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A Theory of Resistive Hose Instability in
Intense Charged Particle Beams Propagating

Through Background Plasma With Low
Electron Collision-Frequency

Han S. Uhm, Senior Member, IEEE, and Ronald C. Davidson

Abstract—Stability properties of the resistive hose instability
is investigated for a rounded current-density profile of a charged
particle beam propagating through a background plasma where
the electron collision time (1 ) is comparable to or longer
than the magnetic decay time ( ). The eigenvalue equation is
derived based on the energy group model, including the stabilizing
influence of a finite magnetic decay time. The dispersion relation
of the resistive hose instability in a charged particle beam with
an arbitrary current density profile is derived, assuming that
the eigenfunctions can be represented by the rigid displacement
of the self magnetic field in the plasma. Stability analysis for
perturbations propagating through the beam pulse from its head
to tail is carried out for an arbitrary current profile of the beam.
It is shown from the stability analysis that the width of the range

2 corresponding to instability decreases drastically as the value
of parameter decreases from infinity to zero, thereby being a
very narrow bandwidth of instability. It is also shown for arbitrary
current profile that any perturbation with frequency 
 higher
than the maximum betatron frequency is stable. Here, 
 is
the Doppler-shifted frequency seen by beam particles.

Index Terms—Beam instability, beam propagation, charged par-
ticle beam, resistive hose.

I. INTRODUCTION

THERE is a growing interest on intense charged particle
beams [1]–[5] due to a wide range of applications, in-

cluding basic scientific research, spallation neutron source,
nuclear waste transmutation, and heavy ion fusion [6]–[8].
Background electrons and plasmas are often present at the
high ion current densities of practical interest. It has been
recognized [9]–[19] for many years that the relative streaming
motion of a charged particle beam through a background
charge species provides a free energy to drive the classical
two-stream instability. In addition, the presenting background
plasma may act like a resistive medium, which may drive the
resistive hose instability [20]–[27] in the propagating ion beam.
When a current-carrying beam moves through conducting
plasma, its self-magnetic field may follow the beam with a
delay time called the magnetic decay time . The magnetic
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field lines are frozen into the plasma, pulling back the distorted
beam segment if the plasma is highly conducting. However,
this restoring mechanism, which leads to the resistive hose
instability, overshoots and grows due to the motionless resistive
plasma medium [21]–[27], where the electron collision time

is much shorter than the magnetic decay time . The
electron collision frequency for an electron temperature

eV is about s in ambient air at one atmospheric
pressure leading to , where the electron collisions
are dominated by electron-neutral collisions.

Obviously, the electron collision frequency decreases con-
siderably if plasma channel is preformed in a low-pressure
chamber. For example, consider an ion beam propagating
through a preformed plasma channel. Assuming plasma elec-
tron temperature eV and electron density
cm , the electron collision frequency due to Coulomb col-
lisions is s . The magnetic decay time is
calculated to be s, leading to ,
which is much less than unity. If the plasma electron collision
time is comparable to or longer than the magnetic decay
time , some of the magnetic field lines may slip through the
plasma following the beam’s transverse motion, thereby weak-
ening the instability mechanism of the resistive hose instability.
A recent literature [28] investigated effects of the electron colli-
sions on the resistive hose instability in charged particle beams
with a flattop density profile. However, the instability growth
rate for the flattop density profile is unrealistically infinite at the
resonance frequency due to the same betatron frequency of all
the charged particles in the flattop density. Most of the charged
particle beams have a rounded density profile. Therefore, there
is no one-resonance frequency for all the beam particles to
execute. In this context, stability properties of the resistive hose
instability are investigated for a rounded current-density profile
of a charged particle beam propagating through a background
plasma where the electron collision time is comparable
to or longer than the magnetic decay time . For applications
to intense ion beams for heavy ion beam fusion [29]–[32], both
assisted-pinched transport [29], [30] in the target chamber and
neutralized ballistic transport [31], [32] through background
plasma are possible modes for beam propagation. The present
analysis is most applicable to assisted-pinched transport since
the beam radius is assumed to be approximately constant.

