.(12) gives a larger cross section
than the classical trajectory treatment in Eq.(6). The quantum mechanical cross section
is larger than the classical trajectory cross section due to the contribution of large impact
parameters (ρ) to the quantum-mechanical cross section, where the ionization is forbidden in
classical mechanics because the energy transfer calculated by classical mechanics is less than
the ionization potential [ΔE = vΔpc(ρ) < Inl, where Δpc is the momentum transfer given by
classical mechanics in Eq.(1)]. However, ionization is possible due to diffraction in quantum
mechanics [39]. Moreover, integration over these large impact parameters where the ioniza-
tion is forbidden in classical mechanics, contributes considerably to the total ionization cross
section (see Appendix B for further details).

2.1.4 Gryzinski’s treatment

Gryzinski attempted to obtain the ionization cross sections using only classical mechanics
similarly to Gerjuoy. But, in order to match the asymptotic behavior of the Bethe formula
in Eq.(12) at large projectile velocities, Gryzinski assumed an artificial electron velocity
distribution function (EVDF) instead of the correct EVDF in Eq.(9) [20], i.e.,

fGryz (ve) =
1

vnl

(
vnl

ve

)3

exp

(
−vnl

ve

)
. (13)

The ionization cross section was calculated by averaging the Rutherford cross section over
all possible electron velocities, similar to the Gerjuoy calculation in Eq.(3), but was less
accurate for small velocities v < vnl. The effect of using the EVDF in Eq.(13) is to populate
the EVDF tail with a much larger fraction of high-energy electrons with ve � vnl, which
gives fGryz (ve) ∼ v−3

e instead of f (ve) ∼ v−6
e for the correct EVDF in Eq.(9). As a result,

the average electron kinetic energy < mev
2
e/2 > diverges, which leads to a considerable en-

hancement of the ionization cross section at high projectile velocities. For v � vnl, Gerjuoy’s
calculation of the differential cross section dσ/dΔE(ve, v, ΔE) of energy transfer ΔE is sim-
ilar to Gryzinski’s. Therefore, we can substitute Eq.(13) into Eqs.(5) and (4). Because in
the limit v � vnl the ionization cross section is proportional to the average electron kinetic
energy < mev

2
e/2 > [Eq.(6)], and the average kinetic energy diverges, it follows that a small

population of high-speed electrons contributes considerably to the cross section. Using the
general expression for dσ/dΔE(ve, v, ΔE) avoids singularity and yields the logarithmic term
in the ionization cross section similar to the Bethe formula in Eq.(12). After a number of
additional simplifications and assumptions, Gryzinski suggested an approximation for the
cross section in the form given by Eq.(11) with [20]

σGryz(v, Inl, Zp) = πa2
0Z

2
p

E2
0

I2
nl

GGryz

(
v

vnl

)
. (14)

Here, the function GGryz(x) is specified by Eq.(70) of Appendix C. In Eq.(14), the function
GGryz(x) has the following limit

GGryz(x) → [1 + 0.667 ln(2.7 + x)] /x2 as x → ∞, (15)
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which is close to Bethe’s result in Eq.(12),

GBethe(x) → [1.261 + 0.566 ln(x)] /x2 as x → ∞. (16)

For 10 < x < 40, it follows that

GGryz(x)/GBethe(x) � 1.04. (17)

Therefore, the Gryzinski formula can be viewed as a fit to the Bethe formula at large velocities
v � vnl with some rather arbitrary continuation to small velocities v � vnl.

2.1.5 Experimental verification of approximate formulas

Figure 1 shows the experimental data for the cross section for ionizing collisions of fully
stripped ions colliding with a hydrogen atom,

Xq+ + H(1s) → Xq+ + H+ + e, (18)

where Xq+ denotes fully stripped ions of H, He, Li atoms, and (1s) symbolizes the ground
state of a hydrogen atom. The experimental data for H+ ions were taken from [40,41] (note
that authors of this reference concluded that the previous measurements of the cross sections
were inaccurate); from [42] for He+2; and from [43] for Li+3 ions. These data were compared
to theoretical approximate formulas in Ref. [45]. In addition to fully stripped ions, multiple
charged ions C+4, N+5 and O+5 were added from Ref. [44]. For these highly charged ions the
ionization occurs at large impact parameters, large compared with the electron orbit radius
of ions at these large impact parameter the force acting on target electron is described by the
Coulomb potential, therefore analytical formulas based on the Rutherford scattering should
be valid.

From Fig.1 it is evident that the Bethe formula describes well the cross sections for
projectile velocities larger than the orbital velocities v � vnl. At large energies, the GGV
formula underestimates the cross sections as discussed before, whereas Gryzinski’s formula
gives results close to the Bethe formula and the experimental data. Both, the GGV and
Gryzinski formulas disagree with the experimental data at small energies.

2.2 Behavior of cross sections at small projectile velocities v < vnl

The Bethe, GGV and Gryzinski’s formulas fail at small velocities because they assume
free electrons, neglecting the influence of the target atom potential on the electron motion
during the collision. Apparently the assumption of free electron motion fails if the circulation
period of the electron around the atom’s nucleus is comparable with the interaction time
of an ion with the electron [28]. Let us now estimate the projectile velocities at which the
electron circulation needs to be taken into account. The typical impact parameter leading
to ionization is

ρioniz �
√

σBohr

π
=

2a0v
2
0Zp

vvnl
, (19)
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Figure 1: Ionization cross sections of hydrogen by fully stripped ions showing both exper-
imental data and theoretical fits. GGV stands for the classical calculation in Eq.(66) due
to Gerjuoy using the fit of Garcia and Vriens. Gryz. denotes the Gryzinski approximation
in Eq.(70). Bethe stands for Bethe’s quantum-mechanical calculation in the Born approxi-
mation, limited to v > vnl in Eq.(12). Finally, BA denotes the Born approximation in the
general case in Eq.(22). All values are in atomic units. All values are in atomic units. For
hydrogen, the ionization potential is Inl = 1/2E0, vnl = v0 = 2.19 · 108cm/s, and the cross
section is normalized to πa2

0/I
2
nl = 3.51 · 10−16cm2. Symbols show experimental data.
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and the interaction time is of order ρioniz/v. The electron circulation time is τnl � anl/vnl,
where vnl is the electron orbital velocity, which scales as vnl = ZT v0, and anl is the ion radius
anl = a0/ZT [39]. Therefore the condition τnl > ρioniz/v holds for v > vmax, where

vmax = vnl

√
2Zp/ZT . (20)

Here, Zp is the charge of the fully stripped projectile and ZT is the nuclear charge of the
target atom or ion for one electron ions. For general atoms ZT can be estimated from the
ionization potential as ZT ≈ √

2Inl/E0. For velocities larger than vmax, the ionization cross
section decreases as the velocity increases [see Eq.(12)] due to the decreasing interaction time
with an increase in velocity. On the other hand, for velocities less than vmax, the collision
becomes more adiabatic. The influence of the projectile is averaged out due to the slower
motion of the projectile compared with the electron orbital velocity, and the ionization cross
section decreases with decreasing projectile velocity. Thus, the cross section has a maximum
at v � vmax [Eq.(20)].

Note that if the projectile speed is comparable with or smaller than the electron orbital
velocity v < vnl, the Born approximation of quantum mechanical theory is not valid. Cum-
bersome quantum mechanical simulations are necessary for an exact calculation of the cross
sections, as for example in Ref. [47]. Nevertheless for the case 2Zp ∼ ZT the maximum of the
cross section calculated from the Born approximation is similar to the experimental results.
To describe the behavior of the cross section near the maximum, the second-order correction
in the parameter vnl/v has been calculated in [48], yielding the cross section in the form

σBethe
mod (ṽ) = πa2

0

E2
0

I2
nl

Z2
p

ṽ2

[
0.566 ln (ṽ) + 1.26 − 0.66

1

ṽ2

]
, (21)

where ṽ = v/vnl. Equation(21) agrees with the exact calculation in the Born approximation
[Eq.(96)] as described in Appendix B (the agreement is within 10% for ṽ > 1.1). We have
developed the following fit for the cross section in the Born approximation in the general
case,

σBA
fit (ṽ) = πa2

0

E2
0

I2
nl

Z2
p

ṽ2

[
0.283 ln

(
ṽ2 + 1

)
+ 1.26

]
exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
. (22)

Equation (22) agrees with the exact calculation [Eq.(96)] within 2% for ṽ > 1, and within
20% for 0.2 < ṽ < 1.

Equations (21) and (22) were derived in the plane wave approximation, i.e., using that
the unperturbed atomic electron wave functions for calculation of matrix elements. This
implicitly assumes that the projectile particle transfers momentum to the electron to be ion-
ized quickly at large distances. The electron wave function of ionized electron can therefore
be described as a continuous spectrum of the target atomic electron, not affected by the
projectile.

This assumption breaks down at low projectile velocities when the projectile velocity is
comparable with the electron orbital velocity. Indeed, the electron kinetic energy in the
frame of the projectile is of order mev

2/2 and the potential energy Zpe
2/ρioniz, where ρioniz

is the impact parameter leading to ionization, given by Eq.(19). Substituting ρioniz from
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Eq.(19) into electron potential energy Zpe
2/ρioniz gives that potential energy is larger than

kinetic energy if
v < vnl. (23)

Therefore, under the condition in Eq.(23), an electron can be effectively captured by the
projectile after the collision instead of leading to ionization. As a result, the ionization cross
section is small compared with the charge exchange cross section at low projectile velocities.
The assumption of the unperturbed electron wave function results in grossly overestimated
ionization cross sections as can be seen in Fig.1.

The ionization cross sections are also difficult to measure at small projectile energies,
because careful separation between the large charge exchange cross section and the small
ionization cross section is necessary for the correct measurement [40]. Therefore, early mea-
surements of the ionization cross section at small velocities were not always accurate [16,40].

2.2.1 Knudsen’s treatment

Knudsen modified the Bohr result for ionization to the following form, as discussed, for
example, in Ref. [46]

σKnud(v) = 2πa2
0

v2
0

v2

Z2
pE0

Inl
Π,

where

Π =

⌊⌊
Zpv0vnl

v2

⌋−1

+ 2δs ln

⌊
2v

vnl

⌊
2Zpv0

v

⌋−2
⌋
−
(

2v

vnl

)−2

+ 1

⌋
− 1. (24)

Here, the brackets 
...� denote the function


x� =
{

x, for x > 1,
1 for x ≤ 1.

