Study of Drift Compression for Heavy Ion Beams

Hong Qin and Ronald C. Davidson

Plasma Physics Laboratory Princeton University

14th International Heavy Ion Fusion Symposium

Moscow, Russia May 25th — May 31st, 2002

EXAMPLE EXAMPLE EXAMPLE A CONSERVANT CONSERVAN

[∗]Research supported by the U.S. Department of Energy. We thank J. Barnard, S. Yu, M. de Hoon, A. Friedman, and E. Lee for productive discussions and comments.

- \Rightarrow In the currently envisioned configurations for heavy ion fusion (HIF), it is necessary to longitudinally compress the beam bunches by ^a large factor after the acceleration phase and before the beam particles are focused onto the fusion target.
	- ❍ In order to obtain enough fusion energy gain, the peak current for each beam is required to be order $10³A$, and the bunch length to be as short as 0.5m.
	- ❍ To deliver the beam particles at the required energy, it is both expensive and technically difficult to accelerate short bunches at high current.
- \implies The objective of drift compression is to compress ^a long beam bunch by imposing ^a negative longitudinal velocity tilt over the length of the beam in the beam frame.

Heavy Ion Fusion Virtual National Laboratory

- \Rightarrow \Rightarrow Assume a Cs^+ beam for HIF driver with $A = 133, q = 1, (\gamma (-1)mc^2 =$ 2.5 GeV , $z_{bf} = 0.60$ m, and $\langle I \rangle = 2500$ A.
- \Rightarrow The goal of drift compression is:

O Length
$$
z_b \longrightarrow \times \frac{1}{16}
$$
. Perveance $K \longrightarrow \times 16$.

- \Rightarrow Allowable changes of other system parameters:
	- ◯ Velocity tilt $|v_{zb}|$ \longrightarrow ≤ 0.01.
	- \bigcirc Beam radius $a \longrightarrow \times 2$.
	- O Half lattice period $L \longrightarrow \infty$ 1 2 .
	- \bigcirc Filling factor $\eta \longrightarrow \times 4$. $\eta B' \longrightarrow \times 4$.

Heavy Ion Fusion Virtual National Laboratory — \mathbb{R}

- ➱ Longitudinal Dynamics:
	- What is the dynamics of $z_b(s)$?
	- How long is the beam line? $(s_f = 421.5m)$
	- How large initial velocity tilt can we afford? $(v_{zb0} = -0.0227)$
	- ❍ Space charge effect? (strong and helpful)
	- Stability? (stable without longitudinal focusing by envelope equation)
- ➱ Transverse Dynamics:
	- Non-periodic lattice design, $L(s)$, $B'(s)$, $\eta(s)$, $\kappa(s)$, $K(s)$.
	- Non-periodic envelope, matched solutions? adiabatically-matched solutions?

Heavy Ion Fusion Virtual National Laboratory — **Example**

- \Rightarrow Longitudinal Dynamics:
	- ❍ 1D fluid model.
	- ❍ Self-similar solutions.
	- ❍ Longitudinal envelope equation.
	- ❍ Drift compression design.
	- ❍ Pulse shaping
- \sum Transverse Dynamics:
	- ❍ Non-periodic lattice design.
	- ❍ Adiabatically-matched solutions of the transverse envelope equations in ^a non-periodic lattice.

Heavy Ion Fusion Virtual National Laboratory

- \Rightarrow One dimensional fluid model in the beam frame for
	- $\bigcirc \lambda(t,z)$: line density,
	- $Q \, v_z(t, z)$: longitudinal velocity,
	- $\supset p_z(t, z)$: longitudinal pressure.
- \Rightarrow g-factor model for electric field.

$$
eE_z = -\frac{ge^2}{\gamma^2} \frac{\partial \lambda}{\partial z},\tag{1}
$$

$$
g = 2 \ln \frac{r_w}{r_b}.\tag{2}
$$

- \Rightarrow \Rightarrow Take g and r_b as constants for present purpose.
- \Rightarrow \Rightarrow External focusing: $-\kappa_z z$.

