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Abstract

The linearized Vlasov-Maxwell equations are used to investigate detailed properties of the wall-

impedance-driven instability for a long charge bunch (bunch length `b � bunch radius rb) propa-

gating through a cylindrical pipe with radius rw and wall impedance Z̃(ω). The stability analysis is

carried out for perturbations with azimuthal mode number ` ≥ 1 about a cylindrical Kapchinskij-

Vladimirskij (KV) beam equilibrium with flattop density profile in the smooth-focusing approxima-

tion. Detailed stability properties are determined for dipole-mode perturbations (` = 1) assuming

negligibly small axial momentum spread of the beam particles. The stability analysis is valid

for general value of the normalized beam intensity sb = ω̂2
pb/2γ2

bω
2
β⊥ in the interval 0 < sb < 1,

where ω̂pb = (4πn̂be
2
b/γbmb)1/2 is the relativistic plasma frequency and ωβ⊥ is the applied focusing

frequency.

PACS numbers: 29.27.Bd, 41.75.-i, 41.85.-p
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I. INTRODUCTION

High energy ion accelerators, transport systems and storage rings[1–8] have a wide range

of applications ranging from basic research in high energy and nuclear physics, to applica-

tions such as spallation neutron sources, heavy ion fusion, and nuclear waste transmutation.

Charged particle beams are subject to various collective instabilities that can deteriorate

the beam quality. Of particular importance at the high beam currents and charge densities

of practical interest are the effects of the intense self-fields produced by the beam space

charge and current on determining detailed equilibrium, stability, and transport properties.

In general, a complete description of collective processes in intense charged particle beams

is provided by the nonlinear Vlasov-Maxwell equations[1] for the self-consistent evolution

of the beam distribution function, fb( x,p, t), and the electric and magnetic fields, E(x, t)

and B(x, t). While considerable progress has been made in analytical and numerical simu-

lation studies of intense beam propagation[9–40], the effects of finite geometry and intense

self-fields often make it difficult to obtain detailed predictions of beam equilibrium, stability,

and transport properties based on the Vlasov-Maxwell equations. Nonetheless, often with

the aid of numerical simulations, there has been considerable recent analytical progress in

applying the Vlasov-Maxwell equations to investigate the detailed equilibrium and stability

properties of intense charged particle beams. These investigations include a wide variety

of diverse applications ranging from the Harris-like instability driven by large temperature

anisotropy with T⊥b � T‖b[37], to the dipole-mode two-stream instability for an intense ion

beam propagating through background electrons[38], to the resistive hose instability[39] and

the sausage and hollowing instabilities[40] for intense beam propagation through background

plasma, to the development of a nonlinear stability theorem[22, 23] in the smooth-focusing

approximation. Building on these advances[1, 37–40], in the present analysis we reexamine

the classical wall-impedance-driven instability[41–45], also called the resistive-wall insta-

bility, making use of the linearized Vlasov-Maxwell equations[1] for perturbations about a

Kapchinskij-Vladimirskij (KV) beam equilibrium f0
b (x,p)[9–11] with flattop density profile.

To briefly summarize, the present analysis assumes a very long charge bunch (bunch

length `b � bunch radius rb) with directed axial kinetic energy (γb − 1)mbc
2 propagating

in the z-direction through a cylindrical pipe with constant radius rw and (complex) wall

impedance Z̃(ω)[2]. The analysis is carried out in the smooth-focusing approximation, where
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the applied transverse focusing force is modeled by Ffoc = −γbmbω
2
β⊥x⊥. Here, γb = (1 −

β2
b )

−1/2 is the relativistic mass factor, Vb = βbc is the directed axial velocity of the charge

bunch, mb is the particle rest mass, ωβ⊥ = const. is the applied focusing frequency, and x⊥ =

xêx +yêy is the transverse displacement of a beam particle from the cylinder axis. Denoting

the number density of beam particles by n̂b and the particle charge by eb, it is convenient to

introduce the relativistic plasma frequency ω̂pb defined by ω̂pb = (4πn̂be
2
b/γbmb)

1/2 and the

normalized (dimensionless) beam intensity sb defined by sb = ω̂2
pb/2γ

2
bω

2
β⊥[1].

An important feature of the present analysis of the linearized Vlasov-Maxwell equations

is that it is carried out for arbitrary value of the normalized beam intensity in the interval

0 < sb < 1, assuming perturbations about a KV beam equilibrium with flattop density profile

n0
b(x) =

∫
d3pf0

b (x,p). Illustrative parameters for intense beam systems are shown in Table

1 for the Tevatron[46], for coasting beam experiments in the Proton Storage Ring[47, 48], and

for the space-charge-dominated beams envisioned for heavy ion fusion[8]. Note from Table 1

that the normalized beam intensity sb ranges from the very small value sb = 1.36 × 10−4 in

the Tevatron, where the particles are highly relativistic, to the intermediate value sb = 0.08

in the low-energy, moderate-intensity Proton Storage Ring experiment, to sb ' 0.98 in

the low-emittance, space-charge-dominated beams for heavy ion fusion. In any case, the

present kinetic analysis of the wall-impedance-driven instability is carried out for arbitrary

value of normalized-beam intensity sb in the interval 0 < sb < 1, and (in principle) can be

applied to the diverse range of high-intensity beam systems in Table 1. Finally, the present

analysis considers the case where the axial momentum spread is negligibly small, and the

corresponding Landau damping[1] by parallel kinetic effects is absent. (This gives a larger

estimate of the instability growth rate than would be obtained with finite axial momentum

spread.) Furthermore, the functional form of the wall impedance Z̃(ω) is not specified,

although the case of small impedance (|Z̃| � 1) is considered when analyzing the kinetic

dispersion relation in Secs. III and IV.

The organization of this paper is the following. The theoretical model and assumptions

are summarized in Sec. I. In Secs. II and III, the detailed kinetic stability analysis is carried

out for perturbations about a KV beam equilibrium with flattop density profile, leading

to the kinetic dispersion relation (58), valid for arbitrary multipole perturbations with az-

imuthal mode number ` ≥ 1 about an axisymmetric beam equilibrium. Finally, in Sec. IV

detailed properties of the wall-impedance-driven instability are calculated for dipole-mode
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perturbations (` = 1) and general values of the normalized beam intensity sb in the interval

0 < sb < 1.