Equation (24) was compared with experimental data in Ref. [44], where it was shown
that Eq.(24) overestimates the cross section for v > vnl, and gives even larger disagreement
with the experimental results for v < vnl. Another approach, proposed by Gillespie, yielded
a good fit to the experimental data.

2.2.2 Gillespie’s treatment

To account for the difference between the Born approximation results and the experimental
data for v < vmax, Gillespie proposed to fit the cross sections to the following function [22],

σGill(v) = exp

⎡⎣−λnl

(
v0

√
Zp

v

)2
⎤⎦σBethe

mod (v). (25)

Here, λnl is a constant, which characterizes the ionized atom or ion (for example, for the
ground state of H , λnl = 0.76), and σBethe

mod is the cross section in the Born approximation in
the form of Eq.(21). Gillespie’s Eq.(25) proved to fit very well existing experimental cross
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Figure 2: Electron capture and total electron loss cross sections of hydrogen by protons
showing both experimental data presented in Ref. [42] and theoretical fits. Classical tra-
jectory Monte Carlo (CTMC) calculations are shown together with fit formula for CTMC
calculations Eq.(28) and quantum mechanical calculation of Ref. [79].

sections for hydrogen atom ionization by H+, He+2, Li+2,Li+3, C+4, N+5, N+4, O+5 ions,
and less well for He and H molecules with the same ions [22,44]. Because σBethe

mod (v) becomes
negative for v < 0.7, Gillespie’s Eq.(25) can not be applied to these low projectile velocities.
In principle, the general fit σBA

fit in Eq.(22) can be used instead of σBethe
mod in Eq.(21). However,

because the two formulas differ about 20% in the range of interest, 0.7 < v < 1, the fitting
coefficients λnl may have to be updated for better fit for use with σBA

fit .
Although Gillespie’s fit proved to be very useful, there are a number of reasons to look

for another fit, mostly because fitting coefficients λnl are not known prior measurements for
any target atoms. For example, Gryzinski’s Eq.(14) is frequently used, because it requires
only knowledge of one function for calculations of cross sections, notwithstanding the fact
that it overestimates the cross sections at low energies.

2.2.3 v2/Zp scaling

For v � vnl, a universal curve is expected if both the cross sections and the square of impact
velocity are divided by Zp [52]. This scaling was established for the total electron loss cross
section σel, which includes both the charge exchange cross section σce and the ionization
cross section. Based on the results of classical trajectory Monte Carlo (CTMC) calculations,
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Olson proposed the following fit [53],

σel(v, Zp) = ZpAnlπa2
0f

Olson

(
v

v0γnl

√
Zp

)
, (26)

where f(x) describes the scaled cross sections

fOlson(x) =
1

x2

[
1 − exp

(−x2
)]

. (27)

Here, γnl and Anl are constants, for example, γH =
√

5/4 = 1.12 and AH = 16/3 for
atomic hydrogen, and γHe = 1.44 and Ahe = 3.57 for helium. The scaling in Eq.(26)
was also demonstrated analytically by Janev [55]. For v � v0

√
Zp, σel is dominated by

charge exchange, σce ≈ σel, and Eq.(26) gives a constant cross section for charge exchange,
σce ≈ σel = 16πZp/3a2

0. For v � v0

√
Zp, σel is dominated by the ionization cross section,

and σce ≈ σhigh−energy
classical [Eq.(6)]. Note that the scaling in Eq.(26) does not reproduce the

logarithmic term in the Bethe formula [Eq.(12)] for v � v0

√
Zp because it is based on

classical trajectory calculations. To make Eq. (26) agree with Eq.(6), the coefficients γnl

should be proportional to
√

Inl. For example, the ionization potential for hydrogen is IH =
13.6eV , and for helium IHe = 24.6eV . The ratio of γH = 1.12 to γHe = 1.44 differs
from

√
IH/

√
IHe by only five percent, i.e., γH/

√
IH/

(
γHe/

√
IHe

)
= 1.05. Therefore, as was

shown by Janev [55], the scaling in Eq.(26) can be rewritten in a form similar to Eq.(11) by
normalizing the velocity to vnl, Eq.(10), i.e.,

σel(v, Inl, Zp) = πa2
0ZpNnl

E2
0

I2
nl

BnlG
el

(
v

vnl

√
Zp

)
, (28)

where

Gel (x) =
4

3
fOlson (x/γH) . (29)

Here, Nnl is the number of electrons in the orbital nl, and the Bnl factors Eq.(7) are in-
troduced to account for the difference of the orbital electron velocity distribution functions
with the hydrogen-like EVDF function in Eq.(9). By construction, Eq.(28) coincides with
Eq.(6) in the limit v � vnl

√
Zp.

Because the scaling in Eq.(26) is based on classical trajectory calculations, it is valid
only for intermediate velocities where the underbarrier transitions allowed in the quantum
mechanical calculations do not contribute significantly (see Appendix B for details). Experi-
mental data [43,55] confirm the scaling in Eq.(26) for 1.2 < v/(vnl

√
Zp) < 3, or equivalently,

for the projectile energy in the range E = 30 − 200 × ZpInl/IH in units of keV/amu.
A similar scaling to Eq.(26) was derived in Ref. [79] based on quantum mechanical cal-

culations making use of the quasi-classical approach developed originally by Keldysh for
multi-photon ionization of atoms in a strong electromagnetic field. These calculations give
scaling similar to Eq.(26), but with a different function f(x) given in [79]. The quantum
mechanical calculation results for the charge exchange cross section in Ref. [79] are a factor
of 3 larger than Olson’s cross section in Eq.(26) for v/(v0

√
Zp) < 0.2. Experimental data

presented in Ref. [42] show that Eq.(28) underestimates the charge exchange cross section in
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Figure 3: Ionization cross sections of hydrogen by fully stripped ions. The scaled experi-
mental data are from Fig.1. Note that the data do not merge into a single curve.

the velocity range 0.2 < v/(v0

√
Zp) < 0.5 by about 40%, see Fig.2. To mitigate the discrep-

ancy, the authors of Ref. [54] modified the representation of the electron energy distribution
function: instead of making use of the classical microcanonical ensemble with a single value
of the total electron energy corresponding to the binding energy, they used several values
of binding energy for a better representation of the radial electron distribution functions
by adding a spread in the binding energy. This resulted in enhanced cross section values
(by about 40%) and better matching with the experimental data. However, the additional
tunneling effect, not accounted for in the classically trajectory method, can be important for
very small velocities [79] and leads to a logarithmic dependence of the cross sections at low
ion velocities v/(v0

√
Zp) � 0.2, as seen in experimental data [19], see Fig.2.

Direct application of the scaling in Eq.(28) for the ionization cross section instead of the
total electron removal cross section does not produce a single scaled function [see Fig.3 for
hydrogen and Fig. 5.(b) for helium]. Furthermore, the data are considerably scattered near
the maxima of the cross sections.

2.2.4 Adiabatic scaling

In the region of projectile velocities v � vnl, several authors developed adiabatic theories
of electron ionization [82, 83, 85, 86]. If the projectile velocity is small compared with the
orbital velocity, the collision is adiabatic and the electron circulates many times near both
nuclei. The electronic energy states need to be determined in such a ”quasimolecule” as a
function of the internuclear distance R. The ionization is determined from the singularities
of the energy surfaces as a function of distance between the nuclei. It has been shown that
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these nonadiabatic regions are associated with the branching points of the adiabatic potential
energy of the system, analytically continued in the complex R plane, the so-called ”hidden
crossing”. Based on this theory, a scaling for the cross section was proposed in Ref. [86]

σ(v, Zp) = ZpAπa2
0

v

vnl

fz(Zp) exp

[
− cvnl

vfz(Zp)

]
, (30)

where fz(Zp) = (1+λ)/(1+λZ
1/4
p ), and A, c, and λ are constants. For example, for hydrogen

ionization, A = 0.96, c = 1.71 and λ = 0.275. The scaling was verified experimentally for
H+ -H collisions for 0.2 < v < 0.5 in Ref. [41], and additional details are given in Sec.III.
In Refs. [63,64], it was shown that the experimental data for the ionization of hydrogen and

helium can be described by the scaling law in the range 0.6 < v/vnlZ
1/4
p < 1.5 for Zp � 1

σ(v, Zp)/Zp = Aπa2
0

(
v

vnlZ
1/4
p

)
exp

[
−cvnlZ

1/4
p

v

]
, (31)

where vnl =
√

2Inl/E0, A = 115, and c = 7.9 for helium.

2.3 Scaling of ionization cross sections over a wide velocity range

To describe the ionization cross sections over a wide velocity range it is necessary to predict
the location of the cross section maximum as a function of projectile velocity. This was
performed in Ref. [88].

2.3.1 Saddle-point scaling for cross section maximum

If the value of projectile velocity is in the region near the maximum of the cross section, the
classical-mechanical description should yield an accurate result. In this range of velocities
v/vnlZ

1/2
p ≈ 1.5, see Fig.3, the collision time is comparable with the electron circulation time,

and an ejected electron in the ionizing collisions moves in the combined field of the nuclei.
Because this electron is attracted by both the projectile and target nuclei, the ”easiest” way
to escape from the nuclei corresponds to electron ejection into a region where the attracting
forces cancel each other, i.e., near the saddle point (although not exactly at the saddle point).
The saddle point moves with velocity [81]

vsp =
v

1 +
√

Zp/ZT

. (32)

Therefore the maximum of the cross section should correspond to conditions where vsp � avnl,
where a is a coefficient of order unity. Substituting this condition into Eq.(32) gives for the
position of the cross section maximum [88]

vmax = avnl

(
1 +

√
Zp/ZT

)
. (33)

A fit of the experimental data gives a = 0.7 for the ionization of hydrogen [88]. To eliminate
the numerical coefficient, another scaling was proposed for neutral targets with ZT ∼ 1 in
Ref. [45]

vmax = vnl

√
1 + Zp . (34)
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Equations (33) and (34) give similar estimates (within 10% for Zt = 1 and Zp ≤ 7).