 \sum In the beam frame:

$$
\frac{\partial \lambda}{\partial t} + \frac{\partial}{\partial z} (\lambda v_z) = 0 \quad \text{(continuity)}, \quad (3)
$$

$$
\frac{\partial v_z}{\partial t} + v_z \frac{\partial v_z}{\partial z} + \frac{e^2 g}{m \gamma^5} \frac{\partial \lambda}{\partial z} + \frac{\kappa_z z}{m \gamma^3} + \frac{r_b^2}{m \gamma^3 \lambda} \frac{\partial p_z}{\partial z} = 0 \text{ (momentum)}, \quad (4)
$$

$$
\frac{\partial p_z}{\partial t} + v_z \frac{\partial p_z}{\partial z} + 3p_z \frac{\partial v_z}{\partial z} = 0 \text{ (energy)}.
$$
 (5)

- \Rightarrow Eqs. (3), (4), and (5) form a nonlinear hyperbolic PDE system. If neglecting κ_z and p_z , Eqs. (3) and (4) have the same form as the shallow-water equations.
- \Rightarrow Eq. (5) is equivalent to

$$
\frac{d}{dt}(\frac{p_z}{\lambda^3}) = 0.\tag{6}
$$

 \Rightarrow Self-similar drift compression schemes preserve the geometric shape of the bunched beam, as well as the density profile, the pressure profile, and the velocity distribution. The nonlinear PDE system, Eqs. (3) , (4) , and (5) , admits at least two self-similar drift compression solutions.

 \Rightarrow

 $\lambda(t,z)=\lambda_b(t),\, v_z(t,z)=$ $-v_{zb}(t) - \frac{z}{\sqrt{z}}$ $z_b(t)$ (7)

$$
p_z(t, z) = p_{zb}(t) \frac{z^2}{z_b^2(t)}, \frac{dz_b(t)}{dt} = -v_{zb}(t).
$$
 (8)

 \Rightarrow From the continuity equation (3), we obtain

$$
\frac{1}{\lambda_b} \frac{d\lambda_b}{dt} + \frac{1}{z_b} \frac{dz_b}{dt} = 0 \Longrightarrow z_b \lambda_b = const. = N_b/2, \tag{9}
$$

 \Rightarrow From the energy equation (5), we obtain

$$
z_b^3 p_{zb} = const. = W.
$$
 (10)

 \implies \Rightarrow Similarly, for the momentum equation (4), the *z*-dependence drops out as well, giving

$$
\frac{d^2 z_b}{ds^2} + \frac{\kappa_z}{m\gamma^3 \beta^2 c^2} z_b + \frac{\varepsilon_l^2}{z_b^3} = 0, \qquad (11)
$$

where $\varepsilon_l \equiv \left(2r_b^2W/m\gamma^3\beta^2c^2N_b\right)^{1/2}$

 \implies Equations (9), (10) and (11) describe the dynamics of the time-dependent variables $\lambda_b(t)$, $z_b(t)$, and $p_{zb}(t)$.

.

 \Rightarrow Equation (11) predicts a dramatic compression scenario where the beam longitudinally "implodes" because of the singularity of the (focusing) pressure term in Eq. (11) as $z_b \to 0$.

 \Rightarrow

$$
\lambda(t,z) = \lambda_b(t) \left(1 - \frac{z^2}{z_b^2(t)} \right), \ v_z(t,z) = -v_{zb}(t) \frac{z}{z_b(t)}, \tag{12}
$$

$$
p_z(t, z) = p_{zb}(t) \left(1 - \frac{z^2}{z_b^2(t)} \right)^2, \frac{dz_b(t)}{dt} = -v_{zb}(t).
$$
 (13)

 \implies \Rightarrow Substituting Eqs. (12) and (13) into Eqs. (3) and (5), we find that the zdependence drops out, and

$$
\frac{d\lambda_b}{dt} - \frac{v_{zb}}{z_b}\lambda_b = 0,\t\t(14)
$$

$$
\frac{dp_{zb}}{dt} - 3\frac{v_{zb}}{z_b}p_{zb} = 0.
$$
\n(15)

 \implies \Rightarrow Remarkably, but not surprisingly, for the momentum equation (4), the zdependence also drops out, giving

$$
-\frac{dv_{zb}}{dt} - \frac{e^2 g}{m\gamma^5} \frac{2\lambda_b}{z_b} + \frac{\kappa_z z_b}{m\gamma^3} - \frac{4r_b^2 p_{zb}}{m\gamma^3 \lambda_b z_b} = 0
$$
 (16)

