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This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting
beam propagating in straight (linear) geometry in the z direction in the smooth-focusing approxima-
tion. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-
space �x?;p?� transverse to beam propagation, a closed system of equations is obtained for the
nonlinear evolution of the longitudinal distribution function Fb�z; pz; t� and average axial electric field
hEszi�z; t�. The primary assumptions in the present analysis are that the dependence on axial momentum
pz of the distribution function fb�x;p; t� is factorable, and that the transverse beam dynamics remains
relatively quiescent (absence of transverse instability or beam mismatch). The analysis is carried out
correct to order k2zr2w assuming slow axial spatial variations with k2zr2w � 1, where kz � @=@z is the
inverse length scale of axial variation in the line density �b�z; t� �

R
dpzFb�z; pz; t�, and rw is the radius

of the conducting wall (assumed perfectly conducting). A closed expression for the average longitudinal
electric field hEszi�z; t� in terms of geometric factors, the line density �b, and its derivatives @�b=@z; . . . is
obtained for the class of bell-shaped density profiles nb�r; z; t� � ��b=�r

2
b�f�r=rb�, where the shape

function f�r=rb� has the form specified by f�r=rb� � �n	 1��1
 r2=r2b�
n for 0 � r < rb, and f�r=rb� �

0 for rb < r � rw, where n � 0; 1; 2; . . . . The general kinetic formalism developed here is valid for the
entire range of beam intensities (proportional to �b) ranging from low-intensity, emittance-dominated
beams, to very-high-intensity, low-emittance beams.
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rium and stability properties of intense charged particle
beams. These investigations include a wide variety of

low-to-moderate intensity is one in which the transverse
density profile is bell shaped. Second, with the exception
I. INTRODUCTION

High energy accelerators, transport systems, and stor-
age rings [1–8] have a wide range of applications ranging
from basic research in high energy and nuclear physics, to
applications such as spallation neutron sources, heavy ion
fusion, and nuclear waste transmutation, to mention a few
examples. Charged particle beams are subject to various
collective processes that can affect the beam quality. Of
particular importance at the high beam currents and
charge densities of practical interest are the effects of
the intense self-fields produced by the beam space charge
and current on determining detailed equilibrium, stabil-
ity, and transport properties. In general, a complete de-
scription of collective processes in intense charged
particle beams is provided by the three-dimensional
Vlasov-Maxwell equations [1] for the self-consistent
nonlinear evolution of the beam distribution function,
fb�x;p; t�, and the self-generated electric and magnetic
fields, Es�x; t� and Bs�x; t�. While considerable progress
has been made in analytical and numerical simulation
studies of intense beam propagation [9–39], the effects
of finite geometry and intense self-fields often make it
difficult to obtain detailed predictions of beam equilib-
rium, stability, and transport properties based on the
Vlasov-Maxwell equations. Nonetheless, often with the
aid of numerical simulations, there has been considerable
recent analytical progress in applying the Vlasov-
Maxwell equations to investigate the detailed equilib-
1098-4402=04=7(2)=024401(13)$20.00 
applications ranging from the Harris-type instability
driven by large temperature anisotropy with T?b � Tkb
[37], to the dipole-mode two-stream instability for an
intense ion beam propagating through background elec-
trons [29], to the resistive hose instability [34] and the
sausage and hollowing instabilities [35] for intense beam
propagation through background plasma, to the develop-
ment of a nonlinear stability theorem [22,23] in the
smooth-focusing approximation.

While the collective processes described in the
previous paragraph are three dimensional in nature, con-
siderable theoretical progress has also been made in
the development and application of one-dimensional
Vlasov-Maxwell models [40–47] to describe the longi-
tudinal beam dynamics for a long coasting beam, with
applications ranging from plasma echo excitations to the
investigation of coherent soliton structures, both compres-
sional and rarefactive (holelike). Such one-dimensional
Vlasov descriptions rely heavily on using a quasi-self-
consistent geometric-factor (g-factor) model [46–55] to
incorporate the average effects of the transverse beam
geometry and the surrounding wall structure. Several
limitations are evident in existing g-factor models.
First, the models [40–55] typically assume a flattop
(step-function) density profile in the plane perpendicular
to beam propagation. While this is a good approximation
for very-low-emittance, space-charge-dominated beams
[1,49–53], the case typically encountered in beams with
2004 The American Physical Society 024401-1
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of the g-factor model for a step-function density profile
developed by Reiser et al. [50–53], other g-factor models
neglect the dependence of the beam edge radius �rb� and
root-mean-square radius �Rb� on the line density �b of
beam particles, an effect that becomes increasingly im-
portant at moderate and high beam intensities. Finally,
some one-dimensional Vlasov treatments Taylor expand
the field perturbations about the beam axis at r � 0, an
approximation which is not necessary and has question-
able validity, particularly at moderate and high beam
intensities.

The purpose of the present paper is to develop an
improved one-dimensional kinetic model describing the
self-consistent nonlinear evolution of the longitudinal
distribution function Fb�z; pz; t� and average axial elec-
tric field hEszi�z; t� for a very long charge bunch (coasting
beam) propagating through a cylindrical conducting pipe
with radius rw, and confined in the transverse direction by
an applied focusing force Ftr

foc described in the smooth-
focusing approximation. For simplicity, to illustrate the
basic approach, in the present analysis the cylindrical
pipe is assumed to be perfectly conducting, and the
beam transport geometry is assumed to be straight (lin-
ear). The analysis can be extended in a straightforward
manner to include the effects of a conducting wall
with finite resistive and capacitive impedance, as well
as the effects of a slip factor � in large-aspect-ratio
circular geometry. Extension of the present analysis to
incorporate these effects will be the subject of a future
publication. In the present analysis, the coasting beam
propagates in the z direction with directed axial kinetic
energy ��b 
 1�mbc

2, where �b � �1
 �2
b�


1=2 is the
relativistic mass factor, Vb � �bc is the average axial
velocity of the beam particles, mb is the rest mass of a
beam particle, and c is the speed of light in vacuo.
Furthermore, the beam dynamics is treated in the thin-
beam (paraxial) approximation, and the particle motions
in the beam frame are assumed to be nonrelativistic.

For simplicity, the present analysis is carried out in the
beam frame where the particle motions are nonrelativis-
tic and the self-generated fields are assumed to have
electrostatic polarization (r�Es � 0 and Bs � 0).
The final results for the longitudinal Vlasov-Maxwell
equations are then Lorentz transformed back to the labo-
ratory frame, moving with axial velocity 
Vb � 
�bc
relative to the average motion of the particles in the beam
frame.

In Sec. II, the starting point is the fully nonlinear,
three-dimensional Vlasov-Maxwell equations for the
distribution function fb�x;p; t� and self-generated fields
in the beam frame (unprimed variables). A reduced
Vlasov equation for the longitudinal distribution function
Fb�z; pz; t� �

R
dxdy

R
dpxdpyfb�x;p; t� is obtained by

projecting out (integrating over) the transverse phase-
space variables �x?;p?�. Making the single ansatz
so that the dependence of the distribution function
024401-2
fb�x;p; t� on axial momentum pz is factorable [Eq. (15)]
leads to a closed system of equations describing the self-
consistent evolution of the longitudinal distribution func-
tion Fb�z; pz; t� and the average axial electric field
hEszi�z; t�. Here, assuming axisymmetry in the transverse
plane �@=@� � 0�, the average h� � �i denotes the weighted
transverse spatial average over nb�r; z; t�=�b�z; t� defined
in Eq. (26), where nb �

R
d3pfb is the number density of

beam particles, and �b �
R
dpzFb �

R
dxdynb is the

axial line density of beam particles.
In Sec. III, we assume that the beam dynamics is

relatively quiescent in the transverse plane (no transverse
instability or beam mismatch), and take the transverse
density profile to have the fixed-shape form nb �
��b=�r

2
b�f�r=rb� where the shape function f�r=rb� �

�n	 1��1
 r2=r2b�
n for 0 � r < rb, and f�r=rb� � 0 for

rb < r � rw. Here, n � 0; 1; 2; . . . is an integer, with n �
0 corresponding to a step-function density profile, and rb
is the edge radius of the beam. Moreover, the root-mean-
square beam radius Rb � hr2i1=2 and edge radius rb
generally depend on the line density through the
radial force-balance condition in Eqs. (33) and (38),
respectively. Of course, this dependence is weak (rb ’
const) for a low-intensity, emittance-dominated beam,
whereas r2b / �b for a very-low-emittance, space-charge-
dominated beam. Denoting @=@z� L
1

z � kz, we assume
slow axial variations of Fb�z; pz; t� and �b�z; t� with
k2zr2w � 1. The average electric field hEszi�z; t�, expressed
in terms of @�b=@z and higher-order derivatives, together
with closed forms for the corresponding geometric fac-
tors are calculated self-consistently correct to 0�k2zr

2
w� for

the class of bell-shaped density profiles with n �
0; 1; 2; . . . described above. The results show a strong
dependence of the geometric factors on profile shape
and beam intensity �b.