TABLE I: Illustrative parameters for intense beam systems

Tevatron Heavy Ion PSR

Fusion Driver

Ion p Cs+ p

Mass number (A) 1 133 1

Kinetic energy (γb − 1)mbc
2 (GeV) 150 2.5 0.8

Relativistic γb 160 1.02 1.85

Wall radius rw (cm) 2.5 9 5

Beam radius rb(cm) 0.44 4.24 2.63

Bunch length lb (cm) 37 1000 6000

lb/rb 84.7 236 2281

Focusing frequency ωβ⊥ (s−1) 6.17× 106 1.9× 107 4.0× 107

Beam density n̂b (cm−3) 2.4× 1010 5.6× 1010 9.4× 108

Plasma frequency ω̂pb (s−1) 1.6× 107 2.7× 107 3.0× 107

Emittance εN (mm-mrad) 20π 7.7π 45π

Normalized intensity sb 1.36× 10−4 0.98 0.08

II. THEORETICAL MODEL AND ASSUMPTIONS

The present analysis considers a very long charge bunch with characteristic axial length `b

and radius rb satisfying `b � rb. The charge bunch is made up of particles with charge eb and

rest mass mb propagating in the z-direction with directed axial kinetic energy (γb − 1)mbc
2,

where γb = (1 − β2
b )

1/2 is the relativistic mass factor, Vb = βbc is the average axial velocity,

and c is the speed of light in vacuo. The charge bunch propagates through a cylindrical,

conducting pipe with wall radius rw, and the applied transverse focusing force on a beam

particle is modeled in the smooth focusing approximation by

Ffoc = −γbmbω
2
β⊥x⊥ , (1)
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where ωβ⊥ = const. is the applied focusing frequency, and x⊥ = xêx + yêy is the transverse

displacement of a beam particle from the cylinder axis at r = 0. Furthermore, the particle

motion in the beam frame is treated in the paraxial approximation with p2
x, p

2
y, (pz −

γbmbβbc)
2 � γ2

bm
2
bβ

2
b c

2.

To describe stability properties of the charge bunch, we make use of a kinetic description

based on the Vlasov-Maxwell equations, which describe the self-consistent nonlinear evolu-

tion of the distribution function fb(x,p, t) and the self-generated electric and magnetic fields,

Es(x, t) and Bs(x, t), in the six-dimensional phase space (x,p). For simplicity, the present

analysis considers small-amplitude perturbations about the axisymmetric (∂/∂θ = 0), ax-

ially uniform (∂/∂z = 0), quasi-steady-state (∂/∂t = 0) equilibrium distribution function

[38]

f0
b (r,p⊥) =

n̂b

2πγbmb

δ(H⊥ − T̂⊥b)δ(pz − γbmbβbc) . (2)

In Eq. (2), n̂b and T̂⊥b are positive constants, and H⊥ is the transverse Hamiltonian defined

by

H⊥ =
1

2γbmb
p2
⊥ +

1

2
γbmbω

2
β⊥r

2 + eb[φ
0(r) − βbA

0
z(r)] , (3)

where r = (x2 + y2)1/2 is the radial distance from the cylinder axis, and p⊥ = (p2
x + p2

y)
1/2 is

the transverse momentum. In Eq. (3), the equilibrium self-field potentials, φ0(r) and A0
z(r),

are determined self-consistently in terms of f0
b (r,p) from the steady-state Maxwell equations.

Because of the delta-function dependence on pz, note that the choice of distribution function

in Eq. (2) is cold in the axial direction. An attractive feature of the choice of f0
b (r,p) in

Eq. (2) is that the corresponding equilibrium number density, n0
b(r) =

∫
d3pf0

b (r,p), has the

flattop profile[38]

n0
b(r) =

{
n̂b = const., 0 ≤ r < rb ,

0 , rb < r ≤ rw .
(4)

Here, n̂b = const. is the number density of beam particles, and the edge radius rb is deter-

mined self-consistently from

2T̂⊥b

γbmb
=

(
ω2

β⊥ − 1

2γ2
b

ω̂2
pb

)
r2
b ≡ ν2

b r
2
b (5)

where ω̂2
pb = 4πn̂be

2
b/γbmb is the relativistic plasma frequency-squared. Here, we have intro-

duced the quantity ν2
b defined by

ν2
b = ω2

β⊥ − 1

2γ2
b

ω̂2
pb = ω2

β⊥(1 − sb) , (6)
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where

sb =
ω̂2

pb

2γ2
bω

2
β⊥

(7)

is a convenient dimensionless measure of the normalized beam intensity. Note from Eq. (6)

that νb = ωβ⊥(1 − sb)
1/2 corresponds to the (depressed) betatron frequency for transverse

particle oscillations in the equilibrium field configuration. For parameters typical of the

Tevatron[46], sb � 1 and νb ' ωβ⊥, corresponding to very weak equilibrium self fields. For

parameters typical of heavy ion fusion applications[8], however, sb is in the range 0.9 < sb <

1, corresponding to very large tune depressions. On the other hand, for accelerators used in

nuclear physics applications[47, 48], such as the Proton Storage Ring (PSR) facility and the

Spallation Neutron Source (SNS), the intensity parameter sb is in the intermediate range,

0.05 < sb < 0.2.

An important goal of the present analysis is to develop a theoretical model that determines

the effects of finite wall impedance and is valid over the entire range of normalized beam

intensity, 0 < sb < 1. To this end, we express fb(x,p, t) = f0
b (r,p)+δfb(x,p, t), and make use

of the linearized Vlasov-Maxwell equations[1, 38] to determine the self-consistent evolution

of δfb(x,p, t), δE
s(x, t) and δBs(x, t) for small-amplitude perturbations. For perturbations

about the equilibrium distribution function f0
b (r,p) in Eq. (2), the linearized Vlasov equation

for δfb(x,p, t) can be expressed as(
∂

∂t
+ v · ∂

∂x
− γbmbν

2
b x⊥ · ∂

∂p

)
δfb = − 1

γbmb
δF⊥ · p⊥

∂f0
b

∂H⊥
− δFz

∂

∂pz
f0

b , (8)

where δF⊥ = eb(δE
s + v × δBs/c)⊥ and δFz = eb(δE

s + v × δBs/c)z are the perturbed

transverse and longitudinal forces. We further express δEs = −∇δφ − c−1∂δA/∂t and

δBs = ∇ × δA, and make use of the Lorentz gauge condition, ∇ · δA = −c−1∂δφ/∂t, to

relate δA and δφ. The linearized Maxwell equations for δφ(x, t) and δA(x, t) can then be

expressed as (
∇2

⊥ +
∂2

∂z2
− 1

c2
∂2

∂t2

)
δφ = −4πeb

∫
d3pδfb , (9)

(
∇2

⊥ +
∂2

∂z2
− 1

c2
∂2

∂t2

)
δA = −4πeb

c

∫
d3pvδfb . (10)

Here, v = p/γmb is the particle velocity, γ = (1 +p2/m2
bc

2)1/2 is the kinematic mass factor,

and ∇2
⊥ = (1/r)(∂/∂r)(r∂/∂r) + r−2∂2/∂θ2 is the perpendicular Laplacian in cylindrical

polar coordinates (r, θ, z). Note that Eqs. (9) and (10) determine the perturbed self-field
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potentials, δφ(x, t) and δA(x, t), in terms of the perturbed charge and current densities,

δρb(x, t) = eb

∫
d3pδfb(x,p, t) and δJb(x, t) = eb

∫
d3pvδfb(x,p, t), where δfb(x,p, t) is de-

termined self-consistently from Eq. (8).