 \Rightarrow Eqs. (13) – (16) form a coupled ordinary differential equation (ODE) system. Most remarkably, these equations recover the longitudinal envelope equation. From Eqs. (13) , (15) , and (14) , we obtain

$$
\frac{1}{\lambda_b} \frac{d\lambda_b}{dt} + \frac{1}{z_b} \frac{dz_b}{dt} = 0 \Longrightarrow z_b \lambda_b = const. = \frac{3}{4} N_b , \qquad (17)
$$

$$
\frac{1}{p_{zb}}\frac{dp_{zb}}{dt} + \frac{3}{z_b}\frac{dz_b}{dt} = 0 \Longrightarrow z_b^3 p_{zb} = const. = W.
$$
 (18)

 \Rightarrow Substituting Eqs. (17) , (18) and (13) into Eq. (16) , we obtain

$$
\frac{d^2 z_b}{ds^2} + \frac{\kappa_z}{m\gamma^3 \beta^2 c^2} z_b - K_l \frac{1}{z_b^2} - \varepsilon_l^2 \frac{1}{z_b^3} = 0,\tag{19}
$$

where $s = \beta ct$, $K_l \equiv 3N_b e^2 g / 2m \gamma^5 \beta^2 c^2$ is the effective longitudinal self-field perveance, and $\varepsilon_l \equiv (4r_b^2 W/m\gamma^3 \beta^2 c^2)^{1/2}$ is the longitudinal emittance.

 \sum The longitudinal envelope equation can be integrated once to give

$$
(z_{b0}^{\prime 2} - z_{bf}^{\prime 2}) = 2K_l(\frac{1}{z_{bf}} - \frac{1}{z_{b0}}) + \varepsilon_l^2(\frac{1}{z_{bf}^2} - \frac{1}{z_{b0}^2}),
$$
(20)

where $z_{b0} = z_b(s = 0), z_{bf}$ $z_b(s = s_f), z'_{b0} = dz_b/ds(s = 0), \text{ and } z'_{bf} =$ $dz_b/ds (s=s_f).$

- \Rightarrow Given $(z_{bf}, z_{b0}, K_l, \varepsilon_l)$, we want (v_{zb0}, v_{zbf}, s_f) to be as small as possible. But
	- \bigcirc Smaller $v_{bz0} \Longleftrightarrow$ Larger s_f .
	- Smaller v_{bzf} \Longleftrightarrow Larger s_f .

Need to study the trade-off.

- \Rightarrow In the drift compression scheme considered in this paper, we take $\varepsilon_l =$ 7.7×10^{-6} m, $K_l = 1.3 \times 10^{-4}$ m, corresponding to an average final current $\langle I_f \rangle = 2500$ A, $z_{bf} = 0.6$ m.
- \Rightarrow If we require $|v_{bzf}| \leq 0.01$, for the given beam parameters, $|v_{bz0}| \leq 0.0227$.
- \Rightarrow The beam path length required for drift compression can be expressed as

$$
s_f = -\int_{z_{b0}}^{z_{bf}} \frac{dz_b}{\sqrt{z_{b0}^2 - 2K_l(\frac{1}{z_b} - \frac{1}{z_{b0}}) - \varepsilon_l^2(\frac{1}{z_b^2} - \frac{1}{z_{b0}^2})}} = 421.5m.
$$
 (21)

➱If only consider free streaming with $v_{z0} = -0.0227$, we have

$$
s_f = -\int_{z_{b0}}^{z_{bf}} \frac{dz}{v_{bz0}} = 392.3m.
$$
 (22)

 \Rightarrow With the help of space charge, the initial velocity tilt reduces from 0.0227 to 0.01. The required beam line is only 10% longer compared with the free streaming case.

 \Rightarrow The longitudinal envelope equation can be solved numerically.

- \sum The parabolic self-similar drift compression solution requires the initial beam pulse shape to be parabolic.
- \Rightarrow Need to shape the beam pulse into a parabolic form before imposing a velocity tilt.
- \Rightarrow Need to solve the pulse shaping problem in general finding the initial velocity distribution $V(z) \equiv v_z(t = 0, z)$ such that a given initial pulse shape $\Lambda(z) \equiv \lambda(t=0,z)$ evolves into a given final pulse shape $\Lambda_T(z) \equiv$ $\lambda(t=$ (T, z) at time $t = T$.
- \implies Choose the following normalized variables:

$$
\overline{v}_z = \frac{v_z}{\beta c}, \ \overline{z} = \frac{z}{z_{b0}}, \ \overline{\lambda} = \frac{\lambda}{\lambda_{b0}}, \ \overline{t} = \frac{t\beta c}{z_{b0}}, \tag{23}
$$

where z_{b0} is the initial beam half-length, and λ_{b0} is the initial beam line density at the beam center $(z = 0)$.

