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Abstract

In plasmas with strongly anisotropic distribution functions (7)),/7'1 < 1) a Harris-like collective
instability may develop if there is sufficient coupling between the transverse and longitudinal de-
grees of freedom. Such anisotropies develop naturally in accelerators and may lead to a detoriation
of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson
and H. Qin, Phys. Plasmas 9, 3138, 2002] of the stability properties of intense nonneutral charged
particle beams with large temperature anisotropy (T Ty > T||b) to allow for non-axisymmetric per-
turbations with 9/00 # 0. The most unstable modes are identified, and their eigenfrequencies,
radial mode structure, and nonlinear dynamics are determined. The simulation results clearly
show that moderately intense beams with s, = @127,)/ 2720.)% | 2> 0.5 are linearly unstable to short
wavelength perturbations with kfrf > 1, provided the ratio of longitudinal and transverse temper-
atures is smaller than some threshold value. Here, ‘*A)z%b = 47rﬁbe§ /Yy is the relativistic plasma
frequency-squared, and wg, is the betatron frequency associated with the applied smooth-focusing
field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the
essential features of the linear stages of instability. Both the simulations and the analytical theory
predict that the dipole mode (azimuthal mode number m = 1) is the most unstable mode. In the
nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic

instability saturates due to resonant wave-particle interactions.



I. INTRODUCTION

Periodic focusing accelerators, transport systems and storage rings [1-5] have a wide range
of applications ranging from basic scientific research in high energy and nuclear physics, to
applications such as heavy ion fusion, spallation neutron sources, tritium production and
nuclear waste transmutation, to mention a few examples. Of particular importance at the
high beam currents and charge densities of practical interest, are the effects of the intense
self fields produced by the beam space charge and current on determining the detailed equi-
librium, stability and transport properties. While considerable progress has been made in
understanding the self-consistent evolution of the beam distribution function, f,(x,p,t), and
self-generated electric and magnetic fields, E*(x,¢) and B®(x, t), in kinetic analyses based on
the nonlinear Vlasov-Maxwell equations [1, 6-10], in numerical simulation studies of intense
beam propagation [11-21], and in macroscopic warm-fluid models [22-25], the effects of fi-
nite geometry and space-charge effects often make predictions of detailed stability behavior
difficult. It is therefore important to develop an improved understanding of fundamen-
tal collective stability properties, including the case where a large temperature anisotropy
(T'.p > Tjp) can drive a Harris-like instability [26, 27|, familiar in the study of electrically
neutral plasmas.

It is well known that in neutral plasmas with strongly anisotropic distributions (T, /7", <
1) a collective instability may develop if there is sufficient coupling between the transverse and
longitudinal degrees of freedom [26, 27]. Such anisotropies develop naturally in accelerators.
Indeed, due to conservation of energy for particles with charge ¢ accelerated by a voltage
V', the energy spread of particles in the beam does not change, and (nonrelativistically)
AEy = myAvt /2 = AEy; = myVyAvyy, where Vi, = (qV/my)Y? is average beam velocity
after acceleration. Therefore, the velocity spread-squared, or equivalently the temperature,
changes according to T}y = THQbi/QqV ( for a nonrelativistic beam). At the same time, the
transverse temperature may increase due to nonlinearities in the applied and self-field forces,

nonstationary beam profiles, and beam mismatch. These processes provide the free energy to



drive collective instabilities and may lead to a detoriation of beam quality [20, 28, 29]. The
instability may also lead to an increase of longitudinal velocity spread, which will make the
focusing of the beam difficult and may impose a limit on the minimum spot size achievable
in heavy ion fusion experiments.

Previous studies of this anisotropy-driven instability for long, coasting beams [8, 11,
12, 23, 30-34] have shown that moderately intense beams with normalized beam intensity
sy = w2/27;w? < 0.5 are linearly unstable to short-wavelength, axisymmetric (9/96 = 0)
perturbations with &7} % 1, provided the ratio of longitudinal to transverse temperatures
is smaller than some threshold value. Here, wzb = 4nnye; [yymy is the relativistic plasma
frequency-squared, and wy = const. is the smooth-focusing frequency associated with the
applied field. Detailed stability properties for a finite-length charge bunch have been in-
vestigated by Hofmann et al. [35, 36]. In this article, we extend our previous analytical
and numerical studies [11] of this instability to the case of non-axisymmetric perturbations
with 0/060 # 0. A simplified kinetic theory of the instability for arbitrary three-dimensional
perturbations about a bi-Maxwellian distribution is presented in this paper, which appears
to capture the main features of the instability and is a relatively straightforward generaliza-
tion of the analysis of the Harris instability in electrically neutral plasma to the case of an
intense particle beam with intense self fields. The 3D nonlinear perturbative particle sim-
ulation code [15, 17|, called the Beam Equilibrium, Stability and Transport (BEST) code,
is used to systematically study the electrostatic stability properties of intense nonneutral
charged particle beams with large temperature anisotropy (TLb > T||b). The most unstable
modes are identified, and their eigenfrequencies, and radial mode structure are determined
for perturbations with general azimuthal mode number m. The instability thresholds ob-
tained in the simulations, as well as detailed simulations of the nonlinear development and
saturation of the instability are presented. We identify the main saturation mechanism as
quasilinear stabilization due to resonant wave-particle interactions (Landau damping).

The organization of this paper is the following. In Sec. II, we present a simplified kinetic

model of the instability based on a matrix dispersion equation derived from the linearized



Vlasov-Poisson equations. The nonlinear ¢ f simulation method is briefly described in Sec.
III, and in Sec. IV we present detailed simulation results for a wide range of system param-

eters and perturbations with general azimuthal mode number m.