In Sec.IV, as a simple application, the resulting coupled
equations for the longitudinal distribution function
Fb�z; pz; t� and the average electric field hEszi�z; t� are
solved in the linearization approximation for the case
of low-to-moderate beam intensity treating rb ’ const
(independent of �b). As expected, the analysis leads to
collective oscillations with sound-wave-like characteris-
tics modified by cubic dispersion. The detailed oscillation
and damping properties of the perturbation of course
depends on the choice of equilibrium distribution func-
tion F0

b�pz� about which the system is perturbed.
Finally, in Sec. V, the key results derived in the beam

frame are transformed back to the laboratory frame to
facilitate practical applications of the improved kinetic
model of the longitudinal beam dynamics developed here.
II. THEORETICAL MODEL AND ONE-
DIMENSIONAL VLASOV EQUATION

The present analysis considers a very long charge
bunch (coasting beam) with characteristic axial length
024401-2
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lb and radius rb satisfying lb � rb. The coasting beam is
made up of particles with charge eb and rest mass mb
propagating in the z direction with directed axial kinetic
energy ��b 
 1�mbc2, where �b � �1
 �2

b�

1=2 is the

relativistic mass factor, Vb � �bc is the average axial
velocity of the beam particles, and c is the speed of light
in vacuo. It is assumed that the beam propagates through a
straight, perfectly conducting cylindrical pipe with wall
radius rw, and the applied transverse focusing force Ftr

foc is
modeled in the smooth-focusing approximation. For ex-
ample, one simple model is Ftr

foc � 
�bmb!2
�?x?, where

!�? � const is the average focusing frequency associ-
ated with the applied focusing field, and x? is the trans-
verse displacement from the cylinder axis. Finally, the
nonlinear dynamics of the beam particles is treated in the
thin-beam (paraxial) approximation, and the particle
motions in the beam frame are assumed to be nonrela-
tivistic [1].

The most general description of the nonlinear collec-
tive interactions in an intense charged particle beam is
provided by the nonlinear Vlasov-Maxwell equations [1],
which is the theoretical framework adopted in the present
analysis. For simplicity, the analysis is carried out in the
beam frame (Vb � �bc � 0 and �b � 1), and the kinetic
description is based on the Vlasov-Maxwell equations,
which describe the self-consistent nonlinear evolution of
the distribution function fb�x;p; t� and the self-generated
electric and magnetic fields, Es�x; t� and Bs�x; t�, in
the six-dimensional phase space �x;p�. Here, the (un-
primed) variables �x;p; t� denote beam-frame variables.
For present purposes, the self-generated fields in the
beam frame are assumed to have longitudinal polariza-
tion (electrostatic approximation) with r� Es � 0 and
Bs � 0. In this case, the nonlinear Vlasov-Maxwell equa-
tions describing the self-consistent nonlinear evolution of
fb�x;p; t� and Es�x; t� can be expressed as [1]

@fb
@t

	 v �
@fb
@x

	 �Ftr
foc 	 ebEs� �

@fb
@p

� 0; (1)

and

r �Es � 4�eb
Z
d3pfb; r�Es � 0; (2)

where v � p=mb is the (nonrelativistic) particle velocity
in the beam frame. Of course, once the solutions for
fb�x;p; t� and Es�x; t� are determined from Eqs. (1) and
(2) in the beam frame, the corresponding solutions in the
laboratory frame (moving with axial velocity 
Vbêez
relative to the beam frame) can be obtained by trans-
forming the phase-space variables and field components
to the laboratory frame (primed variables) according to
[22]
x0 � x; y0 � y; z0 � �b�z	 Vbt�; p0

x � px;

p0
y � py; p0

z � �b�pz 	 �mbVb�;

t0 � �b�t	 Vbz=c
2�; �0 � �b��	 Vbpz=mbc

2�;

(3)
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and
�Esx�

0 � �bE
s
x; �Esy�

0 � �bE
s
y; �Esz�

0 � Esz;

�Bsx�0 � 

1

c
�bVbEsy; �Bsy�0 �

1

c
�bVbEsx;

�Bsz�0 � 0:

(4)

In Eq. (3), �0 � �1	 p02=m2
bc

2�1=2 and � � �1	
p2=m2

bc
2�1=2 are the kinematic mass factors, and � ’ 1	

p2=2m2
bc

2 because the particle motions in the beam frame
are assumed to be nonrelativistic.

Returning to the beam frame, the Vlasov-Poisson
equations (1) and (2) are fully three dimensional and
describe the self-consistent nonlinear evolution of the
distribution function fb�x;p; t� in the transverse phase
space �x?;p?� � �x; y; px; py� and longitudinal phase
space �z; pz�. Two macroscopic moments of particular
interest for a coasting beam (long charge bunch) are the
volume number density nb�x; y; z; t� and axial line density
�b�z; t� defined by

nb�x; t� �
Z
d3pfb�x;p; t�;

�b�z; t� �
Z
dxdynb�x; t� �

Z
dxdy

Z
d3pfb:

(5)

Here,
R
dxdy � � � �

Rrw
0 drr

R
2�
0 d� � � � denotes integra-

tion over the accessible transverse configuration space
extending to the conducting wall located at radius r �
rw,

R
d3p � � � �

R
1

1 dpx

R
1

1 dpy

R
1

1 dpz � � � denotes

integration over momentum space, and �r; �; z� are cylin-
drical polar coordinates with x � r cos� and y � r sin�,
where r � �x2 	 y2�1=2 is the radial distance from the
beam axis at �x; y� � �0; 0�. Because the cylindrical
wall located at r � rw is perfectly conducting, the non-
linear Vlasov-Poisson equations are to be solved subject
to the boundary conditions

�Ez�r�rw � 0 � �E��r�rw : (6)

Moreover, the present analysis, carried out for a long
coasting beam, assumes that the distribution function
fb�x;p; t� is such that the transverse beam dynamics is
relatively quiescent (e.g., no transverse instability), and
that there are no particles extending beyond some outer
radius r0 < rw, i.e.,

fb�x;p; t� � 0; for r0 < r � rw: (7)

That is, there is a well-defined vacuum region outside the
beam with zero number density, nb � 0 in the region r0 <
r � rw [see Eqs. (5) and (7)]. Finally, it is assumed that

fb�x;p; t� � 0; for px ! �1;

py ! �1; or pz ! �1;
(8)

which is consistent with the existence of the density
integral defined in Eq. (5).

