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Abstract

In plasmas with strongly anisotropic distribution functions (Tjjb=T?b � 1) a Harris-like collective

instability may develop if there is suÆcient coupling between the transverse and longitudinal de-

grees of freedom. Such anisotropies develop naturally in accelerators and may lead to a detoriation

of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson

and H. Qin, Phys. Plasmas 9, 3138, 2002] of the stability properties of intense nonneutral charged

particle beams with large temperature anisotropy
�
T?b � Tkb

�
to allow for non-axisymmetric per-

turbations with @=@� 6= 0. The most unstable modes are identi�ed, and their eigenfrequencies,

radial mode structure, and nonlinear dynamics are determined. The simulation results clearly

show that moderately intense beams with sb = b!2
pb=2

2
b!

2
�? � 0:5 are linearly unstable to short

wavelength perturbations with k2zr
2
b � 1, provided the ratio of longitudinal and transverse temper-

atures is smaller than some threshold value. Here, b!2
pb = 4�bnbe2b=bmb is the relativistic plasma

frequency-squared, and !�? is the betatron frequency associated with the applied smooth-focusing

�eld. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the

essential features of the linear stages of instability. Both the simulations and the analytical theory

predict that the dipole mode (azimuthal mode number m = 1) is the most unstable mode. In the

nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic

instability saturates due to resonant wave-particle interactions.
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I. INTRODUCTION

Periodic focusing accelerators, transport systems and storage rings [1{5] have a wide range

of applications ranging from basic scienti�c research in high energy and nuclear physics, to

applications such as heavy ion fusion, spallation neutron sources, tritium production and

nuclear waste transmutation, to mention a few examples. Of particular importance at the

high beam currents and charge densities of practical interest, are the e�ects of the intense

self �elds produced by the beam space charge and current on determining the detailed equi-

librium, stability and transport properties. While considerable progress has been made in

understanding the self-consistent evolution of the beam distribution function, fb(x;p; t), and

self-generated electric and magnetic �elds, Es(x; t) and Bs(x; t), in kinetic analyses based on

the nonlinear Vlasov-Maxwell equations [1, 6{10], in numerical simulation studies of intense

beam propagation [11{21], and in macroscopic warm-uid models [22{25], the e�ects of �-

nite geometry and space-charge e�ects often make predictions of detailed stability behavior

diÆcult. It is therefore important to develop an improved understanding of fundamen-

tal collective stability properties, including the case where a large temperature anisotropy

(T?b � Tkb) can drive a Harris-like instability [26, 27], familiar in the study of electrically

neutral plasmas.

It is well known that in neutral plasmas with strongly anisotropic distributions (Tjjb=T?b �
1) a collective instability may develop if there is suÆcient coupling between the transverse and

longitudinal degrees of freedom [26, 27]. Such anisotropies develop naturally in accelerators.

Indeed, due to conservation of energy for particles with charge q accelerated by a voltage

V , the energy spread of particles in the beam does not change, and (nonrelativistically)

�Ebi = mb�v
2
bi=2 = �Ebf = mbVb�vbf , where Vb = (qV=mb)

1=2 is average beam velocity

after acceleration. Therefore, the velocity spread-squared, or equivalently the temperature,

changes according to Tjjbf = T 2
jjbi=2qV ( for a nonrelativistic beam). At the same time, the

transverse temperature may increase due to nonlinearities in the applied and self-�eld forces,

nonstationary beam pro�les, and beam mismatch. These processes provide the free energy to
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drive collective instabilities and may lead to a detoriation of beam quality [20, 28, 29]. The

instability may also lead to an increase of longitudinal velocity spread, which will make the

focusing of the beam diÆcult and may impose a limit on the minimum spot size achievable

in heavy ion fusion experiments.

Previous studies of this anisotropy-driven instability for long, coasting beams [8, 11,

12, 23, 30{34] have shown that moderately intense beams with normalized beam intensity

sb = !2
pb=2

2
b!

2
f

>� 0:5 are linearly unstable to short-wavelength, axisymmetric (@=@� = 0)

perturbations with k2zr
2
b

>� 1, provided the ratio of longitudinal to transverse temperatures

is smaller than some threshold value. Here, !2
pb = 4�bnbe2b=bmb is the relativistic plasma

frequency-squared, and !f = const: is the smooth-focusing frequency associated with the

applied �eld. Detailed stability properties for a �nite-length charge bunch have been in-

vestigated by Hofmann et al. [35, 36]. In this article, we extend our previous analytical

and numerical studies [11] of this instability to the case of non-axisymmetric perturbations

with @=@� 6= 0. A simpli�ed kinetic theory of the instability for arbitrary three-dimensional

perturbations about a bi-Maxwellian distribution is presented in this paper, which appears

to capture the main features of the instability and is a relatively straightforward generaliza-

tion of the analysis of the Harris instability in electrically neutral plasma to the case of an

intense particle beam with intense self �elds. The 3D nonlinear perturbative particle sim-

ulation code [15, 17], called the Beam Equilibrium, Stability and Transport (BEST) code,

is used to systematically study the electrostatic stability properties of intense nonneutral

charged particle beams with large temperature anisotropy
�
T?b � Tkb

�
. The most unstable

modes are identi�ed, and their eigenfrequencies, and radial mode structure are determined

for perturbations with general azimuthal mode number m. The instability thresholds ob-

tained in the simulations, as well as detailed simulations of the nonlinear development and

saturation of the instability are presented. We identify the main saturation mechanism as

quasilinear stabilization due to resonant wave-particle interactions (Landau damping).

The organization of this paper is the following. In Sec. II, we present a simpli�ed kinetic

model of the instability based on a matrix dispersion equation derived from the linearized
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Vlasov-Poisson equations. The nonlinear Æf simulation method is briey described in Sec.

III, and in Sec. IV we present detailed simulation results for a wide range of system param-

eters and perturbations with general azimuthal mode number m.

II. LINEAR STABILITY THEORY

A. Kinetic Description

It is important to extend theoretical studies of the kinetic stability properties of

anisotropic beams to distribution functions other than the KV distribution. This is be-

cause the KV distribution has an (unphysical) inverted population in transverse phase-space

variables, which provides the free energy to drive collective instabilities at suÆciently high

beam intensity that are intrinsic to this inverted population [7, 8]. This, of course, can

mask the e�ects of anisotropy-driven instabilities. To this end, we briey outline here a

simple derivation of the Harris-like instability [26, 27] in intense particle beams for electro-

static perturbations about the thermal equilibrium distribution with temperature anisotropy

(T?b > Tkb) described in the beam frame by the self-consistent axisymmetric Vlasov equilib-

rium [1, 10]

f 0b (r;p) =
bnb

(2�mbT?b)
exp

�
�H?

