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Motivation

➱ In the currently envisioned configurations for heavy ion fusion (HIF), it is
necessary to longitudinally compress the beam bunches by a large factor
after the acceleration phase and before the beam particles are focused onto
the fusion target.

❍ In order to obtain enough fusion energy gain, the peak current for each
beam is required to be order 103A, and the bunch length to be as short
as 0.5m.

❍ To deliver the beam particles at the required energy, it is both expensive
and technically difficult to accelerate short bunches at high current.

➱ The objective of drift compression is to compress a long beam bunch by
imposing a negative longitudinal velocity tilt over the length of the beam
in the beam frame.
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Drift Compression for Heavy Ion Fusion Driver

➱ Assume a Cs+ beam for HIF driver with A = 133, q = 1, (γ − 1)mc2 =
2.5GeV, zbf = 0.60m, and < I >= 2500A.

➱ The goal of drift compression is:

❍ Length zb −→ × 1

16
. Perveance K −→ ×16.

➱ Allowable changes of other system parameters:

❍ Velocity tilt |vzb| −→≤ 0.01.

❍ Beam radius a −→ ×2.

❍ Half lattice period L −→ ×1

2
.

❍ Filling factor η −→ ×4. ηB′ −→ ×4.
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Important Questions

➱ Longitudinal Dynamics:

❍ What is the dynamics of zb(s)?

❍ How long is the beam line? (sf = 421.5m)

❍ How large initial velocity tilt can we afford? (vzb0 = −0.0227)

❍ Space charge effect? (strong and helpful)

❍ Stability? (stable without longitudinal focusing by envelope equation)

➱ Transverse Dynamics:

❍ Non-periodic lattice design, L(s), B′(s), η(s), κ(s), K(s).

❍ Non-periodic envelope, matched solutions? adiabatically-matched so-
lutions?
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Outline

➱ Longitudinal Dynamics:

❍ 1D fluid model.

❍ Self-similar solutions.

❍ Longitudinal envelope equation.

❍ Drift compression design.

❍ Pulse shaping

➱ Transverse Dynamics:

❍ Non-periodic lattice design.

❍ Adiabatically-matched solutions of the transverse envelope equations
in a non-periodic lattice.
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Longitudinal Dynamics – 1D fluid model

➱ One dimensional fluid model in the beam frame for

❍ λ(t, z): line density,

❍ vz(t, z): longitudinal velocity,

❍ pz(t, z): longitudinal pressure.

➱ g-factor model for electric field.

eEz = −ge2

γ2

∂λ

∂z
, (1)

g = 2 ln
rw

rb

. (2)

➱ Take g and rb as constants for present purpose.

➱ External focusing: −κzz.



Longitudinal Dynamics – 1D fluid model

➱ In the beam frame:

∂λ

∂t
+

∂

∂z
(λvz) = 0 (continuity), (3)

∂vz

∂t
+ vz

∂vz

∂z
+

e2g

mγ5

∂λ

∂z
+

κzz

mγ3
+

r2
b

mγ3λ

∂pz

∂z
= 0 (momentum), (4)

∂pz

∂t
+ vz

∂pz

∂z
+ 3pz

∂vz

∂z
= 0 (energy). (5)

➱ Eqs. (3) , (4), and (5) form a nonlinear hyperbolic PDE system. If neglect-
ing κz and pz, Eqs. (3) and (4) have the same form as the shallow-water
equations.

➱ Eq. (5) is equivalent to
d

dt
(
pz

λ3
) = 0. (6)

➱ Self-similar drift compression schemes preserve the geometric shape of the
bunched beam, as well as the density profile, the pressure profile, and the
velocity distribution. The nonlinear PDE system, Eqs. (3), (4), and (5),
admits at least two self-similar drift compression solutions.



Linear self-similar drift compression solution

➱

λ(t, z) = λb(t), vz(t, z) = −vzb(t)
z

zb(t)
, (7)

pz(t, z) = pzb(t)
z2

z2
b (t)

,
dzb(t)

dt
= −vzb(t). (8)

vz pz

z
z tb( )

v tzb( ) p tzb( )

λ

tb( )λ

z
z tb( )

z

z tb( )



Linear self-similar drift compression solution:

➱ From the continuity equation (3), we obtain

1

λb

dλb

dt
+

1

zb

dzb

dt
= 0 =⇒ zbλb = const. = Nb/2 , (9)

➱ From the energy equation (5) , we obtain

z3
bpzb = const. = W . (10)

➱ Similarly, for the momentum equation (4), the z-dependence drops out as
well, giving

d2zb

ds2
+

κz

mγ3β2c2
zb +

ε2
l

z3
b

= 0 , (11)

where εl ≡ (2r2
bW/mγ3β2c2Nb)

1/2
.

