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Collective Instabilities Can Lead to Temperature Equilibration

• Temperature anisotropies develop naturally in accelerators.

• This provides free energy to drive classical electrostatic Harris instability.

• Instability may lead to a deterioration of the beam quality.

• The instability leads to an increase in the longitudinal velocity spread.

• The instability acts much faster then collisions.
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Harris Instability in Eclectically Neutral Plasma with Uniform
Magnetic Field

• Anisotropic electron distribution is required

T||b/T⊥b < 1/2.

• Plasma must be sufficiently dense that

ωpe > ωce,

where ωpe = (4πe2n/m)1/2 is the electron plasma frequency
and ωce = eB/mc is the electron cyclotron frequency.

• Instability is very fast

γ ∼ ωpe.

∗E. G. Harris, Phys. Rev. Lett. 2, 34 (1959).
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Harris Instability in Intense One-Component Beams
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ωce → ωβ⊥.

• For good coupling need

kz ∼ k⊥ ∼ 1/rb.

• For instability need ωβ⊥ < ωpb.



Temperature Anisotropies (T||b << T⊥b) Develop Naturally in
Accelerators

• For particles accelerated by a voltage V

mb∆v2bi/2 = mb

(
2ebV
mb

)1/2
∆vbf ,

• Temperature is proportional to velocity-squared

T||bf = T 2
||bi/2ebV .

• For example for T||i = 1eV , ebV = 1MeV , T||f = 5× 10−7eV
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Previous Studies of Temperature Anisotropy Instability in Intense
One-Component Beams

• Analytical linear theory by Wang and Smith (1982)

– axisymmetric perturbations

– Kapchinskij – Vladimirskij (KV) distribution

– T||b/T⊥b = 0.

• 3D PIC simulations with WARP code

– Friedman, et. al.(1990) observed a rapid temperature ’equilibration’
process of KV beam with T||b/T⊥b 	 1.

– Lund, et. al.(1998) looked at growth rates, mode frequencies and
instability thresholds. Used a semi-gaussian as well as KV distribu-
tions.

• Drawbacks:

– WARP PIC code is noisy.

– KV distribution has a highly unphysical (inverted) population in trans-
verse phase-space variables.

– Semi-gaussian distribution is not an equilibrium.
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Instability Mechanism

F
+

+ +

++

ω  >> ω
p β|_

ω  = ωp

F

v

+

+ +

++

β|_
ω  = ω

ω  << ω
p β|_

p

Vb
Vb

+
F

v

+ +

++

Re ω  = 0 (unstable)

ω  = ω
p β|_

Vb
p

λ z

λz > v
th
||
2π

ωβ⊥
⇒ T||

T⊥
<

1

k2z r
2
b



Simplified Model

• Use equivalent KV beam to illustrate instability mechanism.

• Dipole mode with k2z r
2
b � 1 has the highest growth rate.

δφ(x, t) = φ̂
x⊥
rb

exp(ikzz − iωt)

• Electric field is mostly longitudinal

Ez = −ikzδφ ∼ x⊥ exp(ikzz − iωt)

• Transverse betatron oscillation

x⊥(t) = x̂ cos(ωβ⊥t+ α0)

Perimetrically couples through electric field to drive longitudinal motion
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Longitudinal Oscillations are Modulated by Betatron Oscillations

• Longitudinal equation of motion for a beam particle becomes

z̈ = −ikz eb
mb

φ̂
x̂

rb
cos(ωβ⊥t+ α0)e

ikzz0−iωt

• Integrating with respect to time, we obtain

zα = ikz
eb

mb

φ̂
x̂

2rb

[
eiα

(ω − ωβ⊥)2
+

e−iα

(ω+ ωβ⊥)2

]
eikzz0−iωt,

α = α0 + ωβ⊥t.

• Individual particle motion has two characteristic frequencies,

ω − ωβ⊥ and ω+ ωβ⊥.
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Dispersion relation

• Average displacement 〈z〉(x⊥, z, t) = (zα+ z−α)/2 is

〈z〉(x, z, t) = −ebδEz
2mb

[ 1

(ω − ωβ⊥)2
+

1

(ω+ ωβ⊥)2

]
.

• Displacement creates restoring electric field

δEz = −4πebnb〈z〉.

• Combining, we obtain the dispersion relation

1 =
ω̄2pb

2

[
1

(ω − ωβ⊥)2
+

1

(ω+ ωβ⊥)2

]
.

• Here, the beam plasma frequency-squared is defined as

ω̄2pb =
4πe2b nb
mb

.
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Intensity Threshold for the Instability

• Solution of the dispersion equation is

(
ω

ωf

)2
= 1±

√√√√[1−
(
ν̄

ν0

)2] [
1+ 3

(
ν̄

ν0

)2]
.

where we have introduced the normalized depressed tune

ν̄2

ν20
≡ ω2β⊥
ω2f

= 1− ω̄2pb

2ω2f
.