T?b

�
1

(2�mbTkb)1=2
exp

 
� p2z
2mbTkb

!
: (1)

Here, H? = p2?=2mb + (1=2)mb!
2
f(x

2 + y2) + eb�
0(r) is the single-particle Hamiltonian for

transverse particle motion, p? = (p2x + p2y)
1=2 is the transverse particle momentum, r =

(x2+y2)1=2 is the radial distance from the beam axis, !f = const: is the transverse frequency

associated with the applied focusing �eld in the smooth-focusing approximation, and �0(r) is

the equilibrium space-charge potential determined self-consistently from Poisson's equation,

1

r

@

@r
r
@�0

@r
= �4�ebn0b ; (2)

where n0b(r) =
R
d3pf 0b (r;p) is the equilibrium number density of beam particles. For sim-

plicity, the analysis is carried out in the beam frame (Vb = 0 and b = 1). Furthermore,
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setting �0(r = 0) = 0, the constant bnb occuring in Eq. (1) can be identi�ed with the on-axis

density n0b(r = 0), and the constants T?b and Tkb can be identi�ed with the transverse and

longitudinal temperatures (energy units), respectively.

For present purposes, we consider small-amplitude electrostatic perturbations of the form

Æ�(x; t) = cÆ�(r) exp(im� + ikzz � i!t); (3)

where Æ�(x; t) is the perturbed electrostatic potential, kz is the axial wavenumber, m is

the azimuthal mode number and ! is the complex oscillation frequency, with Im! > 0

corresponding to instability (temporal growth). Without presenting algebraic details, using

the method of characteristics [1], the linearized Poisson equation can be expressed as

1

r

@

@r
r
@

@r
cÆ�(r)� k2z

cÆ�(r)� m2

r2
cÆ�(r) = �4�eb

Z
d3pdÆfb(r;p); (4)

where

dÆfb(r;p) = eb
@f 0b
@H?

cÆ�+ eb

"
(! � kzvz)

@f 0b
@H?

+ kzvz
@f 0b
@Hjj

#

� i

tZ
�1

dt0cÆ�[r0(t0)] expfi(kzvz � !)(t0 � t) + im[�0(t0)� �0(t)]g (5)

for perturbations about the choice of the anisotropic thermal equilibrium distribution func-

tion in Eq. (1). Here, Hjj = p2z=2mb and vz = pz=mb. In the orbit integral in Eq. (5),

Im! > 0 is assumed, and r0(t0) = [x02(t0) + y02(t0)]1=2 and �0(t0) are the transverse orbits in

the equilibrium �eld con�guration such that [x0?(t
0);p0?(t

0)] passes through the phase-space

point (x?;p?) at time t0 = t [1]. Here, �0(t0 = t) = �, and the orbit �0(t0)� �0(t) is function

of the time di�erence t0 � t = � . We express

�0(t0)� �0(t) =
Z t0

t

P�
mb[r0(t00)]2

dt00; (6)

where P� = rp� = xpy� ypx = const: is the canonical angular momentum of a beam particle

moving in the axisymmetric equilibrium con�guration. It is convenient to rewrite Eq. (6) as

�0(t0)� �0(t) = �0(t0 � t0min)� �0(t� t0min); (7)
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where t0min is de�ned by r0(t0min) = r0min(H?; P�). Here, r
0
min(H?; P�) is the minimum radial

excursion of the particle trajectory undergoing periodic motion. The functions r0(t0) and

�0(t0� t0min)�!�(t0� t0min) are periodic functions with period Tr = 2�=!r, where !r(H?; P�)

is the frequency of radial oscillations, and !�(H?; P�) = ��=Tr is the average frequency of

angular rotation. Here �� is the change in angle �0(t0) during the period of time Tr. We

expand in the Fourier series representation

cÆ�[r0(t0)] expfim[�0(t0 � t0min)� !�(t
0 � t0min)]g

=
X
n

exp [in!r(t
0 � t0min)]

Z Tr

0

d�

Tr
cÆ�[br(�)]

� expf�in!r� + im[�0(�)� !�� ]g; (8)

where br(�) is de�ned by the equation

� =
Z br(�)
r0min

d�rq
2mb[H? � P 2

� =2mb�r2 �  0(�r)]
; (9)

and  0(�r) = mb!
2
f �r

2=2 + eb�0(�r). Substituting Eq. (8) into Eq. (5) and integrating over t0,

we obtain

dÆfb(r;p) = eb
@f 0b
@H?

cÆ�+ eb

"
(! � kzvz)

@f 0b
@H?

+ kzvz
@f 0b
@Hjj

#

�X
n

exp [in!rbt+ im!�bt� im�0(bt)]
n!r +m!� + kzvz � !

In;m(H?; P�): (10)

In Eq. (10), the quantity bt can be expressed as

bt(r;H?; P�) =
Z r

r0
min

d�rq
2mb[H? � P 2

� =2mb�r2 �  0(�r)]
; (11)

and �0(bt) can be expressed as

�0(bt) = Z r

r0min

P�
mb�r2

@bt(�r;H?; P�)

@�r
d�r: (12)

Furthermore, In;m(H?; P�) is de�ned by

In;m(H?; P�) =
Z Tr

0

d�

Tr
cÆ�[br(�)] expf�in!r� + im[�0(�)� !�� ]g: (13)

In Eq. (4), we express the perturbation amplitude as cÆ�(r) = P
n
�n�n(r), where f�ng

are constants, and the complete set of vacuum eigenfunctions f�n(r)g is de�ned by �n(r) =
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AnJm(�nr=rw). Here, �n is the n'th zero of Jm(�n) = 0, and An =
p
2=[rwJm+1(�n)] is a nor-

malization constant such that
R rw
0 drr�n(r)�n0(r) = Æn;n0. We substitute cÆ�(r) = P

n
�n�n(r)

into Poisson's equation (4) and operate with
R rw
0 drr�n0(r) � � �. This gives the matrix disper-

sion equation X
n

�nDn;n0(!) = 0; (14)

where Dn;n0(!) is de�ned by

Dn;n0(!) =
J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 + �n;n0(!); (15)

and the beam-induced susceptibility �n;n0(!) is de�ned by

�n;n0(!) = �4�ebr2w
Z rw

0
drr�n0(r)

Z
d3pdÆfnb (r;p): (16)

Here, dÆfnb (r;p) is de�ned by Eq. (10) with cÆ�! �n.