➱ Equations (9), (10) and (11) describe the dynamics of the time-dependent
variables λb(t), zb(t), and pzb(t).

➱ Equation (11) predicts a dramatic compression scenario where the beam
longitudinally “implodes” because of the singularity of the (focusing) pres-
sure term in Eq. (11) as zb → 0.



Parabolic Self-Similar Solution

➱

λ(t, z) = λb(t)

(
1 − z2

z2
b (t)

)
, vz(t, z) = −vzb(t)

z

zb(t)
, (12)

pz(t, z) = pzb(t)

(
1 − z2

z2
b (t)

)2

,
dzb(t)

dt
= −vzb(t) . (13)

vz pz

z
z tb( )

v tzb( ) p tzb( )

λ

tb( )λ

z
z tb( )

z

z tb( )



Parabolic Self-Similar Solution

➱ Substituting Eqs. (12) and (13) into Eqs. (3) and (5), we find that the z-
dependence drops out, and

dλb

dt
− vzb

zb

λb = 0, (14)

dpzb

dt
− 3

vzb

zb

pzb = 0. (15)

➱ Remarkably, but not surprisingly, for the momentum equation (4), the z-
dependence also drops out, giving

−dvzb

dt
− e2g

mγ5

2λb

zb
+

κzzb

mγ3
− 4r2

bpzb

mγ3λbzb
= 0 (16)

➱ Eqs. (13) – (16) form a coupled ordinary differential equation (ODE) system.
Most remarkably, these equations recover the longitudinal envelope equa-
tion. From Eqs. (13), (15), and (14), we obtain

1

λb

dλb

dt
+

1

zb

dzb

dt
= 0 =⇒ zbλb = const. =

3

4
Nb , (17)

1

pzb

dpzb

dt
+

3

zb

dzb

dt
= 0 =⇒ z3

bpzb = const. = W . (18)



Longitudinal Envelope Equation

➱ Substituting Eqs. (17), (18) and (13) into Eq. (16), we obtain

d2zb

ds2
+

κz

mγ3β2c2
zb − Kl

1

z2
b

− ε2
l

1

z3
b

= 0, (19)

where s = βct, Kl ≡ 3Nbe
2g/2mγ5β2c2 is the effective longitudinal self-field

perveance, and εl ≡ (4r2
bW/mγ3β2c2)

1/2
is the longitudinal emittance.

➱ The longitudinal envelope equation can be integrated once to give

(z′2b0 − z′2bf) = 2Kl(
1

zbf

− 1

zb0

) + ε2
l (

1

z2
bf

− 1

z2
b0

), (20)

where zb0 = zb(s = 0), zbf = zb(s = sf), z′b0 = dzb/ds(s = 0), and z′bf =
dzb/ds(s = sf).

➱ Given (zbf , zb0,Kl, εl), we want (vzb0, vzbf , sf ) to be as small as possible.
But

❍ Smaller vbz0 ⇐⇒ Larger sf .

❍ Smaller vbzf ⇐⇒ Larger sf .

Need to study the trade-off.



Longitudinal Dynamics

➱ In the drift compression scheme considered in this paper, we take εl =
7.7 × 10−6m, Kl = 1.3 × 10−4 m, corresponding to an average final current
〈If〉 = 2500A, zbf = 0.6m.

➱ If we require |vbzf | ≤ 0.01, for the given beam parameters, |vbz0| ≤ 0.0227.

➱ The beam path length required for drift compression can be expressed as

sf = −
∫ zbf

zb0

dzb√
z′2b0 − 2Kl(

1

zb

− 1

zb0

) − ε2
l (

1

z2
b

− 1

z2
b0

)

= 421.5m. (21)

➱ If only consider free streaming with vz0 = −0.0227, we have

sf = −
∫ zbf

zb0

dz

vbz0

= 392.3m. (22)

➱ With the help of space charge, the initial velocity tilt reduces from 0.0227
to 0.01. The required beam line is only 10% longer compared with the free
streaming case.