For purposes of deriving a one-dimensional Vlasov
equation describing the beam dynamics in the longitu-
dinal phase space �z; pz�, it is convenient to rewrite the
three-dimensional Vlasov equation (1) describing the
024401-3
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nonlinear evolution of fb�x;p; t� in the equivalent form

@
@t
fb 	 vz

@
@z
fb 	 v? �

@
@x?

fb 	 �Ftr
foc 	 ebEs

?� �
@
@p?

fb

	 ebEsz
@
@pz

fb � 0: (9)

Here, x? � xêex 	 yêey and p? � pxêex 	 pyêey denote the
transverse phase-space variables, and v? � p?=mb is the
transverse particle velocity. We introduce the transverse
projection operator h� � �i? defined by

h� � �i? �
Z
dxdy

Z
dpxdpy � � � ; (10)

where
R
dxdy � � � �

R
2�
0 d�

Rrw
0 drr � � � andR

dpxdpy � � � �
R
1

1 dpx

R
1

1 dpy � � � . Note that the op-

erator defined in Eq. (10) has the effect of projecting out
the transverse phase-space coordinates �x?;p?�.
Introducing the longitudinal distribution function
Fb�z; pz; t� defined by

Fb�z; pz; t� � hfb�x;p; t�i?

�
Z
dxdy

Z
dpxdpyfb�x;p; t�; (11)

we operate on Eq. (9) with
R
dxdy

R
dpxdpy � � � . Some

straightforward integration by parts that makes use of the
boundary conditions in Eqs. (7) and (8) readily gives for
the nonlinear evolution of Fb�z; pz; t�

@
@t
Fb 	 vz

@
@z
Fb 	 eb

�
Esz

@
@pz

fb

�
?

� 0: (12)

Note that Esz�x; t� occurs in the average in Eq. (12). We
operate on Poisson’s equation r �Es � 4�eb

R
d3pfb �

4�ebnb in Eq. (2) with @=@z, and make use of
r�Es � 0 in cylindrical polar coordinates, which gives
@Esz=@r � @Esr=@z and @Es�=@z � r
1@Esz=@�. Poisson’s
equation for Esz�r; �; z; t� readily becomes

1

r

@
@r
r
@
@r
Esz 	

@2

@z2
Esz 	

1

r2
@2

@�2
Esz � 4�eb

@
@z
nb; (13)

where nb�r; �; z; t� �
R
d3pfb�r; �; z;p; t� is the number

density of beam particles. In Eqs. (12) and (13) we
note from Eqs. (5) and (11) that the axial line density
�b�z; t� �

R
dxdynb �

R
dxdy

R
d3pfb is related (ex-

actly) to the longitudinal distribution function
Fb�z; pz; t� by

�b�z; t� �
Z
dpzFb�z; pz; t�: (14)

The Vlasov equation (12) for the evolution of
Fb�z; pz; t� contains the average ebhEsz@fb@pzi? over the
three-dimensional distribution function fb�x;p; t�. Of
course the total distribution function fb�x;p; t� evolves
according to the nonlinear Vlasov equation (1), which
024401-4
generally couples the longitudinal and transverse particle
dynamics. As a simplifying ansatz for closure, consistent
with the assumption that the transverse beam dynamics
remains relatively quiescent, we make the assumption that
the dependence of fb�x;p; t� on axial momentum pz is
factorable according to

fb�x;p; t� � Gb�x?;p?; z; t�Fb�z; pz; t�; (15)

where Gb�x?;p?; z; t� and Fb�z; pz; t� are the transverse
and longitudinal distribution functions, respectively.
From Eqs. (5), (11), and (15), we readily obtain

Z
dpxdpyGb�x?;p?; z; t� �

nb�x; t�
�b�z; t�

: (16)

Substituting Eqs. (15) and (16) into the definition of
ebhEsz@fb=@pzi? then gives

eb

�
Esz

@
@pz

fb

�
?

� ebhE
s
zi�z; t�

@
@pz

Fb�z; pz; t�; (17)

where the average axial electric field hEszi�z; t� is defined
by

hEszi�z; t� � hEsz�x; t�Gb�x?;p?; z; t�i?

�
Z
dxdyEsz�x; t�

nb�x; t�
�b�z; t�

: (18)

Here, use has been made of the definition of the perpen-
dicular projection operator h� � �i? in Eq. (10). From
Eqs. (17) and (18), an important consequence of the
factorability ansatz in Eq. (15) is that the average electric
field hEzi�z; t� occurring in the longitudinal Vlasov
equation (12) corresponds to a transverse spatial average
ofEsz�x; t� appropriately weighted by the density profile of
the beam particles.

In the remainder of this paper we specialize to the case
where all beam and field quantities are assumed to be
axisymmetric �@=@� � 0�. Making use of Eqs. (12), (13),
and (18), the final set of equations describing the non-
linear evolution of Fb�z; pz; t� and hEszi�z; t� are given by

@
@t
Fb 	 vz

@
@z
Fb 	 ebhE

s
zi

@
@pz

Fb � 0; (19)

and

hEszi � 2�
Z rw

0
drr

nb�r; z; t�
�b�z; t�

Esz�r; z; t�: (20)

Here, Esz�r; z; t� is determined self-consistently in terms
of the density profile nb�r; z; t� from Poisson’s
equation (13), which can be expressed as

1

r

@
@r
r
@
@r
Esz 	

@2

@z2
Esz � 4�eb

@
@z
nb (21)

for @=@� � 0. In addition, from Eqs. (5) and (14), the line
density �b�z; t� is related to Fb�z; pz; t� and nb�r; z; t� by
024401-4
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�b�z; t� � 2�
Z rw

0
drrnb�r; z; t� �

Z
dpzFb�z; pz; t�:

(22)

Equations (19)–(22) constitute the final form of the
nonlinear Vlasov-Maxwell equations describing the evo-
lution of the longitudinal distribution function Fb�z; pz; t�
and line density �b�z; t� in a long coasting beam. An
important feature is that Eqs. (19)–(22) have been derived
for general radial dependence of the density profile
nb�r; z; t�. The procedure for the solution is the following.
Once the radial dependence of nb�r; z; t� is specified,
Esz�r; z; t� is calculated from Poisson’s equation (21). The
resulting expression for Esz�r; z; t� is then substituted into
Eq. (20) to determine the average electric field hEszi�z; t�,
which in turn is used in the Vlasov equation (19) to
determine the self-consistent nonlinear evolution of
Fb�z; pz; t�. Most importantly, the average electric field
hEszi�z; t� occurring in Eqs. (19) and (20) is appropriately
weighted by a transverse spatial average over the density
profile of the beam particles. No a priori assumption has
been made that the density profile corresponds to a flattop
(step-function) distribution in the radial direction [40–
53]. Nor have we Taylor expanded Poisson’s equation (21)
about r � 0 to estimate the average electric field hEszi�z; t�
[46,47]. Indeed, Eqs. (19)–(22) are valid for the general
choice of the radial density profile and can be applied for
arbitrary beam intensity ranging from low-intensity,
emittance-dominated beams to very-high-intensity,
space-charge-dominated beams.

III. EVALUATION OF AVERAGE LONGITUDINAL
FIELD hES

Zi

Equations (19)–(22) constitute the final form of the
Vlasov-Maxwell equations describing the nonlinear evo-
lution of the distribution function Fb�z; pz; t� and line
density �b�z; t�. In this section, we make use of Eqs. (20)
024401-5
and (21) to derive a simplified expression for the average
longitudinal electric field hEszi�z; t�, valid for a wide range
of choices of bell-shaped density profiles. For a specified
functional form of nb�r; z; t�, Eq. (21) can, of course, be
formally solved for Esz�r; z; t� using a Green’s function
method [50,51]. For our purposes here, however, we spe-
cialize to the case where the z variation in Esz�r; z; t� is
slow in comparison with the r variation. In particular,
denoting @=@z� L
1

z � kz, it is assumed that

k2zr2w � 1; (23)

where rw is the conducting wall radius.