By changing the integration variables in Eq. (16) from fr; pr; p�g to fbt; H?; P�g, where
bt(r;H?; P�) is the time measured along the particle trajectory from the point where the radial

distance is equal to r0min de�ned in Eq. (11) , the integration volume transforms according

to rdrdprdp� = dP�dH?dbt. Using Eq. (10), Eq. (16) can be rewritten as

�n;n0(!) =
r2w
�2d
qn;n0 � 1

mb�2d

X
p

Z dP�
!r

dH?

T?b
dpz exp

�
�H?

T?b

�
fM(pz)

�
"

! � kzvz
! � p!r �m!� � kzvz

+
k2zT?b

(! � p!r �m!� � kzvz)2

#
(Ip;mn )�Ip;mn0 ; (17)

where �2d = T?b=4�e
2
b bnb is the perpendicular Debye length-squared, and fM(pz) =

(2�mbT?b)
�1=2 exp(�p2z=2mbT?b): In Eq. (17), qn;n0 and I

p;m
n are de�ned by

qn;n0 =
Z 1

0
dxxN(xrw)Jm(�nx)Jm(�n0x); (18)

and

Ip;mn (H?; P�) =
Z Tr

0

d�

Tr
Jm

"
�nbr(�)
rw

#
expf�ip!r� + im[�0(�)� !�� ]g: (19)

In Eq. (18), ( )� denotes complex conjugate, and N(xrw) = n0b(xrw)=bnb is the normalized

density pro�le, where n0b(r) =
R
d3pf 0b (r;p). The condition for a nontrivial solution to Eq.
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(14) is

detfDn;n0(!)g = 0; (20)

which plays the role of a matrix dispersion relation that determines the complex oscillation

frequency !.

In the following analysis, it is convenient to introduce the e�ective depressed betatron

frequency !�?. It can be shown [1] that for the equilibrium distribution in Eq. (1), the

mean-square beam radius r2b de�ned by

r2b = hr2i =
R
drr3n0b(r)R
drrn0b(r)

; (21)

is related exactly to the line density Nb = 2�
R
drrn0b(r), and transverse beam temperature

T?b by the equilibrium radial force balance equation [1]

!2
fr

2
b =

Nbe
2
b

mb
+
2T?b
mb

: (22)

Equation (22) can be rewritten as

�
!2
f �

1

2
�!2
pb

�
r2b =

2T?b
mb

; (23)

where we have introduced the e�ective average beam plasma frequency �!pb de�ned by

r2b �!
2
pb �

Z rw

0
drr!2

pb(r) =
2e2bNb

mb

: (24)

Then, Eq. (23) can be used to introduce the e�ective depressed betatron frequency !�?

de�ned by

!2
�? �

�
!2
f �

1

2
�!2
pb

�
=

2T?b
mbr2b

: (25)

If, for example, the beam density were uniform over the beam cross-section, then Eq. (25)

corresponds to the usual de�nition of the depressed betatron frequency for a KV beam, and

it is readily shown that the radial orbit br(�) occurring in Eqs. (9), (13) and (19) can be

expressed as

br2(�) = H?

mb!2
�?

2641�
vuut1�

�
!�?P�
H?

�2
cos(2!�?�)

375 : (26)
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In general, for the choice of equilibrium distribution function in Eq. (1), there will be a

spread in transverse depressed betatron frequencies !�?(H?; P�), and the particle trajectories

will not be described by the simple trigonometric function in Eq. (26). For present purposes,

however, we consider a simple model in which the radial orbit br(�) occurring in Eqs. (9), (13)
and (19) is approximated by Eq. (26) with the constant frequency !�? de�ned in Eq. (25), and

the approximate equilibrium density pro�le is de�ned by n0b(r) = bnb exp(�mb!
2
�?r

2=2T?b).

For a nonuniform beam, !�1�? is the characteristic time for a particle with thermal speed

vth? = (2T?b=mb)
1=2 to cross the rms radius rb of the beam. In this case, it is shown in

Appendix B thatDn;n0(!) can be evaluated in closed analytical form provided the conducting

wall is suÆciently far removed from the beam (rw=rb >� 3, say). In the limit of an anisotropic

beam distribution that is cold in the longitudinal direction, i.e.,

Tkb
T?b

! 0; (27)

the result is

Dm=2l
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�zn;n � zn0;n0)

�
"
I2l(2zn;n0)� I2l (zn;n0)

 
1 +

k2zv
2
th

2!2

!
�

1X
q=1

Iq�l(zn;n0)Iq+l(zn;n0)

�
 

2!2

!2 � 4q2!2
�?

+ k2zv
2
th?

!2 + 4q2!2
�?

(!2 � 4q2!2
�?)

2

!#
(28)

for even values of m = 2l, and

Dm=2l+1
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�zn;n � zn0;n0)

"
I2l+1(2zn;n0)�

�
1X
q=0

Iq�l(zn;n0)Iq+l+1(zn;n0)

 
2!2

!2 � (2q + 1)2!2
�?

+ k2zv
2
th?

!2 + (2q + 1)2!2
�?

[!2 � (2q + 1)2!2
�?]

2

!#
(29)

for odd values of m = 2l+1. Here, zn;n0 = (rb=rw)
2�n�n0=4. In this case, the matrix elements

decrease exponentially away from the diagonal, with�����Dn;n+k

Dn;n

����� � exp

 
��

2k2

4

r2b
r2w

!
; (30)

where k is an integer, and we have used the approximate relation �n � �(4n�1)=4. Therefore,
for rw=rb >� 3, we can approximate fDn;n0(!)g by a tri-diagonal matrix. In this case, for the
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lowest-order radial modes (n = 1 and n = 2), the matrix dispersion relation (20) can be

approximated by

D1;1(!)D2;2(!)� [D1;2(!)]
2 = 0; (31)

where use has been made of D1;2(!) = D2;1(!).