In Sec. 3, Eqs. (8)–(10) will be analyzed for perturbations of the form

δψ(x, t) = δψ`(r) exp(i`θ + ikzz − iωt) , (11)

where ` = 1, 2, . . . is the azimuthal mode number of the perturbation, kz is the axial

wavenumber, and ω is the oscillation frequency. For perturbations with real ω and Imkz < 0,

the perturbation is growing spatially as a function of z. On the other hand, for perturbations

with real kz and Imω > 0, the perturbation is growing temporally as a function of t. For

present purposes, we consider perturbations with sufficiently low frequency and long axial

wavelength that
|ω|rb

c
� 1 and |kz|rb � 1 . (12)

Equations (8)–(10) can be simplified within the context of the inequalities in Eq. (12). For

example, making use of the Lorentz gauge condition, ∇⊥ · δA⊥ +(∂/∂z)δAz = −c−1∂δφ/∂t,

it can be shown that |δA⊥| ∼ rb|kzδAz| or rb|(ω/c)δφ| over the transverse dimensions of

the beam. Without presenting algebraic details[1], it therefore follows within the context of

Eq. (12) that the δA⊥ contributions in Eqs. (8)–(10) can be neglected and that the perturbed

transverse force δF⊥ can be approximated by

δF⊥ = −eb∇⊥

(
δφ− 1

c
vzδAz

)
. (13)

Similarly, for the low-frequency, long-wavelength perturbations consistent with Eq. (12), it

can be shown that the perturbed longitudinal force term (proportional to δFz) in Eq. (8)

can be neglected[38]. Moreover, because the axial momentum spread is negligibly small for

the distribution function in Eq. (2), we approximate
∫
d3pvzδfb = βbc

∫
d3pδfb in Eq. (10).

In summary, making use of the approximations outlined in the previous paragraph, the

linearized Vlasov-Maxwell equations (8)–(10) can be approximated by(
∂

∂t
+ v · ∂

∂x
− γbmbν

2
b x⊥ · ∂

∂p

)
δfb =

eb

γbmb

p⊥ · ∇⊥

(
δφ− 1

c
vzδAz

)
∂f0

b

∂H⊥
, (14)

where δφ and δAz are determined from(
∇2

⊥ +
∂2

∂z2
− 1

c2
∂2

∂t2

)
δφ = −4πebδnb , (15)
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(
∇2

⊥ +
∂2

∂z2
− 1

c2
∂2

∂t2

)
δAz = −4πebβbδnb . (16)

Here, Vb = βbc is the average axial velocity, and δnb(x, t) is the perturbed number density

of beam particles defined in terms of δfb(x,p, t) by

δnb =

∫
d3pδfb . (17)

Equations (14)–(17) represent the final form of the linearized Vlasov-Maxwell equations

used in the stability analysis in Sec. III, carried out for perturbations about the choice of

equilibrium distribution function f0
b (r,p) in Eq. (2) with flattop density profile in Eq. (4).

Equations (14)–(16) are to be solved in the beam interior (0 ≤ r < rb) and in the vacuum

region (rb < r ≤ rw) outside the beam, enforcing the appropriate boundary conditions at

the conducting wall located at radius r = rw. For present purposes, we assume that the

wall impedance is described by a complex scalar function, Z̃(ω) = Z̃r + iZ̃i, where ω is

the oscillation frequency in Eq. (11), and that the boundary condition on the perturbed

tangential electric Et and magnetic Ht fields at r = r−w ≡ [rw(1 − ε)]ε→0+ can be expressed

as[49]

[δEt]r−w = Z̃(ω)n̂× [δBt]r−w . (18)

Here, n̂ = −êr is a unit vector pointing outward from the cylindrical conducting wall surface.

In what follows we assume that the metal wall is almost perfectly conducting, implying that

|Z̃(ω)| � 1. Assuming that perturbed quantities vary according to Eq. (11), and making

use of (∇× δB)r = c−1∂δEr/∂t in the vacuum region, the boundary conditions in Eq. (18)

can be expressed as

[δE`
z]r−w = −Z̃[δB`

θ]r−w

[δE`
θ]r−w = Z̃[δB`

z]r−w = Z̃

[
kzr

`
δB`

θ +
ωr

`c
δE`

r

]
r−w

. (19)

Neglecting contributions involving δA⊥ (which can be done under the assumption that

|Z̃| � 1), we approximate δB`
θ = −(∂/∂r)δA`

z, δE
`
r = −(∂/∂r)δφ, δE`

θ = −(i`/r)δφ`, and

δE`
z = −ikzδφ

` + (iω/c)δA`
z in Eq. (19). The boundary conditions in Eq. (19) then reduce

to

kz[δφ
`]r−w − ω

c
[δA`

z]r−w = iZ̃

[
∂

∂r
δA`

z

]
r−w

,

`

rw
[δφ`]r−w = −iZ̃

{
ω

c

[
∂

∂r
δφ`

]
r−w

+ kz

[
∂

∂r
δA`

z

]
r−w

}
. (20)
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Equation (20) expresses the boundary conditions at the conducting wall in terms of the

impedance Z̃(ω) and the perturbed potentials, δφ and δAz. In the limit of zero impedance,

Z̃ → 0, note that Eq. (20) reduces to [δφ`]r−w = 0 = [δA`
z]r−w , corresponding to the boundary

conditions expected for a perfectly conducting, cylindrical wall. Depending on the frequency

regime, there are several models of wall impedance Z̃(ω) that can be used in the boundary

conditions in Eq. (20). These range from impedance functions that depend on the wall

structure and smoothness[2, 42, 43], to impedance functions that depend on the electrical

conductivity of the wall[49]. For example, a common expression for Z̃(ω) for a smooth-bore,

cylindrical conducting wall is given by[49]

Z̃(ω) =

(
ω

8πσ

)1/2

(1 − i) , (21)

where σ is the electrical conductivity of the wall.