 \Rightarrow In the normalized variables, the one-dimensional fluid equations, neglecting pressure effects and external focusing, are given by

$$
\frac{\partial \lambda}{\partial t} + \frac{\partial}{\partial z} (\lambda v_z) = 0 , \qquad (24)
$$

$$
\frac{\partial v_z}{\partial t} + v_z \frac{\partial v_z}{\partial z} + \overline{K}_l \frac{\partial \lambda}{\partial z} = 0 , \qquad (25)
$$

where $\overline{K}_l \equiv \lambda_{b0} e^2 g / m \gamma^5 \beta^2 c^2$ is the normalized longitudinal perveance.

- \Rightarrow K_l will be treated as a small parameter.
- \Rightarrow To order lowest order,

$$
\frac{\partial \lambda}{\partial t} + \frac{\partial}{\partial z} (\lambda v_z) = 0 , \qquad (26)
$$

$$
\frac{\partial v_z}{\partial t} + v_z \frac{\partial v_z}{\partial z} = 0 \tag{27}
$$

 \Rightarrow Equations (26) and (27) can solved by integrating along characteristics. On the characteristics defined by

$$
C: \frac{dz}{dt} = v_z, \tag{28}
$$

Equations (26) and (27) are

$$
\frac{d\lambda}{dt} = -\lambda \frac{\partial v_z}{\partial z},\qquad(29)
$$

$$
\frac{dv_z}{dt} = 0 \tag{30}
$$

 \Rightarrow Because $dv_z/dt = 0$ on C, the family of characteristics C are straight lines in the (t, z) plan, which can be represented as

$$
C: z = \xi + V(\xi)t, \qquad (31)
$$

where

$$
V(\xi) \equiv v_z(t=0,\xi). \tag{32}
$$

 \Rightarrow \Rightarrow The solution for $v_z(t, z)$ can be formally written as

$$
v_z(t, z) = V(\xi(t, z)), \qquad (33)
$$

where $\xi(t, z)$ as a function of t and z is determined from Eq. (31).

 \Rightarrow From Eqs. (33) and (31), four useful identities can be derived, *i.e.*,

$$
\frac{\partial \xi}{\partial z} = \frac{1}{1 + V'(\xi)t},\tag{34}
$$

$$
\frac{\partial \xi}{\partial t} = \frac{-V(\xi)}{1 + V'(\xi)t},\tag{35}
$$

$$
\frac{\partial v_z}{\partial z} = \frac{V'(\xi)}{1 + V'(\xi)t},\tag{36}
$$

$$
\frac{\partial v_z}{\partial t} = \frac{-V(\xi)V'(\xi)}{1 + V'(\xi)t}.
$$
\n(37)

 \Rightarrow From Eqs. (29) and (36), we obtain

$$
\frac{d\ln\lambda}{dt} = \frac{-V'(\xi)}{1 + V'(\xi)t} \quad \text{on } C \ . \tag{38}
$$

 \Rightarrow \Rightarrow Since ξ is a constant on C, Eq. (38) can be integrated to give

$$
\ln \lambda = \ln \lambda (t = 0, \xi) + \int_0^t \frac{-V'(\xi)}{1 + V'(\xi)t} dt
$$

= $\ln \Lambda(\xi) + \ln[1 + V'(\xi)t],$ (39)

where $\Lambda(z) \equiv \lambda(t=0,z)$ is the initial line density profile. The solution to Eq. (38) for $\lambda(t,z)$ is

$$
\lambda(t,z) = \frac{\Lambda(\xi)}{1 + V'(\xi)t}.
$$
\n(40)

 \Rightarrow \Rightarrow For the pulse shaping problem, the final line density profile $\Lambda_T(z) \equiv \lambda(t=$ T, z) is specified. We therefore obtain

$$
\Lambda_T(z) = \Lambda_T[\xi + V(\xi)T] = \frac{\Lambda(\xi)}{1 + V'(\xi)T},\tag{41}
$$

which can be viewed as an ordinary differential equation for $V(\xi)$.