The basic assumptions and theoretical model are presented in
Section II, where a charged particle beam with a rounded density
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profile propagates through a background plasma channel. The
electron collision time in the plasma channel is assumed
to be comparable to the magnetic decay time of the plasma.
The eigenvalue equation is derived in Section II based on the
energy group model [23], assuming long-wavelength, low-fre-
quency perturbations and the complete charge neutralization
[33] of the perturbed beam space-charge field. The eigenvalue
equation obtained in Section II includes the stabilizing influence
of a finite magnetic decay time, which can be comparable to or
shorter than the electron collision time .

The dispersion relation of the resistive hose instability in a
charged particle beam with an arbitrary current density pro-
file is derived in Section III, assuming that the eigenfunc-
tions can be represented by the rigid displacement of the self
magnetic field in the plasma, which is a reasonable approx-
imation for low-frequency perturbations. The perturbations
are Fourier decomposed according to ,
where represents the coordinate measured from
the head of the beam to the tail, and is the Doppler-shifted
frequency seen by a beam particle. Here, is the average
axial beam velocity, and are the eigenfrequency of pertur-
bations. The dispersion relation will be analyzed according to
the nature of the initial perturbation at the beam head. In other
words, the beam segment may be treated by using and
as independent variables. Stability analysis for perturbations
propagating through the beam pulse from its head to tail is
carried out in Section III for an arbitrary current profile of the
beam, by selecting and as independent variables. In this
case, the Doppler-shifted frequency seen by the beam parti-
cles scales as the characteristic transverse betatron frequency

of the beam particles. In addition, the frequency scales
as the magnetic decay time in the plasma channel. The com-
plex eigenfrequency in the dispersion relation of the resis-
tive hose instability in a beam with an arbitrary current profile
is expressed as a function of the real oscillation frequency

of each beam segment. Then, the imaginary value of the
eigenfrequency determines the growth of the perturbation as
one moves backward from the head of the beam. It is shown
from the stability analysis in Section III that the width of the
range corresponding to instability decreases drastically as
the value of parameter decreases from infinity to zero
and the fractional current neutralization approaches unity,
thereby being a very narrow bandwidth of instability. Thus,
the instability caused by the dynamics of the beam segments
with frequency may easily be avoided by choosing proper
system parameters for a finite value of parameter , which
can be much less than unity in some practical applications.
The parameter less than unity means that the electron
collision time is longer than the magnetic decay time

. It is also shown for arbitrary current profile that any per-
turbation with frequency higher than the maximum betatron
frequency is stable (purely damping). Stability proper-
ties of the resistive hose instability in a beam with Bennett
current profile are investigated in Section IV as an example
of the rounded beam density. Stability properties analyzed nu-
merically in Section IV for the Bennett current profile agree
well with the general discussions in Section III for an arbitrary
current profile.

II. BASIC ASSUMPTIONS AND THEORETICAL MODEL

We assume that an intense charged particle beam with radius
propagates through background plasma. The conductivity is

determined primarily by the plasma electrons. The beam-plasma
system is confined transversely within a perfectly conducting
cylindrical wall with radius . Cylindrical polar coordinates

are used, with the -axis along the axis of symmetry.
In equilibrium, both the beam and plasma are assumed to be
azimuthally symmetric , infinitely long, and ax-
ially uniform . The background plasma, whose
density is comparable to or higher than the beam density, is
assumed to provide complete neutralization [33] of the beam
space charge, and the motion of the beam is assumed to be
paraxial . The beam particles are radially con-
fined by the self-magnetic field produced by the axial current
of the beam, thereby implicating a self-pinched particle beam,
where the density profile is a monotonously decreasing func-
tion of the radial coordinate. Otherwise, some external forces
are needed to generate a beam density profile, which may not
be a monotonously decreasing function of the radial coordinate.
For example, a hollow charged beam can be generated by an
axial plasma current in opposite direction, which provides de-
focusing forces to the beam particles and which is one of the
external force beyond the beam. The subsequent analysis is re-
stricted to the self-pinched particle beam.