We introduce the e�ective perpendicular thermal speed-squared of a beam particle de�ned

by v2th? = 2T?b=mb. Then, for Tkb=T?b ! 0 and rw=rb >� 3, the approximate dispersion

relation (31) describing the coupling of the lowest order n = 1 mode with the n = 2 radial

mode, within the context of the present simpli�ed model, can be expressed as

(
�21 + k2zr

2
w +

2 exp(�k2
1

2
)(b!2

p=!
2
�?)

J2
m+1(�1)

�
Im

 
k21
2

!
�
 
1 +

k2zv
2
th?

2!2

!
I2m=2

 
k21
4

!

�
 

2!2

!2 � 4!2
�?

+
k2zv

2
th?(!

2 + 4!2
�?)

(!2 � 4!2
�?)

2

!
Im=2+1

 
k21
4

!
Im=2�1

 
k21
4

!�)

�
(
�22 + k2zr

2
w +

2 exp(�k2
2

2
)(b!2

p=!
2
�?)

J2
m+1(�2)

�
Im

 
k22
2

!
�
 
1 +

k2zv
2
th?

2!2

!
I2m=2

 
k22
4

!

�
 

2!2

!2 � 4!2
�?

+
k2zv

2
th?(!

2 + 4!2
�?)

(!2 � 4!2
�?)

2

!
Im=2+1

 
k22
4

!
Im=2�1

 
k22
4

!�)

=
(2b!2

p=!
2
�?)

2

J2
m+1(�1)J

2
m+1(�2)

exp

 
�(k21 + k22)

2

!(
Im

 
k1k2
2

!
�
 
1 +

k2zv
2
th?

2!2

!
I2m=2

 
k1k2
4

!

�
 

2!2

!2 � 4!2
�?

+
k2zv

2
th?(!

2 + 4!2
�?)

(!2 � 4!2
�?)

2

!
Im=2+1

 
k1k2
4

!
Im=2�1

 
k1k2
4

!)2

; (32)

for even values of azimuthal mode numbers m = 0; 2; 4; :::, and by

(
�21 + k2zr

2
w +

2 exp(�k2
1

2
)(b!2

p=!
2
�?)

J2
m+1(�1)

�
Im

 
k21
2

!

�
 

2!2

!2 � !2
�?

+
k2zv

2
th?(!

2 + !2
�?)

(!2 � !2
�?)

2

!
I(m+1)=2

 
k21
4

!
I(m�1)=2

 
k21
4

!�)

�
(
�22 + k2zr

2
w +

2 exp(�k2
2

2
)(b!2

p=!
2
�?)

J2
m+1(�2)

�
Im

 
k22
2

!
�

�
 

2!2

!2 � !2
�?

+
k2zv

2
th?(!

2 + !2
�?)

(!2 � !2
�?)

2

!
I(m+1)=2

 
k22
4

!
I(m�1)=2

 
k22
4

!�)

=
(2b!2

p=!
2
�?)

2

J2
m+1(�1)J

2
m+1(�2)

exp

 
�(k21 + k22)

2

!(
Im

 
k1k2
2

!
�

�
 

2!2

!2 � !2
�?

+
k2zv

2
th?(!

2 + !2
�?)

(!2 � !2
�?)

2

!
I(m+1)=2

 
k1k2
4

!
I(m�1)=2

 
k1k2
4

!)2

; (33)
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for odd values of m = 1; 3; 5; :::. In Eqs. (32) and (33), we have retained only the leading-

order nonresonant terms and one resonant term at frequencies ! � �2!�? for even values

of m, and ! � �!�? for odd values of m. In the dispersion relations (32) and (33), �1

and �2 are determined from the zeros of Jm(�n) = 0, the quantity vth? = (2T?b=mb)
1=2 is

the transverse thermal speed, k1 and k2 are de�ned by k1 = �1rb=rw and k2 = �2rb=rw,

and !�? = !f(1 � �sb)
1=2 is the e�ective depressed betatron frequency [Eq. (25)], where

�sb = �!2
pb=2!

2
f is the e�ective normalized beam intensity de�ned in terms of �!pb.

The dispersion relations (32) and (33) can be used to investigate detailed electrostatic

stability properties for strong anisotropy (Tkb=T?b ! 0) for a wide range of normalized axial

wavenumbers (kzrw) and e�ective normalized beam intensity �sb = �!2
pb=2!

2
f , or equivalently,

normalized tune depression ��=�0 de�ned by

��

�0
� !�?

!f
= (1� �sb)

1=2: (34)

For suÆciently large values of kzrw, the large temperature anisotropy (Tkb=T?b ! 0) in Eqs.

(32) and (33) provides the free energy to drive the classical Harris-type instability [26, 27],

generalized here to include �nite transverse geometry and beam space-charge e�ects. The

inuence of the �nite longitudinal temperature can be taken into account if one assumes

Tkb 6= 0 in Eq. (1). This results in the (collisionless) Landau damping of the unstable mode

due to resonant wave-particle interactions [1] associated with the axial momentum spread of

the beam particles. The dispersion relation for the case of nonzero longitudinal temperature

Tkb 6= 0 is derived in Appendix B.

To compare with the simulation results in Sec. IV, we introduce the normalized on-axis

beam intensity sb de�ned in terms of the on-axis (r = 0) beam density bnb. Here, sb � b!2
pb=2!

2
f ,

where b!pb = (4�e2b bnb=mb)
1=2. Using Eqs.(22)-(25), the average normalized beam intensity

�sb = �!2
pb=2!

2
f introduced in Eq. (34) is related to sb by the equation

sb = �sbbnb �Z rw

0
drr3n0b(r)

���Z rw

0
drrn0b(r)

�2
: (35)

The allowed range of the normalized intensity parameter sb is 0 � sb < 1, where the limit

sb ! 1 corresponds to fully depressed tune (space-charge-dominated limit).
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FIG. 1: Plots of normalized growth rate (Im!)=!f and real frequency (Re!)=!f versus kzrw for

sb = 0:95 and Tjjb=T?b = 0:02.

Typical numerical results obtained from the approximate dispersion relation utilizing Eqs.