In concluding this section, we reiterate that the inequalities |ω|rb/c� 1 and |kz|rb/c � 1

in Eq. (12) have been used to simplify the perturbed force δF in the beam interior (0 ≤
r < rb) in the linearized Vlasov equation (14). Insofar as the wall radius rw is not too far

removed from the beam radius rb (rw/rb ∼ 2 − 3, say), then |kz|rw/c � 1 and |ω|rb/c � 1

are also good approximations in solving the Maxwell equations (15) and (16) in the vacuum

region (rb < r ≤ rw), and the terms proportional to ∂2/∂z2 − c−2∂2/∂t2 can be neglected

in Eqs. (15) and (16). This is typically encountered in heavy ion fusion applications[8],

and in some accelerators for nuclear physics applications such as the Proton Storage Ring

(PSR) facility[36, 47]. In the general case, however, making use of Eq. (11), the solutions

to Eqs. (15) and (16) for δφ`(r) and δA`
z(r) in the vacuum region are linear combinations of

I`(κr) and K`(κr), where κ(kz , ω) is defined by

κ2(kz, ω) = k2
z −

ω2

c2
, (22)

and I`(x) and K`(x) are modified Bessel functions of the first and second kinds, respectively,

of order `. For our purposes here, the analysis in Sec. III makes the further assumption that

|κ2(kz , ω)|r2
w =

∣∣∣∣k2
z −

ω2

c2

∣∣∣∣r2
w � 1 . (23)

Whenever Eq. (23) is satisfied, Eqs. (15) and (16) can be approximated by ∇2
⊥δφ = 0 =

∇2
⊥δAz in the vacuum region (rb < r ≤ rw) where δnb = 0, and the solutions to Eqs. (15)

and (16) for δφ`(r) and δA`
z(r) are linear combinations of r` and r−`, where ` ≥ 1 is an
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integer. For example, if we estimate the oscillation frequency by ω ' kzVb, then Eq. (23)

reduces to
|kz|2r2

w

γ2
b

� 1 , (24)

where γ−2
b = 1 − V 2

b /c
2. Therefore, for a long, highly-relativistic charge bunch (`b � rb,

γb � 1), the inequality in Eq. (24) is relatively straightforward to satisfy, even when rw � rb,

provided the relativistic mass factor γb is sufficiently large.

III. KINETIC STABILITY ANALYSIS

A. Linearized Vlasov-Maxwell Equations

We now make use of Eqs. (14)–(17) and the assumptions summarized in Sec. 2 to derive

a dispersion relation that describes detailed stability properties of the charge bunch. In

the present analysis, the equilibrium distribution function in Eq. (2) can be expressed as

f0
b (r,p) = Fb(H⊥)δ(pz − γbmbβbc), where Fb(H⊥) = (n̂b/2πγbmb)δ(H⊥ − T̂⊥b). Because f0

b

has zero axial momentum spread about pz = γbmbβbc, we express the perturbed distribution

function in the linearized Vlasov equation (14) as δfb(x,p, t) = δFb(x,p⊥, t)δ(pz−γbmbβbc).

Integrating Eq. (14) over pz then gives for the evolution of δFb(x,p⊥, t),(
∂

∂t
+ Vb

∂

∂z
+ v⊥ · ∂

∂x⊥
− γbmbν

2
b x⊥ · ∂

∂p⊥

)
δFb =

eb

γbmb

∂Fb

∂H⊥
p⊥ · ∇⊥(δφ− βbδAz) , (25)

where Vb = βbc = const. is the axial velocity of the beam particles. Moreover, consistent

with Eqs. (12) and (23), we neglect the terms proportional to ∂2/∂z2−c−2∂2/∂t2 in Eqs. (15)

and (16), and the linearized Maxwell equations for δφ(x, t) and δAz(x, t) are approximated

by

∇2
⊥δφ = −4πeb

∫
d2pδFb , (26)

and

∇2
⊥δAz = −4πebβb

∫
d2pδFb . (27)

Here, δnb(x, t) =
∫
d2pδFb(x,p⊥, t) is the perturbed number density of beam particles, and∫

d2p . . . =
∫ ∞
−∞ dpx

∫ ∞
−∞ dpy . . . .

In the subsequent analysis of Eqs. (25)–(27), it is convenient to introduce the new inde-

pendent variables τ and Z (replacing t and z) defined by

τ = t− z/Vb ,
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Z = z . (28)

In this case, the perturbation in Eq. (11) can be expressed as

δψ(x, Z, τ ) = δψ`(r) exp[i`θ − iωτ − i(Ω/Vb)Z] , (29)

where ` = 1, 2, · · · , is the azimuthal mode number, ω is the oscillation frequency, and

Ω

Vb
=

(ω − kzVb)

Vb
(30)

is the effective axial wavenumber of the perturbation in the new variables (Z, τ ). The

significance of the new ‘time’ variable τ in Eq. (28) is evident. We consider the case where

the head of the charge bunch passes through z = 0 at t = 0 with velocity Vb > 0. Then

Vbτ = Vbt− z is the distance backwards from the head of the beam (at Vbt) to axial position

z = Z. If the charge bunch experiences a perturbation for τ > 0 with real oscillation

frequency ω, it is evident from Eqs. (29) and (30) that Ω/Vb represents the spatial oscillation

and growth (or damping) of the perturbation as a function of axial position Z. Furthermore,

in terms of the new variables Z and τ , the derivatives ∂/∂t and ∂/∂z transform according

to

∂

∂τ
=

∂

∂t
,

∂

∂z
=

∂

∂Z
− 1

Vb

∂

∂τ
. (31)

Making use of Eq. (31), the linearized Vlasov equation (25) for δFb(x⊥,p⊥, Z, τ ) simplifies

to become(
Vb

∂

∂Z
+ v⊥ · ∂

∂x⊥
− γbmbν

2
b x⊥ · ∂

∂p⊥

)
δFb =

eb

γbmb

∂Fb

∂H⊥
p⊥ · ∇⊥(δφ− βbδAz) , (32)

where δφ(x⊥, Z, τ ) and δAz(x⊥, Z, τ ) are determined self-consistently in terms of δFb from

Eqs. (26) and (27). Note in Eq. (32) that the perturbed beam dynamics is determined in

terms of the wake function δψ ≡ δφ− βbδAz.