2.4 Fit formula for the ionization cross section in wide velocity
range

Analysis of the experimental data in Fig.1 shows that the maxima of the experimentally
measured cross sections occur at

√
Zp/ZT + 1, not at

√
Zp/ZT as would be the case according

to scaling in Eq.(28). Therefore, it is natural to plot cross sections as a function of the
normalized velocity v/(vnl

√
Zp/ZT + 1). Note that at large velocities, according to Eq.(6)

σ ∼ Z2
p/v

2. Therefore, making use of the normalized velocity v/(vnl

√
Zp/ZT + 1) requires

normalization of the cross sections according to σ/
[
Z2

p/(Zp/ZT + 1)
]
. As a consequence,

instead of Eq.(28), the following scaling was proposed in Ref. [45]

σion(v, Inl, Zp) = πa2
0

Z2
p

(Zp/ZT + 1)
Nnl

E2
0

I2
nl

Gnew

(
v

vnl

√
Zp/ZT + 1

)
. (35)

Resulting plots of the scaled cross sections are shown in Fig.4. Comparing Fig.3 and Fig.4
one can clearly see that all of the experimental data merge close to each other on the scaled
plot based on Eq.(35).

The resulting universal function can be fitted with various functions, but the simplest fit
was proposed by Rost and Pattard [57]. They showed that if both the cross section and the
projectile velocity are normalized to the values of cross section and projectile velocity at the
cross section maximum, then the scaled cross section σ/σmax is well described by the fitting
function

σ(v) = σmax
exp(−v2

max/v
2 + 1)

v2/v2
max

. (36)

Here, σmax is the maximum of the cross section, which occurs at velocity vmax. For the case
of the ionization cross section by the bare projectile, it was shown in Ref. [45] that

σmax = πa2
0Bnl

Z2
p

(Zp/ZT + 1)

E2
0

I2
nl

, (37)

vmax = vnl

√
Zp/ZT + 1, (38)

where the coefficients Bnl depend only weakly on the projectile charge. From Fig.4 one can
estimate Bnl = 0.8 for the ionization of hydrogen by protons, while for ionization of hydrogen
by bare nuclei of helium and lithium, we find Bnl = 0.93. As can be seen from Fig.4, the
function in Eq.(36) with σmax and vmax defined in Eq.(37) describes well the cross sections at
small and intermediate energies, but underestimates the cross section at high energies. The
reason is that the function in Eq.(36) does not reproduce the logarithmic term in the Bethe
formula in Eq.(12). To improve the agreement with the experimental data and the Bethe
formula we propose a new scaling for the fitting function in Eq.(35) defined by

Gnew(x) =
exp(−1/x2)

x2

[
1.26 + 0.283 ln

(
2x2 + 25

)]
. (39)
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Figure 4: Ionization cross sections of hydrogen by fully stripped ions showing the scaled
experimental data and the theoretical fits. BA denotes the Born approximation [Eq.(22)]
for Zp = 1, 5. Gillespie denotes Gillespie’s fit according to Eq.(25) combined with Eq.(21)
for Zp = 1, 5 and Eq.(25) combined with σBA

fit in Eq.(22) for Zp = 1. R.&P. symbolizes the
fit proposed by Rost and Pattard [57] in Eq.(36). ”New” denotes the new fit given by Eq.(
39).
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At large x � 1, Eq.(39) approaches the Bethe formula in Eq.(16), and at small x < 1,
Eq.(39) approaches the result in Eq.(36). The function Gnew(x) has a maximum at x � 1,
with Gnew(1) � 0.86. Because 0.86 is in between the maxima of the scaled cross section of
hydrogen by protons (Bnl = 0.8) and the cross section for ionization of hydrogen by bare
nuclei of helium and lithium (Bnl = 0.93), we did not incorporate the coefficients Bnl in
Eq.(39). This gives it a general form and introduces small errors of less than 8%.

The fit in Eq.(39) predicts an extremely small cross section at very low velocity
σlow−energy

fit (v) ∼ exp[−(Zp/ZT +1)v2
nl/v

2], whereas Eq.(30) gives σ(v) ∼ exp[−cvnlfz(Zp)/v].
Therefore, the numerical fit in Eq.(39) underestimates the cross section for v < 0.5 (more
details are given in Sec. 3).

We have applied the new fit in Eqs.(35) and (39) to the ionization cross sections of
helium and lithium, in addition to hydrogen, assuming Zt = 1 and vnl = v0

√
2Inl/E0. The

symbols in Fig.5a denote the experimental data for H+, He+2, Li+3 [58, 59], for C+6 and
O+8 [46, 60–64], for I+Zpand U+Zp [65], and for Au+Zp [66], where Zp = 10 − 40. We have
included partially stripped ions with large Zp, because as shown in Ref. [67] the ionization
cross sections near the maximum depends only on projectile charge and is independent of
internal structure of the projectile. This is likely because the ionization occurs at impact
parameters larger than the radius of the inner structure of the projectile.

The solid curves correspond to the continuum-distorted-wave-eikonal initial state (CDW-
EIS) theoretical calculation from Ref. [68], which is a generalization of the Born approxi-
mation. The CDW-EIS theory accounts for the distortion of the electron wave function by
the projectile. From Fig.5a it is evident that the CDW-EIS theory overestimates the cross
section near the maximum, and underestimates the cross section at small energies. Note
also from Fig.5a the large scatter of the data for C+6 and O+8 ions, compared with the
recommended data in Refs. [42] (based on Gillespie’s fit) not shown in the plots. This is
likely because the data were assembled from many different sources, Refs. [46, 60–64], and
may be attributed to an unsatisfactory absolute calibration of the cross sections in some of
the data.

Direct application of the scaling formula in Eq.(28) to the ionization of helium does not
produce similar good results to the hydrogen case [see Fig. 5(b)]. But after applying the
new scaling in Eq.(35), all of the experimental and theoretical results merge close together
on the scaled plot, as is clearly evident in Fig.5(c). Moreover, if we use the fit function
of velocity normalized to the orbital velocity vnl estimated from the ionization potential of
helium (IHe = 24.6eV) making use of Eq.(10), the cross section is given by the same scaling
as in Eq.(35) with the same function as in Eq.(39), as evident from Fig.5(d). (The number
of electrons in the helium atom is Nnl = 2, and therefore the scaled cross section is twice
that of hydrogen.) From Fig.5(d) it is clear that the new proposed fit in Eq.(35) using the
function in Eq.(39) gives very good results for both hydrogen and helium. The discrepancy
between the new fit and the helium data at very small velocities is discussed in the next
section.

Note that one experimental point in Fig.5 for C+6 projectiles is located far away from
the fit. The error bar for this point is about 30% [60]. This data may be inaccurate, as the
experimental point is higher than the predictions of CDW-EIS theory, which overestimates
the cross section near the maxima of the cross sections for all other ions. The reason for the
large scatter in the uranium data on the scaled plot at small energies is not clear, because the
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Figure 5: Ionization cross sections of helium by various stripped ions. The solid curves
correspond to the CDW-EIS theoretical calculation, and the symbols label the experimental
data (see text for details). Shown in the figures are: (a) the raw data; (b) the scaled data
from Fig.4a, making use of Eq.(28); (c) the scaled data making use of Eq.(35); and (d) the
experimental data scaled using only Eq.(35) together with the fit function. The notation
”new fit” denotes Eq.(39).
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Figure 6: Ionization cross sections of lithium by H+and He+2. The symbols show experi-
mental data (see text for details). Shown in the figures are: (a) the raw data and the Bethe
formula, Eq.(12); (b) the scaled data making use of Eq.(35) together with the fit function.
The notation ”new fit” denotes Eq.(39).

experimental data for all other projectiles are located much closer to the fit line. This may be
due to the contribution of autoionization when the projectile velocity is low [67]. The other
reason is that the ionization cross section is larger (about 10−15cm−2) than the helium atom
size. Therefore, two electrons are most likely to be removed during the collisions, and simple
one-electron scaling must be corrected by the larger effective ionization potential needed to
remove two electrons simultaneously. (The uranium ions had energies and charges: 250keV,
17, 24, 31; 500keV, 23, 37; and 1MeV, 32, 42, respectively.)

We have also performed a comparison of the scaling with available experimental data
for the ionization of the lithium atoms [69, 70], as shown in Fig.6. From Fig.6, it is evident
that the fit describes the cross section well, except for values of the cross section near the
maximum. It is surprising that the Bethe formula in Eq.(12) describes the cross sections well
up to the maximum. The calculation in Ref. [71] also leads to much smaller values than the
experimental data. Reference [70] quotes 50% uncertainty in the experimental data, whereas
Ref. [69] claims only 10% uncertainty.

Further verification of the scaling is difficult because reliable experimental data and
numerical simulations for a broad range of projectile velocities are absent for other atoms.

A number of other semi-empirical models have been developed for the ejected electron
velocity distributions. They typically use up to ten fitting parameters to describe the differ-
ential ionization cross sections as a function of ejected electron velocity, projectile velocity
and charge [19].

Scaling laws for single and multiple electron loss from projectiles in collisions with a many
electron target were proposed in Refs. [25], [89].
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3 Brief survey of theoretical approaches and their lim-

itations for ionization cross section

In this section we present a brief survey of the theoretical approaches to cross section calcu-
lations and their limitations. Theoretical justifications are also given for the fit formulas in
Eq.(35) and Eq.(39). We begin with an analysis for high projectile velocities.

3.1 Behavior of cross sections at large projectile velocities v > vnl

At high projectile velocity v � vnl, the Born approximation can be applied for the cross
section calculation. The applicability of the Born theory and the Bethe formula in Eq.(12)
was studied by comparison with available experimental data in Refs. [32, 60, 66, 72–74]. It
was confirmed that the necessary condition for the validity of the Bethe formula is given
by [27, 28]

v > max(2Zpv0, vnl). (40)

The first condition in Eq.(40) assures that the projectile potential is taken into account in
the Born approximation; the second condition allows use of the unperturbed atomic wave
function.

The failure of the Bethe formula for large Zp is apparent from the experimental data
for gold ions shown in Fig.5(a). The ion velocity corresponds to v = 12v0 or v = 8.9vnl,
whereas Zp = 24, 43, 54, and does not satisfy the condition in Eq.(40). As a result, the cross
sections are much smaller than given by the Bethe formula, as evident from Fig.5(a). At
large projectile energies, all data merge to the Bethe formula, which corresponds to a straight
line in a logarithmic plot, similar to Fig.1. For uranium and iodine data, the velocity is few
times the electron orbital velocity, but the charge for uranium varies from 17 to 42, and
for iodine from 5 to 25. As a result, the condition in Eq.(40) is not satisfied, and the cross
section is considerably smaller than predicted by the Bethe formula.

