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Motivation

➱ In the currently envisioned configurations for heavy ion fusion (HIF), it is
necessary to longitudinally compress the beam bunches by a large factor
after the acceleration phase and before the beam particles are focused onto
the fusion target.

❍ In order to obtain enough fusion energy gain, the peak current for each
beam is required to be order 103A, and the bunch length to be as short
as 0.5m.

❍ To deliver the beam particles at the required energy, it is both expensive
and technically difficult to accelerate short bunches at high current.

➱ The objective of drift compression is to compress a long beam bunch by
imposing a negative longitudinal velocity tilt over the length of the beam
in the beam frame.
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Drift Compression and Final Focus of Heavy Ion Beam

➱ Assume a Cs+ beam for HIF driver with A = 132.9, q = 1, (γ − 1)mc2 =
2.43GeV, zbf = 0.27m, and < I >= 2254A.

➱ The goal of drift compression is:

❍ Length zb −→ × 1

21.8
. Perveance K −→ ×21.8.

➱ Allowable changes of other system parameters:

❍ Velocity tilt |vzb| −→≤ 0.01.

❍ Beam radius a −→ ×2.33.

❍ Half lattice period L −→ ×1

2
.

❍ Filling factor η −→ ×4. ηB′ −→ ×4.

➱ The beam pulse need to focused onto a target with 2mm characterisitic
size.
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Important Questions

➱ Longitudinal Dynamics:

❍ What is the dynamics of zb(s)?

❍ How long is the beam line? (sf = 516m)

❍ How large initial velocity tilt can we afford? (vzb0 = −0.0143)

❍ Space charge effect?

❍ Stability? (stable without longitudinal focusing by envelope equation)

➱ Transverse Dynamics:

❍ Non-periodic lattice design, L(s), B′(s), η(s), κ(s), K(s).

❍ Non-periodic envelope, matched solutions? adiabatically-matched so-
lutions?

➱ Final Foucus:

❍ How to focus the entire beam onto the target.
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Outline

➱ Longitudinal Dynamics:

❍ 1D fluid model.

❍ Self-similar solutions.

❍ Longitudinal envelope equation.

❍ Drift compression design.

❍ Pulse shaping

➱ Transverse Dynamics and Final Focus:

❍ Non-periodic lattice design.

❍ Time-dependent lattice design.
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Longitudinal Dynamics – 1D fluid model

➱ One dimensional fluid model in the beam frame for

❍ λ(t, z): line density,

❍ vz(t, z): longitudinal velocity,

❍ pz(t, z): longitudinal pressure.

➱ g-factor model for electric field.

eEz = −ge2

γ2

∂λ

∂z
, (1)

g = 2 ln
rw

rb

. (2)

➱ Take g and rb as constants for present purpose.

➱ External focusing: −κzz.
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Longitudinal Dynamics – 1D fluid model

➱ In the beam frame:

∂λ

∂t
+

∂

∂z
(λvz) = 0 (continuity), (3)

∂vz

∂t
+ vz

∂vz

∂z
+

e2g

mγ5

∂λ

∂z
+

κzz

mγ3
+

r2
b

mγ3λ

∂pz

∂z
= 0 (momentum), (4)

∂pz

∂t
+ vz

∂pz

∂z
+ 3pz

∂vz

∂z
= 0 (energy). (5)

➱ Eqs. (3) , (4), and (5) form a nonlinear hyperbolic PDE system. If neglect-
ing κz and pz, Eqs. (3) and (4) have the same form as the shallow-water
equations.

➱ Eq. (5) is equivalent to
d

dt
(
pz

λ3
) = 0. (6)

➱ Self-similar drift compression schemes preserve the geometric shape of the
bunched beam, as well as the density profile, the pressure profile, and the
velocity distribution. The nonlinear PDE system, Eqs. (3), (4), and (5),
admits at least two self-similar drift compression solutions.