The left-hand side of Eq. (32) will be recognized as the total derivative, (Vbd/dZ
′) ×

δFb(x
′
⊥,p

′
⊥, Z

′, τ ′), following the particle trajectories x′
⊥ and p′

⊥ in the equilibrium field

configuration. Here, the characteristics of the differential operator on the left-hand side of

Eq. (32) are the particle orbit equations

Vb
d

dZ ′x
′
⊥(Z ′) = v′

⊥(Z ′) =
1

γbmb
p′
⊥(Z ′) ,

Vb
d

dZ ′p
′
⊥(Z ′) = −γbmbν

2
b x

′
⊥(Z ′) , (33)

11



which can be combined to give

V 2
b

d2

dZ ′2x
′
⊥ + ν2

b x
′
⊥ = 0 . (34)

In order to solve Eq. (32), the solutions of physical interest to the transverse orbit equations

(33) and (34) are those that pass through the phase space point (x⊥,p⊥) at Z ′ = Z, i.e.,

x′
⊥(Z ′ = Z) = x⊥ ,

p′
⊥(Z ′ = Z) = p⊥ . (35)

Solving Eqs. (33) and (34) subject to Eq. (35), we readily obtain

x′
⊥(Z ′) = x⊥ cos[(νb/Vb)(Z

′ − Z)] +
p⊥

γbmbνb

sin[(νb/Vb)(Z
′ − Z)] ,

p′
⊥(Z ′) = p⊥ cos[(νb/Vb)(Z

′ − Z)] − γbmbνbx⊥ cos[(νb/Vb)(Z
′ − Z)] , (36)

where p′
⊥ = γbmbv

′
⊥ = γbmbVbdx

′
⊥/dZ

′. As expected, for the flattop density profile in

Eq. (4), the transverse orbits in Eq. (36) are oscillatory functions of Z ′−Z with wavelength

λb = 2πVb/νb, where νb = (ω2
β⊥ − ω̂2

pb/2γ
2
b )

1/2 is the (depressed) betatron frequency defined

in Eq. (6).

The linearized Vlasov equation (32) is now formally integrated using the method of

characteristics[1, 37–40]. Expressing the left-hand side of Eq. (32) as Vb(d/dZ
′)

×δFb(x
′
⊥,p

′
⊥, Z

′, τ ′), we assume spatially amplifying perturbations (ImΩ > 0) and integrate

Eq. (32) from Z ′ = −∞ (where δFb is assumed to be negligibly small) to Z ′ = Z. This gives

δFb(x⊥,p⊥, Z, τ ) = eb
∂

∂H⊥
Fb(H⊥)

×
∫ Z

−∞

dZ ′

Vb
v′
⊥ · ∂

∂x′
⊥

[δφ(x′
⊥, Z

′, τ ) − βbδAz(x
′
⊥, Z

′, τ )] . (37)

Here, use has been made of the fact that H ′
⊥ = H⊥ = const. is a single-particle constant of

the motion (dH ′
⊥/dZ

′ = 0) in the equilibrium field configuration. In the integration over Z ′

on the right-hand side of Eq. (37), x′
⊥(Z ′) and p′

⊥(Z ′) = γbmbv
′
⊥(Z ′) are the single-particle

orbits in Eq. (6) that pass through the phase space point (x⊥,p⊥) at Z ′ = Z.

For the choice of equilibrium distribution Fb(H⊥) in Eq. (2), we calculate the perturbed

number density δnb(x⊥, Z, τ ) =
∫
d2pδFb(x⊥,p⊥, Z, τ ) from Eq. (37) and substitute into

Maxwell’s equations (26) and (27), which gives closed equations for the perturbed potentials,

12



δφ(x⊥, Z, τ ) and δAz(x⊥, Z, τ ). Assuming perturbations of the form in Eq. (24) for ImΩ > 0

and azimuthal mode number ` = 1, 2, · · · , and carrying out the integration over Z ′ in

Eq. (37), it is found that a class of solutions exists with density perturbation amplitude

δn`
b(r) =

∫
d2pδF `

b (r,p⊥) localized at the surface of the charge bunch (r = rb). Without

presenting algebraic details[1, 38], we obtain

4πeb

∫
d3pδF `

b (r,p⊥) = −2`

rb
χ`

b(Ω)[δφ`(r) − βbδA
`
z(r)]δ(r− rb) . (38)

Here, the response function χ`
b(Ω) is defined by

χ`
b(Ω) = − ω̂2

pb

2`2`ν2
b

∑̀
m=0

`!

m!(`−m)!

(`− 2m)νb

Ω − (`− 2m)νb
, (39)

where Ω = ω−kzVb is the Doppler shifted frequency, ω̂pb = (4πn̂be
2
b/γbmb)

1/2 is the relativistic

plasma frequency, and νb = (ω2
β⊥ − ω̂2

pb/2γ
2
b )1/2 is the depressed betatron frequency. As

expected, the response function in Eq. (39) has a rich harmonic content at harmonics of νb.

We define

δψ`(r) = δφ`(r) − βbδA
`
z(r) , (40)

and denote δψ̂` = δψ`(rb), δφ̂
` = δφ`(rb) and δÂ`

z = δA`
z(rb). Substituting Eqs. (29), (38)

and (40) into Eqs. (26) and (27), Maxwell’s equations become(
1

r

∂

∂r
r
∂

∂r
− `2

r2

)
δφ`(r) =

2`

rb
χ`

b(Ω)δψ̂`δ(r − rb) , (41)

and (
1

r

∂

∂r
r
∂

∂r
− `2

r2

)
δA`

z(r) =
2`

rb
βbχ

`
b(Ω)δψ̂`δ(r− rb) , (42)

for azimuthal mode numbers ` = 1, 2, · · · .
Equations (41) and (42), derived for perturbations about the equilibrium distribution

f0
b (r,p) in Eq. (2) with flattop-density profile in Eq. (4), constitute the final forms of the

eigenvalue equations used in the present stability analysis. Here, Eqs. (41) and (42) are to be

solved over the interval 0 ≤ r ≤ rw for the eigenfunctions δφ`(r) and δA`
z(r) and eigenvalue

Ω, subject to the condition that δφ`(r) and δA`
z(r) be regular at the origin (r = 0), and

satisfy the boundary conditions in Eq. (20) at the conducting wall (r = rw). It should

be emphasized that Eqs. (41) and (42) are valid over the entire range of normalized beam

intensity, 0 < sb = ω̂2
pb/2γ

2
bω

2
β⊥ < 1, subject to the assumption of low-frequency, long-

wavelength perturbations in Eqs. (12) and (23).