In the region of high projectile velocities the new fit predicts the ionization cross section

σhigh−energy
fit (v) = 4πa2

0

v4
0

v2
nl

Z2
p

v2

[
0.566 ln

(
v

vnl

√
(Zp + 1)/2

)
+ 1.26

]
, (41)

which differs from the Bethe formula in Eq.(12). [The factor
√

(Zp + 1)/2 appears in the
denominator under the logarithm in the first term on the right hand side of Eq.(41).] We
claim that incorporating this factor gives a better cross section estimate than the Bethe
formula. The authors of Refs. [32, 60, 66, 72] have studied the ionization cross section at a
given velocity as a function of charge state. The comparison of the experimental data with
the Bohr formula was performed in Ref. [72] for the ionization of helium by fast ions with
charge varying from one to six at ion energies of 0.64, 1.44, and 2.31 MeV. A comparison of
the experimental data from Refs. [32, 72] with the Bethe [Eq.(12)], Bohr [Eq.(24)], and fit
[Eq.(35)] formulas is shown in Figure 7.

From Figure 7 it is evident that Eq.(35) describes the experimental data within an ex-
perimental uncertainty of about 8% [32].
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Figure 7: Scaled ionization cross sections (σv2/4πa2
0Z

2
pv2

0) of helium by fast fully striped
ions as a function of charge for ion energies (a) 2.31 MeV/amu, experimental data from
Ref. [72] and (b) 6 Mev experimental data from Ref. [32]. Shown in the figures are the raw
data, the calculation making use of the Bethe formula, Eq.(12), Bohr approach, Eq.(24), and
theoretical fit, Eq.(35).

A comparison of the experimental data for ionization of hydrogen from Fig. 1 with the
Bethe formula in Eq.(12) and the fit formula in Eq.(41) is shown in Fig.8. The experimentally
estimated uncertainty of 5.5% [43] is shown by the error bar. Figure 8 shows that the Bethe
formula describes the experimental data for ionization of hydrogen by protons within the
error bar only for v > 6v0. Application of the fit formula instead of the Bethe formula
reduces discrepancy with the data.

The applicability of the Bethe formula is limited by the validity of the Born approxi-
mation. One of the easiest ways to correct it was suggested in Ref. [79]. Firstly, the Born
approximation is considered, making use of a classical trajectory for the projectile and a
quantum mechanical description in the Born approximation for the electron. In this approx-
imation, the probability of ionization or excitation is a function of the impact parameter ρ.
Here, for brevity, we shall consider only ionization of the hydrogen atom. The projectile par-
ticle interacts with the atomic electron with a potential energy V (R, re) = −Zpe

2/|R− re|,
where R(t) = ρ+vt is the classical trajectory of the projectile particle, and re describes the
position of the electron relative to the nucleus of the atom. For any impact parameter ρ, the
probability of ionization is given by the square of the transition amplitude

PBA(ρ) =
1

�2

∣∣∣∣∫ dreΨi(re)

[∫
dteiΔEt/�V (R, re)

]
Ψ∗

f(re)

∣∣∣∣2 . (42)

Here, ΔE is the transferred energy in the transition, and Ψi and Ψf are the initial and
final electron wave functions, respectively. It can be shown that the calculations of ion-
atom ionization cross sections using the conventional Born approximation describing the
collision making use of momentum transfer (outlined in Appendix B) and the semiclassical
Born approximation making use of the assumption of the straight line classical projectile
trajectory [Eq.(42)] are equivalent [39].
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Figure 8: Ratio of ionization cross sections of hydrogen by fully stripped ions to the Bethe
formula in Eq.(12) and the fit formula in Eq.(41) at high velocities. The experimentally
estimated uncertainty of 5.5% [43] is shown by the error bar.

For large impact parameters ρ � a0, we can expand V (R, re) in powers of renl/R accord-
ing to

V (R, re) = Zpe
2

(
− 1

R
+

R · re

R3

)
. (43)

The first term does not contribute to the matrix element in Eq.(42) due to the orthogonality
of the final and initial states. Substituting Eq.(43) into Eq.(42) and integrating in time
yields [39]

PBA(ρ) =

(
2Zpv0

ρv

)2 ∣∣∣∣∫ dreΨi(re)Ψ
∗
f(re)

[ωρ

v
xeK1

(ωρ

v

)
+ ize

ωρ

v
K0

(ωρ

v

)]∣∣∣∣2 , (44)

where ω = ΔE/�, and Kn is the modified Bessel function. Expanding the Bessel functions
for small and large arguments, or simply evaluating the integrand in Eq.(44) approximately,
we can approximate

ωρ

v
K1

(ωρ

v

)
=

{
1, ωρ

v
< 1

0, ωρ
v

> 1

}
, (45)

and neglect the second term on the right hand side in Eq.(44), which is small compared
with the first term. The probability of ionization vanishes for ρ > ρmax � v/ω = 2a0v/v0,
corresponding to the adiabatic limit. For ρ > ρmax, the collision time ρmax/v > a0/v0 is much
longer than the electron circulation time around the nucleus, and the collision is adiabatic.
Consequently, the ionization probability is exponentially small for ρ > 2a0v/v0.
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The square of electron dipole matrix element averaged over all possible momenta of the
ionized electron is [38] ∑

f

∫
dre

∣∣Ψi(re)xeΨ
∗
f(re)

∣∣2 = 0.283a2
nl. (46)

Note that the sum over all final states including both ionization and excitation gives∑
f

< 0|xe|f >< f |xe|0 >=< 0|x2
e|0 >=

1

3
< 0|r2

e|0 >= a2
nl. (47)

In this sum, 0.717 corresponds to excitation, and 0.283 corresponds to ionization [38].
For large impact parameters the momentum transfer to the electron is small and we

can neglect the electron kinetic energy of the ejected electron compared with the ionization
potential. As a result, ΔE ≈ Inl and ω = v0Inl/a0E0 = v2

nl/v0a0 (in atomic units). Finally
for ρ > anl, the ionization probability is

PBA(ρ) ≈ 0.283

(
2anlv0Zp

ρv

)2 {
1, ρ < a0vv0/v

2
nl

0, ρ > a0vv0/v
2
nl

}
. (48)

The ionization cross section is given by the integral

σ = 2π

∫ ∞

0

PBA(ρ)ρdρ. (49)

For ρ > anl, we can use Eq.(48) to estimate PBA(ρ). For ρ < anl, the dipole approximation in
Eq.(43) is not valid. To evaluate PBA(ρ) approximately for ρ < a0, we can utilize the fact that∫

dteiΔEt/�V (R, re) is a weak function of ρ for ρ < anl, and therefore PBA(ρ) ≈ PBA(anl).
Substituting PBA(ρ) ≈ PBA(anl) for ρ < anl, and PBA(ρ) from Eq.(48) for ρ > anl, into
Eq.(49) gives

σ = 8πa2
nl · 0.283

v2
0Z

2
p

v2

[
1

2
+ ln

(
a0vv0

anlv2
nl

)]
, (50)

The first term in Eq.(50) comes from contributions of impact parameters ρ < anl, and the
second term originates from contributions of large impact parameters ρ > anl, respectively.
Comparison with the exact result in the Born approximation in Eq.(12) shows that the
contribution of impact parameters ρ < anl is underestimated, and 1/2 should be replaced by
1.52. The above considerations are valid if the total probability of ionization and excitation
[ P tot

BA(ρ) = (2Zpanlv0/ρv)2, for ρ > anl] for the entire region of impact parameters is less
than unity, which requires 2Zpv0/v < 1.Hence, the condition for the Born approximation
validity Eq.(40). (Note that the total probability of ionization and excitation is about 4
times larger for ionization only.)

For 2Zpv0/v > 1, the total probability of the ionization and excitation P tot
BA(ρ) calculated

using the Born approximation is more than unity, P tot
BA(ρ) > 1, for impact parameters ρ <

ρbreak = 2Zpa0v0/v, indicating the breakdown of the Born approximation [79]. Similar to
the previous case, we can estimate the ionization probability PBA(ρ) from Eq.(48) for ρ >
ρbreak > a0 and assume PBA(ρ) ≈ PBA(ρbreak) = 0.283 for ρ < ρbreak. These considerations
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result in a cross section estimate similar to the Bethe formula but with the logarithmic term
in the form ln(ρmax/ρmin) = ln(v2/v2

nl2Zp), which gives

σ = 8πa2
0 · 0.283

v2
0Z

2
p

v2

[
1

2
+ ln

(
v2

2v2
nlZp

)]
. (51)

This calculation results in a smaller cross section than the Bethe formula for 2Zpv0/v > 1, if
anl ∼ a0. Note that in the above analysis we have used unperturbed electron wave functions,
which is valid only for v � v0.

While a number of smart semi-empirical ways to improve the first Born approximation
were developed [75–77], the rigorous approaches to improve the Bethe formula are based on
the eikonal approximation instead of the Born approximation [78]. The eikonal approxima-
tion is justified if kanl > 1, where k is the projectile particle wave vector k = Mv/�, and
the projectile kinetic energy is large compared to the potential energy interaction with the
target. For heavy projectile particles with mass much larger than the electron mass, these
conditions are well satisfied. The ionization cross section in the eikonal approximation is
given by [27]

σ = 2π

∫
qdq

k2
|f(q)|2, (52)

where f(q) is the amplitude of ionization with momentum transfer q

f(q) =
k

2πi

∫
ρdρ < final| exp

(
i
∫

V dz

�
− iq · ρ

)
|initial > . (53)

The eikonal approximation in Eqs.(52) and (53) accounts approximately for all orders of
the perturbation series, whereas the Born approximation only make use of the first order.
The calculations in the eikonal approximation yield a formula similar to Eq.(51) [80]. Note
that the validity of the eikonal approximation in Eq.(53) is limited to v � v0, because the
electron wave functions Ψi and Ψf are assumed to be unperturbed atomic functions. The
influence of the projectile on the electron wave functions has to be taken into account for
v � v0. This is typically performed in the distorted wave approximation [16].