Under the assumption that the equilibrium distribution func-
tion for the beam particles is axisymmetric and spatially uni-
form in the axial direction, we recognize that the transverse
Hamiltonian and axial momentum of the beam particles are con-
stants of the motion in the equilibrium fields [5], [19], [23],
[28]. Therefore, for present purposes, the equilibrium distribu-
tion function for the beam particles is taken to be [23]

(1)

where constant is the number density of the beam particles
on axis and is the rest mass of the beam particles. The quan-
tity occurring in (1) is the transverse Hamiltonian defined
by

(2)

where is defined by is the
charge of a beam particle, is the mean axial velocity of the
beam particles defined by is the speed
of light in vacuo, and is the axial component of the equi-
librium vector potential. In (2), is the radial
distance from the beam axis, and the axial momentum distribu-
tion is normalized according to

(3)

Substituting (1) into

(4)

we obtain the beam density

(5)
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where is an effective transverse energy variable and
the lower limit of integration, , is the minimum possible
value of for a charged particle at . We note that (5) can
be interpreted as representing the beam as a superposition of
many groups of beam particles, each characterized by a partic-
ular value of transverse energy

(6)

where

(7)

and is the maximum radius for beam particles of energy
, determined by the condition

(8)

The axial component of the equilibrium vector poten-
tial associated with the self-generated azimuthal field is
obtained from the Ampere’s law

(9)

where and are the axial beam and plasma-return
current densities, respectively. The axial beam-current den-
sity is related to the beam density by

. It will be useful to rewrite (5) in the form

(10)

where the betatron frequency is defined by

(11)

and is the fractional current neutralization caused by the
plasma return current, i.e., . The physically
acceptable value of is less than unity. The charged particle
density is a deceasing function of the radial coordinate
in general. Therefore, we also note from (11) that the betatron
frequency for a rounded beam profile is a decreasing function
of the radial coordinate .

The analysis of the resistive hose instability is carried out
by making use of the linearized Vlasov–Maxwell equations for
the beam equilibria described in (1). We adopt a normal mode
approach in which all perturbed quantities are assumed to vary
with , and as [23], [28]

(12)

where is related to the coordinate from the beam
head to tail, the Doppler-shifted frequency is the frequency

seen by a beam particle, and are the eigenfrequency, respec-
tively. The dispersion relation of the resistive hose instability
obtained in the next section relates the eigenfrequency to the
Doppler-shifted frequency seen by a beam particle. There-
fore, the complex eigenfrequency is described in terms of the
real oscillation frequency of the beam segments. We assume
that the plasma is collisional to the extent that it is characterized
by a scalar conductivity expressed as

(13)

where is the electron collision frequency. The frequency
is of the order of the magnetic decay frequency, which is deter-
mined by the plasma density. On the other hand, the electron col-
lision frequency in (13) can be larger or smaller than the fre-
quency , depending on the system parameters. The perturbed
beam space charge field is assumed to be completely neutralized
by the plasma, which requires that [33]

(14)

We also consider only wavelengths that are long and frequencies
that are low compared with quantities that characterize the beam
radius , i.e.,

(15)

where is the speed of light in vacuum. The most-unstable
modes satisfy (15), holding the inequality in (14).

It follows that the transverse components of the perturbed
fields, , and can be neglected, and that the perturba-
tions can be represented in terms of a perturbed axial component
of vector potential according to

(16)

The plasma electrons respond to the axial component of
the perturbed electric field in (16). After carrying out some alge-
braic manipulations, Ampere’s law for the perturbed axial com-
ponent of vector potential can be expressed as

(17)

where the conductivity is related to the perturbed axial
plasma current by and the perturbed
axial beam current density is calculated from

(18)

The perturbed beam distribution function occurring in (18)
is calculated by the method of the characteristics, which can be
expressed as [5], [19], [23], [28]