13



B. Derivation of Dispersion Relation

We now solve Eqs. (41) and (42) in the beam interior (0 ≤ r < rb) and in the vacuum

region outside the charge bunch (rb < r ≤ rw). The solutions to Eqs. (41) and (42) that are

regular at r = 0 can be expressed as

δφ`(r) =

{
δφ̂`(r/rb)

` , 0 ≤ r < rb ,

A′(r/rb)
` +B ′(rb/r)

` , rb < r ≤ rw ,
(43)

and

δA`
z(r) =

{
δÂ`

z(r/rb)
` , 0 ≤ r < rb ,

A(r/rb)
` +B ′(rb/r)

` , rb < r ≤ rw ,
(44)

where δφ̂` ≡ δφ`(r = rb) and δÂ`
z ≡ δA`

z(r = rb), and A′, B ′, A and B are constants. We

enforce continuity of δφ`(r) and δA`
z(r) at r = rb, which gives

A′ +B ′ = δφ̂` ,

A +B = δÂ`
z . (45)

Note from Eqs. (41) and (42) that there are surface charge and current perturbations at

r = rb [the terms proportional to δ(r − rb)]. The remaining boundary conditions at r = rb

are therefore obtained by operating on Eqs. (43) and (44) with
∫ rb(1+ε)

rb(1−ε)
drr · · · , and taking

the limit ε→ 0+. This readily gives

A′ − B ′ − δφ̂` = 2χ`
b(Ω)δψ̂` ,

A− B − δÂ`
z = 2βbχ

`
b(Ω)δψ̂` , (46)

where δψ̂` ≡ δφ̂` − βbδÂ
`
z, and ` = 1, 2, 3, · · · . Equation (46) effectively determines the

discontinuity in perturbed radial electric field (azimuthal magnetic field) in terms of the

perturbed surface charge density (current density), which is proportional to χ`
b(Ω). Solving

for the coefficients A′, B ′, A and B in terms of δφ̂` and δÂ`
z, we obtain from Eqs. (45) and

14



(46)

A′ = δφ̂` + χ`
b(δφ̂

` − βbδÂ
`
z) ,

B ′ = −χ`
b(δφ̂

` − βbδÂ
`
z) ,

B = −βbχ
`
b(δφ̂

` − βbδA
`
z) = βbB

′ ,

A = δÂ`
z + βbχ

`
b(δφ̂

` − βbδÂ
`
z) , (47)

where χ`
b(Ω) is defined in Eq. (39), and use has been made of δψ̂` = δφ̂` − βbδÂ

`
z.

We now enforce the boundary conditions at the conducting wall (r = rw) given in Eq. (20).

Making use of the solutions for δφ`(r) and δA`
z(r) in the vacuum region (rb < r ≤ rw) given

in Eqs. (43) and (44), the boundary conditions in Eq. (20) can be expressed as

kz

[
A′ +B ′

(
rb

rw

)2`]
− ω

c

[
A +B

(
rb

rw

)2`]
=

i`

rw
Z̃(ω)

[
A− B

(
rb

rw

)2`]
, (48)

and

`

rw

[
A′ +B ′

(
rb

rw

)2`]
= −ikzZ̃(ω)

[
A− B

(
rb

rw

)2`]
− iω

c
Z̃(ω)

[
A′ − B ′

(
rb

rw

)2`]
, (49)

where Z̃(ω) is the wall impedance. Equations (47)–(49) can be combined to give two linear,

homogeneous equations relating the perturbation amplitudes δφ̂` and δÂ`
z. The dispersion

relation for the complex frequency Ω is then obtained by setting the determinant of the 2x2

coefficient matrix equal to zero. In the limit of a perfect conductor with Z̃ → 0, note that

Eqs. (48) and (49) give A′ → −B ′(rb/rw)2` and A → −B(rb/rw)2`, which correspond to the

boundary conditions for a perfect conductor, δφ`(r = rw) = 0 = δA`
z(r = rw), as expected.

For Z̃ 6= 0, it is convenient to express

A = −B
(
rb

rw

)2`

(1 + ∆) ,

A′ = −B ′
(
rb

rw

)2`

(1 + ∆′) , (50)

and make use of Eqs. (48) and (49) to solve for ∆ and ∆′ in terms of the impedance Z̃(ω).

Substituting Eq. (50) into Eqs. (48) and (49), and making use of B = βbB
′ [Eq. (47)], we

obtain

kz∆
′ − βb

(
ω

c
+

`

rw
iZ̃

)
∆ = 2βb

`

rw
iZ̃ ,

(
`

rw
+
ω

c
iZ̃

)
∆′ + βbkziZ̃∆ = −2

(
βbkz +

ω

c

)
iZ̃ . (51)
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Equation (51) can be used to determine closed expressions for ∆′ and ∆ in terms of the wall

impedance Z̃(ω). For example, if

|Z̃| �
∣∣∣∣ωc rw

`

∣∣∣∣ ,
∣∣∣∣ cω `

rw

∣∣∣∣ , (52)

then the approximate solutions to Eq. (51) are given correct to leading order by

∆′ = −2
ωrw

`c

(
1 +

kzVb

ω

)
iZ̃(ω) ,

∆ = −2
`c

ωrw

[
1 +

k2
zr

2
w

`2

(
1 +

ω

kzVb

)]
iZ̃(ω) , (53)

where Vb = βbc. If we estimate ω ≈ kzVb, then the inequalities in Eq. (52) assure that |∆′|,
|∆| � 1 and that the wall impedance contributions proportional to ∆ and ∆′ in Eq. (50)

represent small corrections to the results for a perfectly conducting wall.

In any case, we now make use of Eq. (50) to derive the dispersion relation that determines

Ω (generally complex) in terms of the oscillation frequency ω and system parameters such

as the plasma frequency ω̂pb, depressed betatron frequency νb, and wall impedance Z̃(ω).