(B9) { (B11) are presented in Figs. 1 { 5 for the case where rw = 3rb. Only the leading-order

nonresonant terms and one resonant term at frequencies ! � �2!�? for even values of m,

and ! � �!�? for odd values of m, have been retained in the analysis. Figure 1 shows the

normalized growth rate (Im!)=!f and real frequency (Re!)=!f plotted versus normalized

wavenumber kzrw for normalized on-axis beam intensity sb = 0:95 and temperature ratio

Tkb=T?b = 0:02. Note from Fig. 1 that the critical values of kzrw for the onset of instability

and for maximum growth rate increase as the azimuthal mode number m is increased. As

expected, �nite { Tkb e�ects introduce a �nite bandwidth in kzrw for instability, since the

modes with large values of kzrw are stabilized by Landau damping. Also, the unstable modes

with odd azimuthal number are purely growing.
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FIG. 2: Plots of normalized growth rate (Im!)max=!f and real frequency (Re!)max=!f at maxi-

mum growth rate versus normalized beam intensity sb for Tjjb=T?b = 0:02.
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FIG. 3: Plots of normalized growth rate (Im!)max=!f and real frequency (Re!)max=!f at maxi-

mum growth versus normalized tune depression ��=�0 for Tjjb=T?b = 0:02.

Figures 2 and 3 show plots of the normalized growth rate (Im!)=!f and real frequency

(Re!)=!f at maximum growth versus normalized beam intensity sb (Fig. 2) and e�ective tune

depression ��=�0 (Fig. 3). The m = 1 dipole mode has the highest growth rate, (Im!)=!f '
0:15, for ��=�0 ' 0:45 . Note from Fig. 2 that the critical value of sb for the onset of the

instability, and the value of smax
b with maximum growth rate, increase with azimuthal mode

number m. The instability is absent for sb < 0:65 or ��=�0 > 0:77 for the choice of parameters

in Figs. 2 and 3. The real frequency (Re!)=!f of the unstable modes with odd azimuthal

numbers m = 1; 3; � � � are zero and are not plotted in Figs. 2 and 3. Moreover, the real

frequency is plotted only for the unstable modes. The normalized eigenfunctions ReÆ b�(r)
and ImÆ b�(r) corresponding to sb = 0:95 and maximum growth rate are plotted versus r=rw

in Fig. 4. The real part of the eigenfunction for m = 0 has no zeros, and has a structure

similar to the familiar longitudinal mode (L1) in Ref. [8].
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FIG. 5: Longitudinal threshold temperature T th
jjb for onset of instability normalized to the transverse

temperature T?b is plotted versus (a) normalized beam intensity sb, and (b) normalized tune

depression ��=�0.

An important characteristic of the instability, the longitudinal threshold temperature T th
jjb

for the onset of instability normalized to the transverse temperature T?b, is plotted in Fig.

5 versus normalized beam intensity sb and e�ective tune depression ��=�0. The threshold

temperature T th
jjb is a decreasing function of azimuthal wavenumber m and normalized tune

depression ��=�0, and an increasing function of the normalized beam intensity sb. Note from

Fig. 5 that the instability is absent for Tkb=T?b > 0:22.

III. DESCRIPTION OF THE NONLINEAR Æf SIMULATION CODE

The theoretical model described in Sec. II uses simpli�ed assumptions for the particle

trajectories necessary to derive the dispersion matrix. This allowed us to obtain a closed

expression for the dispersion matrix and to study the stability properties of intense beams

with temperature anisotropy. To improve on this method, one can use Eqs. (17), (18) and

(19), together with the equations for the particle trajectories [Eqs. (9) and (12)] calculated

numerically using the equilibrium space-charge potential obtained from Poisson's equation

(2). The dispersion matrix obtained in this way can be used to determine the unstable mode

frequencies and growth rates by numerically searching for the solutions to the dispersion

equation (20) for the complex frequency ! = (Re!; Im!). Although such spectral method

calculations are possible, they are less eÆcient than particle-in-cell (PIC) calculations. To

investigate the stability properties numerically, we make use of the nonlinear Æf method [37]
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described below, as implemented in the Beam Equilibrium, Stability and Transport (BEST)

code [1, 15, 17].

For present purposes, we make use of the smooth-focusing approximation in which the

transverse applied focusing force is modelled by Ffoc = �bmb!
2
fx?, where !f is the constant

focusing frequency associated with applied focusing �eld, mb is the particle rest mass, b =

(1��2b )1=2 is the relativistic mass factor, Vb = �bc = const is the average axial beam velocity,

and c is the speed of light in vacuo. In the Æf approach, the solutions to the nonlinear

Vlasov-Maxwell equations are expressed as fb = f 0b + Æfb, � = �0+Æ� and Az = A0
z + ÆAz,

where (f 0b ; �
0; A0

z) are known equilibrium solutions (@=@t = 0). In the electro-magnetostatic,

approximation the self-�elds are represented as Es = �r�(x; t) and Bs = r � Az(x; t)ez

[38]. The perturbed potentials satisfy the equations [15]

r2Æ� = �4�eb
Z
d3pÆfb; (36)

r2ÆAz = �4�

c
eb

Z
d3pvzÆfb; (37)

where eb is the particle charge, and Æfb(x;p; t) is given by the weighted Klimontovich repre-

sentation,

Æfb =
Nb

Nsb

NsbX
i=1

wbiÆ(x� xbi)Æ(p� pbi): (38)

Here, Nsb is total number of beam simulation particles, Nb is total number of actual beam

particles, and the weight function is de�ned by wb � Æfb=fb. The nonlinear particle simula-

tions are carried out by iteratively advancing the particle motion, including the weights they

carry, according to [15]

dx?bi
dt

= (bmb)
�1p?bi; (39)

dzbi
dt

= vzbi = �bc+ �3b m�1
b (pzbi � bmb�bc); (40)

dpbi
dt

= �bmb!
2
fx?bi

� eb

�
r�� vzbi

c
r?Az

�
; (41)

dwbi

dt
= �(1� wbi)

1

fb0

@fb0
@p

� Æ
 
dpbi
dt

!
; (42)

Æ

 
dpbi
dt

!
= �eb

�
rÆ�� vzbi

c
r?ÆAz

�
; (43)
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and updating the �elds by solving the perturbed Maxwell's equations with appropriate

boundary conditions at the cylindrical, perfectly conducting wall at radius rw.