Linear self-similar drift compression solution

➱

λ(t, z) = λb(t), vz(t, z) = −vzb(t)
z

zb(t)
, (7)

pz(t, z) = pzb(t)
z2

z2
b (t)

,
dzb(t)

dt
= −vzb(t). (8)

vz pz

z
z tb( )

v tzb( ) p tzb( )

λ

tb( )λ

z
z tb( )

z

z tb( )
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Linear self-similar drift compression solution:

➱ From the continuity equation (3), we obtain

1

λb

dλb

dt
+

1

zb

dzb

dt
= 0 =⇒ zbλb = const. = Nb/2 , (9)

➱ From the energy equation (5) , we obtain

z3
bpzb = const. = W . (10)

➱ Similarly, for the momentum equation (4), the z-dependence drops out as
well, giving

d2zb

ds2
+

κz

mγ3β2c2
zb +

ε2
l

z3
b

= 0 , (11)

where εl ≡ (2r2
bW/mγ3β2c2Nb)

1/2
.

➱ Equations (9), (10) and (11) describe the dynamics of the time-dependent
variables λb(t), zb(t), and pzb(t).

➱ Equation (11) predicts a dramatic compression scenario where the beam
longitudinally “implodes” because of the singularity of the (focusing) pres-
sure term in Eq. (11) as zb → 0.



Parabolic Self-Similar Solution

➱

λ(t, z) = λb(t)

(
1 − z2

z2
b (t)

)
, vz(t, z) = −vzb(t)

z

zb(t)
, (12)

pz(t, z) = pzb(t)

(
1 − z2

z2
b (t)

)2

,
dzb(t)

dt
= −vzb(t) . (13)

vz pz

z
z tb( )

v tzb( ) p tzb( )

λ

tb( )λ

z
z tb( )

z

z tb( )
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Parabolic Self-Similar Solution

➱ Substituting Eqs. (12) and (13) into Eqs. (3) and (5), we find that the z-
dependence drops out, and

dλb

dt
− vzb

zb

λb = 0, (14)

dpzb

dt
− 3

vzb

zb

pzb = 0. (15)

➱ Remarkably, but not surprisingly, for the momentum equation (4), the z-
dependence also drops out, giving

−dvzb

dt
− e2g

mγ5

2λb

zb

+
κzzb

mγ3
− 4r2

bpzb

mγ3λbzb

= 0 (16)

➱ Eqs. (13) – (16) form a coupled ordinary differential equation (ODE) system.
Most remarkably, these equations recover the longitudinal envelope equa-
tion. From Eqs. (13), (15), and (14), we obtain

1

λb

dλb

dt
+

1

zb

dzb

dt
= 0 =⇒ zbλb = const. =

3

4
Nb , (17)

1

pzb

dpzb

dt
+

3

zb

dzb

dt
= 0 =⇒ z3

bpzb = const. = W . (18)
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Longitudinal Envelope Equation

➱ Substituting Eqs. (17), (18) and (13) into Eq. (16), we obtain

d2zb

ds2
+

κz

mγ3β2c2
zb − Kl

1

z2
b

− ε2
l

1

z3
b

= 0, (19)

where s = βct, Kl ≡ 3Nbe
2g/2mγ5β2c2 is the effective longitudinal self-field

perveance, and εl ≡ (4r2
bW/mγ3β2c2)

1/2
is the longitudinal emittance.

➱ The longitudinal envelope equation can be integrated once to give

(z′2b0 − z′2bf) = 2Kl(
1

zbf

− 1

zb0

) + ε2
l (

1

z2
bf

− 1

z2
b0

), (20)

where zb0 = zb(s = 0), zbf = zb(s = sf), z′b0 = dzb/ds(s = 0), and z′bf =
dzb/ds(s = sf).

➱ Given (zbf , zb0,Kl, εl), we want (vzb0, vzbf , sf ) to be as small as possible.
But

❍ Smaller vbz0 ⇐⇒ Larger sf .

❍ Smaller vbzf ⇐⇒ Larger sf .

Need to study the trade-off.
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Longitudinal Dynamics

➱ εl = 1.0 × 10−5 m and Kz = 2.88 × 10−5 m , corresponding to an average
final current 〈If〉 = 2254A, zbf = 0.268m, and g = 0.81.

➱ An initial longitudinal focusing force is imposed for s < 150m so that the
beam acquires a velocity tilt z′b = −0.0143 at sb = 150m.
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Longitudinal Pulse Shaping

➱ The parabolic self-similar drift compression solution requires the initial
beam pulse shape to be parabolic.