(19)

where use has been made of (15).
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For a uniform beam density characterized by
, the perturbed vector potential is

and the time integration in (19) can then be carried out [23],
[27]. Due to the perturbed surface current density at
for the uniform beam density, the perturbed vector potential of

inside the beam is a self-consistent solution. The per-
turbed beam density for the uniform beam density is cal-
culated to be [23], [28]

(20)

The oscillations of the beam particles in the transverse plane
are determined by a “potential” in (2) that
is anharmonic except for the special case of a beam with uniform
density. Beam particles trapped near the axis, i.e., particles with
low values of the transverse energy , oscillate faster than those
with large values of whose orbits reach larger radii. Conse-
quently, a wave with a given real frequency is resonant with
some of the beam particles, but not all, and the resonant parti-
cles tend to be localized in particular radial ranges of the beam.
We have seen from (5)–(8) that the beam is made up of many
“energy groups,” i.e., classes of beam particles with a partic-
ular narrow range of transverse energy , and that each energy
group has a partial density profile that is flat out to a maximum
radius which is an increasing function of . We assume
that each energy group can be treated as a rigid object, whose
center of mass displaces in the transverse plane according to the
average magnetic force on all the beam particles in the group.
The perturbed current density in (17) can then be written
as a sum over the energy groups

(21)

where is the linearized first-order density corre-
sponding to the rigid displacement of and is expressed
as

(22)

where is the beam density contributed by the energy group
labeled by the transverse energy . Note that

. Substituting (22) into (21) and making use of
the definition in (6), the perturbed current density of the beam
particles are given by

(23)

The eigenvalue equation of the resistive hose instability is
obtained by substituting (23) into (17) and is given by

(24)

which determine the resistive-hose stability properties of any
beam current density profile , according to the energy

group model of beam dynamics. The treatment of the singu-
larities at is determined by the requirement that

be in the upper half plane. The boundary conditions for the
eigenfunction in (22) are , where

may be infinite if the beam propagates in a conducting
plasma of infinite extent, or where is finite if there is a
perfectly conducting guide at ; of course, the case of
finite makes sense only if . The eigenvalue
(24) can be solved numerically for a specified beam-current
profile, although we did not attempt to solve it numerically.
Instead, approximate solutions of (24), which are valid for long
wavelength and low frequency perturbations, will be presented
in the subsequent analysis.

III. RESISTIVE-HOSE STABILITY ANALYSIS

The eigenvalue (24) can be solved analytically [28] in the case
of the uniform beam current density with a sharp boundary at

, where the right-hand side of (24) is proportional to a
delta function, i.e., . Otherwise, the eigenvalues and
eigenfunctions of (24) must be calculated numerically. How-
ever in this section, we use approximate eigenfunctions to obtain
eigenvalues. Multiplying (24) by and integrating over ,
we obtain the dispersion relation

(25)

For a given value of the Doppler-shifted frequency , there
is generally a discrete set of eigenvalues , and eigenfunctions

with different radial mode structures. Our interest here
lies in the dipole-mode eigenfunction, which corresponds to a
sideway displacement of the beam with a minimum of internal
distortion. In the low-frequency limit characterized by

(26)

the dipole-mode eigenfunction inside the beam is expressed as
[23]

(27)

representing a rigid transverse displacement of the rounded
beam as well as a self-generated field, provided that the
outer boundary condition is at . The axial compo-
nent of the equilibrium vector potential is obtained
from (9). The axial component of the perturbed vector
potential in (27) corresponds to a rigid displacement of the
equilibrium magnetic field. Therefore, one of the reasonable
choices of the eigenfunctions is the rigid displacement of the
self magnetic field in the plasma, which is represented by (27)
for the infinite background plasma . Substituting

into (25) and making use of (9) and



UHM AND DAVIDSON: A THEORY OF RESISTIVE HOSE INSTABILITY IN INTENSE CHARGED PRTICLE BEAMS 1399

(11), the dispersion relation of the resistive hose instability is
expressed as

(28)

where use has been made of the assumption that the plasma
return current profile is the same as the beam current profile,
i.e., .