Therefore, the correction to the Born approximation in Eq.(51) and the eikonal approxi-
mation give a formula similar to Eq.(41) but with a factor α

√
Zp (α is a coefficient of order

unity), instead of
√

(Zp + 1)/2. At large velocities, both formulas give similar results.

3.2 Behavior of cross sections at small projectile velocities v < vnl

If the projectile velocity is small compared with the orbital velocity, the collision is adiabatic
and the electron circulates many times around both nuclei. The electronic energy states need
to be determined in such a quasi-molecule as a function of the positions of both nuclei at a
particular time. In both the quantum mechanical and the classical approaches, ionization is
only possible if during the collision the initial and final electronic terms cross at some instant.
In classical mechanics this corresponds to the so-called ”v/2 mechanism”. In a collisional
system comprised of two nuclei of equal charges (say ionization of hydrogen by a proton),
an electron which is exactly in between the two nuclei experiences a very small electric field
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because the electric fields from both nuclei exactly cancel for all times at this point. The
electron can ”ride” this saddle point of the potential if its velocity is equal to one-half the
velocity of the projectile. The collision dynamics is illustrated in Fig.9.

From Fig.9 one can see that the electron is stranded in between the protons at t = 15a0/v0

and its velocity projection on the x-axis is one-half of the projectile velocity. A small variation
of the initial condition from z = −1.606756a0 (solid line) to z = −1.606751a0 (dotted line)
completely changes the result of the collision. After the collision the electron stays near
the first nucleus and does not become ionized. As a result, the probability of ionization is
extremely small even though the projectile velocity is not small (for the conditions in Fig.9,
v = 1/2 in atomic units). The mechanism for ionization described above is also so-called
T-promotion in quantum mechanical descriptions [82].

Another mechanism for ionization is attributed to the so-called S-promotion mechanism
[82]. It is associated with the special type of trajectory of the electron in the field of two
positive charges, shown in Fig.9(c). Figure 9(c) shows that an electron with particular initial
conditions tends to spiral with a large number of turns enclosing a segment of the straight
line joining the nuclei Fig.9(c) [83]. Such a trajectory is unstable - a small variation of initial
conditions results in a completely different trajectory as shown in Fig.9(c). Analysis of the
electron motion in the field of two positive charges, ZT and ZP , which are separated by a
distance R is best described in elliptical coordinates

ξ =
rp + rT

R
, η =

rp − rT

R
, (54)

where rp and rT are the distances from the electron to the projectile and target nuclei,
respectively. Making use of atomic units, the classical trajectory in terms of the variables ξ
and η can be expressed as [83]

dξ

dt
=

4(ξ2 − 1)Pξ

R2(ξ2 − η2)
,

dη

dt
= −4(η2 − 1)Pη

R2(ξ2 − η2)
, (55)

where the canonical momentums Pξ and Pη are

Pξ =

(
−1

2
R2|E| + (ZP + ZT )Rξ − λ

ξ2 − 1
− P 2

φ

(ξ2 − 1)2

)1/2

, (56)

Pη =

(
−1

2
R2|E| + (ZP − ZT )Rη + λ

1 − η2
− P 2

φ

(1 − η2)2

)1/2

. (57)

Here E < 0 is the total energy of the electron, Pφ = ξηdφ/dt is the rotational momentum
around the straight line joining the nuclei, and λ is the integral of motion (for stationary
nuclei)

λ = M2 − R2

4

(
P 2

ζ +
P 2

φ

ζ2

)
+ R(ZP cos θP + ZT cos θT ). (58)

Here, ζ is the closest distance from the electron to the straight line joining the nuclei; Pζ

is the vector dot product of the electron momentum with the ζ-axis; M2 = (r × p)2 is the
total rotational momentum; and θP and θT are the angles between rp and R, and rT and
−R, respectively. Moreover, rp is the radius vector from the projectile to the electron; rT is
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(b)

(a)

Figure 9: The trajectory of a v/2 collision is shown in Figs.(a) and (b). The initial conditions
correspond to a hydrogen atom with total energy −1/2, and at t = −60 x = 0 = y,vx = 0 =
vy, z = −1.606756 (solid line) and z = −1.606751 (dotted line). The projectile moves along
z = 1 with velocity 1/2. Atomic units are used: velocity is normalized to v0; distance is
normalized to a0; and time is normalized to a0/v0. Figure (b) shows the position [x(t), z(t)]
of the electron as a function of time, and the distance between the electron and the first
(ρ1) and the second proton (ρ2) for the same conditions as in Fig.(a). The trajectory of a
S-promotion is shown in Figs.(c) for fixed positive charges (v → 0). The initial conditions
correspond to an internuclear separation 2a0 (in atomic units), initial position of the electron
z = 0, x = 1; and initial velocity vx = 0, vz = 1.155 (solid line), and vz = 1.165 (dotted
line).
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the radius vector from the target nucleus to the electron; and R is the radius vector from the
projectile to the target nucleus. The canonical momentum Pξ in Eq.(56) tends to infinity if
ξ → 1, preventing the electron from approaching a segment of the straight line joining the
nuclei, ξ = 1. In the special case

(ZP + ZT )R = λ, Pφ = 0, (59)

the singularity vanishes at the point ξ = 1 in Eq.(56). As a result, for initial conditions
satisfying the condition in Eq.(59), Pξ is finite for ξ = 1. From Eq.(55), ξ approach unity
exponentially with time – the limiting electron trajectory lies on the internuclear axis – as
shown in Fig.9(c), where the initial conditions for the solid line correspond to the condition in
Eq.(59). A small departure from the condition in Eq.(59) shown by the dotted line in Fig.9(c)
prevents the trajectory from approaching ξ = 1. Thus the internuclear axis ξ = 1, represents
the locus of points of unstable equilibria. In a quantum mechanical treatment, such periodic
unstable trajectories is responsible for S-promotion of electron to the continuum (ionization)
when the nuclei approach each other [84]. The potential barrier in Eq.(56) increases when R
decreases. As a result, an electron near the top of the barrier slows down and is then collected
and promoted to the continuum as the top of the barrier further rises. Due to the strong
instability of the locus, a numerical simulation of the corresponding classical trajectory is
extremely difficult. [We could not present the classical analog of the ionization scenario for
S-promotion, in contrast to the T-promotion as shown in Fig. 9(a) and (b).]

The probability of ionization is greatly enhanced in quantum mechanics due to tunneling
into classically forbidden regions of phase space. The cross sections can be calculated using
the quasiclassical method, where the probability of transition is given by

P (ρ) = exp

(
−2

�
Im(S )

)
, (60)

where

S(ρ, ε) =
∑

n

∫
c

pdR. (61)

Here, S(ρ, ε) is the classical action of the projectile ion, and
p =

√
2M(ε − U(R, ρ) − Ei) is the projectile momentum, generalized to classically forbidden

regions of phase space where p is complex [27]. The integration contour in Eq.(60) is in the
complex R plane around the branch points (Rc

n) where the initial and final electronic terms
cross [Ef (Rc

n) = Ei(R
c
n)]. Moreover, n numerates different branch points or channels of

ionization for S and T-promotions. The resulting cross section for hydrogen ionization by
collision with a proton is [82]

σadiabatic(v) = πv
∑

n

R2
ne−2Δn/v, (62)

where n labels many different channels, and the coefficients Δn and Rn are of order unity
in atomic units (Rn is determined by the branch points Rcn). In the range of projectile
velocities v = 0.4 − 1, we find that Eq.(62) can be approximated to within 10% accuracy
by only two exponents with R1 = 1.9 , Δ1 = 0.53 (corresponding to S-promotion) and
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R2 = 6.7, Δ2 = 1.8 (corresponding to T-promotion). Because Δ1 � Δ2, primarily the
S-promotion determines the ionization cross section at small velocities (v < 0.5), while both
mechanisms contribute to ionization for v in the range v = 0.5 − 1. Recent experimental
study and quantum mechanical calculations using the continuum-distorted-wave eikonal-
initial-state (CDW-EIS) model [87] show that a electron emission spectrum is dominated
by a well defined electron capture to continuum (S-promotion) peak although existence of
saddle-point electron emission (T-promotion) is not confirmed.

The new fit predicts an extremely small cross section at very low velocity σlow−energy
fit (v) ∼

exp(−1/v2), whereas Eq.(62) gives σadiabatic(v) ∼ e−1.0/v. The comparison of experimental
data for ionization of hydrogen from Ref. [41] at low projectile velocity is shown in Fig.10.
At low velocity v < 0.5, experimental data can be fitted by σ(v) ≈ 0.26π exp(−0.92/v)
(in atomic units). As evident from Fig.10, the numerical fit in Eq.(39) underestimates the
cross section for v < 0.5, but gives a result close to the sum in Eq.(62) for v in the range
v = 0.5 − 1.

Figure 10: Comparison of experimental data for ionization of hydrogen by protons (symbols)
with exponential fit σ = A exp(−2Δ/v) and general fit formula Eq.(39).

Numerical fit is compared with the experimental data for the ionization of He shown in
Figs.5(c,d). Adiabatic theory results are absent for helium, but the experimental ionization
cross section of He by protons can be described by Eq.(62) with different coefficients Δn and
Rn. The behavior of the experimental ionization cross section of He by He+2 is somewhat
puzzling because of the very slow decrease of the cross section for small projectile velocity.

In view of these observations, the applicability of the new fit is limited to v/[vnl

√
(Zp + 1)] >

0.5. Note that for small projectile velocity the ionization cross section is ten times smaller
than the maximum of the cross section, σmax, and the ionization cross section is completely
dominated by charge exchange, whose cross section is comparable to σmax. Consequently
both experimental measurements and theoretical simulations are very difficult for very small
projectile velocity.
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4 Formulary for ionization cross section

For reference purposes a formulary of ionization cross sections has been prepared and is
presented in this section. In the high energy limit of fast projectile motion v � vnl, the
classical mechanical calculation can be readily carried out (see Appendix A).