A. Average electric field hEszi for k2zr2w � 1

Imposing the boundary condition Esz�r � rw; z; t� � 0
at the perfecting conducting wall [Eq. (6)], the formal
solution to Eq. (21) can be expressed as

Esz�r; z; t� � 
4�eb
Z rw

r

dr
r

Z r

0
drr

�
@nb
@z



1

4�eb

@2Esz
@z2

�
;

(24)

where nb�r; z; t� is the density profile. The second term on
the right-hand side of Eq. (24) is small in comparison
with the first term by virtue of the inequality in Eq. (23).
Solving iteratively for Esz�r; z; t� then gives

Esz�r;z;t��
4�eb
Z rw

r

dr
r

Z r

0
drr

�
@nb
@z

	
Z rw

r

dr
r

Z r

0
drr

@3nb
@z3

�

(25)

correct to 0�k2zr2w�. Equation (25) is the degree of accuracy
used for the longitudinal electric field Esz�r; z; t� in the
subsequent analysis. Substituting Eq. (25) into Eq. (20)
and performing a straightforward integration by parts
gives
hEszi � 
2�eb
Z rw

0
drr

nb
�b

Z rw

r

dr
r

�
@
@z

�
2�

Z r

0
drrnb

�
	
@3

@z3

Z r

0
drr

Z rw

r

dr
r

�
2�

Z r

0
drrnb

��

� 
2eb
Z rw

0

dr
r

�
2�

Z r

0
drr

nb
�b

��
@
@z

�
2�

Z r

0
drrnb

�
	
@3

@z3

Z r

0
drr

Z rw

r

dr
r

�
2�

Z r

0
drrnb

��
: (26)

Equation (26) can be expressed in the equivalent form

hEszi � hEszi
�1� 	 hEszi

�2�; (27)
where hEszi

�1� and hEszi
�2� are defined by

hEszi�1� � 
2eb
Z rw

0

dr
r

�
2�

Z r

0
drr

nb
�b

�
@
@z

�
2�

Z r

0
drr

nb
�b

� �b

�
; (28)

and

hEszi�2� � 
2eb
Z rw

0

dr
r

�
2�

Z r

0
drr

nb
�b

�
@3

@z3

Z r

0
drr

Z rw

r

dr
r

�
2�

Z r

0
drr

nb
�b

� �b

�
: (29)

Equations (27)–(29) can be used to evaluate a closed expression for hEszi � hEszi
�1� 	 hEszi

�2� and the corresponding g
024401-5
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FIG. 1. Plot of R2
b=R

2
* versus R2

�=R
2
* obtained from the radial

force balance Eq. (33).
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factors for a wide range of choices of beam density
profiles nb�r; z; t�. Note from Eqs. (28) and (29) that
hEszi�2� is of order k2zr2w � 1 smaller than hEszi�1� by virtue
of the assumption in Eq. (23).

B. Fixed-shape density profiles nb�r; z; t�

A wide variety of functional forms for the density
profile nb�r; z; t� can be used to evaluate hEszi from
Eqs. (27)–(29). For example, one approach is to take the
transverse distribution function to correspond to the class
of matched-beam quasiequilibrium distributions of the
formGb�H?� [1], whereH? � p2

?=2mb 	mb!2
�?r

2=2	
eb) is the Hamiltonian for transverse particle motion,
and ) is the space-charge potential determined
from Poisson’s equation. In this case, the density profile
is determined from nb=�b � 2�

R
1
0 dp?p?Gb�H?�

[Eq. (16)]. For specified functional form of Gb�H?�,
the radial dependence of the density profile can be
determined self-consistently from Poisson’s equation
r
1�@=@r��r@)=@r� � 
4�ebnb for weak variations
with axial coordinate z. Depending on the choice of
Gb�H?�, the radial density profile ranges from a
step-function profile for a Kapchinskij-Vladimirskij
distribution [1,9–11], to a bell-shaped profile with
diffuse radial boundary for a thermal equilibrium distri-
bution [1,2], to a bell-shaped profile with a sharp radial
boundary for a waterbag distribution [1,14,15,38]. What-
ever the choice of Gb�H?�, the mean-square beam
radius R2

b � hr2i � �4�2
Rrw
0 drrr2

R
1
0 dp?p?Gb�H?��=

�4�2
Rrw
0 drr

R
1
0 dp?p?Gb�H?�� is determined exactly

for a matched beam from the radial force balance equa-
tion [1]

!2
�?R

2
b � �b

e2b
mb

	
1

4

~**2

R2
b

: (30)

Here, the scaled emittance ~** in the beam frame is de-
fined by ~**2=4R2

b � hv2?i � �4�2
Rrw
0 drr

R
1
0 dp?p?�p?=

mb�
2Gb�H?��=�4�2

Rrw
0 drr

R
1
0 dp?p?Gb�H?��.

The radial force balance equation (30) can be expressed
as

R4
b 
 R2

�R
2
b 
 R4

* � 0; (31)

where

R2
� �

�be
2
b

mb!
2
�?

; R4
* �

~**2

4!2
�?

: (32)

The physically acceptable solution to Eq. (31) is given by

R2
b �

1

2
�R2

� 	 �R4
� 	 4R4

*�
1=2�: (33)

Note from Eqs. (32) and (33) that the mean-square beam
radius R2

b depends on the line density �b. For a low-
intensity emittance-dominated beam with R2

� � 2R2
*,

Eq. (33) reduces to the familiar result R2
b ’ R

2
* �
024401-6
~**=2!�?, which is independent of �b. On the other
hand, for a very-low-emittance, space-charge-dominated
beam with R2

� � 2R2
*, Eq. (33) reduces to R2

b ’ R
2
� �

�be2b=mb!2
�?, which is linearly proportional to the line

density �b. A plot of R2
b=R

2
* versus R2

�=R
2
* illustrating this

behavior is shown in Fig. 1.
To obtain a closed expression for hEszi from Eqs. (27)–

(29), for our purposes here we specialize to the class of
fixed-shape density profiles nb�r; z; t� of the form

nb �
	 �b
�r2b
f� rrb�; 0 � r < rb;

0; rb < r � rw;
(34)

where f�r=rb� is a smooth function that depends
on the scaled radial variable r=rb, and �b�z; t� �
2�

Rrw
0 drrnb�r; z; t� is the line density of beam particles.

Note from Eq. (34) that the density profile nb�r; z; t� has a
sharp radial edge at r � rb, and that there is a distinct
vacuum region outside the beam �rb < r � rw�. From
�b � 2�

Rrw
0 drrnb, we obtain from Eq. (34) the normal-

ization condition

Z 1

0
dXXf�X� �

1

2
: (35)

Similarly, from the definition of mean-square beam ra-
dius R2

b � hr2i � �2�
Rrw
0 drrr2nb�=�b, we readily obtain

R2
b � �br

2
b; (36)

where the constant �b is defined by

�b � 2
Z 1

0
dXXX2f�X�: (37)

For specified shape function f�r=rb�, we note from
Eqs. (33) and (36) that the edge radius rb can be expressed
as

r2b �
1

2�b
�R2

� 	 �R4
� 	 4R4

*�
1=2�; (38)
024401-6



PRST-AB 7 RONALD C. DAVIDSON AND EDWARD A. STARTSEV 024401 (2004)
where R2
� and R4

* are defined in Eq. (32), and the constant
�b is defined in Eq. (37).

There are many practical choices of density shape
function f�r=rb� in Eq. (34). One form of particular
interest is the profile

fn

�
r
rb

�
� �n	 1�

�
1


r2

r2b

�
n
; 0 � r < rb; (39)

where n � 0; 1; 2; . . . is a positive integer, and the normal-
ization of fn�r=rb� in Eq. (39) satisfies Eq. (35). For the
profile in Eq. (39), we readily obtain from Eq. (37) that

�b �
1

n	 2
; (40)

where n � 0; 1; 2; . . . . Here, the root-mean-square beam
radius Rb is related to the edge radius rb by R2

b � �br2b.
The profile shape function f�r=rb� defined in Eq. (39)
gives a wide range of density profile peakedness, ranging
from a step-function density profile (for n � 0) to in-
creasingly peaked profiles (for n � 1; 2; . . . ). The two
cases corresponding to n � 0 and n � 2 are illustrated
in Fig. 2. For n � 2, note from Fig. 2 and Eqs. (34) and
(39) that the bell-shaped density profile nb approaches
zero continuously at r � rb with �nb�r�rb � 0 �
�@nb=@r�r�rb .