II. LINEAR STABILITY THEORY

A. Kinetic Description

It is important to extend theoretical studies of the kinetic stability properties of
anisotropic beams to distribution functions other than the KV distribution. This is be-
cause the KV distribution has an (unphysical) inverted population in transverse phase-space
variables, which provides the free energy to drive collective instabilities at sufficiently high
beam intensity that are intrinsic to this inverted population [7, 8]. This, of course, can
mask the effects of anisotropy-driven instabilities. To this end, we briefly outline here a
simple derivation of the Harris-like instability [26, 27] in intense particle beams for electro-
static perturbations about the thermal equilibrium distribution with temperature anisotropy
(T'.p > Tjp) described in the beam frame by the self-consistent axisymmetric Vlasov equilib-

rium [1, 10]
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f(r,p) =

Here, H, = p7 /2my + (1/2)mpw?(2* + y°) + €,¢°(r) is the single-particle Hamiltonian for
transverse particle motion, p; = (p2 + pz)l/2 is the transverse particle momentum, r =
(22 +y?)'/? is the radial distance from the beam axis, w; = const. is the transverse frequency
associated with the applied focusing field in the smooth-focusing approximation, and ¢°(r) is

the equilibrium space-charge potential determined self-consistently from Poisson’s equation,

10 96" .
;arﬁ == —47T€bnb, (2)

where n)(r) = [d®pfY(r,p) is the equilibrium number density of beam particles. For sim-

plicity, the analysis is carried out in the beam frame (V, = 0 and 7, = 1). Furthermore,



setting ¢°(r = 0) = 0, the constant 7, occuring in Eq. (1) can be identified with the on-axis
density nj(r = 0), and the constants 7', and T}, can be identified with the transverse and
longitudinal temperatures (energy units), respectively.

For present purposes, we consider small-amplitude electrostatic perturbations of the form
5 (x,t) = 00(r) exp(imb + ik,z — iwt), (3)

where d¢(x,t) is the perturbed electrostatic potential, &, is the axial wavenumber, m is
the azimuthal mode number and w is the complex oscillation frequency, with I'mw > 0
corresponding to instability (temporal growth). Without presenting algebraic details, using

the method of characteristics [1], the linearized Poisson equation can be expressed as

10 0~ =~ > A
o a00(r) — K0g(r) - T—Q&b(r) = —dre, / &’pd f(r, p), (4)
where
— )~ ofy 0fy
dfp(r,p) = eb(?HL 0¢ + ey l(w - kzvz)ﬁ + kzvza?]
X i / dt' 5[ (t')] exp{i(k.v, — w)(' — t) + im[0' (') — ¢'(¢)]} (5)

for perturbations about the choice of the anisotropic thermal equilibrium distribution func-
tion in Eq. (1). Here, Hy = p?/2m;, and v, = p./m,. In the orbit integral in Eq. (5),
Imw > 0 is assumed, and 7/(¢') = [22(¢') + 32(t')]'/? and @'(¢') are the transverse orbits in
the equilibrium field configuration such that [x' (#'), p’, (#)] passes through the phase-space
point (x,,p, ) at time t' =t [1]. Here, /(¢ = t) = 0, and the orbit ¢'(t') — ¢'(¢) is function

of the time difference ¢ — ¢t = 7. We express

o) -0 = [ ’ mdt”, (6)

t

where Py = rpy = xp, — yp, = const. is the canonical angular momentum of a beam particle

moving in the axisymmetric equilibrium configuration. It is convenient to rewrite Eq. (6) as

0'(t") = 0'(t) = 0"(t — trin) — O'(t = trin). (7)



is defined by 7'(¢ H,,Py). Here, r! . (H,, Py) is the minimum radial

men (

Where t, mm) - mm(

min
excursion of the particle trajectory undergoing periodic motion. The functions 7/(¢') and
Ot —t . )—wy(t' —t .. ) are periodic functions with period 7, = 27 /w,, where w,(H,, P)
is the frequency of radial oscillations, and wy(H,, Py) = A@/T, is the average frequency of
angular rotation. Here A# is the change in angle 0'(#') during the period of time 7,. We
expand in the Fourier series representation

So[r' (¢)] explim[0/ (t' = t5) — wolt' — )]}

Tr dr —

= exp [inw, (t' — t,:,)] ; féqﬁ[f(ﬂ]

X exp{—inw,T + im[0' (1) — wyt]|}, (8)

where 7(7) is defined by the equation

/' dr
T = ’
Tinin \/2mb[HJ_ — P92/2mb772 - %(f)]

(9)

and o (7) = myw3T*/2 + epdo (7). Substituting Eq. (8) into Eq. (5) and integrating over ¢/,

we obtain
o _Ofy ofy 0fy
6fb(r,p)_eb8HL6¢+€b [( k UZ)@HL +kzvz8HH
exp [inw,t + imwet — imd' ()] ., .
x Z P d O] . (H., Py). (10)

nwy, + mwy + kv, — w
In Eq. (10), the quantity £ can be expressed as

" dr
i \/2my[H 1 — P} /2my7% — o ()]

%\(T, HJ_,P@) = (11)

and (t) can be expressed as

Pg atT HJ_,P@) _
dr. 12
0'(t) = / L myT? or " (12)
Furthermore, I"™™(H |, Py) is defined by
n,m Trdr . . /
I'"™(H,, Py) = ; —5¢[ (7)] exp{—inw, T + im0’ (1) — wyT]}. (13)

In Eq. (4), we express the perturbation amplitude as d¢(r) = 3 o, (r), where {a,}

are constants, and the complete set of vacuum eigenfunctions {¢,(r)} is defined by ¢, (r) =
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ApJpm(Anr /7). Here, A, is the n’th zero of J,,,(\,) = 0, and A,, = V/2/[ryJpms1(Ay)] is a nor-
malization constant such that [§* drr¢y,(r)¢u (r) = §,. We substitute 5p(r) = 3 ppn(r)
into Poisson’s equation (4) and operate with [;* drr, (r)---. This gives the matrix disper-

sion equation

> Dy (w) =0, (14)
where D, v (w) is defined by
2 (A
Dy (w) = Jm%(n)()‘i + kzri)én,n’ + Xng (W), (15)

and the beam-induced susceptibility x;, s (w) is defined by

Xn (W) = —Admeyr? /Orw drre,, (1) /d?’pé/ﬁ‘(r, p). (16)