Longitudinal Dynamics

➱ The longitudinal envelope equation can be solved numerically.
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Longitudinal Pulse Shaping

➱ The parabolic self-similar drift compression solution requires the initial
beam pulse shape to be parabolic.

➱ Need to shape the beam pulse into a parabolic form before imposing a
velocity tilt.

➱ Need to solve the pulse shaping problem in general — finding the initial
velocity distribution V (z) ≡ vz(t = 0, z) such that a given initial pulse
shape Λ(z) ≡ λ(t = 0, z) evolves into a given final pulse shape ΛT (z) ≡
λ(t = T, z) at time t = T .

➱ Choose the following normalized variables:

vz =
vz

βc
, z =

z

zb0

, λ =
λ

λb0

, t =
tβc

zb0

, (23)

where zb0 is the initial beam half-length, and λb0 is the initial beam line
density at the beam center (z = 0).



Longitudinal Pulse Shaping

➱ In the normalized variables, the one-dimensional fluid equations, neglecting
pressure effects and external focusing, are given by

∂λ

∂t
+

∂

∂z
(λvz) = 0 , (24)

∂vz

∂t
+ vz

∂vz

∂z
+ K l

∂λ

∂z
= 0 , (25)

where K l ≡ λb0e
2g/mγ5β2c2 is the normalized longitudinal perveance.

➱ K l will be treated as a small parameter.

➱ To order lowest order,

∂λ

∂t
+

∂

∂z
(λvz) = 0 , (26)

∂vz

∂t
+ vz

∂vz

∂z
= 0 . (27)



Longitudinal Pulse Shaping

➱ Equations (26) and (27) can solved by integrating along characteristics. On
the characteristics defined by

C :
dz

dt
= vz , (28)

Equations (26) and (27) are

dλ

dt
= −λ

∂vz

∂z
, (29)

dvz

dt
= 0 . (30)

➱ Because dvz/dt = 0 on C, the family of characteristics C are straight lines
in the (t, z) plan, which can be represented as

C : z = ξ + V (ξ)t , (31)

where
V (ξ) ≡ vz(t = 0, ξ) . (32)



Longitudinal Pulse Shaping

➱ The solution for vz(t, z) can be formally written as

vz(t, z) = V (ξ(t, z)) , (33)

where ξ(t, z) as a function of t and z is determined from Eq. (31).

➱ From Eqs. (33) and (31), four useful identities can be derived, i.e.,

∂ξ

∂z
=

1

1 + V ′(ξ)t
, (34)

∂ξ

∂t
=

−V (ξ)

1 + V ′(ξ)t
, (35)

∂vz

∂z
=

V ′(ξ)
1 + V ′(ξ)t

, (36)

∂vz

∂t
=

−V (ξ)V ′(ξ)
1 + V ′(ξ)t

. (37)



Longitudinal Pulse Shaping

➱ From Eqs. (29) and (36), we obtain

d lnλ

dt
=

−V ′(ξ)
1 + V ′(ξ)t

on C . (38)

➱ Since ξ is a constant on C, Eq. (38) can be integrated to give

ln λ = lnλ(t = 0, ξ) +

∫ t

0

−V ′(ξ)
1 + V ′(ξ)t

dt (39)

= ln Λ(ξ) + ln[1 + V ′(ξ)t] ,

where Λ(z) ≡ λ(t = 0, z) is the initial line density profile. The solution to
Eq. (38) for λ(t, z) is

λ(t, z) =
Λ(ξ)

1 + V ′(ξ)t
. (40)



Longitudinal Pulse Shaping

➱ For the pulse shaping problem, the final line density profile ΛT (z) ≡ λ(t =
T, z) is specified. We therefore obtain

ΛT (z) = ΛT [ξ + V (ξ)T ] =
Λ(ξ)

1 + V ′(ξ)T
, (41)

which can be viewed as an ordinary differential equation for V (ξ) .