We reiterate that the validity of the one-dimensional
kinetic model consisting of Eqs. (19), (22), and (26)
requires that the beam dynamics remains relatively qui-
escent in the transverse plane (no transverse instability or
beam mismatch). In this regard, it is important to recog-
nize that a sufficient condition for transverse stability of
matched-beam quasiequilibrium distributions of the form
Gb�H?� is given by @Gb�H?�=@H? � 0 [see, for ex-
ample, Chapters 4 and 7 of Ref. [1]]. Here Gb�H?� is
the transverse distribution function, H? � p2

?=2mb 	
mb!2

�?r
2=2	 eb)�r� is the Hamiltonian for transverse

particle motion, and ) is the space-charge potential. The
condition @Gb�H?�=@H? � 0 assures that there is not
0.5 1 1.5
0

1

2

3
r
br

_(   )n=2f

r
br

_(   )n=0fr/
r b

( 
  

  
)

nf

r/rb

0

FIG. 2. Shape function profile fn�r=rb� defined in Eq. (39)
plotted versus r=rb for n � 0 and n � 2.
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free energy available to drive a collective transverse in-
stability. Finally, for the class of density profiles in
Eq. (34), it should be noted that the number density
nb�r; z; t� depends on axial coordinate z through the line
density �b�z; t� and the edge radius rb�z; t�, where rb�z; t�
depends parametrically on �b�z; t� through Eqs. (32) and
(38). We emphasize, however, that the present analysis
has been carried out for a long coasting beam and has
not been developed for a finite-length charge bunch.
Therefore, perturbations in �b�z; t� are envisioned to be
about a constant value of line density �b0 � const (inde-
pendent of z and t).

C. Evaluation of hEszi�1� for fixed-shape density profile

We now make use of Eq. (28) to evaluate the leading-
order longitudinal electric field hEszi

�1� for the class of
fixed-shape density profiles described by Eq. (34).
Because the beam radius rb generally depends on the
line density �b [e.g., see Eq. (38)], it is evident from
Eqs. (28) and (34) that the radial integrations over
nb=�b required in Eq. (28) will also depend on �b.
Referring to Eq. (28), it is useful to define

h0��b� � 2
Z rw

0

dr
r

�
2�

Z r

0
drr

nb
�b

�
2
: (41)

It then follows from Eqs. (28) and (41) that

hEszi
�1� � 
eb

�
h0��b�

@�b
@z

	
1

2
�b

@
@z
h0��b�

�
: (42)

Equation (42) can be expressed in the compact form

hEszi�1� � 
ebg0
@�b
@z

; (43)

where the g0 factor is defined by

g0��b� �
1

2�b

@
@�b

��2bh0��b��; (44)

and h0��b� is defined in Eq. (41).
We now evaluate h0��b� for the class of density profiles

described by Eq. (34). Substituting Eq. (34) into Eq. (41)
and introducing the dimensionless radial variable X �
r=rb readily gives

h0��b� � ‘n
�
r2w
r2b

�
	8

Z 1

0

dX
X

�Z X

0
dYYf�Y�

�
2
: (45)

For specified profile shape function f�r=rb�, note that the
second term on the right-hand side of Eq. (45) is constant
(independent of �b), whereas the logarithmic term de-
pends on �b through the beam radius rb��b� [see Eq. (38)].
Substituting the profile function fn�r=rb� � �n	 1��1

r2=r2b�

n, n � 0; 1; 2; . . . , into Eq. (45), we obtain

h0��b� � ‘n
�
r2w
r2b

�
	/n; (46)
024401-7
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where

/n �
Xn	1

m�1

�n	 1�

m�m	 n	 1�
: (47)

Note from Eq. (47) the sensitive dependence of the con-
stant/n on the profile shape, ranging from/0 � 1=2 for a
step-function density profile �n � 0� to /1 � 11=12 for a
parabolic profile �n � 1�, to/2 � 73=60 for n � 2, and so
on. This, of course, affects the precise values of h0
[Eq. (46)] and g0 [Eq. (44)].

Finally, substituting Eq. (46) into Eq. (44), we obtain
for the g0 factor

g0��b� � ‘n
�
r2w
r2b

�
	/n 


�b
2r2b

@r2b
@�b

: (48)

Substituting the expression for r2b in Eq. (38) into Eq. (48),
we readily obtain

g0��b� � ‘n
�
r2w
r2b

�
	/n 


1

2

R2
�

�R4
� 	 4R4

*�
1=2
; (49)

where R2
� � �be

2
b=mb!

2
�? and R2

* � ~**=2!�? are defined
in Eq. (32). Equation (49) clearly displays the dependence
of g0 on the line density �b. For a low-intensity, emit-
tance-dominated beam with R2

� � 2R2
e, the final term in

Eq. (49) is approximately 
R2
�=4R

2
*, which represents a

negligibly small correction to ‘n�r2w=r2b� 	 /n. On the
other hand, for a space-charge-dominated beam with
R2
� � 2R2

* the final term in Eq. (49) is approximately

1=2, representing a sizable contribution to the g0 factor.
Indeed, for the special case of a step-function density
profile (n � 0 and /0 � 1=2) the second and third terms
on the right-hand side of Eq. (49) exactly cancel in the
limit of a space-charge-dominated beam �R2

� � 2R2
*�,

and the g0 factor is given approximately by g0 ’
‘n�r2w=r2b� as previously obtained by Reiser et al.
[52,53]. The expression for g0��b� in Eq. (49), of course,
is valid for arbitrary beam intensity and the entire class
of fixed-shape density profiles consistent with Eqs. (34)
and (39) for n � 0; 1; 2; . . . .

D. Evaluation of hEszi�2� for fixed-shape density profile

We now evaluate the second-order electric field hEszi
�2�

defined in Eq. (29) for the class of fixed-shape density
profiles described by Eq. (34). As a first example, we
consider the case of a low-to-moderate intensity beam
�R2

� � 2R2
*� where the variation of beam radius rb with
024401-8
line density �b is treated as negligibly small [see Eq. (38)].
In this case, treating nb=�b as independent of �b, Eq. (29)
simplifies directly to give

hEszi
�2� � 
ebg2r

2
w
@3�b
@z3

; (50)

where the g2 factor occurring in Eq. (50) is defined by

g2�
2

r2w

Z rw

0

dr
r

�
2�

Z r

0
drr

nb
�b

�Z r

0
drr

Z rw

r

dr
r

�
2�

Z r

0
drr

nb
�b

�
:

(51)

We substitute Eq. (34) into Eq. (51) with shape function
fn�r=rb� � �n	 1��1
 r2=r2b�

n specified by Eq. (39) for
0 � r < rb and n � 0; 1; 2; . . . . Some straightforward but
tedious integration over r in Eq. (51) gives the compact
result

g2 �
1

2

�
1
 �1
 �n�

r2b
r2w



1

n	 2

r2b
r2w
‘n

�
r2w
r2b

��
: (52)

Here, the constant �n is defined by

�n �
n	 1

n	 2



Xn	1

m�1

1

m�m	 n	 2�
; (53)

and r2b is related to the mean-square radius R2
b by R2

b �
r2b=�n	 2� [see Eqs. (36), (38), and (40)]. It is evident
from Eq. (52) that the precise value of the geometric
factor g2 exhibits a sensitive dependence on profile shape.
For example, it follows from Eq. (53) that �0 � 1=6
for a step-function density profile �n � 0�, whereas
�1 � 19=60 for a parabolic density profile �n � 1�.
Furthermore, it follows from Eq. (52) that g2 > 0, with
g2 ’ 1=2 for r2b=r

2
w � 1 and g2 ’ �1=2��n for r2b=r

2
w ! 1.