Substituting Eq. (47) into Eq. (50), where ∆ and ∆′ solve Eq. (51), and making use of

B = βbB
′, we readily obtain

δÂ`
z − βbδφ̂

` − βb

(
rb

rw

)2`

(∆ − ∆′)χ`
bδψ̂

` = 0 , (54)

and

δ̂A`
z + βb

[
1 −

(
rb

rw

)2`]
χ`

bδψ̂
` − βb

(
rb

rw

)2`

∆χ`
bδψ̂

` = 0 , (55)

where δψ̂` = δφ̂` − βbδÂ
`
z. Rewriting δÂ`

z − βbδφ̂
` = (1/γ2

b )δA
`
z − βbδψ̂

`, and eliminating

δÂ`
z from Eqs. (54) and (55), we obtain

D`
b(Ω)δψ̂` = 0 , (56)

where D`
b(Ω) is the dielectric function defined by

D`
b(Ω) = 1 +

1

γ2
b

[
1 −

(
rb

rw

)2`]
χ`

b(Ω) +

(
rb

rw

)2`

χ`
b(Ω)[β2

b ∆ − ∆′] , (57)

and use has been made of β2
b = 1 − 1/γ2

b . The condition for a nontrivial solution (δψ̂` 6= 0)

to Eq. (56) is

D`
b(Ω) = 0 . (58)
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Equation (58) is the final form of the dispersion relation derived from the linearized

Vlasov-Maxwell equations (25)–(27) for perturbations about the choice of equilibrium dis-

tribution function in Eq. (2) with corresponding flattop density profile in Eq. (4). The

dispersion relation (58) is valid for low-frequency long-wavelength perturbations consistent

with Eqs. (12) and (23), and can be applied over a wide range of normalized beam intensity

sb in the range 0 < sb = ω̂2
pb/2γ

2
bω

2
β⊥ < 1. In the definition of D`

b(Ω) in Eq. (57), the response

function χ`
b(Ω) is defined in Eq. (39) for general azumithal mode number ` = 1, 2, · · · , and

the quantities ∆ and ∆′ are determined in terms of the wall impedance Z̃(ω) from Eq. (51).

In circumstances where Eq. (52) is satisfied, ∆ and ∆′ are given approximately by Eq. (53).

Making use of Eq. (53) and β2
b = 1 − 1/γ2

b , it is readily shown that

β2
b ∆ − ∆′ = −2iZ̃(ω)

c`

ωrw

[
β2

b +

(
k2

z −
ω2

c2

)
r2
w

`2
− k2

zr
2
w

`2γ2
b

]
. (59)

For k2
zr

2
b/γ

2
b , |k2

z − ω2/c2|r2
w � β2

b [see also Eqs. (23) and (24)], note that the last two terms

in Eq. (59) can be neglected, and Eq. (59) can be approximated by

β2
b ∆ − ∆′ = −2iβ2

b

c`

ωrw
Z̃(ω) . (60)

IV. WALL-IMPEDANCE-DRIVEN INSTABILITY FOR DIPOLE-MODE PER-

TURBATIONS (` = 1)

The dispersion relation (58) can be used to investigate detailed stability properties for

azimuthal mode numbers ` = 1, 2, 3, · · · . For present purposes, we consider dipole-mode

perturbations with ` = 1. In this case, it follows from Eq. (39) that the response function

χ`=1
b (Ω) is given by

χ`=1
b (Ω) = − ω̂2

pb/2

Ω2 − ν2
b

, (61)

where ν2
b = ω2

β⊥ − ω̂2
pb/2γ

2
b . Substituting Eq. (61) into Eq. (57), the dispersion relation (58)

reduces to

D`=1
b (Ω) = 1 − 1

2γ2
b

(
1 − r2

b

r2
w

)
ω̂2

pb

Ω2 − ν2
b

− 1

2

r2
b

r2
w

(β2
b ∆ − ∆′)

ω̂2
pb

Ω2 − ν2
b

= 0 , (62)

for dipole-mode perturbations with ` = 1. Here, ∆ and ∆′ are determined in terms of the

wall impedance Z̃(ω) from Eq. (51). In the present analysis we approximate β2
b ∆ − ∆′ by

Eq. (60) to the required accuracy, and Eq. (62) reduces to

Ω2 = ω2
β⊥ −

(
r2
b

rw

)2 ω̂2
pb

2γ2
b

−
(
rb

rw

)2

β2
b ω̂

2
pb

c

ωrw
iZ̃(ω) , (63)
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where use has been made of ν2
b = ω2

β⊥ − ω̂2
pb/2γ

2
b .

We consider the case where the dipole perturbation has real oscillation frequency ω = ω0,

and make use of Eq. (63) to determine the complex solutions for Ω = Ωr + iΩi. Referring to

Eq. (29), keep in mind that the solutions with (ImΩ)/Vb = Ωi/Vb > 0 correspond to spatially

amplifying perturbations proportional to exp[(Ωi/Vb)Z]. Expressing Z̃(ω0) = Z̃r + iZ̃i, we

rewrite Eq. (63) as

Ω2 = X + iY (64)

where

X = ω2
β⊥ −

(
rb

rw

)2 ω̂2
pb

2γ2
b

+

(
rb

rw

)2

β2
b ω̂

2
pb

c

ω0rw
Z̃i ≡ Ω2

0 ,

Y = −
(
rb

rw

)2

β2
b ω̂

2
pb

c

ω0rw
Z̃r . (65)

Solving Eq. (64) for Ω = Ωr + iΩi readily gives

Ωr = ± 1√
2
[X + (X2 + Y 2)1/2]1/2 , (66)

and

Ωi = ∓ 1√
2
[−X + (X2 + Y 2)1/2]1/2 , (67)

where X = Ω2
0 > 0 is assumed. The solutions in Eq. (66) correspond to sideband oscillations.

Representing kz = kzr + ikzi, then Ωr = Re(ω0 − kzVz) = ω0 − kzrVb, and the upper (+) and

lower (−) signs in Eq. (66) correspond to excitations with phase velocity ω0/kzr > Vb and

ω0/kzr < Vb, respectively. Note from Eqs. (66) and (67) that the upper sideband is damped

(Ωi < 0) whereas the lower sideband is growing (Ωi > 0) whenever Z̃r 6= 0 (Y 6= 0). For the

case of sufficiently low wall impedance that |Y | � X = Ω2
0, note that Eqs. (66) and (67)

can be approximated by

Ωr = ±Ω0 ,

Ωi = ∓1

2

|Y |
Ω0

, (68)

where Ω0 and Y are defined in Eq. (65).