Here, & f}*(r, p) is defined by Eq. (10) with ¢ — ¢,.
By changing the integration variables in Eq. (16) from {r,p,,ps} to {t, Hi, Py}, where

1?(7", H,, Py) is the time measured along the particle trajectory from the point where the radial

!

distance is equal to 7] . defined in Eq. (11) , the integration volume transforms according

to rdrdp,dpy = dPydH  dt. Using Eq. (10), Eq. (16) can be rewritten as

r2 1 / dPg dHJ_ 1
n,n' \W :_wnn’_ dp, exp | —=— z
Xn (@) N mbA?iXp: o T e exp |~ | fu ()
— kv, k2T
| Prrr—— o gy, )
w—pw, —mwy — kv, (w—pw, — mwy — k,v,)?

where \2 = T\ ,/4mein, is the perpendicular Debye length-squared, and fy(p,) =

(2mmyT 1) Y2 exp(—p?/2myT14). In Eq. (17), gu v and IP™ are defined by

1
Unn :/ dea N (xry) Jm(Anx) Jm(Apx), (18)
0

and

Tr AT
IP"™(H,, Py) = A Sy [ F(7)

T ] exp{ —ipw, T + im[0'(T) — weT]}. (19)

In Eq. (18), ( )* denotes complex conjugate, and N(zr,) = nj(xr,)/n, is the normalized

density profile, where nf(r) = [d®pf(r,p). The condition for a nontrivial solution to Eq.
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(14) is

det{ D, w(w)} =0, (20)

which plays the role of a matrix dispersion relation that determines the complex oscillation
frequency w.

In the following analysis, it is convenient to introduce the effective depressed betatron
frequency wgy. It can be shown [1] that for the equilibrium distribution in Eq. (1), the

mean-square beam radius r? defined by

[ drr3nd(r)

== T

(21)

is related exactly to the line density N, = 27 [ drrn(r), and transverse beam temperature

T, by the equilibrium radial force balance equation [1]

2 o Noej N 2TLb.

= 22
wfrb my my ( )
Equation (22) can be rewritten as
1 291,
2 -2\ .2 _

where we have introduced the effective average beam plasma frequency @,;, defined by

rawl _/ drrwl, (24)
mb

Then, Eq. (23) can be used to introduce the effective depressed betatron frequency wg,

defined by

1 2T
2 (2 _Zg2)| = 2L

If, for example, the beam density were uniform over the beam cross-section, then Eq. (25)
corresponds to the usual definition of the depressed betatron frequency for a KV beam, and
it is readily shown that the radial orbit 7(7) occurring in Egs. (9), (13) and (19) can be

expressed as

. H, wg1 Py\*
2(7) = 1— 1—(5 ) 2 : 26
(1) mbwgl J i cos(2wg L T) (26)



In general, for the choice of equilibrium distribution function in Eq. (1), there will be a
spread in transverse depressed betatron frequencies wg, (H, , Py), and the particle trajectories
will not be described by the simple trigonometric function in Eq. (26). For present purposes,
however, we consider a simple model in which the radial orbit 7(7) occurring in Eqgs. (9), (13)
and (19) is approximated by Eq. (26) with the constant frequency wg defined in Eq. (25), and
the approzimate equilibrium density profile is defined by ng(r) = 7y exp(—mywj, 7°/2T1).
For a nonuniform beam, wﬁ is the characteristic time for a particle with thermal speed
v = (2T15/mp)'/? to cross the rms radius r, of the beam. In this case, it is shown in
Appendix B that D, ,(w) can be evaluated in closed analytical form provided the conducting
wall is sufficiently far removed from the beam (7, /7, < 3, say). In the limit of an anisotropic
beam distribution that is cold in the longitudinal direction, i.e.,

T

T—J_b — 0, (27)
the result is
_ J2 (I, @2
DZ?EI% _ e ( )()\i + k22 )0 + —2 exp(—2Znn — 2w )
2 ﬁL
k2
X lIQZ(QZn,n’) - IlQ(Zn,n’) ( > Z —1 Zn ,n’ q+l(zn n' )
2w? w? + 4¢°wj |
X | ————— + k% 28
(wg _4q2w%u_ z thJ_( 4q2wﬁ ) ( )
for even values of m = 2[, and
_ J2 (), o2
l)m_QH_1 — %()()‘i + szz;)én,n’ + Tp eXp(_Zn,n - Zn’,n’) [I2l+1(2zn,n’) -
wﬁL
00 2w2 w2 + (2q+ 1)20‘)21_
= I, (zpn )] Zn! + k?vQ b 29
(1;) q l( ) ) (H—H—l( , )( (2Q+1)2wm thJ_[MQ—(Qq-f-l)Qw%J_]Q ( )

for odd values of m = 21+ 1. Here, z, v = (13/ry)* Ay A /4. In this case, the matrix elements

decrease exponentially away from the diagonal, with

21.2 ,.2
~ exp (—” i T—”), (30)

2
4 ri

Dn,n+k
Dn,n

where k is an integer, and we have used the approximate relation A, &~ m(4n—1)/4. Therefore,

for ry,/r, Z 3, we can approximate {D,, (w)} by a tri-diagonal matrix. In this case, for the
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lowest-order radial modes (n = 1 and n = 2), the matrix dispersion relation (20) can be

approximated by

Dy 1 (w)Dyp(w) — [Dya(w)]* =0, (31)

where use has been made of D 5(w) = Dy (w).