For the special case of a step-function density profile
�n � 0�, note from Eq. (52) that the g2 factor is given by

g2 �
1

2

�
1


5

6

r2b
r2w



1

2

r2b
r2w
‘n

�
r2w
r2b

��
: (54)

Evaluation of hEzi�2� from Eq. (29) for arbitrary beam
intensity is somewhat more complicated. For present pur-
poses, we specialize to the case of a step-function density
profile �n � 0�. Substituting Eqs. (34) and (39) into
Eq. (29), and carrying out the integrations over r for
n � 0, we obtain
hEszi�2� �

1

2
ebr2w

	�
1


r2b
r2w



1

2

r2b
r2w
‘n

�
r2w
r2b

��
@3�b
@z3



1

4
‘n

�
r2w
r2b

�
@3

@z3

�
�br

2
b

r2w

�



1

12

r4b
r4w

@3

@z3

�
�br

2
w

r2b

�
	
1

4

r2b
r2w

@3

@z3

�
�b‘n

�
r2w
r2b

�
	�b

��
:

(55)

Here, for a step-function density profile, r2b depends on �b through the force-balance constraint r2b��b� � R2
� 	 �R4

� 	
4R4

*�
1=2, where R2

� � �be
2
b=mb!

2
�? and R2

* � ~**=2!�? [see Eqs. (32) and (38) for n � 0]. For a general value of beam
intensity, note from Eq. (55) that hEszi�2� generally has a nonlinear dependence on �b and derivatives of �b with respect to
024401-8



TABLE I. Values of the geometric factors g0 and g2 for several density profile shapes and low beam intensity (R2
� � 2R2

*). Here,
� � 0:5772 is Euler’s constant.

Profile Normalized profile �0 � r < rb� Geometric factor Geometric factor
Index n

�r2bnb
�b

� �n	 1��1
 r2

r2b
�n g0 � ln�r

2
w

r2b
� 	 /n g2 �

1
2 �1
 �1
 �n�

r2b
r2w

 1

n	2

r2b
r2w
ln�r

2
w

r2b
��

0 1 ln�r
2
w

r2b
� 	 1

2
1
2 �1


5
6

r2b
r2w

 1

2

r2b
r2w
ln�r

2
w

r2b
��

1 2�1
 r2w
r2b
� ln�r

2
w

r2b
� 	 11

12
1
2 �1


41
60

r2b
r2w

 1

3

r2b
r2w
ln�r

2
w

r2b
��

2 3�1
 r2w
r2b
�2 ln�r

2
w

r2b
� 	 73

60
1
2 �1


61
105

r2b
r2w

 1

4
r2b
r2w
ln�r

2
w

r2b
��

3 4�1
 r2w
r2b
�3 ln�r

2
w

r2b
� 	 1217

840
1
2 �1


1279
2520

r2b
r2w

 1

5

r2b
r2w
ln�r

2
w

r2b
��

1
r2b
R2
b
exp�
 r2

R2
b
� ln� r

2
w

2R2
b
� 	 � 1

2 �1
 �1	 ��
R2
b

r2w



R2
b

r2w
ln� r

2
w

2R2
b
��
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z. Indeed, Eq. (55) can generally be expressed in the form

hEszi�2� � 
ebr2w

	
~gg2
@3�b
@z3

	 ~gg3

�
@�b
@z

�
3
	~gg4

@�b
@z

@2�b
@z2

�
;

(56)

where the coefficients ~gg2, ~gg3, and ~gg4 depend on �b,
@r2b=@�b, etc.

In the limit of a low-intensity beam �R2
� � 2R2

*�, where
r2b ’ 2R2

* � const (independent of �b), Eqs. (55) and (56)
give the expected result

~gg 2 � g2; ~gg3 � 0; ~gg4 � 0; (57)

where the geometric factor g2 is defined in Eq. (54) for a
step-function density profile. In this case, Eq. (56) re-
duces to hEszi

�2� � 
ebr
2
wg2@

3�b=@z
3. On the other hand,

for a high-intensity, space-charge dominated beam
�R2

� � 2R2
*�, it follows that r2b ’ 2R2

�, and the coefficients
~gg2, ~gg3, and ~gg4 in Eq. (56) can be approximated by

~gg2 �
1

8

�
4

�
1


r2b
r2w

�

3

r2b
r2w
‘n

�
r2w
r2b

��
; ~gg3 �

r2b
8�2br

2
w
;

~gg4 � 

3r2b

8�br2w

�
1	 2‘n

�
r2w
r2b

��
: (58)

Equations (55)–(58) clearly display the strong depen-
dence of hEszi�2� on line density �b.

To conclude this section, Table I shows the values of the
geometric factors g0 and g2 obtained from Eqs. (49) and
(52) for several density profile shapes. Here, a low-inten-
sity beam �R2

� � 2R2
*� has been assumed with r2b ’ const

(independent of �b).
Finally, it is important to recognize that the longitu-

dinal dynamics considered in the present paper is as-
sumed to be much slower than the transverse dynamics.
Indeed, the longitudinal dynamics in the long-wavelength
approximation considered here has characteristic fre-
quency !jj � �kzrb�!pb (in the beam frame), where
!pb � �4�nbe2b=mb�

1=2 is the plasma frequency, whereas
the transverse dynamics has characteristic frequency
!? �!�? � !pb. Since, k2xr2b � 1 is assumed [see
024401-9
Eq. (23)], it therefore follows that !jj � !?. Hence, in
the long-wavelength approximation we can separate the
two time scales. The transverse dynamics has enough
time to come to a quasiequilibrium which depends para-
metrically on longitudinal quantities. In this case there is
a self-consistent separation of the longitudinal dynamics
from the transverse beam dynamics.

IV. LONGITUDINAL VLASOV-MAXWELL
EQUATIONS FOR A LOW-INTENSITY BEAM

In Secs. II and III, we provided a systematic derivation
of the longitudinal Vlasov-Maxwell equations and asso-
ciated g factors, valid for a wide range of beam intensity
and choice of transverse density profiles. In this section,
we specialize to the low-intensity regime �R2

� � 2R2
*�

where the dependence of the beam radius rb on line
density �b can be neglected. In this case, making use of
Eqs. (19), (43), (49), (50), and (52), the Vlasov-Maxwell
equations describing the evolution of the longitudinal
beam distribution Fb�z; pz; t� and line density �b�z; t� �R
1

1 dpzFb�z; pz; t� can be expressed as

@Fb
@t

	 vz
@Fb
@z

	 ebhE
s
zi
@Fb
@pz

� 0; (59)

where

ebhEszi � 
e2bg0
@�b
@z


 e2bg2r
2
w
@3�b
@z3

: (60)

Here, the geometric factors g0 and g2 are defined by

g0 � ‘n
�
r2w
r2b

�
	/n; (61)

g2 �
1

2

�
1
 �1
 �n�

r2b
r2w



1

n	 2

r2b
r2w
‘n

�
r2w
r2b

��
: (62)

The constants /n and �n are defined in Eqs. (47) and (53)
for n � 0; 1; 2; . . . , and the transverse density profile as-
sumed in deriving Eqs. (59)–(62) is specified by Eq. (43)
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TABLE II. Susceptibility 6�kz; !� [Eq. (72)] for various
choices of f0b�pz�.