➱ Need to shape the beam pulse into a parabolic form before imposing a
velocity tilt.

➱ Need to solve the pulse shaping problem in general — finding the initial
velocity distribution V (z) ≡ vz(t = 0, z) such that a given initial pulse
shape Λ(z) ≡ λ(t = 0, z) evolves into a given final pulse shape ΛT (z) ≡
λ(t = T, z) at time t = T .

➱ Choose the following normalized variables:

vz =
vz

βc
, z =

z

zb0

, λ =
λ

λb0

, t =
tβc

zb0

, (21)

where zb0 is the initial beam half-length, and λb0 is the initial beam line
density at the beam center (z = 0).
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Longitudinal Pulse Shaping

➱ In the normalized variables, the one-dimensional fluid equations, neglecting
pressure effects and external focusing, are given by

∂λ

∂t
+

∂

∂z
(λvz) = 0 , (22)

∂vz

∂t
+ vz

∂vz

∂z
+ K l

∂λ

∂z
= 0 , (23)

where K l ≡ λb0e
2g/mγ5β2c2 is the normalized longitudinal perveance.

➱ K l will be treated as a small parameter.

➱ To order lowest order,

∂λ

∂t
+

∂

∂z
(λvz) = 0 , (24)

∂vz

∂t
+ vz

∂vz

∂z
= 0 . (25)
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Longitudinal Pulse Shaping

➱ Equations (24) and (25) can solved by integrating along characteristics. On
the characteristics defined by

C :
dz

dt
= vz , (26)

Equations (24) and (25) are

dλ

dt
= −λ

∂vz

∂z
, (27)

dvz

dt
= 0 . (28)

➱ Because dvz/dt = 0 on C, the family of characteristics C are straight lines
in the (t, z) plan, which can be represented as

C : z = ξ + V (ξ)t , (29)

where
V (ξ) ≡ vz(t = 0, ξ) . (30)
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Longitudinal Pulse Shaping

➱ The solution for vz(t, z) can be formally written as

vz(t, z) = V (ξ(t, z)) , (31)

where ξ(t, z) as a function of t and z is determined from Eq. (29).

➱ From Eqs. (31) and (29), four useful identities can be derived, i.e.,

∂ξ

∂z
=

1

1 + V ′(ξ)t
, (32)

∂ξ

∂t
=

−V (ξ)

1 + V ′(ξ)t
, (33)

∂vz

∂z
=

V ′(ξ)
1 + V ′(ξ)t

, (34)

∂vz

∂t
=

−V (ξ)V ′(ξ)
1 + V ′(ξ)t

. (35)
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Longitudinal Pulse Shaping

➱ From Eqs. (27) and (34), we obtain

d lnλ

dt
=

−V ′(ξ)
1 + V ′(ξ)t

on C . (36)

➱ Since ξ is a constant on C, Eq. (36) can be integrated to give

ln λ = lnλ(t = 0, ξ) +

∫ t

0

−V ′(ξ)
1 + V ′(ξ)t

dt (37)

= ln Λ(ξ) + ln[1 + V ′(ξ)t] ,

where Λ(z) ≡ λ(t = 0, z) is the initial line density profile. The solution to
Eq. (36) for λ(t, z) is

λ(t, z) =
Λ(ξ)

1 + V ′(ξ)t
. (38)
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Longitudinal Pulse Shaping

➱ For the pulse shaping problem, the final line density profile ΛT (z) ≡ λ(t =
T, z) is specified. We therefore obtain

ΛT (z) = ΛT [ξ + V (ξ)T ] =
Λ(ξ)

1 + V ′(ξ)T
, (39)

which can be viewed as an ordinary differential equation for V (ξ) .