We now consider Eqs. (66)–(68) in the three cases corresponding to: (a) perfectly con-

ducting cylindrical wall with Z̃(ω) = 0; (b) conducting cylindrical wall with conductivity σ

and Z̃(ω) 6= 0; and (c) wall with model impedance function Z̃(ω).
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(a) Perfectly Conducting Cylindrical Wall (Z̃ = 0): For a perfecftly conducting wall with

Z̃(ω) = 0, Eqs. (66) and (67) reduce to

Ωr = ±ωβ⊥

(
1 − r2

b

r2
w

ω̂2
pb

2γ2
bω

2
β⊥

)1/2

,

Ωi = 0 . (69)

¿From Eq. (69), note that Ωr ' ±ωβ⊥ whenever sb = ω̂2
pb/2γ

2
bω

2
β⊥ � 1. On the other

hand, for a space-charge-dominated beam with sb → 1, Eq. (69) reduces to Ωr ' ±ωβ⊥(1 −
r2
b/r

2
w)1/2. In general, Ω2

r is reduced relative to ω2
β⊥ due to image charge effects [the term

proportional to (r2
b/r

2
w)(ω̂2

pb/2γ
2
bω

2
β⊥) in Eq. (69)].

(b) Conducting Cylindrical Wall with Conductivity σ (Z̃ 6= 0): For a smooth cylindrical

wall with electrical conductivity σ, the impedance function can be approximated by Eq. (21),

or equivalently,

Z̃(ω0) =
ω0

2c
δ(1 − i) , (70)

where δ ≡ 1/(2πσω0)
1/2 is the skin depth. Substituting Eq. (70) into Eqs. (65)–(68) gives

Ωr = ±Ω0 ' ±ωβ⊥

(
1 − r2

b

r2
w

ω̂2
pb

2γ2
bω

2
β⊥

)1/2

,

Ωi = ∓1

4

r2
b

r2
w

β2
b

ω̂2
pb

Ω0

δ

rw
, (71)

where we have neglected Z̃i in the definition of Ω0 in Eq. (65) for δ � rw. Note from

Eq. (71) that the lower sideband with Ωr = −Ω0 is unstable (ImΩ = Ωi > 0), and that the

growth rate is proportional to ω̂2
pb/Ω0, which is an increasing function of the beam density

n̂b. Moreover, the growth rate Ωi is linearly proportional to the normalized skin depth δ/rw,

where δ = 1/(2πσω0)
1/2 → 0 as σ → ∞.

(c) Wall with Model Impedance: The interaction of an intense beam with the induction

modules of course depends on the cavity design, details of the drive circuitry, etc. This

interaction is often modeled by a complex coupling impedance [2, 42, 43] Z̃(ω0) = Z̃r(ω0) +

iZ̃i(ω0), where

Z̃r(ω0) =
R

1 + ω2
0R

2C2
,

Z̃i(ω0) =
ω0R

2C

1 + ω2
0R

2C2
. (72)
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Here, R is the resistance associated with the external drive source, C is the effective module

capacitance, and ω0 is the excitation frequency. Equation (72) can be substituted into

Eqs. (65)–(67) to calculate the real frequency Ωr and growth rate Ωi, including the effects

of the modification of Ω2
0 by finite Z̃i due to the module capacitance C [see Eqs. (65) and

(72)]. For present purposes, we neglect the Z̃i contribution to Ω2
0, and make use of Eq. (68),

which gives

Ωr = ±Ω0 ' ±ωβ⊥

(
1 − r2

b

r2
w

ω̂2
pb

2γ2
bω

2
β⊥

)1/2

,

Ωi = ∓1

2

r2
b

r2
w

β2
b

ω̂2
pb

Ω0

c

ω0rw

R

1 + ω2
0R

2C2
. (73)

Note that the growth rate Ωi in Eq. (73) is a maximum for ω2
0R

2C2 = 1/2.

In concluding this section it is evident that the main stability results [Eqs. (67), (68),

(71) and (73)] can be applied over a wide range of system parameters and models for the

wall impedance Z̃(ω). Of particular interest is the scaling of the growth rate Ωi = ImΩ with

normalized beam intensity sb = ω̂2
pb/2γ

2
bω

2
β⊥. Making use of Eqs. (65) and (68), where the

Z̃i contribution to Ω2
0 is neglected in Eq. (65), it is straightforward to show that the growth

rate of the lower sideband in Eq. (68) can be expressed as

Ωi

ωβ⊥
=

β2
bγ

2
b sbr

2
b/r

2
w

(1 − sbr2
b/r

2
w)1/2

∣∣∣∣ e

ω0rw
Z̃r(ω0)

∣∣∣∣ . (74)

The expression for growth rate in Eq. (74) is valid over the entire range of normalized beam

intensity sb ranging from low-intensity beams with sb � 1 to space-charge-dominated beams

with sb → 1. For fixed values of βbγb, rb/rw and Z̃r, note from Eq. (74) that the growth rate

Ωi is an increasing function of normalized beam intensity sb. Furthermore, for fixed values

of βbγb, sb and Z̃r, the growth rate Ωi increases as the conducting wall is brought into closer

proximity to the beam (increasing values of r2
b/r

2
w).

V. CONCLUSIONS

As noted in Sec. I, there has been considerable recent analytical progress in applying the

Vlasov-Maxwell equations to investigate the detailed equilibrium and stability properties of

intense charged particle beams. These investigations have included a wide variety of diverse

applications ranging from the Harris-like instability driven by large temperature anisotropy
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with T⊥b � T‖b[37], to the dipole-mode two-stream instability for an intense ion beam propa-

gating through background electrons[38], to the resistive hose instability[39] and the sausage

and hollowing instabilities[40] for intense beam propagation through background plasma, to

the development of a nonlinear stability theorem[23, 24] in the smooth-focusing approxi-

mation. Building on these advances, in the present analysis we have reexamined the clas-

sical wall-impedance-driven instability[41–45], making use of the linearized Vlasov-Maxwell

equations for perturbations about a Kapchinskij-Vladimirskij (KV) beam equilibrium with

flattop density profile, assuming a long charge bunch (bunch length `b � bunch radius

rb) propagating through a cylindrical pipe with radius rw and wall impedance Z̃(ω). The

stability analysis (Secs. II and III) was carried out for perturbations with azimuthal mode

number ` ≥ 1 about a cylindrical KV beam in the smooth-focusing approximation, leading

to the dispersion relation (58). Detailed stability properties were determined (Sec. IV) for

dipole-mode perturbations (` = 1), assuming negligibly small axial momentum spread of

the beam particles. A key feature of the present analysis is that the instability growth rate

for the dipole mode [Eq. (67)] is valid for general value of the normalized beam intensity

sb = ω̂2
pb/2γ

2
bω

2
β⊥ in the interval 0 < sb < 1, where ω̂pb = (4πn̂be

2
b/γbmb)

1/2 is the relativistic

plasma frequency and ωβ⊥ is the applied focusing frequency.
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