Entry Distribution Susceptibility
No. f0b�pz� 6�kz;!� [Eq. (72)]

1 1�pz�
1
!2

2 f0b �
	 1
2mbvT

; jpzj<mbvT
0; jpzj > mbvT

1
�!2
k2zv

2
T �

3 mbvT
�

1
p2
z	m2

bv
2
T

1
�!	ijkzjvT �2

4 2�mbvT �2

�
1

�p2
z	m2

bv
2
T �

2
1

�!	ijkzjvT �2
�1	 2ijkzjvT

!	ijkzjvT
�

5 1
mbvT

exp�
 p2
z

m2
bv

2
T
� 
 2

k2zv2T
�1	 8Z�8��
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with profile shape function fn�r=rb� � �n	 1��1

r2=r2b�

n for 0 � r < rb.
Equations (59)–(62) can be used to investigate detailed

linear and nonlinear properties of the self-consistent
evolution of the beam distribution function Fb�z; pz; t�
and average self-generated electric field hEszi�z; t� for a
wide range of system parameters and choices of initial
distribution function. For our purposes here, we summa-
rize the key stability properties obtained from a linear
stability analysis of Eqs. (59) and (60). Perturbations are
assumed to be about a spatially uniform �@=@z � 0�
coasting beam with equilibrium distribution function
F0
b�pz� and normalization

R
1

1 dpzF

0
b�pz� � �b0, where

�b0 � const is the unperturbed line density. Substituting
Fb�z; pz; t� � F0

b�pz� 	 1Fb�z; pz; t� and �b�z; t� � �b0 	
1�b�z; t� into Eqs. (59) and (60), and retaining terms
linear in the perturbation amplitude, we obtain�

@
@t

	 vz
@
@z

�
1Fb � 
eb1hEszi

@
@pz

F0
b�pz�; (63)

eb1hEszi � 
e2bg0
@
@z
1�b 
 e2bg2r

2
w
@3

@z3
1�b; (64)

where

1�b �
Z 1


1
dpz1Fb�z; pz; t�: (65)

For present purposes, the perturbations in Eqs. (63)–
(65) are taken to be of the form

1 �z; t� � 1 ̂ exp�ikzz
 i!t�; (66)

where kz is the axial wave number, and ! is the complex
oscillation frequency, with Im! > 0 corresponding to
instability (temporal growth). Making use of @=@t!

i! and @=@z! ikz, Eqs. (63) and (64) can be combined
to give

1Fb � 
kz�e
2
bg0 
 e2bg2k

2
zr

2
w�
@F0

b=@pz
!
 kzvz

1�b; (67)

which relates the perturbed distribution function 1Fb to
the perturbed line density 1�b. It is convenient to intro-
duce effective sound speeds ub0 and ub2 associated with
the geometric factors g0 and g1 defined by

u2b0 �
g0e2b�b0
mb

; u2b2 �
g2e2b�b0
mb

: (68)

Substituting Eqs. (67) and (68) into Eq. (65) then gives

D�kz;!�1�b � 0; (69)

where the dielectric function D�kz; !� is defined by

D�kz;!� � 1	 kz�u2b0 
 k2zr2wu2b2�
mb

�b0

Z 1


1
dpz

@F0
b=@pz

!
 kzvz
(70)
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for a nontrivial solution to Eq. (69) with 1�b � 0; note
that D�kz; !� � 0 plays the role of a dispersion relation
that determines the complex oscillation frequency ! in
terms of kz and properties of the equilibrium distribu-
tion function F0

b�pz�. Introducing the distribution func-
tion f0b�pz� � �
1

b0 F
0
b�pz� normalized according toR

1

1 dpzf

0
b�pz� � 1, and integrating by parts with re-

spect to pz in Eq. (70) using @vz=@pz � 1=mb, the dis-
persion relation D�kz; !� � 0 is readily expressed in the
compact form

D�kz; !� � 1
 k2z�u
2
b0 
 k2zr

2
wu

2
b2�

Z 1


1

dpzf
0
b�pz�

�!
 kzvz�
2 � 0:

(71)

The dispersion relation (71) can be used to calculate the
complex oscillation frequency ! for a wide range of
choices of beam distribution function f0b�pz� [1]. It is
convenient to introduce the effective susceptibility
6�kz;!� with dimensions �frequency�
2 defined by

6�kz; !� �
Z 1


1

dpzf
0
b�pz�

�!
 kzvz�2
: (72)

The resulting expressions for 6�kz; !� are displayed in
Table II for various choices of distribution function f0b�pz�
ranging from a cold distribution function (entry No. 1) to
a Maxwellian distribution (entry No. 5). In Table II, the
constant uT is the effective thermal speed, which is a
measure of the velocity spread of the distribution function
f0b�pz�. For the Maxwellian distribution in Table II (entry
No. 5), the plasma dispersion function Z�8� is defined
by [1]

Z�8� �
1����
�

p
Z 1


1
du

exp�
u2�
u
 8

; (73)

where 8 � !=kzuT is the normalized phase velocity.
Equations (71) and (72) and Table II can be used to
determine detailed wave propagation properties for sev-
eral choices of beam distribution functions f0b�pz�. For
example, for the choice of waterbag (step-function) dis-
tribution in entry No. 2, Eqs. (71) and (72) give the
dispersion relation
024401-10
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!2 � k2z�u2b0 	 u2T 
 k2zr2wu2b2�: (74)

Because k2zr
2
w � 1 has been assumed [Eq. (23)], the

final term in Eq. (74) represents a small correction.
Representing ! � !r 	 i!i where !r � Re! and !i �
Im!, it is clear from Eq. (74) that the solutions are purely
oscillatory with

Re! � !r � �kz�u2b0 	 u2T�
1=2

�
1


1

2
k2zr2w

u2b2
u2b0 	 u2T

�
;

Im! � !i � 0: (75)

The solution in Eq. (75) corresponds to forward-moving
�!r=kz > 0� and backward-moving �!r=kz < 0� sound-
like waves propagating with constant speed �u2b0 	 u2T�

1=2

in the beam frame, with weak cubic dispersive correc-
tions (the term proportional to u2b2k

3
z). Although the cubic

dispersive corrections in Eq. (75) are small, it is precisely
this effect that can lead to Korteveg-deVries–like solitons
in a weakly nonlinear treatment of the nonlinear beam
dynamics [56].

As a second example, we consider the Lorentzian dis-
tribution in entry No. 3 of Table II. Substituting the
corresponding expression for 6�kz; !� into Eq. (71), we
obtain the dispersion relation

�!	 ijkzjuT�
2 � k2z�u

2
b0 
 k2zr

2
wu

2
b2�: (76)

In this case, the solutions to Eq. (76) for k2zr2w � 1 can be
expressed as

Re! � !r � �kzub0

�
1


1

2
k2zr2w

u2b2
u2b0

�
;

Im! � !i � 
jkzjuT: (77)

Because Im! � 
jkzjuT < 0, we note from Eq. (77) that
the wave perturbation is damped due to resonant wave-
particle interactions (classical Landau damping) for the
choice of Lorentzian distribution function in Table II.
This damping is weak �j!i=!rj � 1� whenever the ef-
fective thermal speed uT is small in comparison with the
signal speed ub0, and the damping is strong �j!i=!rj * 1�
whenever uT=ub0 * 1.

Detailed linear stability properties can, of course, be
calculated for other choices of the distribution function in
Table II. The main point of this section is that the longi-
tudinal Vlasov-Maxwell equations (59) and (60) are rich
in physics content, even at the linearization (small-signal)
level.We defer further discussion of Eqs. (59) and (60) to a
future publication in which detailed nonlinear properties
are discussed.