➱ It can be simplified using the variable U(ξ) defined by

U(ξ) ≡ ξ + V (ξ)T . (42)

In terms of U(ξ), Eq. (41) becomes

ΛT (U)dU = Λ(ξ)dξ . (43)

➱ Finally, U(ξ) is determined by solving Eq. (43) for the given functional
forms ΛT (z) and Λ(z). V (ξ) is simply related to U(ξ) by

V (ξ) =
U(ξ) − ξ

T
. (44)



Example: Pulse Shaping without Compression

➱ Consider two examples with the following symmetries and boundary con-
ditions,

vz(t,−z) = −vz(t, z) , λ(t,−z) = λ(t, z) , (45)

V (ξ = 0) = 0 , U(ξ = 0) = 0 . (46)

➱ Example 1—Pulse Shaping Without Compression:

Λ(z) =




1 − zm , 0 ≤ z ≤ 1 ,
0 , 1 < z ,
Λ(−z) , z < 0 ,

(47)

ΛT (z) =




(1 − zn)
m(n + 1)

n(m + 1)
, 0 ≤ z ≤ 1 ,

0 , 1 < z ,
Λ(−z) , z < 0 .

(48)



Example: Pulse Shaping without Compression

➱ Equation (43) can integrated to give

[
U(ξ) − U(ξ)n+1

n + 1

]
m(n + 1)

n(m + 1)
= ξ − ξm+1

m + 1
. (49)

➱ The parabolic self-similar drift compression solution corresponds to n = 2.
In this case, there are three solutions for U(ξ). The solution satisfying the
right boundary condition is

U(ξ) = −1 − i
√

3 + 3
√−2p2

3
√

4p
, (50)

where

p =
3

√
−3a +

√
−4 + 9a2 , (51)

a =
2(m + 1)

3m
(ξ − ξm+1

m + 1
) . (52)

➱ For large value of m � 1, Λ(z) has a flat-top shape with a fast fall-off near
the ends of the pulse.



Example: Pulse Shaping without Compression

➱ Initial pulse shape Λ(z) = 1−z15 and final pulse shape ΛT (z) = (45/32)(1−
z2) are plotted in (a). The initial velocity V (z) given by Eq. (44) is plotted
in (b).
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Example: Pulse Shaping with Compression

➱ Example 2—Pulse Shaping With Compression:

Λ(z) =




1 − zm , 0 ≤ z ≤ 1 ,
0 , 1 < z ,
Λ(−z) , z < 0 ,

(53)

ΛT (z) =




[1 − (αz)n]
αm(n + 1)

n(m + 1)
, 0 ≤ z ≤ 1

α
,

0 ,
1

α
< z ,

Λ(−z) , z < 0 ,

(54)

where α > 1 is the compression factor.

➱ Equation (43) can be integrated to give
[
αU(ξ) − (αU(ξ))n+1

n + 1

]
m(n + 1)

n(m + 1)
= ξ − ξm+1

m + 1
, (55)

which is identical to Eq. (49) if αU(ξ) is replaced by U(ξ). It is easy to
verify that αU(ξ = 1) = 1 and therefore

V (ξ = 1) =
(1/α − 1)

T
. (56)



Example: Pulse Shaping with Compression

➱ For the case of a beam being shaped but not compressed, α = 1 and
V (ξ = 1) = 0. When α > 1, the beam is simultaneously being shaped and
compressed, and V (ξ = 1) < 0.

➱ Initial pulse shape Λ(z) = 1−z15 and final pulse shape ΛT (z) = (135/32)(1−
9z2) are plotted in (a). The initial velocity V (z) given by Eq. (44) is plotted
in (b).
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1st Order Space-Charge Correction

➱ We now carry out the analysis to O(K l). Let

λ(t, z) = λ0(t, z) + λ1(t, z) , (57)

vz(t, z) = vz0(t, z) + vz1(t, z) . (58)

➱ To O(K l), Eqs. (24) and (25) can be expressed as

(
d

dt

)
0

λ1 =
∂λ1

∂t
+ vz0

∂λ1

∂z
= −λ1

∂vz0

∂z
− ∂

∂z
(λ0vz1) , (59)

(
d

dt

)
0

vz1 =
∂vz1

∂t
+ vz0

∂vz1

∂z
= −vz1

∂vz0

∂z
− K l

∂λ0

∂z
. (60)

➱ Using the method of variational coefficients, the solution to Eq. (60) is
found to be

vz1 =
1

1 + V ′
0(ξ)t

{
V1(ξ) − K l

∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

ln[1 + V ′
0(ξ)t]

]}
. (61)



1st Order Space-Charge Correction

➱ By the same procedure, Eq. (59) can be integrated to give

λ1 =
Λ1(ξ)

1 + V ′
0(ξ)t

− 1

1 + V ′
0(ξ)t

∂

∂ξ

{
Λ0(ξ)V1(ξ)t

1 + V ′
0(ξ)t

(62)

− K lΛ0(ξ)
∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

]
V ′

0(ξ)t − ln[1 + V ′
0(ξ)t]

[1 + V ′
0(ξ)t]

2

− K l
Λ2

0(ξ)

V ′
0(ξ)

V ′′
0 (ξ)

t2

[1 + V ′
0(ξ)t]

2

}
.