We introduce a dimensionless parameter , where
is the characteristic beam radius. The beam current density is
expressed as , where the function repre-
sents the beam current profile. The plasma conductivity in
(28) can also be expressed as , where also
represents the conductivity profile. We also remind the reader
that the beam current density at the axis is related to the
beam number density at the axis by . The
derivative of the equilibrium vector potential can
be expressed as

(29)

from (9). The betatron frequency defined in (11) can also be
expressed as

(30)

where the function is defined by

(31)

The betatron frequency in (30) represents focusing strength of
the self magnetic field produced by the beam current. Obviously,
the betatron frequency decreases to zero as the fractional current
neutralization approaches to unity. Remember that the beam
current profile has its maximum at the axis and deceases
as the radial coordinate increases for the rounded beam den-
sity. Therefore, the function decreases as the variable in-
creases. In this context, the betatron frequency decreases from
its maximum at the axis as the radial coordinate increases, and
the beam particles far away from the axis has a less betatron fre-
quency, thereby falling away from the main body of the beam.

It is useful in the subsequent analysis to define the dimension-
less parameter

(32)

which is a positive value due to in general. The
magnetic decay time is defined by

(33)

which is proportional to the plasma conductivity , thereby
indicating that the self-magnetic field of the beam in a high-con-
ducting plasma takes a longer time to follow the beam deviation.
Making use of (29)–(33), the dispersion relation in (28) can then
be expressed as

(34)

where the normalized Doppler-shifted frequency-squared is
defined by and the function is defined by

(35)

The dispersion relation in (34) with (35) is one of the main re-
sults in this section and can be used to investigate stability prop-
erties of the resistive hose instability for a variety of the beam
current profiles.

Several points are noteworthy for the integrals , and
defined in (31), (32), and (35), respectively. First, the beam

current-density profile has its maximum value of unity at
and decreases continuously as the variable increases.

The function decreases smoothly at the axis, thereby en-
suring at in general. Second, it can shown
that at , by making use of at

. Therefore, the integral function decreases con-
tinuously from unity to zero, as the variable increases from
zero to infinity. The maximum betatron frequency occurs
at the axis, as shown in (30). Third, the integral in (32) is a
positive value due to the property of in general. Fi-
nally, we remind the reader that the denominator in
the right-hand side of (35) is positive for . Therefore,
the integral function for the variable larger than unity is
negative due to , i.e., and for ,
where and are the real and imaginary values of the func-
tion . The imaginary value of for is zero
because of no singularity in the integral in (35). We also note
from (35) that as . However, the integral func-
tion for can be any complex value, depending on
the current profile and variable .

As an example of the dispersion relation in (34), we consider
a uniform density of the beam with a sharp boundary at .
We also assume that the plasma conductivity profile is also the
same as the beam current profile. Then, the functions and
are expressed as

(36)

Substituting (36) into (32), (33), and (35), we can show that
and , and that the dispersion
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relation in (34) for the flattop density profile is therefore given
by

(37)

where the magnetic decay time is calculated to be
from (33). Equation (37) is identical to the result

in a previous literature [28] for . We recommend the
reader to review the previous literature [28] for detailed stability
properties obtained from the dispersion relation in (37).

A finite-size beam pulse is often required to propagate to a
target in practical applications. Although the beam head may be
at the target, the tail of the beam pulse may deviate from the
proposed path due to perturbations that are initiated at the beam
head and propagate through the beam pulse, growing during the
propagation. In (12), the coordinate defined by

(38)

represents the distance (in units of ) from the beam head to
position . Assuming that each beam segment is taken to oscil-
late at a fixed real frequency , the frequency represents the
growth of the wave as one moves backward from the head of the
beam. The real frequency may occur through the dynamics
of particular beam segments, and thus scales with the natural
oscillation frequency of beam particles, namely the betatron
frequency , while occurs through the magnetic coupling
of different beam segments, and thus scales with the magnetic
decay time. Therefore, the discussions in the subsequent anal-
ysis are concentrated on the case where the resistive-hose sta-
bility properties are investigated for a specified Doppler-shifted
frequency . We also point out that the theoretical model devel-
oped in Section II has been based on the infinite beam along the
axial direction, although the perturbations propagate from the
head to tail of the beam. The assumption of the infinite beam
along the axial direction is needed for an analytical model de-
veloped in Section II. Therefore, the theoretical results in this ar-
ticle are valid for the beam segments located considerably away
from the head of the beam.