We introduce the effective perpendicular thermal speed-squared of a beam particle defined
by v, = 2T1y/m,. Then, for Tip/Ty — 0 and 7,/74 2 3, the approximate dispersion
relation (31) describing the coupling of the lowest order n = 1 mode with the n = 2 radial

mode, within the context of the present simplified model, can be expressed as

()

2
e
4
/{2
W2_4W%L (w? _4wm m/2+1< > i 1( > }
( k
Jm—l—l()‘?)

kQUthJ_ %
4
[ St ( ) ("”’2> |
- m/2+1 e m/2—1
—4wh) (w — 4wj, )? /2 /
2

k
{)\2+k2r2 2€Xp(——)( 2/("“}/31_)
1 zlw Jm—i—l()\l)

( 2w? kZog, ) (w? +4wj, )
2ex —2) (@ /wj

_ (2@ /w5, )? exp [ — (k% + K3) I ik | 14 kzvtm kiky
Tir1(A) i1 (A2) 2 "\ 2 2w? /2 4
B 2w n kv (@ + 4wj) ) I k1Ko lﬁkz

for even values of azimuthal mode numbers m = 0,2,4, ..., and by

(i i 4 B G, (1)
J72n+1
2
I

B 2w? N k*vd | (w? + w%l) / k'_2 /
w2 — W,(Qu (w? — W%LV (m+1)/2 4 (m—1)/2
X{)\% kz,r?v 2€Xp(——)( 2/("‘),31_)

']m—i—l()\Z)

___@apes)r (_ (k? + k%)) { , (k:l/@) -
JT2TZ+1()\1)JT2IL—|-1()\2) 2 2

22 k202 (w4 w?)) ki ke AN
— ( — + the 5 oL > Liny1y/2 <—14 2) Lm—1)2 <—14 2)} : (33)

w? — Wi (w? — w,BJ_)Q
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for odd values of m = 1,3,5,.... In Egs. (32) and (33), we have retained only the leading-
order nonresonant terms and one resonant term at frequencies w ~ +2wg, for even values
of m, and w ~ fwg, for odd values of m. In the dispersion relations (32) and (33), A\
and ), are determined from the zeros of J,,(\,) = 0, the quantity vy, = (2T15/mp)"/? is
the transverse thermal speed, ki and ko are defined by ky = Ay7y/ry and ke = Aorp /7w,

and wp; = wy(l — 5,)Y?

is the effective depressed betatron frequency [Eq. (25)], where
5y = @y,/2w} is the effective normalized beam intensity defined in terms of @yp.

The dispersion relations (32) and (33) can be used to investigate detailed electrostatic
stability properties for strong anisotropy (7j,/7.» — 0) for a wide range of normalized axial

wavenumbers (k,7,,) and effective normalized beam intensity 5, = _zb / 2wl2f, or equivalently,

normalized tune depression 7/vy defined by

vV o_ WL = \1/2
= =(1 . 34
” ; ( Sb) (34)

For sufficiently large values of k,r,,, the large temperature anisotropy (Zj,/7'1y — 0) in Egs.
(32) and (33) provides the free energy to drive the classical Harris-type instability [26, 27],
generalized here to include finite transverse geometry and beam space-charge effects. The
influence of the finite longitudinal temperature can be taken into account if one assumes
Tijp # 0 in Eq. (1). This results in the (collisionless) Landau damping of the unstable mode
due to resonant wave-particle interactions [1] associated with the axial momentum spread of
the beam particles. The dispersion relation for the case of nonzero longitudinal temperature
Ty # 0 is derived in Appendix B.

To compare with the simulation results in Sec. IV, we introduce the normalized on-axis
beam intensity s, defined in terms of the on-axis (r = 0) beam density 71,. Here, s, = &2 /2w7,
where Gy, = (4meZfiy/my)' /2. Using Eqs.(22)-(25), the average normalized beam intensity

5y = Wy,/2w} introduced in Eq. (34) is related to s, by the equation

Sy = Syl (/Orw drrinj (r)) / (/Orw drrn?(r))Q : (35)

The allowed range of the normalized intensity parameter s, is 0 < s, < 1, where the limit

sp — 1 corresponds to fully depressed tune (space-charge-dominated limit).
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FIG. 1: Plots of normalized growth rate (I'mw)/ws and real frequency (Rew)/w; versus k,r, for

Sp = 0.95 and 11||b/TJ_b = 0.02.

Typical numerical results obtained from the approximate dispersion relation utilizing Eqs.
(B9) — (B11) are presented in Figs. 1 — 5 for the case where r,, = 3r;,. Only the leading-order
nonresonant terms and one resonant term at frequencies w ~ +2wg, for even values of m,
and w ~ Fwg, for odd values of m, have been retained in the analysis. Figure 1 shows the
normalized growth rate (/mw)/w; and real frequency (Rew)/wy plotted versus normalized
wavenumber k,r, for normalized on-axis beam intensity s, = 0.95 and temperature ratio
Tijp/ Ty s = 0.02. Note from Fig. 1 that the critical values of k.r,, for the onset of instability
and for maximum growth rate increase as the azimuthal mode number m is increased. As
expected, finite — T, effects introduce a finite bandwidth in k.7, for instability, since the
modes with large values of k,r,, are stabilized by Landau damping. Also, the unstable modes

with odd azimuthal number are purely growing.
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FIG. 2: Plots of normalized growth rate (I'mw)mas/wy and real frequency (Rew)qz/wy at maxi-

mum growth rate versus normalized beam intensity s for 77 /Ty =0.02.
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FIG. 3: Plots of normalized growth rate (Imw)mae/ws and real frequency (Rew)mae/wy at maxi-

mum growth versus normalized tune depression v/vy for T}, /T, = 0.02.