The Æf approach is fully equivalent to the original nonlinear Vlasov-Maxwell equations,

but the noise associated with representation of the background distribution f 0b in conventional

particle-in-cell (PIC) simulations is removed. In the Æf approach, the simulation particles

are used to represent only a small part of the entire distribution Æfb = fb� f 0b , and therefore

the statistical error in the simulations is proportional to �Æf � Æfb=
p
Nsb, whereas the error in

PIC simulations is proportional to �pic � fb=
p
Nsb. Therefore, the typical gain in accuracy in

Æf simulations compared to PIC simulations with the same number of particles is �Æf=�pic =

�wbi [15]. This fact allows much more accurate simulations of the nonlinear dynamics and

instability thresholds when j �wbij � 1. When the perturbation Æfb becomes comparable in

magnitude with the background distribution function f 0b , then the Æf method becomes less

accurate than a full PIC simulation. In the present paper, a hybrid combination of the Æf

and PIC simulation methods is used, where the number density is calculated according to

Ænb = [1��( �wbi)]ÆnÆf +�( �wbi)(npic�n0), where �(w) is a monotonic function of its argument

such that �(w ! 0)! 0 and �(w ! 1)! 1. Here, ÆnÆf =
R
d3pÆfb and npic =

R
d3pfb.

In addition, the Æf method can be used to study linear stability properties, provided all

nonlinear terms in the dynamical equations (39){(43) are neglected [15{17]. This corresponds

to replacing the term 1� wbi with 1 in Eq. (42) for the weights, and moving particles along

the trajectories calculated in the unperturbed potentials (�0; A0
z).

The Æf method described above has been implemented in the three-dimensional electro-

magnetostatic particle-in-cell code (BEST) in cylindrical geometry with a perfectly conduct-

ing cylindrical wall at radius rw. Maxwell's equations (36) and (37) are solved using fast

Fourier transform (FFT) techniques in the longitudinal and azimuthal directions. The par-

ticle positions [Eqs.(39) and (41)] and weights [Eq. (42)] are advanced using a second-order

predictor-corrector algorithm. The BEST code is parallelized using the Message Passing

Interface (MPI) with domain decomposition in the direction of beam propagation. The

NetCDF data format is used for large-scale diagnostics and visualization. Typical simula-
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tion runs consist of 106 simulation particles and are performed on the IBM SP/RS 6000 at

NERSC.

IV. SIMULATION RESULTS

In this section we present the simulation results for a continuous, anisotropic beam in a

constant focusing �eld. The self-consistent equilibrium distribution function (@=@t = 0) in

the beam frame is taken to be of the form given in Eq. (1), where bnb is the beam density at

r = 0, and T?b and Tjjb are the transverse and longitudinal temperatures. The equilibrium

self-�eld potentials ('0; Az0) are determined numerically from Maxwell's equations [15]. It

is also assumed that the beam is located inside a grounded, perfectly conducting cylindrical

wall at radius rw = 3rb; where rb = [hr2i]1=2 is the rms beam radius. Random initial

perturbations are introduced to the particle weights, and the beam is propagated from

t = 0 to t = 200!�1f : The initial temperature ratio is taken to be Tjjb=T?b = 0:02, and

the simulations are performed in the beam frame with Vb = 0 and b = 1. Typical numerical

results are illustrated in Figs. 6-12, where the simulations have been carried out over wide

range of normalized beam intensities sb = !2
pb=2!

2
f ranging from sb = 0:2 to sb = 0:98.
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FIG. 6: Plots of normalized real frequency (Re!)=!f and growth rate (Im!)=!f versus kzrw for

sb = 0:95 and Tjjb=T?b = 0:02:

Using the linearized version of the 3D BEST code, Figs. 6-9 show results of the Æf

simulations for perturbations with axial and azimuthal spatial dependence proportional to

exp(ikzz + im�), where kz is the axial wavenumber, and m is the azimuthal mode number.
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mum growth versus normalized tune depression ��=�0 for Tjjb=T?b = 0:02.

Figure 6 show plots of the real and imaginary parts of the complex oscillation frequency

! versus normalized axial wavenumber kzrw, for sb = 0:95 and azimuthal mode numbers

m = 0; 1; 2; 3. Note that the instability has a �nite bandwidth with maximum growth rate

occurring at kzrw ' 9. The dependence of the maximum growth rate (Im!)max=!f and the

normalized real frequency (Re!)max=!f at maximum growth on normalized beam intensity sb

and tune depression ��=�0 are shown in Figs. 7 and 8, respectively. Evidently, the maximum

growth rate (Im!)max=!f is an increasing function of beam intensity sb and a decreasing

function of normalized tune depression ��=�0. Note from Fig. 7 that the critical value of sb

for the onset of the instability increases with azimuthal mode number m. The real frequency

(Re!)=!f of the unstable modes for odd azimuthal numbers m = 1; 3 are zero and are not

plotted. The real frequency is plotted only for the unstable modes. Consistent with the

analytical predictions in Sec. II, note that the dipole mode (m = 1) has the largest growth
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rate. Furthermore, all modes are found to be stable in the region sb � 0:5, or equivalently

��=�0 � 0:85. The radial dependence of the eigenfunctions for the perturbed electrostatic

potential obtained from the linearized BEST code at maximum growth is illustrated in Fig.

9 for sb = 0:95. The simulation results presented in Figs. 6 { 9 are in good qualitative

agreement with the theoretical model presented in Sec. II (see Figs. 1 { 4).
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FIG. 9: Radial mode structure of the unstable m = 0; 1; 2; 3 eigenfunctions at maximum growth

corresponding to sb = 0:95 and Tjjb=T?b = 0:02.
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FIG. 10: Longitudinal threshold temperature T th
jjb normalized to the transverse temperature T?b for

the onset of instability plotted versus (a) normalized beam intensity sb, and (b) normalized tune

depression ��=�0.

The longitudinal threshold temperature T th
jjb normalized to the transverse temperature

T?b for the onset of instability for arbitrary value of azimuthal mode number m is plotted in

Fig. 10 versus normalized beam intensity sb [Fig. 10(a)] and e�ective tune depression ��=�0

[Fig. 10(b)]. The threshold temperature T th
jjb is a decreasing function of the normalized tune

depression ��=�0 and an increasing function of the normalized beam intensity sb. Note from
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Fig. 10 that instability is absent for Tkb=T?b > 0:08. The theoretical model in Sec. II predicts

higher threshold temperatures than the simulation results in Fig. 10, and is less accurate in

predicting the threshold temperature for the onset of instability.
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FIG. 11: Time history of the normalized density perturbation Ænmax=bnb for sb = 0:8 and Tjjb=T?b =

0:02 at �xed axial position z and radius r = 0:3rb.