 \Rightarrow It can be simplified using the variable $U(\xi)$ defined by

$$
U(\xi) \equiv \xi + V(\xi)T \tag{42}
$$

In terms of $U(\xi)$, Eq. (41) becomes

$$
\Lambda_T(U)dU = \Lambda(\xi)d\xi.
$$
\n(43)

 \Rightarrow \Rightarrow Finally, $U(\xi)$ is determined by solving Eq. (43) for the given functional forms $\Lambda_T(z)$ and $\Lambda(z)$. $V(\xi)$ is simply related to $U(\xi)$ by

$$
V(\xi) = \frac{U(\xi) - \xi}{T}.
$$
\n(44)

 \Rightarrow Consider two examples with the following symmetries and boundary conditions,

$$
v_z(t, -z) = -v_z(t, z), \lambda(t, -z) = \lambda(t, z), \qquad (45)
$$

$$
V(\xi = 0) = 0, \ U(\xi = 0) = 0. \tag{46}
$$

➱ **Example 1—Pulse Shaping Without Compression:**

$$
\Lambda(z) = \begin{cases}\n1 - z^m, & 0 \le z \le 1, \\
0, & 1 < z, \\
\Lambda(-z), & z < 0, \\
(47) \\
\Lambda_T(z) = \begin{cases}\n(1 - z^n) \frac{m(n+1)}{n(m+1)}, & 0 \le z \le 1, \\
0, & 1 < z, \\
\Lambda(-z), & z < 0.\n\end{cases}
$$
\n(48)

 \Rightarrow Equation (43) can integrated to ^give

$$
\left[U(\xi) - \frac{U(\xi)^{n+1}}{n+1}\right] \frac{m(n+1)}{n(m+1)} = \xi - \frac{\xi^{m+1}}{m+1}.
$$
 (49)

 \Rightarrow The parabolic self-similar drift compression solution corresponds to $n=2$. In this case, there are three solutions for $U(\xi)$. The solution satisfying the right boundary condition is

$$
U(\xi) = -\frac{1 - i\sqrt{3} + \sqrt[3]{-2p^2}}{\sqrt[3]{4p}},
$$
\n(50)

where

$$
p = \sqrt[3]{-3a + \sqrt{-4 + 9a^2}},
$$
\n(51)

$$
a = \frac{2(m+1)}{3m} (\xi - \frac{\xi^{m+1}}{m+1}).
$$
\n(52)

 \Rightarrow \Rightarrow For large value of $m \gg 1$, $\Lambda(z)$ has a flat-top shape with a fast fall-off near the ends of the pulse.

Example: Pulse Shaping without Compression

 \Rightarrow \Rightarrow Initial pulse shape $\Lambda(z)=1$ $-z^{15}$ and final pulse shape $\Lambda_T(z) = (45/32)(1$ − z^2) are plotted in (a). The initial velocity $V(z)$ given by Eq. (44) is plotted in (b).

\implies **Example 2—Pulse Shaping With Compression:**

$$
\Lambda(z) = \begin{cases}\n1 - z^m, & 0 \le z \le 1, \\
0, & 1 < z, \\
\Lambda(-z), & z < 0, \\
\Lambda(Tz) = \begin{cases}\n[1 - (\alpha z)^n] \frac{\alpha m(n+1)}{n(m+1)}, & 0 \le z \le \frac{1}{\alpha}, \\
0, & -< z, \\
\Lambda(-z), & z < 0,\n\end{cases}
$$
\n(54)

where $\alpha > 1$ is the compression factor.

 \Rightarrow Equation (43) can be integrated to give

$$
\left[\alpha U(\xi) - \frac{(\alpha U(\xi))^{n+1}}{n+1}\right] \frac{m(n+1)}{n(m+1)} = \xi - \frac{\xi^{m+1}}{m+1},\tag{55}
$$

which is identical to Eq. (49) if $\alpha U(\xi)$ is replaced by $U(\xi)$. It is easy to verify that $\alpha U(\xi=1) = 1$ and therefore

$$
V(\xi = 1) = \frac{(1/\alpha - 1)}{T}.
$$
 (56)

- \Rightarrow \Rightarrow For the case of a beam being shaped but not compressed, $\alpha = 1$ and $V(\xi = 1) = 0$. When $\alpha > 1$, the beam is simultaneously being shaped and compressed, and $V(\xi = 1) < 0$.
- \Rightarrow \Rightarrow Initial pulse shape $\Lambda(z)=1$ $-z^{15}$ and final pulse shape $\Lambda_T(z) = (135/32)(1$ − $(9z²)$ are plotted in (a). The initial velocity $V(z)$ given by Eq. (44) is plotted in (b).