Figures 2 and 3 show plots of the normalized growth rate (I'mw)/wy and real frequency
(Rew)/wy at maximum growth versus normalized beam intensity s, (Fig. 2) and effective tune
depression 7/, (Fig. 3). The m =1 dipole mode has the highest growth rate, (Imw)/wy =~
0.15, for 7/vy =~ 0.45 . Note from Fig. 2 that the critical value of s, for the onset of the
instability, and the value of s5**® with maximum growth rate, increase with azimuthal mode
number m. The instability is absent for s, < 0.65 or 7/vy > 0.77 for the choice of parameters
in Figs. 2 and 3. The real frequency (Rew)/w; of the unstable modes with odd azimuthal
numbers m = 1,3,--- are zero and are not plotted in Figs. 2 and 3. Moreover, the real
frequency is plotted only for the unstable modes. The normalized eigenfunctions Reé&)\(r)
and Im6$(r) corresponding to s, = 0.95 and maximum growth rate are plotted versus r/r,,
in Fig. 4. The real part of the eigenfunction for m = 0 has no zeros, and has a structure

similar to the familiar longitudinal mode (L;) in Ref. [8].

1 _ 0
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£ 05 m=0 4 | & -o04
§ 0.25 5 -0.06
£ o = -008
<£-0.25 g -01
% -05 mﬂ/w E -012

~0.75

0 0.2 0.4 0.6 0.8 1

FIG. 4: Plots of normalized eigenfunctions Re[6p(r)] and Im[6p(r)] at maximum growth versus

7 /Ty corresponding to s, = 0.95 and T, /T = 0.02.
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FIG. 5: Longitudinal threshold temperature Tﬁ’g for onset of instability normalized to the transverse
temperature 7|, is plotted versus (a) normalized beam intensity s, and (b) normalized tune

depression v/uvy.

An important characteristic of the instability, the longitudinal threshold temperature Tﬁf}
for the onset of instability normalized to the transverse temperature 1',,, is plotted in Fig.
5 versus normalized beam intensity s, and effective tune depression 7/vy. The threshold
temperature Tﬁf} is a decreasing function of azimuthal wavenumber m and normalized tune
depression 7/vy, and an increasing function of the normalized beam intensity s,. Note from

Fig. 5 that the instability is absent for Tjy, /1", > 0.22.

III. DESCRIPTION OF THE NONLINEAR §f SIMULATION CODE

The theoretical model described in Sec. II uses simplified assumptions for the particle
trajectories necessary to derive the dispersion matrix. This allowed us to obtain a closed
expression for the dispersion matrix and to study the stability properties of intense beams
with temperature anisotropy. To improve on this method, one can use Eqs. (17), (18) and
(19), together with the equations for the particle trajectories [Eqgs. (9) and (12)] calculated
numerically using the equilibrium space-charge potential obtained from Poisson’s equation
(2). The dispersion matrix obtained in this way can be used to determine the unstable mode
frequencies and growth rates by numerically searching for the solutions to the dispersion
equation (20) for the complex frequency w = (Rew, Imw). Although such spectral method
calculations are possible, they are less efficient than particle-in-cell (PIC) calculations. To

investigate the stability properties numerically, we make use of the nonlinear ¢ f method [37]
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described below, as implemented in the Beam Equilibrium, Stability and Transport (BEST)
code [1, 15, 17].

For present purposes, we make use of the smooth-focusing approximation in which the
transverse applied focusing force is modelled by F,. = —%mbw?x L, where wy is the constant
focusing frequency associated with applied focusing field, m,, is the particle rest mass, v, =
(1—32)'/% is the relativistic mass factor, V, = B¢ = const is the average axial beam velocity,
and c is the speed of light in vacuo. In the 0f approach, the solutions to the nonlinear
Vlasov-Maxwell equations are expressed as f, = ff + 0fy, ¢ = ¢°+d¢ and A, = A% +0A,,
where (2, ¢°, A%) are known equilibrium solutions (9/0t = 0). In the electro-magnetostatic,
approximation the self-fields are represented as E® = —V¢(x,t) and B* = V x A,(x,t)e,

[38]. The perturbed potentials satisfy the equations [15]

V256 = —dme, / &pd fy, (36)

4
VA, = e, [ dpo.ofi, (37)

c

where e, is the particle charge, and 6 fy(x, p, ) is given by the weighted Klimontovich repre-

sentation,

0fy =

N, DNsb
Nb Zwmﬁ(x — Xbi)(S(p — pbi). (38)
sb =1

Here, N, is total number of beam simulation particles, N, is total number of actual beam
particles, and the weight function is defined by wy = ¢ f,/fp. The nonlinear particle simula-
tions are carried out by iteratively advancing the particle motion, including the weights they

carry, according to [15]

dx p;

p7a (Vo) P Lbis (39)
dz g _ _
d; = Vi = Bc+ 7, Smb 1(pzbi — YmpBc), (40)
d i Vzbi
Cl;tb = —ybmbw?XLbi — €p <V¢ _ VJ_AZ> ) (41)
c
dwp; 1 Ofwo dpy;
= —(1—wy)—=22.6 7 42
dt (1= wy )fbo op dt “2)
d g Uzbi
5 ( b > = —e, <v5¢ -2 VL6A2> , (43)
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and updating the fields by solving the perturbed Maxwell’s equations with appropriate
boundary conditions at the cylindrical, perfectly conducting wall at radius r,,.

The 6 f approach is fully equivalent to the original nonlinear Vlasov-Maxwell equations,
but the noise associated with representation of the background distribution f? in conventional
particle-in-cell (PIC) simulations is removed. In the §f approach, the simulation particles
are used to represent only a small part of the entire distribution 6 f, = f, — f¢, and therefore
the statistical error in the simulations is proportional to €57 ~ 6 fy/+/Ngp, whereas the error in
PIC simulations is proportional to €. ~ fy//Ng. Therefore, the typical gain in accuracy in
0 f simulations compared to PIC simulations with the same number of particles is €57 /€pic =
wWy; [15]. This fact allows much more accurate simulations of the nonlinear dynamics and
instability thresholds when |w,;| < 1. When the perturbation ¢ f, becomes comparable in
magnitude with the background distribution function f, then the §f method becomes less
accurate than a full PIC simulation. In the present paper, a hybrid combination of the ¢ f
and PIC simulation methods is used, where the number density is calculated according to
dny = [1—0(@y;)|0nsf + (Wi ) (Npic — o), where §(w) is a monotonic function of its argument
such that (w — 0) — 0 and O(w — 1) — 1. Here, dns; = [ d®pd fy and nyic = [ d*pfo.