➱ At time t = T , we obtain

ΛT (z) = λ0(t = T, z) + λ1(t = T, z). (63)

Since ΛT (z) and Λ(z) are prescribed in the pulse shaping problem, we take
ΛT1(z) = 0 and Λ1(z) = 0. This results in

V1(ξ) = K l
∂

∂ξ

[
Λ0(ξ)

V ′
0(ξ)

]
V ′

0(ξ) − ln[1 + V ′
0(ξ)T ]/T

1 + V ′
0(ξ)T

(64)

+ K l
Λ0(ξ)

V ′
0(ξ)

V ′′
0 (ξ)

T

1 + V ′
0(ξ)T

+ c′ .



Transverse Dynamics in Non-Periodic Lattice

➱ Transverse envelope equations:

d2a

ds2
+ κqa − 2K(s)

a + b
− ε2

x

a3
= 0,

d2b

ds2
− κqb − 2K(s)

a + b
− ε2

x

b3
= 0.

(65)

➱ K(s) is non-periodic due to the longitudinal compression.

➱ κx and κy need to be non-periodic to reduce the expansion of the beam
radius.

➱ Since the quadrupole lattice is not periodic, the concept of a “matched”
beam is not well defined.

➱ However, if the the non-periodicity is small, that is, if the quadrupole
lattice changes slowly along the beam path, we can seek an “adiabatically”-
matched beam which, by definition, is locally matched everywhere.



Transverse Dynamics and Lattice Design

➱ Goal:

❍ Constant vacuum phase advance σv = π/5 −→ ηB′L2 = const.

❍ Length zb −→ × 1

16
. Perveance K −→ ×16.

❍ Velocity tilt |vbz| −→≤ 0.01.

❍ Beam radius a −→ ×2.

❍ Half lattice period L −→ ×1

2
.

❍ Filling factor η −→ ×4. ηB′ −→ ×4.

➱ How do K, L, η, B′, a, and b depend on s?

❍ K(s) is given by the longitudinal dynamics.

❍ L(s), η(s), and B′(s) are determined by requirements such as constant
vacuum phase advance.

❍ a(s) and b(s) are determined by the transverse envelope equations.



Non-periodic Lattice Design

➱ A lattice which keeps both the vacuum phase advance and depressed phase
advance constant is less likely to induce beam mismatch.

➱ Vacuum phase advance σv and depressed phase advance σ are given by

2(1 − cos σv) = (1 − 2η

3
)η2

(
B′

[Bρ]

)2

L4, (66)

σ2 = 2(1 − cos σv) − K

(
2L

〈a〉
)2

. (67)

➱ Assuming η � 1, we obtain

η2(
B′

[Bρ]
)2L4 = const., K(

2L

〈a〉)
2 = const., (68)

for constant vacuum phase advance and constant depressed phase advance.

➱ It is under-determined. As one possible choice, let

L = L0 exp(− ln 2
s

sf

), η = η0 exp(2 ln 2
s

sf

), B′ = const. (69)



Non-periodic Lattice Design

➱ Let the lattice lengths are L0, L1, ..., LN = Lf ,

L1 = L0 exp(− ln 2
2L0

sf

),

L2 = L0 exp(− ln 2
2(L0 + L1)

sf

),

......

Li = L0 exp(− ln 2
2
∑i−1

0 Li

sf

),

2(L1 + L2 + ... + LN) = Sf .

(70)

➱ For Lf = 3.36m, L0 = 6.72m, and sf = 421.5m, calculation gives N = 45.



Adiabatically-Matched Solution

➱ Currently, there are no well-defined rules to determine a priori which so-
lution is adiabatically-matched.

➱ In general, satisfactory results can be obtained by using an intuitive trial-
and-error approach.

➱ A recently derived equation for the average beam envelope in non-periodic
lattices will provide a systematic understanding of the adiabatically-matched
solutions

➱ For an adiabatically-matched solution,

❍ The envelope is locally matched and contains no oscillations other than
the local envelope oscillations.