4.1 Calculations based on classical mechanics

4.1.1 The Bohr formula

The Bohr formula [33] neglects the electron velocity in the atom completely and is based on
v � vnl limit, which gives

σBohr(v, Inl, Zp) = 2πZ2
pa

2
0

v2
0E0

v2Inl
. (63)

4.1.2 Modification of the Bohr formula due to taking into account a finite elec-
tron velocity in the target

Accounting for the electron velocity gives an additional factor of 5/3 compared with the
Bohr formula. This gives the classical mechanical ionization cross section in the limit of high
projectile velocity v � vnl

σhigh energy
classical (v, Inl, Zp) =

5

3
2πZ2

pa
2
0

v2
0E0

v2Inl
. (64)

4.1.3 General case v ∼ vnl,

In the general case with v ∼ vnl, the classical mechanical calculation accounting for the
finite electron velocity in the atom, but neglecting the influence of the target nucleus on the
electron has been performed by Gerjuoy [34] [see Appendix A]. This gives

σGGV (v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

GGGV

(
v√

2Inl/me

)
. (65)

The tabulation of the function GGGV (x) is presented in Ref. [36] for x > 1, and in Ref. [37]
for x < 1, which gives

GGGV (x) =

{
g(x)
4x2 for x > 1,
0.696

exp( 0.585−x
0.096 )+1

for x < 1

}
, (66)

where

g(x) =

⎧⎪⎨⎪⎩
35
6

+ 35
3π

arctan c +
128(x3b3−b3/2)

9π
+ bc

3π

(
35 − 58b

3
− 8b2

3

)
+

2abx
3π

[(5 − 4x2) (3a2 + 1.5ab + b2) − cx (7.5 + 9a + 5b)]−
16
π
xa4 ln(4x2 + 1) − ax2

(
1 + 2 arctan c

π

)
(2.5 + 3a + 4a2 + 8a3)

⎫⎪⎬⎪⎭ , (67)
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and
a = 1/(1 + x2) c = 3x/4 b = 1/(1 + c2). (68)

This calculation does not account for electron circulation around the nucleus and grossly
overestimates the cross sections for v <

√
Zpvnl. At large projectile velocities, quantum me-

chanical effects become important, because ionization occurs mainly at large impact param-
eters with small momentum transfer, where ionization can not occur according to classical
mechanics. As a result, Eq.(65) underestimates the cross section at large projectile velocities
v > 5vnl.

4.1.4 The Gryzinski formula

Gryzinski’s approximation for the ionization cross section [20] expressed in the form of
Eq.(65) is given by

σGryz(v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

GGryz

(
v√

2Inl/me

)
, (69)

where

GGryz(x) = [
α3/2

x2

[
α + 2

3
(1 + β) ln(2.7 + x)

]
(1 − β)

(
1 + β1+x2

)
, for x > 0.206,

4
15

x4, for x < 0.206,
(70)

and α = x2/(1 + x2) and β = 1/[4x(1 + x)]. Gryzinski made use of an artificial electron
distribution function to enhance the cross section value at large projectile velocity. Therefore
for v > vnlthe Gryzinski formula can be viewed as a fit to the Bethe formula. For v < vnl,
this formula uses a rather arbitrary behavior ∼ v4. Similar to Gerjuoy’s calculation, the
Gryzinski formula does not account for electron circulation around the nucleus and grossly
overestimates cross sections for v <

√
Zpvnl.

4.2 Quantum mechanical calculation in the Born approximation

In the general case with v ∼ vnl, the ionization cross section in the Born approximation was
first calculated in Ref. [51]. We have developed the following fit formula for the Bates and
Griffing result

σBA
fit

(
ṽ =

v

vnl

)
= 4πa2

nl

v2
0

v2
nl

Z2
p

ṽ2

[
0.283 ln

(
ṽ2 + 1

)
+ 1.26

]
exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
. (71)

This formula does not account correctly for electron circulation around the nucleus and
grossly overestimates the cross sections for v <

√
Zpvnl.

4.2.1 Bethe’s asymptotic quantum mechanical calculation in the Born approx-
imation for v � vnl

Bethe’s asymptotic quantum mechanical calculation in the Born approximation can be ex-
pressed as [38]

σBethe = 4πa2
0

v4
0Z

2
p

v2v2
nl

.

[
0.57 ln

(
v

vnl

)
+ 1.26

]
. (72)
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The region of validity of the Born approximation and, hence, the Bethe formula is [27, 28]

v > max(2Zpv0, vnl). (73)

The first inequality in Eq.(73) assures that the projectile potential is taken into account in
the Born approximation; the second inequality allows use of the unperturbed atomic wave
function.

To describe the behavior of the cross section near the maximum value, the second-order
correction in the parameter vnl/v has been calculated in Ref. [48], yielding the cross section
in the form

σBethe
mod (ṽ) = 4πa2

nl

v2
0

v2
nl

Z2
p

ṽ2

[
0.566 ln (ṽ) + 1.26 − 0.66

1

ṽ2

]
, (74)

where

ṽ =
v

vnl
=

v√
2Inl/me

, a2
nl = a2

0

E0

2Inl
. (75)

This modification slightly improves the Bethe formula near the maximum of cross section,
but has the same region of validity as the Bethe formula.

4.2.2 The Bethe formula for relativistic particles

The Bethe cross section valid for relativistic particles [39] is given by

σBethe
rel = 4πa2

nl

v2
0

v2
nl

v2
nlZ

2
p

v2

{
M2

ion

[
2 ln (γpβp) − β2

]
+ Cion

}
, (76a)

where βp = vp/c, c is the speed of light, γp = 1/
√

1 − β2
p , and M2

ion and Cion are characteristic
constants depending on the ionized atom or ion. For the hydrogen atom, M2

ion = 0.283 and
Cion = 4.04.

4.3 Semi-empirical fits

4.3.1 Gillespie’s fit

Gillespie’s fit for the ionization cross sections [50] is given by

σGill = exp

[
−λnl

(
v0

√
Zp/v

)2
]

σBethe
mod , (77)

where λnl is a characteristic constant of the ionized atom or ion (for example, for the ground
state of atomic hydrogen, λnl = 0.76), and σBethe

mod is the modified Bethe cross section defined
in Eq.(74). This formula requires a knowledge of the fitting coefficients λnl,and underesti-
mates the cross section in the adiabatic region v < 0.5vnl.
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4.3.2 The Olson scaling

The Olson scaling [53] for the total electron loss cross section σel, which includes both the
charge exchange cross section σce and the ionization cross section, is given by

σel(v, Zp) = πa2
0ZpAnlf

Olson

(
v

v0γnl

√
Zp

)
, (78)

where f(x) describes the scaled cross sections

fOlson(x) =
1

x2

[
1 − exp

(−x2
)]

,

and γnl and Anl are constants. For example, γH =
√

5/4 = 1.12 and AH = 16/3 for
atomic hydrogen, whereas γHe = 1.44 and Ahe = 3.57 for helium. However, the additional
tunneling effect not accounted in classically trajectory method can be important for very
small velocities [79] and leads to a logarithmic dependence of the electron capture cross
sections at low ion velocities v/(v0

√
Zp) � 0.2.

4.3.3 Rost and Pattard fit formula

Rost and Pattard [57] proposed a fit for the ionization cross section, which utilizes two
fitting parameters, namely the maximum value of the cross section and the projectile energy
corresponding to the maximum value of the cross section. They showed that if both the
cross section and the projectile velocity are normalized to the values of the cross section and
the projectile velocity at the cross section maximum, then the scaled cross section σ/σmax is
well described by the fitting function [57]

σ(v) = σmax
exp(−v2

max/v
2 + 1)

v2/v2
max

, (79)

where σmax is the maximum cross section, which occurs at the velocity vmax.

4.3.4 New scaling and fit formula

A scaling has been developed in Ref. [45], where it is shown that for ionization by a bare
projectile, the values σmax and vmax are well defined by the projectile charge Zp, with

σmax = πa2
0Bnl

Z2
p

(Zp + 1)

E2
0

I2
nl

, (80)

vmax = vnl

√
Zp + 1, (81)

where the coefficient Bnl depends weakly on the projectile charge. For example, for the
ionization of hydrogen by protons, Bnl = 0.8, and for the ionization of hydrogen by bare
nuclei of helium or lithium, Bnl = 0.93.
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Equation (79) describes well the cross sections at small and intermediate energies, but
underestimates the cross section at high energies, because it does not reproduce the logarith-
mic term of the Bethe formula in Eq.(72). To improve the agreement with the experimental
data and the Bethe formula, we propose the new scaling

σion(v, Inl, Zp) = πa2
0

Z2
p

(Zp + 1)

E2
0

I2
nl

Gnew

(
v

vnl

√
Zp + 1

)
, (82)

where

Gnew(x) =
exp(−1/x2)

x2

[
1.26 + 0.283 ln

(
2x2 + 25

)]
. (83)

In all previous equations, the cross section are given per electron in the orbital. If Nnl is
the number of electrons in the orbital, the ionization cross section of any electron in the
orbital should be increased by the factor Nnl. This formula underestimates the cross section
in the adiabatic region v < 0.5vnl, where the ionization cross sections are exponentially small
∼ exp(−2Δv0/v).

4.3.5 Adiabatic scaling for cross section for v � vnl

In the region of projectile velocities v � vnl, an adiabatic scaling for the cross section was
proposed in Ref. [86]

σ(v, Zp) = ZpAπa2
0

v

vnl
fz(Zp) exp

[
− cvnl

vfz(Zp)

]
, (84)

where fz(Zp) = (1+λ)/(1+λZ
1/4
p ), and A, c and λ are constants. For example, for hydrogen

ionization A = 0.96, c = 1.71 and λ = 0.275. In Refs. [63,64] it was shown that experimental
data for the ionization of hydrogen and helium can be described by the scaling law in the
range 0.6 < v/vnlZ

1/4
p < 1.5 for Zp � 1

σ(v, Zp)/Zp = Aπa2
0

(
v

vnlZ
1/4
p

)
exp

[
−cvnlZ

1/4
p

v

]
, (85)

where vnl =
√

2Inl/E0, and A = 115, c = 7.9 for helium.
Finally, it should be noted that a number of other semi-empirical models have been

developed, which use up to ten fitting parameters to describe the ionization cross sections
over the entire projectile energy range [19].