In addition, the 0 f method can be used to study linear stability properties, provided all
nonlinear terms in the dynamical equations (39)—(43) are neglected [15-17]. This corresponds
to replacing the term 1 — wy; with 1 in Eq. (42) for the weights, and moving particles along
the trajectories calculated in the unperturbed potentials (¢°, AY).

The 0 f method described above has been implemented in the three-dimensional electro-
magnetostatic particle-in-cell code (BEST) in cylindrical geometry with a perfectly conduct-
ing cylindrical wall at radius r,. Maxwell’s equations (36) and (37) are solved using fast
Fourier transform (FFT) techniques in the longitudinal and azimuthal directions. The par-
ticle positions [Eqs.(39) and (41)] and weights [Eq. (42)] are advanced using a second-order
predictor-corrector algorithm. The BEST code is parallelized using the Message Passing
Interface (MPI) with domain decomposition in the direction of beam propagation. The

NetCDF data format is used for large-scale diagnostics and visualization. Typical simula-
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tion runs consist of 10° simulation particles and are performed on the IBM SP/RS 6000 at

NERSC.

IV. SIMULATION RESULTS

In this section we present the simulation results for a continuous, anisotropic beam in a
constant focusing field. The self-consistent equilibrium distribution function (0/0t = 0) in
the beam frame is taken to be of the form given in Eq. (1), where 7, is the beam density at
r =0, and 1"\, and 7|, are the transverse and longitudinal temperatures. The equilibrium
self-field potentials (¢g, A,) are determined numerically from Maxwell’s equations [15]. It
is also assumed that the beam is located inside a grounded, perfectly conducting cylindrical
wall at radius r, = 37y, where r, = [(r?)]'/? is the rms beam radius. Random initial
perturbations are introduced to the particle weights, and the beam is propagated from
t=0tot = 200w171. The initial temperature ratio is taken to be Tj,/7, = 0.02, and

the simulations are performed in the beam frame with V, = 0 and 7, = 1. Typical numerical

results are illustrated in Figs. 6-12, where the simulations have been carried out over wide

range of normalized beam intensities s, = w’, /2w ranging from s, = 0.2 to s, = 0.98.
12
1 0.15 :
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o “— 0125
3 o8 =0 3 o
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FIG. 6: Plots of normalized real frequency (Rew)/w; and growth rate (Imw)/w; versus k,r, for

Sp — 0.95 and T||b/TJ_b = 0.02.

Using the linearized version of the 3D BEST code, Figs. 6-9 show results of the 0 f
simulations for perturbations with axial and azimuthal spatial dependence proportional to

exp(ik,z + imf), where k, is the axial wavenumber, and m is the azimuthal mode number.
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FIG. 7: Plots of normalized real frequency (Rew)maez/wy and growth rate (Imw)maee/wy at maxi-

mum growth versus normalized beam intensity s, for Ty /Ty = 0.02.
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FIG. 8: Plots of normalized real frequency (Rew)maez/wy and growth rate (Imw)maee/wy at maxi-

mum growth versus normalized tune depression /vq for Tj,/T, = 0.02.

Figure 6 show plots of the real and imaginary parts of the complex oscillation frequency
w versus normalized axial wavenumber k,r,, for s, = 0.95 and azimuthal mode numbers
m = 0,1,2,3. Note that the instability has a finite bandwidth with maximum growth rate
occurring at k,r, ~ 9. The dependence of the maximum growth rate (/1mw)yq,/ws and the
normalized real frequency (Rew)qe/ws at maximum growth on normalized beam intensity s,
and tune depression 7/, are shown in Figs. 7 and 8, respectively. Evidently, the maximum
growth rate (Imw)mes/wy is an increasing function of beam intensity s, and a decreasing
function of normalized tune depression 7/1vy. Note from Fig. 7 that the critical value of s,
for the onset of the instability increases with azimuthal mode number m. The real frequency
(Rew)/w; of the unstable modes for odd azimuthal numbers m = 1,3 are zero and are not
plotted. The real frequency is plotted only for the unstable modes. Consistent with the

analytical predictions in Sec. II, note that the dipole mode (m = 1) has the largest growth
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rate. Furthermore, all modes are found to be stable in the region s, < 0.5, or equivalently
v/vy > 0.85. The radial dependence of the eigenfunctions for the perturbed electrostatic
potential obtained from the linearized BEST code at maximum growth is illustrated in Fig.
9 for s, = 0.95. The simulation results presented in Figs. 6 — 9 are in good qualitative

agreement with the theoretical model presented in Sec. II (see Figs. 1 —4).
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FIG. 9: Radial mode structure of the unstable m = 0,1,2,3 eigenfunctions at maximum growth

corresponding to s, = 0.95 and TH,,/TM, = 0.02.
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FIG. 10: Longitudinal threshold temperature Tﬁg‘ normalized to the transverse temperature 1", for

the onset of instability plotted versus (a) normalized beam intensity s;, and (b) normalized tune

depression 7/1.

The longitudinal threshold temperature Tﬁ'g normalized to the transverse temperature
T'1, for the onset of instability for arbitrary value of azimuthal mode number m is plotted in
Fig. 10 versus normalized beam intensity s, [Fig. 10(a)] and effective tune depression 7/,
[Fig. 10(b)]. The threshold temperature Tﬁ'g is a decreasing function of the normalized tune

depression 7/1y and an increasing function of the normalized beam intensity s,. Note from
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Fig. 10 that instability is absent for T, /T'1, > 0.08. The theoretical model in Sec. II predicts
higher threshold temperatures than the simulation results in Fig. 10, and is less accurate in

predicting the threshold temperature for the onset of instability.
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FIG. 11: Time history of the normalized density perturbation dn,q. /7y for sy = 0.8 and T,/T'1p =

0.02 at fixed axial position z and radius r = 0.3r.