V. TRANSFORMED EQUATIONS IN THE
LABORATORY FRAME

The analysis in Secs. II, III, and IV was carried out in
the beam frame (unprimed variables) where r�Es � 0.
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The transformation of the key results back to the labora-
tory frame (primed variables) moving with axial velocity

Vb � 
�bc relative to the beam frame is readily ac-
complished according to the transformation in Eqs. (3)
and (4).Without presenting algebraic details, the resulting
Vlasov equation for the longitudinal distribution function
F0
b�z

0; p0
z; t

0� in the laboratory frame is given by

@
@t0
F0
b 	 v0z

@
@z0

F0
b 	 ebhEs

0

z i
0 @
@p0

z
F0
b � 0: (78)

Here, the average longitudinal electric field hEs
0

z i
0�z0; t0�

in the laboratory frame is also readily expressed in
terms of geometric factors @�0

b=@z
0 and higher-order de-

rivatives of the laboratory-frame line density �0b�z
0; t0� �R

dp0
zF0

b�z
0; p0

z; t0�. One key modification in the laboratory
frame occurs in the radial force balance equation (30),
which is replaced by

!02
�?R

02
b �

�0
be

2
b

�3
bmb

	
1

4

~**02

R02
b

; (79)

where ~**02=4R02
b � hv02?i

0. In Eq. (79), �bmb is the trans-
verse mass, and the additional factor 1=�2

b � 1
 �2
b

corresponds to a reduction in the space-charge force
(the term proportional to 
�2

b) due to the self-magnetic
field Bs

0

� � 
�bEs
0

r in the laboratory frame. Equation (79)
readily gives [1] [compare with Eqs. (32) and (33)]

R02
b �

1

2
�R02

� 	 �R04
� 	 4R04

* �
1=2�; (80)

where R02
� and R04

* are defined by

R02
� �

�0be
2
b

�3
bmb!02

�?

; R04
* �

~**02

4!02
�?

: (81)

Furthermore, the edge radius r0b��
0
b� in the laboratory

frame is determined from

�br02b � R02
b (82)

for the class of fixed-shape density profiles in Eqs. (34)
and (39), where �b � 1=�n	 2� is defined in Eq. (40) for
n � 0; 1; 2; . . . .

Finally, in the laboratory frame, some straightforward
algebra shows that the formal expressions for the average
longitudinal electric field hEs

0

z i
0�z0; t0� in Eqs. (9), (26),

and (28) are modified with the replacements nb ! n0b=�b,
�b ! �0

b=�b, and @=@z! �
1
b @=@z0. For example,

Eq. (43) is modified to become

hEs
0

z i
0�1� � 
ebg00

@�0
b

@z0
; (83)

where the laboratory-frame geometric factor g00��
0
b� is

defined by

g00 �
1

�2
b

g0��0
b�: (84)

Here, g0��0
b� is defined in Eq. (44) [or Eq. (49)] with the
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obvious replacements �rb; R�; R*; �b� ! �r0b; R
0
�; R

0
*; �

0
b�.

Similarly, in the laboratory frame, for low-to-moderate
beam intensity, the second-order electric field in Eq. (50)
is modified to become

hEs
0

z i
0�2� � 
ebg

0
2r

2
w
@3�0b
@z03

; (85)

where the geometric factor g02 is defined by

g02 �
1

�4
b

g2; (86)

and g2 is defined in Eqs. (51)–(53). Similarly, for arbi-
trary beam intensity, the second-order electric field in the
laboratory frame has the same form as in Eq. (56) with
the right-hand side of Eq. (56) scaled by 1=�4

b, and �b and
@=@z replaced by primed variables.

In concluding this section, it should be emphasized that
the detailed theoretical analysis was relatively straight-
forward to carry out in the beam frame. The key results
in the laboratory frame were then readily obtained by
Lorentz transformation back to the laboratory frame.

VI. CONCLUSIONS

The purpose of the present paper was to develop an
improved one-dimensional kinetic model describing the
self-consistent nonlinear evolution of the longitudinal
distribution function and average axial electric field
hEszi�z; t� for a very long charge bunch (coasting beam)
propagating through a cylindrical conducting pipe with
radius rw, and confined in the transverse direction by an
applied focusing force Ftr

foc described in the smooth-fo-
cusing approximation. For simplicity, to illustrate the
basic approach, in the present analysis the cylindrical
pipe was assumed to be perfectly conducting, and the
beam transport geometry was assumed to be straight
(linear). As discussed in Sec. II, the starting point was
the fully nonlinear, three-dimensional Vlasov-Maxwell
equations for the distribution function fb�x;p; t� and self-
generated fields in the beam frame (unprimed variables).
A reduced Vlasov equation for the longitudinal distribu-
tion function Fb�z; pz; t� �

R
dxdy

R
dpxdpyfb�x;p; t�

was obtained by integrating over the transverse phase-
space variables �x?;p?�. Making the single ansatz that
the dependence of the distribution function fb�x;p; t� on
axial momentum pz is factorable, led to a closed system
of equations describing the self-consistent evolution of
the longitudinal distribution function Fb�z; pz; t� and the
average axial electric field hEszi�z; t�. Here, assuming ax-
isymmetry in the transverse plane �@=@� � 0�, the aver-
age h� � �i denotes the weighted transverse spatial average
over nb�r; z; t�=�b�z; t� defined in Eq. (26), where nb �R
d3pfb is the number density of beam particles, and

�b �
R
dpzFb �

R
dxdynb is the axial line density of

beam particles. In Sec. III, we assumed that the beam
dynamics was relatively quiescent in the transverse plane
(no transverse instability or beam mismatch), and
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took the transverse density profile to have the fixed-shape
form nb � ��b=�r

2
b�f�r=rb�, where the shape function

f�r=rb� � �n	 1��1
 r2=r2b�
n for 0 � r < rb, and

f�r=rb� � 0 for rb < r � rw. Here, n � 0; 1; 2; . . . is an
integer, with n � 0 corresponding to a step-function
density profile, and rb is the edge radius of the beam.
Moreover, the root-mean-square beam radius Rb �
hr2i1=2 and edge radius rb generally depend on the line
density through the radial force-balance condition in
Eqs. (33) and (38), respectively. Of course, this depen-
dence is weak (rb ’ const) for a low-intensity, emittance-
dominated beam, whereas r2b / �b for a very-low-emit-
tance, space-charge-dominated beam. Denoting @=@z�
L
1
z � kz, we assumed slow axial variations of Fb�z; pz; t�

and �b�z; t� with k2zr
2
w � 1. The average electric field

hEszi�z; t�, expressed in terms of @�b=@z and higher-order
derivatives, together with closed forms for the corre-
sponding geometric factors were then calculated self-
consistently in Sec. IV correct to 0�k2zr2w� for the class
of bell-shaped density profiles with n � 0; 1; 2; . . . , de-
scribed above. The results showed a strong dependence
of the geometric factors on profile shape and beam in-
tensity �b.

In Sec. IV, as a simple application, the resulting coupled
equations for the longitudinal distribution function
fb�z; pz; t� and the average electric field hEszi�z; t� were
solved in the linearization approximation for the case of
low-to-moderate beam intensity treating rb ’ const (in-
dependent of �b). As expected, the analysis led to collec-
tive oscillations with sound-wave-like characteristics
modified by cubic dispersion. The detailed oscillation
and damping properties of the perturbation, of course,
depended on the choice of equilibrium distribution func-
tion F0

b�pz� about which the system is perturbed. Finally,
in Sec. V, the key results derived in the beam frame were
transformed back to the laboratory frame to facilitate
practical applications of the kinetic model of the longitu-
dinal beam dynamics developed here.

In conclusion, the present analysis has developed an
improved one-dimensional kinetic model describing the
nonlinear evolution of the longitudinal distribution func-
tion Fb�z; pz; t� and average electric field hEszi�z; t�. The
analysis has been carried out for arbitrary beam intensity
and general density profile shape, leading to important
generalizations of previous g-factor models [see
Eqs. (43)–(45), (50), and (51)]. Since the longitudinal
beam dynamics typically depends in detail on the precise
values and degree of nonlinearity of the g factors, it is
expected that the new results presented here will have
several key applications.

In future investigations, the kinetic model for the
longitudinal beam dynamics developed here will be
applied to various investigations, including the nonlinear
Korteweg-deVries–like evolution of axial disturbances
and the self-consistent generation of compressional sol-
itons [56].
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