➱ It can be simplified using the variable U(ξ) defined by

U(ξ) ≡ ξ + V (ξ)T . (40)

In terms of U(ξ), Eq. (39) becomes

ΛT (U)dU = Λ(ξ)dξ . (41)

➱ Finally, U(ξ) is determined by solving Eq. (41) for the given functional
forms ΛT (z) and Λ(z). V (ξ) is simply related to U(ξ) by

V (ξ) =
U(ξ) − ξ

T
. (42)
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Example: Pulse Shaping without Compression

➱ Consider two examples with the following symmetries and boundary con-
ditions,

vz(t,−z) = −vz(t, z) , λ(t,−z) = λ(t, z) , (43)

V (ξ = 0) = 0 , U(ξ = 0) = 0 . (44)

➱ Example 1—Pulse Shaping Without Compression:

Λ(z) =




1 − zm , 0 ≤ z ≤ 1 ,
0 , 1 < z ,
Λ(−z) , z < 0 ,

(45)

ΛT (z) =




(1 − zn)
m(n + 1)

n(m + 1)
, 0 ≤ z ≤ 1 ,

0 , 1 < z ,
Λ(−z) , z < 0 .

(46)
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Example: Pulse Shaping without Compression

➱ Equation (41) can integrated to give[
U(ξ) − U(ξ)n+1

n + 1

]
m(n + 1)

n(m + 1)
= ξ − ξm+1

m + 1
. (47)

➱ The parabolic self-similar drift compression solution corresponds to n = 2.
In this case, there are three solutions for U(ξ). The solution satisfying the
right boundary condition is

U(ξ) = −1 − i
√

3 + 3
√−2p2

3
√

4p
, (48)

where

p =
3

√
−3a +

√
−4 + 9a2 , (49)

a =
2(m + 1)

3m
(ξ − ξm+1

m + 1
) . (50)

➱ For large value of m � 1, Λ(z) has a flat-top shape with a fast fall-off near
the ends of the pulse.
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Example: Pulse Shaping without Compression

➱ Initial pulse shape Λ(z) = 1−z15 and final pulse shape ΛT (z) = (45/32)(1−
z2) are plotted in (a). The initial velocity V (z) given by Eq. (42) is plotted
in (b).
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Example: Pulse Shaping with Compression

➱ Example 2—Pulse Shaping With Compression:

Λ(z) =




1 − zm , 0 ≤ z ≤ 1 ,
0 , 1 < z ,
Λ(−z) , z < 0 ,

(51)

ΛT (z) =




[1 − (αz)n]
αm(n + 1)

n(m + 1)
, 0 ≤ z ≤ 1

α
,

0 ,
1

α
< z ,

Λ(−z) , z < 0 ,

(52)

where α > 1 is the compression factor.

➱ Equation (41) can be integrated to give
[
αU(ξ) − (αU(ξ))n+1

n + 1

]
m(n + 1)

n(m + 1)
= ξ − ξm+1

m + 1
, (53)

which is identical to Eq. (47) if αU(ξ) is replaced by U(ξ). It is easy to
verify that αU(ξ = 1) = 1 and therefore

V (ξ = 1) =
(1/α − 1)

T
. (54)



Example: Pulse Shaping with Compression

➱ For the case of a beam being shaped but not compressed, α = 1 and
V (ξ = 1) = 0. When α > 1, the beam is simultaneously being shaped and
compressed, and V (ξ = 1) < 0.

➱ Initial pulse shape Λ(z) = 1−z15 and final pulse shape ΛT (z) = (135/32)(1−
9z2) are plotted in (a). The initial velocity V (z) given by Eq. (42) is plotted
in (b).
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1st Order Space-Charge Correction

➱ We now carry out the analysis to O(K l). Let

λ(t, z) = λ0(t, z) + λ1(t, z) , (55)

vz(t, z) = vz0(t, z) + vz1(t, z) . (56)

➱ To O(K l), Eqs. (22) and (23) can be expressed as

(
d

dt

)
0

λ1 =
∂λ1

∂t
+ vz0

∂λ1

∂z
= −λ1

∂vz0

∂z
− ∂

∂z
(λ0vz1) , (57)

(
d

dt

)
0

vz1 =
∂vz1

∂t
+ vz0

∂vz1

∂z
= −vz1

∂vz0

∂z
− K l

∂λ0

∂z
. (58)

➱ Using the method of variational coefficients, the solution to Eq. (58) is
found to be

vz1 =
1

1 + V ′
0(ξ)t

{
V1(ξ) − K l

∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

ln[1 + V ′
0(ξ)t]