The dispersion relation of the resistive hose instability can
equivalently be expressed as

(39)

after carrying out a straightforward algebraic manipulation of
(34). Value of the integral function in (39) can be ex-
pressed as in general, depending on the vari-
able . All perturbed quantities are assumed to vary according
to , as shown in (12). Therefore, in-
stability occurs when is positive. The growth rate

and real oscillation-frequency in general are obtained by
substitution of into (39). They are given by

(40)

and

(41)

which can be used to investigate stability properties of the re-
sistive hose instability for a broad range of physical parameters,
including the important influence of the electron collision fre-
quency on stability behaviors. We remind the reader that
the perturbation grows only for , leading to instability.

In the limiting case of highly-collisional plasma characterized
by , where the electron collision time is much
shorter than the magnetic decay time , the growth rate and
oscillation frequency in (40) and (41) are simplified to

(42)

and

(43)

The perturbations grow only for the range of satisfying
. It is obvious from (42) that the growth rate of the re-

sistive hose instability in collisional plasmas characterized by
increases drastically as the fractional current neu-

tralization approaches unity. Preliminary experiment [20] has
been carried out for and .

As a second example, we consider the case of , where
the real oscillation frequrency is zero, indicating a pure
growth, and the necessary and sufficient condition of instability
is given by

(44)

from (40). We note from (44) that the width of the range of the
integral function corresponding to instability for is give
by

(45)

which decreases drastically as value of the parameter de-
creases from infinity to zero or the fractional current neutraliza-
tion approaches unity. Note from (35) that the integral is a
function of the normalized frequency-squared . Therefore, the
width of the range corresponding to instability may also be
restricted by values of the parameter and of the fractional
current neutralization . In this context, we may show that the
width of the range corresponding to instability is given by

(46)

where the function is an increasing function of parameter
and . In obtaining (46), use has been made of

and of the definition of in (30). We, therefore,
conclude from (46) that the width of the range corresponding
to instability decreases drastically as the value of the parameter

decreases from infinity to zero and the fractional current
neutralization approaches unity, thereby being a very narrow
bandwidth of instability. Thus, the instability caused by the dy-
namics of the particle beam segments with frequency may
easily be avoided by choosing proper system parameters for a
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finite value of the parameter . However, the growth rate in-
creases drastically as the fractional current neutralization ap-
proaches unity, as shown in (42). The instability condition in
(44) for can also be expressed as

(47)

which indicates that the range of the fractional current neutral-
ization corresponding to instability reduces drastically as the
parameter decreases from infinity to zero. According to
(42), the larger the integral function is the higher the growth
rate for . On the other hand, the left-hand side of (47)
can easily be larger than unity for parameter comparable
to or less than , thereby stabilizing the system.

The integral function has a negative value for , as
mentioned earlier, showing and for .
A negative value of never satisfies the inequality in (44),
ensuring stability. Any perturbation with the normalized fre-
quency-squared higher than unity is purely damping. Note
from the definition of that the Doppler-shifted
frequency seen by beam particles for is higher than
the maximum betatron frequency . There is no beam par-
ticle for , which is in resonance with the frequency of
perturbations. Therefore, the perturbations for are purely
damping for for arbitrary current profile.

In the extreme limit where the electron collision time
is far longer than the magnetic decay time characterized by
the parameter much less than , i.e., , the growth
rate and real oscillation frequency in (40) and (41)
are simplified to

(48)

and

(49)

The growth rate in (48) is a negative value, ensuring stability
for the resistive hose perturbations. Note from (49) that the real
oscillation frequency is proportional to the square of a small
value of parameter , thereby indicating that any perturbation
is almost purely damping for .