❍ On the global scale, the beam radius increases monotonically.



Example of Non-adiabatically-Matched Solution

➱ The solutions shown are not adiabatically-matched because the envelope
oscillations have low frequency components
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An adiabatically-Matched Solution

➱ The solutions shown are adiabatically-matched. The average beam size
increases by a factor of 2, which agrees with the design assumption.
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Basic Design Parameters

➱ At the end of drift compression:

❍ Length zbf = 10ns × βc = 0.5937m. Perveance K = 1.470 × 10−4m.

❍ Longitudinal perveance Kl = 1.309 × 10−4m.

❍ Velocity tilt |vzbf | ≤ 0.01.

❍ Beam radius a ∼ 12cm, b ∼ 16cm.

❍ Half lattice period Lf = 3.36m.

❍ Filling factor ηf = 0.144. ηfB
′
f = 4.567T/m. Phase advance σv = π/5.

➱ At the beginning of drift compression:

❍ Length zb0 = 0ns × βc = 9.5m. Perveance K = 9.18 × 10−6m.

❍ Longitudinal perveance Kl = 1.309 × 10−4m.

❍ Velocity tilt vzb0 ≤ 0.0227.

❍ Beam radius a = 6cm, b = 8cm.

❍ Half lattice period L0 = 6.72m.

❍ Filling factor η0 = 0.036. ηfB
′
f = 1.14T/m. Phase advance σv = π/5.



Conclusions

➱ The longitudinal dynamics of drift compression and pulse shaping have
been studied using a one-dimensional warm-fluid model.

➱ It was found that at least two self-similar drift compression solutions exist
for the one-dimensional warm-fluid equations: the linear self-similar drift
compression solution, and the parabolic self-similar drift compression solu-
tion.

➱ Detailed analysis showed that the latter solution has several desirable fea-
tures and is a good candidate for practical drift compression schemes.

➱ The pulse shaping problem is solved perturbatively in the weak space-
charge limit, such that an arbitrary pulse shape produced after the accel-
eration phase can be shaped into those required by the self-similar drift
compression solutions.

➱ A non-periodic quadrupole lattice configuration has been designed for a
beam undergoing drift compression with fixed vacuum phase advance and
depressed phase advance.

➱ An adiabatically-matched solution was found for the transverse envelope
equations in the non-periodic lattice.
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Important Physics Issues for Future Study

➱ Other self-similar drift compression solutions may exist. A systematic
method to discover families of self-similar drift compression solutions is
needed.

➱ Pulse shaping problem in strong space-charge region and over the entire
beam path.

➱ Coupling between longitudinal and transverse dynamics.

➱ Stability (sensitivity) using fluid and kinetic models.

➱ Emittance growth during the compression.

➱ Longitudinal “shock” formation during the compression.
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References

References

[1]I. Haber, Proc. of the Symposium on Accelerator Aspects of Heavy Ion
Fusion, GSI-82-8, Darmstadt, W. Germany, 372 (1982).

[2]I. Hofmann and Bozsik, ibid, 362.

[3]J. Bisognano, E. P. Lee, and J. W.-K Mark, Laser Program Annual
Report 84, LLNL, 3-28 (1985).

[4]D. D.-M. Ho, S. T. Brandon, and E. P. Lee, Particle Accelerators 35,
15(1991).

[5]M. J. L. de Hoon, Ph.D. Dissertation, UC Berkeley (2001).

[6]E. P. Lee and J. J. Barnard, Proceedings of 2001 Particle Accelerator
Conferences, 2928 (2001).

[7]H. Qin, C. Jun, R. C. Davidson, and P. Heitzenroeder, Proceedings of
2001 Particle Accelerator Conferences, 1761 (2001).



[8]D. Neuffer, Particle Accelerators. 11, 23 (1980).

[9]S. M. Lund and R. C. Davidson, Phys. Plasmas 5, 3028 (1998).

[10]R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams
in High Energy Accelerators, World Scientific (2001).

[11]S. Yu, private communication (2001).

[12]F. J. Sacherer, IEEE Trans. Nucl. Sci. 18, 1105 (1971); See also pp.
128–140 of Ref. [10] .

[13]J. J. Barnard, private communication (2001).

[14]E. P. Lee, private communication (2001).

[15]H. Qin and R. C. Davidson, PRST-AB 5, 034401 (2002).