]}
. (59)
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1st Order Space-Charge Correction

➱ By the same procedure, Eq. (57) can be integrated to give

λ1 =
Λ1(ξ)

1 + V ′
0(ξ)t

− 1

1 + V ′
0(ξ)t

∂

∂ξ

{
Λ0(ξ)V1(ξ)t

1 + V ′
0(ξ)t

(60)

− K lΛ0(ξ)
∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

]
V ′

0(ξ)t − ln[1 + V ′
0(ξ)t]

[1 + V ′
0(ξ)t]

2

− K l
Λ2

0(ξ)

V ′
0(ξ)

V ′′
0 (ξ)

t2

[1 + V ′
0(ξ)t]

2

}
.

➱ At time t = T , we obtain

ΛT (z) = λ0(t = T, z) + λ1(t = T, z). (61)

Since ΛT (z) and Λ(z) are prescribed in the pulse shaping problem, we take
ΛT1(z) = 0 and Λ1(z) = 0. This results in

V1(ξ) = K l
∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

]
V ′

0(ξ) − ln[1 + V ′
0(ξ)T ]/T

1 + V ′
0(ξ)T

(62)

+ K l
Λ0(ξ)

V ′
0(ξ)

V ′′
0 (ξ)

T

1 + V ′
0(ξ)T

+ c′ .



Transverse Dynamics in Non-Periodic Lattice

➱ Transverse envelope equations:

d2a(s, z)

ds2
+ κqa(s, z) − 2K(s, z)

a(s, z) + b(s, z)
− ε2

x

a(s, z)3
= 0,

d2b(s, z)

ds2
− κqb(s, z) − 2K(s, z)

a(s, z) + b(s, z)
− ε2

y

b(s, z)3
= 0, (63)

➱ K(s, z) is non-periodic due to the longitudinal compression.

➱ κq need to be non-periodic to reduce the expansion of the beam radius.

➱ Since the quadrupole lattice is not periodic, the concept of a “matched”
beam is not well defined.

➱ However, if the the non-periodicity is small, that is, if the quadrupole
lattice changes slowly along the beam path, we can seek an “adiabatically”-
matched beam which, by definition, is locally matched everywhere.
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Time-Dependent Focusing Lattice

➱ The drift compression and final focus lattice should apply for all slices in
a bunched beam.

➱ Each slice of the beam should be focused onto the same focal point at the
target.

➱ A fixed lattice designed for one slice of the beam will not focus other slices
onto the same focal point.

➱ Design a lattice for the central slice (z = 0), and then replace four quadrupole
magnets at the beginning of the drift compression by four time-dependent
magnets.

➱ The time-dependent magnets essentially provide a slightly different focusing
lattice for different slices.
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Non-periodic Lattice Design for Central Slice

➱ Goal:

❍ Constant vacuum phase advance σv = π/5 −→ ηB′L2 = const.

❍ Length zb −→ × 1

21.8
. Perveance K −→ ×21.8.

❍ Beam radius a −→ ×2.33.

❍ Half lattice period L −→ ×1

2
.

❍ Filling factor η −→ ×4. ηB′ −→ ×4.

➱ How do K, L, η, B′, a, and b depend on s?

❍ K(s) is given by the longitudinal dynamics.

❍ L(s), η(s), and B′(s) are determined by requirements such as constant
vacuum phase advance.

❍ a(s) and b(s) are determined by the transverse envelope equations.
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Non-periodic Lattice Design for Central Slice

➱ A lattice which keeps both the vacuum phase advance and depressed phase
advance constant is less likely to induce beam mismatch.

➱ Vacuum phase advance σv and depressed phase advance σ are given by

2(1 − cos σv) = (1 − 2η

3
)η2

(
B′

[Bρ]

)2

L4, (64)

σ2 = 2(1 − cos σv) − K

(
2L

〈a〉
)2

. (65)

➱ Assuming η � 1, we obtain

η2(
B′

[Bρ]
)2L4 = const., K(

2L

〈a〉)
2 = const., (66)

for constant vacuum phase advance and constant depressed phase advance.