IV. RESISTIVE-HOSE STABILITY PROPERTIES OF A BEAM WITH

BENNETT CURRENT PROFILE

One of the most common profiles of the charged particle-
beam current is the Bennett profile given by [34]

(50)

Substituting (50) into (31) gives

(51)

which is useful in the subsequent analysis. Note that
and . Substituting (50) into (32) and changing the in-
tegral variable from to , we obtain after a straight-

Fig. 1. Plot of the real value g of the integral g(Z) versus the normalized
Doppler-shifted frequency-squared Z for Bennett current profile.

forward calculation. The integral function is
calculated by substituting (50) and (51) into (35) and by making
use of the integral variable instead of . After carrying out a
tedious but straightforward algebraic manipulation, we obtain

(52)

and

(53)

Shown in Fig. 1 is plot of the real value of the integral
versus the normalized Doppler-shifted frequency-squared for
Bennett current profile. The real value increases from 1/6,
peaks and then decreases drastically, as the frequency-squared

approaches from zero to unity. The imaginary value of
the integral increases continuously from zero to , as
the frequency-squared approaches from zero to unity. As dis-
cussed in Section III, the real value is negative and the imag-
inary value is zero for the variable beyond unity, thereby
not satisfying (44) for arbitrary values of parameter and the
current neutralization . We therefore conclude that the charged
particle beams are stable for the resistive hose instability with
the beam segment perturbations of the frequency-squared
beyond unity. The real value in (52) is approximated by

for , thereby approaching zero as
increases to infinity.

To complete the analysis, we substitute (51) into (33) and
obtain

(54)

Assuming that the plasma conductivity profile is the same
as the beam current profile, i.e., in (50), the mag-
netic decay time in (54) is calculated to be

(55)

which can be used for evaluation of the magnetic decay time.
As an illustrative example, which is characteristic of heavy

ion fusion applications [27], we consider a 1 kA cesium ion
beam corresponding to mass number . The
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beam ions are singly charged with , and the average
kinetic energy is GeV corresponding to

. Assuming that the beam radius is cm, the
beam density is calculated to be cm . The corre-
sponding betatron frequency at the axis calculated from (30) is

s , assuming zero return current .
The electron collision frequency for Coulomb collisions is given
by [35]

(56)

where the typical value of the Coulomb logarithm is about
. Assuming the electron temperature is about

eV and taking cm , the electron collision
frequency is s , which is considerably higher
than the betatron frequency. The conductivity of the background
plasma (assumed fully ionized) can be expressed as [36]

(57)

where is Boltzmann’s constant. From (57), for eV
and , the conductivity is s . There-
fore, the magnetic decay time defined in (55) is calculated to be

s. Value of the parameter in this partic-
ular example is given by , which is much less than
unity.

Stability properties of the resistive hose instability in a
charged particle beam with Bennett current profile can be
investigated for the variable in the range of by sub-
stituting (52) and (53) into (40) and (41). Fig. 2 presents plots
of (a) the normalized growth rate and (b) the real oscil-
lation frequency versus the normalized Doppler-shifted
frequency-squared obtained from (40), (41), (52), and (53)
for Bennett current profile, , and and . As
expected from (44) and Fig. 1, the normalized growth rate
is calculated to be negative in the range of satisfying ,
where the resistive hose perturbations in the Bennett profile
beam are stable. The real oscillation frequency is calcu-
lated to be negative throughout the presentation in this section
due to the positive value of in (53). Shown in Fig. 3 are plots
of (a) the normalized growth rate and (b) the real oscil-
lation frequency versus the normalized Doppler-shifted
frequency-squared obtained from (40), (41), (52), and (53)
for Bennett current profile, , and and

. As expected from the discussions in Section III, we note
from Fig. 3 that the width of the range corresponding to
instability is very narrow for a small value of .
Note that the horizontal line in Figs. 2 and 3 is in the log scale.
The unstable range of variable in Fig. 3 for is
about one tenth of that for . Instability occurs in a
very narrow range of the variable for a small value of
in general. Therefore, we may easily avoid this unstable range
of the frequency-squared by carefully choosing the system
parameters. Comparing Figs. 2 and 3, we note that the growth
rate increases considerably even for a moderate increase of the
fractional current neutralization.

