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Collective Instabilities Can Lead to Temperature Equilibration

Temperature anisotropies develop naturally in accelerators.

This provides free energy to drive classical electrostatic Harris instability.

Instability may lead to a deterioration of the beam quality.
The instability leads to an increase in the longitudinal velocity spread.
The instability acts much faster then collisions.
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Harris Instability in Eclectically Neutral Plasma with Uniform
Magnetic Field

e Anisotropic electron distribution is required

To/Tiy < 1/2.

e Plasma must be sufficiently dense that

Wpe > Wee,

where wy. = (4me®n/m)1/? is the electron plasma frequency
and w. = eB/mc is the electron cyclotron frequency.

e Instability is very fast

Y~ Wpe.

*E. G. Harris, Phys. Rev. Lett. 2, 34 (1959).
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Harris Instability in Intense One-Component Beams
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e For good coupling need

kz NkJ_ ~ 1/rb.

e For instability need

wpl < Wph-



Temperature Anisotropies (T||b << T,,) Develop Naturally in
Accelerators

For particles accelerated by a voltage V

1/2
mpAvE /2 = my, (261):/) Avyy,

Temperature is proportional to velocity-squared

Tips = ||b /2epV .

For example for T); = 1eV, eV = 1MeV, Ty =5 x 10~ "eV
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Previous Studies of Temperature Anisotropy Instability in Intense
One-Component Beams

e Analytical linear theory by Wang and Smith (1982)
— axisymmetric perturbations
— Kapchinskij — Vladimirskij (KV) distribution

- Hb/TJ_b = 0.

e 3D PIC simulations with WARP code

— Friedman, et. al.(1990) observed a rapid temperature 'equilibration’
process of KV beam with T||b/TJ_b < 1.

— Lund, et. al.(1998) looked at growth rates, mode frequencies and
instability thresholds. Used a semi-gaussian as well as KV distribu-

tions.
e Drawbacks:
— WARP PIC code is noisy.

— KV distribution has a highly unphysical (inverted) population in trans-
verse phase-space variables.

— Semi-gaussian distribution is not an equilibrium.
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Instability Mechanism
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Simplified Model

Use equivalent KV beam to illustrate instability mechanism.

Dipole mode with k2rZ > 1 has the highest growth rate.

5b(x,t) = dE exp(ik,z — iwt)
b

Electric field is mostly longitudinal

E, = —ik,0¢p ~ x| exp(ik,z — iwt)

Transverse betatron oscillation
z) (t) =z cos(wpit + o)

Perimetrically couples through electric field to drive longitudinal motion
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Longitudinal Oscillations are Modulated by Betatron Oscillations

e Longitudinal equation of motion for a beam particle becomes

.. . €p ~ ) .
Z = —ik,—¢p— cos(wg,t + ) P it
mp Th

e Integrating with respect to time, we obtain

ep ~ T et el

my 21 [(w—wg1)? (w4 ws)? ’

1k, zo—twt

Zo = 1k,

a = ag + wg t.

e Individual particle motion has two characteristic frequencies,

W — wgl and u)—|—ng_.
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Dispersion relation

Average displacement (z)(x,z,t) = (2o + 2-a)/2 iS

_ edE: 1 1
(2)(,2,0) = =7 - (0w )? + G Ton)

Displacement creates restoring electric field

OE, = —4mepyny(z).
Combining, we obtain the dispersion relation
s 1 1

2 [(w—wgy)? + (w4 wpr)?

Here, the beam plasma frequency-squared is defined as

52 47T€b nb
Wpp —

myp
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Intensity Threshold for the Instability

e Solution of the dispersion equation is

w 2
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e T he mode with lower sign is unstable and purely growing for

v pth p)
— < — =4/==0.82.
1% 0 3

e Maximum growth rate

I max 2 -, maxr 1
Umw)™ 2 103 for 2 =vcz05a
Wy V3 178 3
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Numerical Codes are Required for Detailed Investigation

Regular PIC codes (such as WARP) are too noisy.

Need codes capable of simulating the linear as well as nonlinear stages.

Linear codes:
— Eigenvalue code, Beam Eigenmode And Spectra (bEASt) Code.

— linearized 6 f PIC, Beam Equilibrium Stability and Transport (BEST)
Code.

Nonlinear code:

— nonlinear §f PIC (BEST) Code.
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Description of Beam Eigenmode And Spectra (bEASt) Code

Electrostatic perturbations of the form

SH(X, 1) = 6o (r) exp(imb + ik,z — iwt)

Equilibrium distribution

np

2
fy(r,p) = " __ P )

exp | —
(zﬂmb)3/2TJ-b1—1‘|lb/2 ( Ty meTHb

Perturbation is expanded into the complete set of vacuum eigenfunctions
—~ AnT
55() = 3" (—) ,

where J,,(\,) = 0.

Using the method of characteristics, analysis of the linearized VlIasov-

Maxwell equations leads to an infinite dimension matrix dispersion equa-
tion

Z anDpm(w) =0
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Description of Beam Equilibrium Stability and Transport (BEST)
Code

e [ he solutions to the nonlinear VlIasov-Maxwell equations are expressed
as

H=f+0f, ¢=9¢°+59,

where (fP, %, A9) are known equilibrium solutions (8/8t = 0).

e Use particles (markers) to represent only 6 f,(x,p,t) part of the distribu-
tion

N Ny,
5fy = —2 Zwbi5(x — Xp; )0 (P — Pbi),
Nev i
Wy = 5fb/fb

e Noise associated with f? is removed.
e [ he typical gain in accuracy is

€5f/€f = Wp;.
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The m =1 Dipole Mode has the Highest Growth Rate

—m=0,- - - m=1,—~m=1(model)
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m=1 mode is purely growing Rew = 0 and (Imw)maz/ws ~ 0.34 for v/vg ~

0.62.

The instability is absent for v/vg > 0.82.
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Short Wavelength Modes k2r7 > 1 are Landau Damped
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Instability is present only for short-wavelength perturbations k2r2 > 1.
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Longitudinal Threshold Temperature Tﬁ{; Versus Normalized Tune

Depression v/vg
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Nonlinear Stage of the Instability is Dominated by Long-Wavelength

m=0 Mode
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Results obtained using the BEST nonlinear §f simulation code, with v/vg =
0.6 and initial temperature ratio Tj;,/T, = 10*.
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Instability Saturates Nonlinearly by Particle Trapping and Quasilinear
Relaxation
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Formation of a Stable, Longitudinal, Nonlinear BGK-like Wave
Structure
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Conclusions

We have generalized the analysis of the classical Harris instability to the
case of a one-component intense charged particle beam with anisotropic
temperature.

For a long, coasting beam, the delta-f particle-in-cell code BEST and
the eighenmode code bEASt have been used to determine detailed 3D
stability properties over a wide range of temperature anisotropy and beam
intensity.

Intense beams with v/yy < 0.82 and THb/Tm < 0.11 are linearly unstable
to short-wavelength perturbations with k2r? > 1.

The instability is kinetic in nature and is due to the coupling of the parti-
cles’ transverse betatron motion with the longitudinal plasma oscillations
excited by the perturbation.

The nonlinear saturation is governed by longitudinal particle trapping.

The final longitudinal velocity distribution is not Maxwellian and can
be characterized by a remnant temperature anisotropy (T||b/le ~ 0.09),

where Tj, = m; < vﬁ >,
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