5 Conclusions

A formulary of ionization cross sections has been presented and widely used approximations
have been tested against available experimental data for the ionization cross sections of
hydrogen, helium and lithium by numerous highly charged ion species. The limitations
of the theoretical approaches have been discussed, and the regions of validity of different
formulas and fits have been identified.
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It was shown that scaling of Ref. [45] for the ionization cross sections of atoms and ions
by fully stripped projectiles describes well available experimental data. This scaling does
not have any fitting parameters and describes the shape of the cross section as a single
function of the scaled projectile velocity [Eq.(39)]. Note that previous scaling laws either
used fitting parameters ( [50, 57]) or actually did not match experiments in a wide range
of projectile velocities [20, 34]. The proposed scaling formula agrees well with theoretical
predictions in the limit of large projectile velocities. The new scaling has been verified by
comparison with available experimental data and theoretical simulations for the ionization
cross sections of hydrogen and helium and lithium by numerous highly charged ion species.
The agreement between the new proposed scaling and experimental data is very good. The
difference between the proposed fit and the experimental data is within 15% accuracy, which
is similar to the estimated uncertainty in the measurements. The validity of the fit is limited
at very small velocities, where the ionization cross section is very small, about one-tenth of
the maximum cross section σmax, and the ionization cross section is completely dominated
by charge exchange, whose cross section is comparable to σmax. Finally, the fit is valid for
scaled projectile velocity v > 0.5vnl

√
Zp + 1, where vnl = v0

√
2Inl/E0 is the orbital velocity

of the electron estimated from the ionization potential Inl, where E0 = 27.2eV (twice the
hydrogen ionization potential). Similarly, the fit is valid for E > 12.5(Zp + 1)Inl/E0 in units
of keV/amu, where E is the projectile kinetic energy per nucleon.
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Appendixes

A Classical cross section averaged over atomic electron

velocity directions

Gerjuoy averaged the Rutherford cross section over all orientations of the electron velocity ve

(for a fixed electron speed ve) and derived the differential cross section dσ/dΔE(ve, v, ΔE)
for energy transfer ΔE in the collision between a free electron and the projectile [34]. The
total cross section is calculated by integrating over values of energy transfer larger than
the ionization potential (ΔE > Inl ) and averaging over the electron velocity distribution
function (EVDF) f (ve). This gives

σ(v, Inl, Zp) = Z2
p

∫ ∞

0

σInl
(v, ve) f (ve) dve, (86)

where

σInl
(v, ve) =

∫ ∞

Inl

dσ

dΔE
(v, ve, ΔE)dΔE, (87)

and dσ/dΔE(ve, v, ΔE) is defined by [34]

dσ

dΔE
(v, ve, ΔE) =

πa2
0

4

E2
0

ΔE3

S(v, ve, ΔE)

v2ve
, (88)

where

S(v, ve, ΔE) =

[
(v2 − v2

e) (v2
e − v2 − 2ΔE/me)

(
v−1

low − v−1
up

)
+

2 (v2
e + v2 + ΔE/me) (vup − vlow) − 1/3

(
v3

up − v3
low

) ] . (89)

Here, vup and vlow are defined by
vup = ve + v, (90)

vlow = max
(
|ve − v| ,

√
v2

e − 2ΔE/me − v
)

. (91)

For very large projectile velocities v � ve, it follows that S ≈ 8ve (2v2
e/3 + ΔE/me), and

Eq.(88) yields

dσhigh energy
classical

dΔE
(v, ve, ΔE) = 2πa2

0

E2
0

ΔE3mev2

(
2mev

2
e

3
+ ΔE

)
. (92)

Substitution of Eq.(92) into Eq.(87), and subsequent substitution of Eq.(87) and the EVDF
Eq.(9) into Eq.(86) give

σhigh energy
classical (v, Inl, Zp) =

10

3
πZ2

pa
2
0

v2
0E0

v2Inl
. (93)

In the general case with v ∼ ve, substituting the EVDF Eq.(9) into Eqs.(87) and (86) yields

σclassical(v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

Gclassical

(
v√

2Inl/me

)
, (94)
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where

Gclassical(x) =
1

x2

∫ ∞

0

∫ ∞

1/2

S(x
√

2Inl/me, ve, ΔE) f (ve)

ΔE3ve
dΔEdve. (95)

The approximate formula for Gclassical(x) is given below in Eq.(66).

B The Born approximation

Although the Born approximation is valid only for large projectile velocities v � Zpv0 [27],
the Born approximation does give results close to the experimental data even outside its
validity range [51]. Therefore, we have studied cross sections in the Born approximation for
the entire velocity range.

In the Born approximation, the ionization cross section for hydrogen atoms by impact of
fully stripped projectile atoms with charge Zp is given by [16, 38, 39],

σBA
nl (v) = 8πa2

0Z
2
p

v2
0

v2

∫ ∞

0

PInl
(q, v)

q3
dq, (96)

where PInl
(q, ṽ) is the probability of ionization, and qmev0 is the momentum transfer dur-

ing the collision. We introducing the velocity in atomic units ṽ ≡ v/v0, and PInl
(q, ṽ)is

determined by [38]

PInl
(q, ṽ) =

∫ ∞

0

dP (q, κ)

dκ
Θ

(
q −

Inl

E0
+ 1

2
κ2

ṽ

)
dκ. (97)

Here, Θ(x) is the Heaviside function, and dP (q, κ)/dκ is the differential probability of ejecting
an electron with momentum κmev0 when the momentum transfer from the projectile is
qmev0,

dP (q, κ)

dκ
= |〈Ψ∗

κ(p)Ψ0(p + q)〉|2 =
∣∣〈Ψ∗

κ(r)e
iqrΨ0(r)

〉∣∣2 . (98)

In Eq.(98), Ψ∗
κ(p) and Ψ∗

κ(r) are the wave functions of the continuous spectrum (ionized
electron) in momentum space and coordinate space, respectively; Ψ0(p) and Ψ0(r) are the
wave functions of the ground state, and star (∗) denotes complex conjugate. According
to [38],

dP (q, κ)

dκ
= 28κq2

[
q2 + 1

3
(1 + κ2)

]
exp{−2/κ arctan[2κ/(1 + q2 − κ2)]}

[(q + κ)2 + 1]3 [(q − κ)2 + 1]3 (1 − e−2π/κ)
. (99)

For q � 1, the function dP (q, κ)/dκ has a sharp maximum at κ = q [27]

dP (q, κ)

dκ
=

8

3π

1

[(q − k)2 + 1]3
, (100)

which simply means that the entire momentum q is transferred to the ionized electron mo-
mentum κ. At small q < 1, dP (q, κ)/dκ ∼ κq2 and the width of the function P (q, κ) as a
function of κ is of order unity in atomic units.
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For large projectile velocity v � v0, considerable simplification can be made by neglecting
the electron kinetic energy 1

2
κ2 in the argument of the Heaviside function in Eq.(97). The

approximation

Θ

(
q −

Inl

E0
+ 1

2
κ2

v
v0

)
→ Θ

(
q −

Inl

E0

v
v0

)
(101)

is referred to as the close-coupling approximation. In this case, P (q, v) can be characterized
by a function of one argument, Sinh(q), with

PInl
(q, ṽ) = Sinh(q)Θ

(
q − v0Inl

vE0

)
, (102)

where

Sinh(q) =

∫ ∞

0

dP (q, κ)

dκ
dκ. (103)

The function Sinh(q) is refereed to as the total ionization transition strength [50]. Sub-
stituting Eq.(101) results in artificial, additional contributions to the integral in Eq.(97)
for κ > κadd =

√
2(qv/v0 − Inl/E0). For large projectile velocities v � v0 and q � 1,

κadd � √
2qv/v0. The function dP (q, κ)/dκ has a sharp maximum at κ = q [see Eq.(100)].

Therefore the artificial additions for κ > κadd do not contribute to the integral if κadd > q,
which corresponds to q < 2v, and the substitution in Eq.(101) is valid. In the opposite case
of large projectile velocities v � v0 but small q, it follows that q ∼ v0Inl/(vE0) � 1 , for the
range of q κadd ∼ 1, and the function dP (q, κ)/dκ decreases rapidly for κ > 1. Therefore,
the artificial additions for κ > κadd do not contribute to the integral if κadd > 1. Hence, the
substitution in Eq.(101) is valid for v � v0. Figure 11 shows plots of PInl

(q, ṽ) [Eq.(97)] and
Sinh(q) [Eq.(103)] for ṽ = 1 and ṽ = 3. At small projectile velocities v < v0, the substitu-
tion in Eq.(101) produces a considerable error [see Fig.11]. For repetitive calculations, the
function Sinh(q) in Eq.(103) can be approximated to within 3% accuracy by

Sapp
inh(q) =

[
0.545q2

(q−0.9)2+1.21
q < 2

tanh(0.8q) q ≥ 2

]
. (104)

The functions Sinh(q) [Eq.(103)] and Sapp
inh(q) [Eq.(104)] are shown in Fig. 11.

Having estimated the function PInl
(q, ṽ), the total cross section can be evaluated an-

alytically for large v � v0. The region of small q contributes significantly to the cross
section [see Eq.(96)]. Therefore, we split the integration in Eq.(96) into the two regions
q < qup and q > qup, where qup = 1/2. In the first region q < qup, it follows that
PInl

(q, v) ≈ Sapp
inh(q) ≈ 0.283q2, and the integration in Eq.(96) gives∫ qup

0

dq
PInl

(q, v)

q3
≈
∫ qup

qmin

dq
0.283

q
= 0.283 ln(qup/qmin), (105)

where qmin = v0Inl/vE0. In the second region, only the range of qup < q < 2 contributes to
the integral, because at large q � 1, PInl

(q, v)/q3 ≈ 1/q3 and the contribution to the integral
for large q quickly decreases to zero. At very large q > 2v, PInl

(q, v) became smaller than
unity, but this region does not contribute to the integral and can be neglected. As a result,
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Figure 11: Total ionization transition strength for atomic hydrogen as a function of trans-
ferred momentum q. The exact function P (q, v) [Eq.( 97)] for ṽ = 1 and ṽ = 3 is compared
with the approximate function Sinh(q) [Eq.(103)] (which is independent of v) and the fit
Sapp

inh(q) in Eq.(104).
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the integral
∫∞

qup
dqPInl

(q, v)/q3 does not depend on v (for the large v under consideration).