• The mode with lower sign is unstable and purely growing for

ν̄

ν0
<
ν̄

ν0

th

=

√
2

3
≈ 0.82.

• Maximum growth rate

(Imω)max

ωf
=

√
2√
3
− 1 ≈ 0.3 for

ν̄

ν0

max

=

√
1

3
≈ 0.58.
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Numerical Codes are Required for Detailed Investigation

• Regular PIC codes (such as WARP) are too noisy.

• Need codes capable of simulating the linear as well as nonlinear stages.

• Linear codes:

– Eigenvalue code, Beam Eigenmode And Spectra (bEASt) Code.

– linearized δf PIC, Beam Equilibrium Stability and Transport (BEST)
Code.

• Nonlinear code:

– nonlinear δf PIC (BEST) Code.
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Description of Beam Eigenmode And Spectra (bEASt) Code

• Electrostatic perturbations of the form

δφ(x, t) = δ̂φ(r) exp(imθ+ ikzz − iωt)

• Equilibrium distribution

f0b (r,p) =
n̂b

(2πmb)3/2T⊥bT
1/2
||b

exp

(
−H⊥
T⊥b

− p2z
2mbT‖b

)
.

• Perturbation is expanded into the complete set of vacuum eigenfunctions

δ̂φ(r) =
∑
n

αnJm

(
λnr

rw

)
,

where Jm(λn) = 0.

• Using the method of characteristics, analysis of the linearized Vlasov-
Maxwell equations leads to an infinite dimension matrix dispersion equa-
tion ∑

αnDn,m(ω) = 0
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Description of Beam Equilibrium Stability and Transport (BEST)
Code

• The solutions to the nonlinear Vlasov-Maxwell equations are expressed
as

fb = f0b + δfb, φ = φ0 + δφ,

where (f0b , φ
0, A0

z) are known equilibrium solutions (∂/∂t = 0).

• Use particles (markers) to represent only δfb(x,p, t) part of the distribu-
tion

δfb =
Nb

Nsb

Nsb∑
i=1

wbiδ(x − xbi)δ(p − pbi),

wb ≡ δfb/fb

• Noise associated with f0b is removed.

• The typical gain in accuracy is

εδf/εf = w̄bi.
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The m = 1 Dipole Mode has the Highest Growth Rate
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• rw = 3rb, T||b/T⊥b = 0

• m=1 mode is purely growing Reω = 0 and (Imω)max/ωf � 0.34 for ν̄/ν0 �
0.62.

• The instability is absent for ν̄/ν0 > 0.82.
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Short Wavelength Modes k2z r
2
b � 1 are Landau Damped

2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

0.25

k z r b

(I
m

   
)
w

f
w

m=0

T /||b T =0b

T /||b T =0.01b

2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

0.25

(I
m

   
)
w

f
w

k z r b

T /||b T =0.01bT /||b T =0.05b

T /||b T =0b

m=1

• ν̄/ν0 = 0.3

• Instability is present only for short-wavelength perturbations k2z r
2
b > 1.
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Longitudinal Threshold Temperature T th||b Versus Normalized Tune

Depression ν̄/ν0

0.2 0.4 0.6 0.8 1
0

0.02
0.04
0.06
0.08
0.1

T
th
||b

T b

   n n
0

m=1

m=0

(
T th‖b
T⊥b

)
max

= 0.11

The Heavy Ion Fusion Virtual National Laboratory



Nonlinear Stage of the Instability is Dominated by Long-Wavelength
m=0 Mode
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Results obtained using the BEST nonlinear δf simulation code, with ν̄/ν0 =
0.6 and initial temperature ratio T||b/T⊥b = 10−4.
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Instability Saturates Nonlinearly by Particle Trapping and Quasilinear
Relaxation
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Formation of a Stable, Longitudinal, Nonlinear BGK-like Wave
Structure
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Conclusions

• We have generalized the analysis of the classical Harris instability to the
case of a one-component intense charged particle beam with anisotropic
temperature.

• For a long, coasting beam, the delta-f particle-in-cell code BEST and
the eighenmode code bEASt have been used to determine detailed 3D
stability properties over a wide range of temperature anisotropy and beam
intensity.

• Intense beams with ν̄/ν0 < 0.82 and T||b/T⊥b < 0.11 are linearly unstable
to short-wavelength perturbations with k2z r

2
b ≥ 1.

• The instability is kinetic in nature and is due to the coupling of the parti-
cles’ transverse betatron motion with the longitudinal plasma oscillations
excited by the perturbation.

• The nonlinear saturation is governed by longitudinal particle trapping.

• The final longitudinal velocity distribution is not Maxwellian and can
be characterized by a remnant temperature anisotropy (T||b/T⊥b � 0.09),

where T||b ≡ mb < v
2
|| >.
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