Figures 11 and 12 show typical simulation results using the nonlinear version of the 3D

BEST code for the case of normalized beam intensity sb = 0:8. In Fig. 11, the initial

perturbation has a dominant initial excitation with m = 1 and kzrw = 9, and the time

history of the perturbed density Ænb =
R
d3pÆfb is plotted versus !f t at �xed axial position

z and radius r = 0:3rb. After the initial linear growth phase, note from Fig. 11 that the

instability saturates at a moderately large level with jÆnmax
b =bnbj ' 0:1:

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

F
 (

p
 )

 (
n

o
rm

a
liz

e
d

)
b

z

(p z
-γ

bVb)/(T ||bm
b
γ

b
3 )1/2

FIG. 12: Plot of average longitudinal momentum distribution Fb(pz; t) at time t = 0 (thin line)

and t = 150!�1f (thick line), for normalized beam intensity sb = 0:8 and Tjjb=T?b = 0:02.

Finally, shown in Fig. 12 is a plot of the average longitudinal momentum distribution
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Fb(pz; t) =
R
d2p?d

3xfb versus pz for a dominant initial excitation with m = 1 and kzrw = 9

(the case shown in Fig. 11). In Fig. 12, the average distribution Fb(pz; t) at time t = 150!�1f

(thick curve) is compared with the initial distribution (thin curve). The formation of tails

in axial momentum space in Fig. 12 and the consequent saturation of the instability are

attributed to quasilinear stabilization due to resonant wave-particle interactions.

V. CONCLUSIONS

To summarize, in Sec. II we generalized the classical Harris-like instability to the case

of an intense charged particle beam with anisotropic temperature (Tjjb=T?b < 1) includ-

ing the important e�ects of �nite transverse geometry and beam space-charge. Using the

simpli�ed assumption of negligible spread in depressed betatron frequency, we derived a

simple dispersion equation for the lowest-order three-dimensional eigenmodes of the form

�n(r) exp(�i!t + ikzz + im�). For suÆciently large values of k2zr
2
b
>� 1, where rb is the

rms beam radius, the analysis of the dispersion equation leads to a strong anisotropy-driven

instability provided the normalized beam intensity sb = b!2
pb=2!

2
f is suÆciently large. In Sec.

IV, the BEST code [15], which implements the nonlinear Æf scheme described in Sec. III,

was used to investigate the detailed stability properties of intense charged particle beams

with large temperature anisotropy (Tjjb=T?b � 1) for three-dimensional perturbations with

several values of azimuthal wave number m = 0; 1; 2; 3. The simulation results clearly show

that moderately intense beams with sb >� 0:5 are linearly unstable to short wavelength per-

turbations with k2zr
2
b
>� 1, provided the ratio of longitudinal and transverse temperatures is

smaller than some threshold value. The mode structure, growth rate and conditions for the

onset of the instability are qualitatively similar to what is predicted by the simple theoreti-

cal model presented in Sec. II. Both the simulations and the analytical theory predict that

the dipole mode (azimuthal mode number m = 1) is the most unstable mode. The main

saturation mechanism for the instability is the resonant wave-particle interactions that occur

during the formation of tails in the axial momentum distribution function. In the nonlinear
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saturation stage, the total distribution function is still far from equipartitioned, and free

energy is still available to drive an instability of the hydrodynamic type [23, 24].
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APPENDIX A: EVALUATION OF ORBIT INTEGRAL

In this Appendix, we evaluate the orbit integral [see Eq. (19)]

Ip;mn =
Z Tr

0

d�

Tr
Jm[abr(�)] exp [im�0(�)� im!�� � ip!r� ] ; (A1)

Here, br(�) and �0(�) are the trajectory of a particle with transverse energy H? and canonical

angular momentum P� moving in the quadratic potential  (r) = mb!
2
�?r

2=2 with initial

conditions br(� = 0) = rmin(H?; P�) and �0(� = 0) = 0 [see Eq. (9)]. Here, !r(H?; P�)

is the frequency of radial motion, and !�(H?; P�) is the angular frequency. In Cartesian

coordinates, the particle trajectory fbx(�); by(�)g can be expressed as

bx(�) =
q
H?=mb

!�?
cos (!�?�) [cos(�)� sin(�))] ;

by(�) =
q
H?=mb

!�?
sin (!�?�) [sin(�) + cos(�)] ; (A2)

where cos(2�) = P�!�?=H?. Therefore, we can express

br2(�) = bx2(�) + by2(�) = H?

mb!2
�?

[1� sin(2�) cos(2!�?�)] ; (A3)

and

brm(�) exp([im�0(�))] = [bx(�) + iby(�)]m
=

 
H?

mb!2
�?

!m=2

[cos � exp(i!�?�)� sin� exp(�i!�?�)]m : (A4)
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From Eqs. (A2) and (A3), it follows that !r(H?; P�) = 2!�? and !�(H?; P�) = !�?. Sub-

stituting Eqs. (A3) and (A4) into Eq. (A1) and changing integration variable to � = 2!�?� ,

we obtain

Ip;mn =
Z 2�

0

d�

2�
Jm

0@a
q
H?=mb

!�?

q
1� sin(2�) cos(�)

1A exp[�ip�� i(m=2)�]

� [cos(�) exp(i�=2)� sin(�) exp(�i�=2)]m
[1� sin(2�) cos(�)]m=2

: (A5)

Since the integral in Eq. (A5) is over one complete period of the integrand function F (�), it

follows that

Ip;mn =
Z 2�

0
d�F (�) =

Z �

��
d�F (�) =

Z �

0
d� [F (�) + F �(�)]

=
Z �

0

d�

2�

Jm

�
a
p

H?=mb

!�?

q
1� sin(2�) cos(�)

�
[1� sin(2�) cos(�)]m=2

� [exp(�ip�� i(m=2)�)fcos(�) exp(i�=2)� sin(�) exp(�i�=2)gm + c:c:] : (A6)

To evaluate the integral in Eq. (A6), we use the summation theorem for Bessel functions

[39], which gives

Jl(w
q
r2 + �2 � 2r� cos�) = exp(�il�)

+1X
k=�1

Jk(w�)Jk+l(wr) exp(ik�)

= exp(il�)
+1X

k=�1

Jk(w�)Jk+l(wr) exp(�ik�); (A7)

where

exp(�il�) =
"
r=�� exp(i�)

r=�� exp(�i�)

#l=2
: (A8)

In the present analysis, w = a
q
H?=mb=!?�, r = sin �, and � = cos �, and therefore

Eq. (A8) gives

exp(�im�) = exp(m�=2)

"
cos � � sin� exp(i�)

cos � � sin� exp(�i�)

#m=2

: (A9)

Substituting Eqs. (A7)-(A9) into Eq. (A6), and rearranging terms, we obtain the expression
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Ip;mn =
+1X

k=�1

Jk

0@a
q
H?=mb

!�?
sin�

1AJk+m
0@a

q
H?=mb

!�?
cos �

1AZ �

0

d�

�
cos[(k � p)�]

= Jp

0@a
q
H?=mb

!�?
sin�

1AJp+m
0@a

q
H?=mb

!�?
cos �

1A
= Jp

 
a

!�?

s
H? + P�!�?