The integration from qup to infinity gives
∫∞

qup
dqPInl

(q, v)/q3 ≈ 0.666, and finally the result

is similar to the Bethe formula in Eq.(12) with

σBethe(ṽ) = 8πa2
0

Z2
p

ṽ2
[0.283 ln (ṽ) + 0.666] . (106)

The small differences from the Bethe formula are due to utilization of the close coupled
approximation in Eq.(105), which overestimates PInl

(q, v) at small q, see Fig.11.
Comparison with the exact calculation (Fig.1) shows that the Bethe asymptotic result

is close to the exact calculation in Eq.(96) for ṽ > 2. To extend the Bethe formula to lower
velocities, the second-order correction in the parameter v0/v has been calculated in [48],
yielding the cross section in the form

σBethe
mod (ṽ) = 4πa2

0

Z2
p

ṽ2

[
0.57 ln (ṽ) + 1.26 − 0.66

1

ṽ2

]
, (107)

where ṽ = v/v0. Equation (107) agrees with the exact calculation in Eq.(96) to within
10% for ṽ > 1.1. We have developed the following fit for the cross section in the Born
approximation,

σBA
fit (ṽ) = 4πa2

0

Z2
p

ṽ2

[
0.283 ln

(
ṽ2 + 1

)
+ 1.26

]
exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
, (108)

which agrees with the exact calculation in Eq.(96) to within 2% for ṽ > 1, and to within
20% for 0.2 < ṽ < 1.

The previous analysis was performed for the hydrogen atom. In the case of hydrogen-like
electron orbitals, the similarity principle can be used. The quantity dP (q, κ)/dκ is identical
for different electron orbitals if q, κ are scaled with the factor 1/ZT = v0/vnl [27]. Therefore,
Pnl(q, v) = PH(qv0/vnl, v/vnl), where H denotes hydrogen atom, and

σBA
fit

(
ṽ =

v

vnl

)
= 4πa2

0

v4
0

v4
nl

Z2
p

ṽ2

[
0.283 ln

(
ṽ2 + 1

)
+ 1.26

]
exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
, (109)

where
ṽ =

v

vnl
=

v√
2Inl/me

. (110)

As we have noted for helium, most scalings can be used even for non-hydrogen-like electron
orbitals, provided the relationship in Eq.(110) is used.

B.1 Comparison between the quantum mechanical and classical
trajectory calculations for v � vnl

We have previously noted that the classical trajectory calculation underestimates the ion-
ization cross section at large velocities v � vnl. To compare the ionization cross section
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Figure 12: Probability of ionization of atomic hydrogen as a function of transferred mo-
mentum; Pc(q) is given by classical mechanics [Eq.(125)], and Pq(q, v) is given by quantum
mechanics [Eq.( 97)]. The plots correspond to (a) ṽ = 5 and (b) ṽ = 15.
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calculated in the classical trajectory and Born approximations, we present both cross sec-
tions in the form of Eq.(96). In the limit v � vnl, the momentum transferred to the electron
during a collision with impact parameter ρ is given by Eq.(1), i.e.,

qx(ρ) ≡ meΔvx(ρ) =
2e2Zp

vρ
, (111)

where x−axis is chosen in the direction perpendicular to the projectile ion trajectory along
the momentum transfer. Because v � vnl, the electron velocity is neglected in Eq.(111). In
classical mechanics, ionization occurs if the energy transfer to the electron is more than the
ionization potential, [(meve + q)2 − m2

ev
2]/2me > Inl.

A small momentum transfer to the electron along the projectile trajectory qz(ρ) can be
determined making use of the energy conservation. Due to conservation of the momentum,
the momentum transferred from the projectile particle is −qz(ρ). The projectile energy
change is [(Mv − q)2 − M2v2]/2M = −vqz. Conservation of energy gives

vqz ≡ 1

2me
[(meve + q)2 − m2

ev
2
e ]. (112)

In the limit v � ve, it follows that qz � qx, and consequently the total transferred momentum
to the electron is q =

√
q2
x + q2

z � qx. The momentum of the ejected electron can be
determined from the energy conservation relation

κ2/2me = [(meve + q)2 − m2
ev

2
e ]/2me − Inl. (113)

In classical mechanics, the ionization probability of the ejected electron with momentum
κ in a collision with total momentum transfer q is given by the integral over the electron
distribution function,

dPc(q, κ)

dκ
=

κ

me

∫
f(ve)dveδ

(
κ2

2me

− qxvx − q2

2me

− Inl

)
. (114)

Introducing the one-dimensional electron distribution function

fx(vex) =

∫
f(ve)dvydvz, (115)

and substituting q � qx, Eq.(114) simplifies to become

dPc(q, κ)

dκ
=

κ

qme
fx

(
κ2 − q2 − 2meInl

2qme

)
. (116)

For hydrogen-like electron orbitals given by Eq.(9), fx(vex) can be readily calculated to be

fx (vex) =
8

3π

v5
nl

[v2
ex + v2

nl]
3 . (117)

Substituting the hydrogen-like electron distribution function Eq.(117) into Eq.(124) gives in
atomic units

dPc(q, κ)

dκ
=

16κ

3π

(2qme)
5v5

nl[
(κ2 − q2 − 2meInl)

2 + (2qmevnl)2
]3 . (118)
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Let us compare Eq.(118) with the quantum mechanical result Eq.(100). In the limit q � 1,
κ ≈ q and the two functions are equivalent. Both functions dP (q, κ)/dκ have a maximum
at κ = q, and the width of the maximum is of order 1, which simply means that the entire
momentum q is transferred to the ionized electron momentum κ.

Moreover it is possible to prove that the classical mechanical dPc(q, κ)/dκ is equivalent
to the quantum mechanical function dPq(q, κ)/dκ for any s−electron orbital (spherically
symmetrical wave function). Indeed, for large k � 1, the ejected electron can be described
as a sum over plane waves Ψ∗

κ(r) ≈ eikr, and substituting Ψ∗
κ(r) into Eq.(98) gives

dPq(q, κ)

dκ
=

1

(2π�)3

∫ ∣∣〈ei(q−k)r/�Ψ0(r)
〉∣∣2 k2dok =

1

m3
e

∫
f

(
q − k

me

)
k2dok, (119)

where integral over dok = 2π sin ϑdϑ designates averaging over all directions of the k-vector,
ϑ is the angle between q and k, and f (ve) is the electron distribution function in velocity
space. Note that |q − k|2= q2+k2 − 2q · k = (q − k)2 + 4qk sin ϑ/22. In the limit q � 1,
k ≈ q and only small ϑ contribute to the integral in Eq.(119). Therefore, averaging over all
directions of the k-vector gives

1

m2
e

∫
f

(
q − k

me

)
k2dok, =

1

m2
e

∫
f

(√
(q − k)2 + qkϑ2

me

)
2πk2ϑdϑ. (120)

Introducing v⊥ = kϑ/me, the integral in Eq.(120) takes form

∫
f

⎛⎝√(
q − k

me

)2

+ v2
⊥

⎞⎠ d2v⊥ = fx

(
q − k

me

)
, (121)

where fx is the one-dimensional electron velocity distribution function. Substituting Eqs.(121)
and (120) into Eq.(119) yields

dPq(q, κ)

dκ
=

1

me

fx

(
q − k

me

)
. (122)

Note that in the limit q � mevnl, it follows that κ ≈ q, and Eq.(116) becomes

dPc(q, κ)

dκ
=

1

me
fx

(
q − k

me

)
. (123)

Finally, comparing Eqs.(122) and (123) we arrive at the equivalence of functions dP (q, κ)/dκ
in quantum mechanics and classical mechanics in the limit q � mevnl.

The situation is completely different for small q � mevnl. From Eq.(118) it follows that
dPc(q, κ)/dκ ∼ κq5, and dPc(q, κ)/dκ is much smaller than dPq(q, κ)/dκ ∼ κq2. Therefore,
classical mechanics strongly underestimates the probability of ionization for small transferred
momentum q < mevnl.

The total probability of ionization in classical mechanics is

Pc(q) =

∫ ∞

0

dκ
dPq(q, κ)

dκ
=

∫
Θ

(
qvex +

q2

2me

− Inl

)
f(ve)dve. (124)
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Equation (124) simplifies to become

Pc(q) =

∫
Θ

(
qvex +

q2

2me
− Inl

)
fx(vex)dvex. (125)

The differential cross section for momentum transfer q is given by

dσc(q) = 2πρ(q)dρ(q), (126)

where ρ(q) is given by Eq.(111). Substituting ρ(q) from Eq.(111) into Eq.(126) gives

dσc(q) =
8πe4Z2

p

v2q3
dq, (127)

which is the Rutherford differential cross section for scattering at small angles. Finally, the
total ionization cross section is

σc = 8πa2
0Z

2
p

v2
0

v2

∫ ∞

Inl/v

Pc(q)

q3
dq. (128)

In Eq. (128), we accounted for the fact that the minimum q is q = Inl/v. Note that
in the region q = [1 − 3]Inl/v ionization occurs due the collisions with very fast electrons
ve ∼ v � vnl, and qx ∼ qz. The previous analysis which assumed ve � v and qx � qz is not
valid in this region of extremely small q. However, because Pc(q)/q

3 → 0 as q → 0, this region
of q = [1 − 3]Inl/v does not contribute to the integral in Eq. (128) and can be neglected.
Moreover such small momentum transfers correspond to very large impact parameter ρ/v ∼
anl/vnl, where the collision becomes adiabatic. Therefore, accurate calculations yield even
smaller Pc(q) than in Eq.(125).

Equation (128) is identical to Eq.(96), where the quantum mechanical ionization proba-
bility Pq(q, v) is replaced by the classical mechanical ionization probability Pc(q) in Eq.(125).
The functions Pq(q, v) [Eq.(97)] and Pc(q) [Eq.(125)] are shown in Fig.12. Figure 12 shows
that the functions PInl

(q, v) and Pc(q) are nearly identical for q > 0.6. The classical proba-
bility of ionization Pc(q) rapidly tends to zero for q < 0.6, while the quantum probability of
ionization, Pq(q) ≈ 0.283q2, is much larger than Pc(q) at small q. The cross section is deter-
mined by Pq(q)/q

3. Therefore the region of small q contributes considerably to the quantum
mechanical cross section. Note that Pq(q)/q

3 → 0 as q → Inl/ṽ . It follows that the region
of small q contributes most to the cross section [compare Fig.12(a) for ṽ = 5, and Fig.12(b)
for ṽ = 15]. For ṽ = 5, the classical mechanical ionization cross section in atomic units is
σc = 0.23, and the quantum mechanical ionization cross section is σq = 0.30, which is 30%
larger than the classical mechanical cross section. For ṽ = 15, σc = 0.025 and σq = 0.043,
which is 70% larger.
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