Figures 11 and 12 show typical simulation results using the nonlinear version of the 3D
BEST code for the case of normalized beam intensity s, = 0.8. In Fig. 11, the initial
perturbation has a dominant initial excitation with m = 1 and k,r, = 9, and the time
history of the perturbed density dn, = [ d®pd f, is plotted versus wyt at fixed axial position
z and radius 7 = 0.3r,. After the initial linear growth phase, note from Fig. 11 that the

instability saturates at a moderately large level with |dnj**® /n,| ~ 0.1.
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FIG. 12: Plot of average longitudinal momentum distribution Fjy(p,,t) at time ¢ = 0 (thin line)

and t = 150%71 (thick line), for normalized beam intensity s, = 0.8 and Tj;,/T"L, = 0.02.

Finally, shown in Fig. 12 is a plot of the average longitudinal momentum distribution
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Fy(p,,t) = [ d*pLd®zf, versus p, for a dominant initial excitation with m =1 and k,7, = 9
(the case shown in Fig. 11). In Fig. 12, the average distribution F(p,,t) at time ¢ = 150w,
(thick curve) is compared with the initial distribution (thin curve). The formation of tails
in axial momentum space in Fig. 12 and the consequent saturation of the instability are

attributed to quasilinear stabilization due to resonant wave-particle interactions.

V. CONCLUSIONS

To summarize, in Sec. II we generalized the classical Harris-like instability to the case
of an intense charged particle beam with anisotropic temperature (7j,/7T1, < 1) includ-
ing the important effects of finite transverse geometry and beam space-charge. Using the
simplified assumption of negligible spread in depressed betatron frequency, we derived a
simple dispersion equation for the lowest-order three-dimensional eigenmodes of the form
bn (1) exp(—iwt + ik,z + 9mB). For sufficiently large values of k?rZ 2 1, where ry is the
rms beam radius, the analysis of the dispersion equation leads to a strong anisotropy-driven
instability provided the normalized beam intensity s, = @;2;1;/ 2&)?‘ is sufficiently large. In Sec.
IV, the BEST code [15], which implements the nonlinear 0 f scheme described in Sec. III,
was used to investigate the detailed stability properties of intense charged particle beams
with large temperature anisotropy (7jj,/7» < 1) for three-dimensional perturbations with
several values of azimuthal wave number m = 0, 1,2, 3. The simulation results clearly show
that moderately intense beams with s, < 0.5 are linearly unstable to short wavelength per-
turbations with k2r2 2 1, provided the ratio of longitudinal and transverse temperatures is
smaller than some threshold value. The mode structure, growth rate and conditions for the
onset of the instability are qualitatively similar to what is predicted by the simple theoreti-
cal model presented in Sec. II. Both the simulations and the analytical theory predict that
the dipole mode (azimuthal mode number m = 1) is the most unstable mode. The main
saturation mechanism for the instability is the resonant wave-particle interactions that occur

during the formation of tails in the axial momentum distribution function. In the nonlinear
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saturation stage, the total distribution function is still far from equipartitioned, and free

energy is still available to drive an instability of the hydrodynamic type [23, 24].
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APPENDIX A: EVALUATION OF ORBIT INTEGRAL

In this Appendix, we evaluate the orbit integral [see Eq. (19)]
m T dr . . . .
rm = / ?Jm[CLT(T)] exp [imb' (1) — imwyT — ipw,T]|, (A1)
o T,

Here, 7(7) and 0'(7) are the trajectory of a particle with transverse energy H, and canonical
angular momentum Py moving in the quadratic potential ¢(r) = mywj, r*/2 with initial
conditions 7(7 = 0) = ryin(Hy, Py) and 0'(t = 0) = 0 [see Eq. (9)]. Here, w,(Hy, )
is the frequency of radial motion, and wy(H, , Py) is the angular frequency. In Cartesian
coordinates, the particle trajectory {Z(7),y(7)} can be expressed as

o17) = Y2 cos (o) fos(9) — sn(9)

y(r) = VAL sin (w1 7) [sin(3) + cos(B)], (A2)

Wg1
where cos(26) = Pyws, /H,. Therefore, we can express

P(r) = #2(r) + 53(r) = mi%ﬂ 11— sin(28) cos(2w.7)] (A3)

and

P (r) exp(([im(7))] = [&(r) + ig(r)]"

H m/2
= ( L > [cos [ exp(iwg T) — sin Fexp(—iws, 7)|™ . (A4)

2
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From Egs. (A2) and (A3), it follows that w,(H, Pp) = 2wg, and wy(H,, Py) = wsy. Sub-

stituting Eqs. (A3) and (A4) into Eq. (A1) and changing integration variable to o = 2wg, 7,

we obtain
2 d \/H
IPm — 2a ( L/ \/1 — sin(203) cos(a )) exp|—ipa — i(m/2)al
0 s

y [cos() exp(ia/2) — sin(3) exp(—ia/2)|™
1 — sin(23) cos(a)]™?