Fig. 2. Plots of (a) the normalized growth rate
 � and (b) the real oscillation
frequency 
 � versus the normalized Doppler-shifted frequency-squared Z

obtained from (40), (41), (52), and (53) for Bennett current profile, f = 0, and
� � = 0:1 and1.

Presented in Fig. 4 are plots of (a) the normalized growth rate
and (b) the real oscillation frequency versus the pa-

rameter obtained from (40), (41), (52), and (53) for Ben-
nett current profile, corresponding to and

, and and . Note . As expected
from the left-hand side of (47), Fig. 4 indicates that a small value
of parameter has a strong stabilizing influence on the re-
sistive hose perturbations. The damping rate (a negative value
of ) in Fig. 4 is scaled to for , as predicted
from (48).

V. CONCLUSION

Stability properties of the resistive hose instability were
investigated in this article for a rounded current-density profile
of a charged particle beam propagating through a background
plasma where the electron collision time is comparable
to the magnetic decay time . The basic assumptions and
theoretical model were presented in Section II for an intense
charged particle beam with a rounded density profile. The
eigenvalue equation was derived based on the energy group
model, assuming long-wavelength, low-frequency perturba-
tions and the complete charge neutralization of the perturbed
beam space-charge field. The eigenvalue equation obtained in
Section II includes the stabilizing influence of a finite magnetic
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Fig. 3. Plots of (a) the normalized growth rate 
 � and the real oscillation
frequency 
 � versus the normalized Doppler-shifted frequency-squared Z

obtained from (40), (41), (52), and (53) for Bennett current profile, f = 0:2,
and � � = 0:1 and1.

decay time, which can be comparable to or shorter than the
electron collision time .

The dispersion relation of the resistive hose instability in a
charged particle beam with an arbitrary current density profile
was derived in Section III, assuming that the eigenfunctions can
be represented by the rigid displacement of the self magnetic
field in the plasma. Stability analysis for perturbations propa-
gating through the beam pulse from its head to tail was carried
out in Section III for an arbitrary current profile of the beam,
by selecting and as independent variables. The complex
eigenfrequency in the dispersion relation of the resistive hose
instability in a beam with an arbitrary current profile was ex-
pressed as a function of the real oscillation frequency of each
beam segment. It was shown from the stability analysis in Sec-
tion III that the width of the range corresponding to insta-
bility decreases drastically as the value of the parameter
decreases from infinity to zero and the fractional current neutral-
ization approaches unity, thereby being a very narrow band-
width of instability. Thus, the instability caused by the dynamics
of the beam segments with frequency may easily be avoided
by choosing proper system parameters for a finite value of the
parameter , which can be much less than unity in some prac-
tical applications. It was also shown for arbitrary current profile
that any perturbation with frequency higher than the max-

Fig. 4. Plots of (a) the normalized growth rate
 � and (b) the real oscillation
frequency 
 � versus the parameter � � obtained from (40), (41), (52), and
(53) for Bennett current profile, Z = 0:64 corresponding to g = 0:114 and
g = 0:098, and f = 0 and 0:2.

imum betatron frequency is stable (purely damping). Sta-
bility properties of the resistive hose instability in a beam with
Bennett current profile were investigated in Section IV as an
example of the rounded beam density. Stability properties ana-
lyzed numerically in Section IV for the Bennett current profile
agree well with the general discussions in Section III for an ar-
bitrary current profile.

Finally, we conclude this article pointing out that the stability
analysis has been carried out for a self-pinched particle beam,
whose density is a monotonously decreasing function of the ra-
dial coordinate. However, the density of the charged particle
beam can also be hollow, if there is any external force like an
external applied magnetic field or a plasma return current at the
axis. In this case, the betatron frequency defined in (11)
must be considerably modified and the stability analysis may be
lead to the multi-resonance layer problem. The resistive-hose
instability in a hollow charged-particle beam is current under
investigation by us, hoping that the useful results will be pub-
lished elsewhere.
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