2mb

!
Jp+m

 
a

!�?

s
H? � P�!�?

2mb

!
: (A10)

APPENDIX B: EVALUATION OF SUSCEPTIBILITY INTEGRAL

To complete the evaluation of the susceptibility de�ned in Eq. (17), we determine the

following integral

I =
1

mb�2d

Z 1

0

dH?

T?b

Z H?=!�?

�H?=!�?

dP�
2!�?

exp
�
�H?

T?b

�
(Ip;mn )�Ip;mn0 ; (B1)

where the orbit integral Ip;mn0 is de�ned in Eq. (19) and was evaluated in Appendix A. Using

Eqs. (19) and (A10), and introducing the change of integration variables,

e+ = (H? + P�!�?)=2;

e� = (H? � P�!�?)=2; (B2)

Eq. (B1) can be rewritten as

I =
1

mb�2d!
2
�?T?

Z 1

0
de+

Z 1

0
de� exp

�
� e+
T?

�
exp

�
� e�
T?

�

�Jp
0@�n0

q
e�=mb

rw!�?

1AJp+m
0@�n0

q
e+=mb

rw!�?

1AJp
0@�n

q
e�=mb

rw!�?

1AJp+m
0@�n

q
e+=mb

rw!�?

1A :(B3)
The change of variables reduces the two-dimensional integral in Eq. (B1) to the product of

two one-dimensional integrals. Using Eq. (25), the integral in Eq. (B3) can be evaluated as

I =
1

2

�
rb
�d

�2
Ip

"�
rb
rw

�2 �n�n0
4

#
Ip+m

"�
rb
rw

�2 �n�n0
4

#
exp

"
�
�
rb
rw

�2 �2n + �2n0

4

#
; (B4)

where r2b = 2T?b=mb!
2
�?. The integral in Eq. (18) is

qn;n0 =
Z 1

0
dxx exp

"
�r

2
wx

2

r2b

#
Jm(�nx)Jm(�n0x) =

=
1

2

�
rb
rw

�2
Im

"�
rb
rw

�2 �n�n0
2

#
exp

"
�
�
rb
rw

�2 �2n + �2n0

4

#
: (B5)
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In Eqs. (B3) and (B5), we have extended the integration limits to in�nity. The error in this

approximation is proportional to exp [�(rw=rb)2], which is small for rw=rb >� 3. Collecting

the results from Eqs. (B4) and (B5), the expression for the matrix elements becomes

Dm
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�znn � zn0n0)

"
Im(2znn0)�

+1X
q=�1

Iq(znn0)Iq+m(znn0)

�
Z
dvzf0(vz)

 
! � kzvz

! � (2q +m)!�? � kzvz
+

k2zv
2
th?

2[! � (2q +m)!�? � kzvz]2

!#
; (B6)

where r2b=�
2
d = 2b!2

p=!
2
�?, v

2
th? = 2T?b=mb, and we have introduced zn;n0 = (rb=rw)

2�n�n0=4.

The terms in the summation in Eq. (B6) can be rearranged for even or odd values of azimuthal

mode number m. We obtain

Dm=2l
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�znn � zn0n0)

�
"
I2l(2znn0)� I2l (znn0)

Z
dvzf0(vz)

 
1 +

k2zv
2
th

2(! � kzvz)2

!
�X

q>0

Iq�l(znn0)Iq+l(znn0)

�
Z
dvzf0(vz)

 
2(! � kzvz)

2

(! � kzvz)2 � 4q2!2
�?

+ k2zv
2
th?

(! � kzvz)
2 + 4q2!2

�?

[(! � kzvz)2 � 4q2!2
�?]

2

!#
(B7)

for even values of m = 2l, and

Dm=2l+1
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�znn � zn0n0)"
I2l+1(2znn0)�

X
q�0

Iq�l(znn0)Iq+l+1(znn0)
Z
dvzf0(vz)

 
2(! � kzvz)

2

(! � kzvz)2 � (2q + 1)2!2
�?

+

k2zv
2
th?

(! � kzvz)
2 + (2q + 1)2!2

�?

[(! � kzvz)2 � (2q + 1)2!2
�?]

2

!#
; (B8)

for odd values of m = 2l+1. If the distribution function f0(vz) is Maxwellian with f0(vz) =

(mb=2�Tjjb)
1=2 exp (�mbv

2
z=2Tjjb), then the matrix elements in Eqs. (B7) and (B8) take the

form

Dm=2l
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�znn � zn0n0)

�
"
I2l(2znn0)� I2l (znn0)A0(!)�

X
q>0

Iq�l(znn0)Iq+l(znn0)

� [A2q(!) + A�2q(!)]

#
; (B9)
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for even m = 2l, and

Dm=2l+1
n;n0 =

J2
m+1(�n)

2
(�2n + k2zr

2
w)Æn;n0 +

b!2
p

!2
�?

exp(�znn � zn0n0)"
I2l+1(2znn0)�

X
q�0

Iq�l(znn0)Iq+l+1(znn0) [A2q+1(!) + A�2q�1(!)]

#
; (B10)

for odd m = 2l + 1. Here,

An(!) =

0@1� v2th?
v2thjj

1A� Z

 
! � n!�?
kzvthjj

!24 !

kzvthjj
� ! � n!�?

kzvthjj

0@1� v2th?
v2thjj

1A35 ; (B11)

where Z(
) is the plasma dispersion function [1, 40], and vthjj = (2Tjjb=mb)
1=2.
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