(A5)

Since the integral in Eq. (A5) is over one complete period of the integrand function F'(«), it

follows that

mm = 27T daF (« / daF (« / da[F(a) + F* ()]
- / ( v Z;L/mb \/1 sin(203) cos(a ))
[1 — sin(23) cos(a)]™*
X [exp(—ipa — i(m/2)a){cos() exp(ia/2) — sin(fF) exp(—ia/2) }™ + c.c.]. (A6)

To evaluate the integral in Eq. (A6), we use the summation theorem for Bessel functions

[39], which gives

R 7 = 2npeosc) = exp(-i0) 3% Julup) Tt exp(ik)
—exp(ite) 3 hwn)twr)esp(-ika), (A7)
where
et =[]

In the present analysis, w = a\/H | /my/w, 5, 7 =sin 3, and p = cos (3, and therefore

Eq. (A8) gives

cos 3 — sin B exp(ic) ]m/Z (A9)
) .

exp(—im¢) = exp(ma/2) lcos [ — sin 3 exp(—ia

Substituting Egs. (A7)-(A9) into Eq. (A6), and rearranging terms, we obtain the expression
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Wﬁl (.U,BJ_

=J, (ai\/m/mb sin 5) Joim (ai"m/mb cos ﬁ)

P = EO:O Jk (a y Ho oy sinﬂ) Jkim (a y Ho oy cos ﬂ) /07r i—acos[(k —p)a]

u),gJ_ u),gJ_

H, +F H, - F
7 ( a L+ ewm> i ( a L 0wm> . (A10)
WL 2mb WL Zmb

APPENDIX B: EVALUATION OF SUSCEPTIBILITY INTEGRAL

To complete the evaluation of the susceptibility defined in Eq. (17), we determine the
following integral

H
exp {—T—jb (1pm)* 2, (B1)

1 WdH;/HM%LcH%

I =
mb)\ﬁ 0 TJ_b —H, Jwg1 2(.UﬁJ_

where the orbit integral I";"™ is defined in Eq. (19) and was evaluated in Appendix A. Using

Egs. (19) and (A10), and introducing the change of integration variables,

ey = (HL+ Ppwsi)/2,

€_ — (HJ_ - PgwﬁL)/Z, (B2)

Eq. (B1) can be rewritten as
e+ { e }

1 o0 o0 _
e e [T ‘.
mpAjwh T1 Jo “ly CCTPTTL T,

‘o, ()\nu/e/mb) o ()\nq/eJr/mb) s ()\m/e/mb) oo ()\m/@/mb) (B3)

TywWpa1 TyWp L TywWpa1 TwWgl

The change of variables reduces the two-dimensional integral in Eq. (B1) to the product of

two one-dimensional integrals. Using Eq. (25), the integral in Eq. (B3) can be evaluated as

1 Ty 2 Ty 2 )\n)\n/ Ty 2 )\n)\n’ Ty 2 )\2 + )\2/
I=-(2) |2 Ly | [ — () 2 (B4
2 ()\d> P [(1",) 4 | 7P (rw) 1 | P (rw) 4 (B4)

where 7§ = 21'1;/myw}, . The integral in Eq. (18) is

7,2 IL’Z

1
Annw = / drx exp l_w—Ql Jm()‘nx)']m()‘n’x‘) =
0 Tb

_1 T 2 Tb)Q)\n)\n/ (Tb)Q)\%—i-)\%l
N 2 <Tw> Im l(Tw 2 P Ty 4 ' (B5)
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In Egs. (B3) and (B5), we have extended the integration limits to infinity. The error in this
approximation is proportional to exp [—(r,/rp)?], which is small for r,/r, 2 3. Collecting

the results from Eqs. (B4) and (B5), the expression for the matrix elements becomes

o1 (M) 1o 2.2 @12) =
Dy, = — (A5 + kors)Onm + w% exp(—2znn — Znn') | LI (220m7) — Z L, (Znn ) L g (2 )
1 q=—00

x /dvzfo(vz) (w - W = ksv + -V )] (B6)

20+ m)wgy — kv, 2w — (2¢+ m)wg — k,v,)?
where rj /NG = 207 Jwj, vi,, = 2T14/mp, and we have introduced 2z, = (r3/10)* An A /4.
The terms in the summation in Eq. (B6) can be rearranged for even or odd values of azimuthal

mode number m. We obtain

J?2 (A o2
D=2l — Jnt1(An) )()\i + k210 )0nm + —2 exp(—2nn — Znrn)
’ 2 Wi
2 kQU?h
Iy(2 nn') — I nn' /d z z 1 £ - I, nn' I nn'
[ 2 (22n) = 12w [ dv.fofo) ( + Q(W_Wz) DIVSICROTRTEN

2(w — k,v,)? 29 (w— kov.)? + 4q2wgl
dv, fo(v. K b
x/ v, fo(vy) <(w " — APl + zvthJ_[(w —ka0.)? — 4Pl P (B7)

for even values of m = 2[, and

J2 (A o2
DZL:’ZH_l — m+1( )()\121 + kzri)(sn,n’ + Tp exp(—znn — Zn’n’)
2(w — k,v,)?
I2l 1(2znn’) - 1, —Z(Znn’)I [ I(Znn’) /dUZfO(UZ)< +
[ + g} q q+I+ (w _ k’zvz)2 _ (2(] + 1)2w%L

2.2
K vih

(w — k.v.)? + (2 + 1)%03, )] (BS)

[(w—k.v,)? — (2¢ + 1)2“),(231_]2
for odd values of m = 20+ 1. If the distribution function fy(v,) is Maxwellian with fy(v,) =

(my/27T}) 2 exp (—mpv2/2T)3), then the matrix elements in Egs. (B7) and (B8) take the

form
_ J2 (A, @2
DZ?,;QZ _ m+12( )()\72Z + k?ri)dn,n, + Tp exp(—2un — Znint)
w5,

X | Lo1(22pm) — IlZ(Znn’)AO (w) — Z Lo—i(znn ) g1 (2nm)

q>0

X [Azq(w) + A_gq(w)] |, (B9)
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for even m = 2l, and

_ J2 (A 2
pyet = Tt 2 gnts 2 e~z )
ﬁL
l12l+1 2znn Z -1 Znn q+l+1 (Znn ) [A2q+1(w) + A72q71(w)] ]7 (B]-O)
q>0

for odd m = 2] + 1. Here,

Uih| koomy ) | keomy Kavm Ui

where Z() is the plasma dispersion function [1, 40], and vy, = (2T)p/ms) ">
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