➱ It is under-determined. As one possible choice, let

L = L0 exp(− ln 2
s

sf

), η = η0 exp(2 ln 2
s

sf

), B′ = const. (67)
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Non-periodic Lattice Design for Central Slice

➱ Let the lattice lengths are L0, L1, ..., LN = Lf ,

L1 = L0 exp(− ln 2
2L0

sf

),

L2 = L0 exp(− ln 2
2(L0 + L1)

sf

),

......

Li = L0 exp(− ln 2
2
∑i−1

0 Li

sf

),

2(L1 + L2 + ... + LN) = Sf .

(68)

➱ For Lf = 3.36m, L0 = 6.72m, and sf = 421.5m, calculation gives N = 45.
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Transverse Dynamics for Central Slice

➱ For an adiabatically-matched solution,

❍ The envelope is locally matched and contains no oscillations other than
the local envelope oscillations.

❍ On the global scale, the beam radius increases monotonically.

➱ Four final focus magnets will assure that the envelope converge in both
directions at the exit of the last focusing magnet

➱ Then the beam enters the neutralization chamber where the space-charge
force is neutralized, and is focused onto a focal point at

zfol = − a

∂a/∂s

∣∣∣∣
s=sff

= − b

∂b/∂s

∣∣∣∣
s=sff

, (69)

➱ The transverse spot size is determined by the emittance and incident angle
at s = sff ,

afol =
εx

∂a/∂s

∣∣∣∣
s=sff

, bfol =
εy

∂b/∂s

∣∣∣∣
s=sff

. (70)

➱ For the central slice at z = 0, we obtain zfol = 5.276m, and afol = bfol =
1.22mm .
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Transverse Dynamics for Central Slice
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Time-Dependent Lattice for Entire Pulse

➱ For other slices (z 6= 0), we manipulate the beam and magnet configuration
so that the beam particles can be focused onto a focal region with the same
or smaller spot size,

zfol = 5.276m, afol ≈ bfol . 1.22mm . (71)

➱ For the line density profile λ(s, z) = λb(s)[1 − z2/z2
b (s)], that the solution

for all of the slices can be scaled down from that of the central slice:


a(s, z)
b(s, z)

∂a(s, z)/∂s
∂b(s, z)/∂s


 =

√
1 − z2/z2

b (s)




a(s, 0)
b(s, 0)

∂a(s, 0)/∂s
∂b(s, 0)/∂s


 , (72)

if the emittance is

❍ negligibly small or

❍ scales with the perveance according to (εx, εy) ∝ 1 − z2/z2
b (s).
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Time-Dependent Lattice for Entire Pulse

➱ However, the emittance in general is small but not negligible, and does not
scale with the perveance.

➱ In fact, during adiabatic drift compression, the emittance scales with the
beam size, i.e., εx ∝ a and εy ∝ b.

➱ The scaling in Eq. (72) and the requirement in Eq. (71) can’t be satisfied.

➱ Vary the strength of four magnets in the very beginning of the drift com-
pression for different value of z such that the desired scaling in Eq. (72)
holds at s = sff .

➱ This will guarantee the satisfaction of the requirement in Eq. (71).

➱ Numerically, the necessary variation of the strength of the magnets is found
by a 4D root-searching algorithm.

➱ A small perturbation in the strength of the magnets introduces a small
envelope mismatch in such a way that Eq. (72) is satisfied at s = sff .

➱ We note that a similar scaling does not exist for 0 < s < sff .
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Envelope dynamics for the z/zb(s) = 0.968.
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Time-Dependent Lattice for Entire Pulse
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Figure 1: Strengths of the 3rd, 5th, 7th, and 9th magnets as functions of
z/zb(s).
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Conclusion

➱ The longitudinal dynamics of drift compression and pulse shaping have
been studied using a one-dimensional warm-fluid model.

➱ The pulse shaping problem is solved perturbatively in the weak space-
charge limit, such that an arbitrary pulse shape produced after the accel-
eration phase can be shaped into those required by the self-similar drift
compression solutions.

➱ A non-periodic quadrupole lattice for drift compression and four final fo-
cusing magnets are designed.

➱ It is demonstrated that the entire pulse can be compressed and focused onto
the same focal point on the target by using four time-varying quadrapole
magnets at the very beginning of drift compression.
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