 \Rightarrow \Rightarrow We now carry out the analysis to $O(K_l)$. Let

$$
\lambda(t,z) = \lambda_0(t,z) + \lambda_1(t,z), \qquad (57)
$$

$$
v_z(t, z) = v_{z0}(t, z) + v_{z1}(t, z).
$$
 (58)

 \Rightarrow To $O(K_l)$, Eqs. (24) and (25) can be expressed as

$$
\left(\frac{d}{dt}\right)_0 \lambda_1 = \frac{\partial \lambda_1}{\partial t} + v_{z0} \frac{\partial \lambda_1}{\partial z} = -\lambda_1 \frac{\partial v_{z0}}{\partial z} - \frac{\partial}{\partial z} (\lambda_0 v_{z1}), \qquad (59)
$$

$$
\left(\frac{d}{dt}\right)_0 v_{z1} = \frac{\partial v_{z1}}{\partial t} + v_{z0} \frac{\partial v_{z1}}{\partial z} = -v_{z1} \frac{\partial v_{z0}}{\partial z} - \overline{K}_l \frac{\partial \lambda_0}{\partial z}. \qquad (60)
$$

 \Rightarrow Using the method of variational coefficients, the solution to Eq. (60) is found to be

$$
v_{z1} = \frac{1}{1 + V_0'(\xi)t} \left\{ V_1(\xi) - \overline{K}_l \frac{\partial}{\partial \xi} \left[\frac{\Lambda_0(\xi)}{V_0'(\xi)} \ln[1 + V_0'(\xi)t] \right] \right\}.
$$
 (61)

 \Rightarrow By the same procedure, Eq. (59) can be integrated to give

$$
\lambda_1 = \frac{\Lambda_1(\xi)}{1 + V_0'(\xi)t} - \frac{1}{1 + V_0'(\xi)t} \frac{\partial}{\partial \xi} \left\{ \frac{\Lambda_0(\xi)V_1(\xi)t}{1 + V_0'(\xi)t} - \overline{K}_l \Lambda_0(\xi) \frac{\partial}{\partial \xi} \left[\frac{\Lambda_0(\xi)}{V_0'(\xi)} \right] \frac{V_0'(\xi)t - \ln[1 + V_0'(\xi)t]}{[1 + V_0'(\xi)t]^2} - \overline{K}_l \frac{\Lambda_0^2(\xi)}{V_0'(\xi)} V_0''(\xi) \frac{t^2}{[1 + V_0'(\xi)t]^2} \right\}.
$$
\n(62)

 \Rightarrow At time $t=T$, we obtain

$$
\Lambda_T(z) = \lambda_0(t = T, z) + \lambda_1(t = T, z). \tag{63}
$$

Since $\Lambda_T(z)$ and $\Lambda(z)$ are prescribed in the pulse shaping problem, we take $\Lambda_{T1}(z) = 0$ and $\Lambda_1(z) = 0$. This results in

$$
V_1(\xi) = \overline{K}_l \frac{\partial}{\partial \xi} \left[\frac{\Lambda_0(\xi)}{V_0'(\xi)} \right] \frac{V_0'(\xi) - \ln[1 + V_0'(\xi)T]/T}{1 + V_0'(\xi)T} + \overline{K}_l \frac{\Lambda_0(\xi)}{V_0'(\xi)} V_0''(\xi) \frac{T}{1 + V_0'(\xi)T} + c'.
$$
\n(64)

➱Transverse envelope equations:

$$
\frac{d^2a}{ds^2} + \kappa_q a - \frac{2K(s)}{a+b} - \frac{\epsilon_x^2}{a^3} = 0,\n\frac{d^2b}{ds^2} - \kappa_q b - \frac{2K(s)}{a+b} - \frac{\epsilon_x^2}{b^3} = 0.
$$
\n(65)

- \Rightarrow $K(s)$ is non-periodic due to the longitudinal compression.
- \implies κ_x and κ_y need to be non-periodic to reduce the expansion of the beam radius.
- \Rightarrow Since the quadrupole lattice is not periodic, the concept of ^a "matched" beam is not well defined.
- \Rightarrow However, if the the non-periodicity is small, that is, if the quadrupole lattice changes slowly along the beam path, we can seek an "adiabatically" matched beam which, by definition, is locally matched everywhere.

- \sum Goal:
	- O Constant vacuum phase advance $\sigma_v = \pi/5 \longrightarrow \eta B'L^2 = const.$
	- Length $z_b \longrightarrow x$ 1 16 . Perveance $K \longrightarrow \times 16$.
	- ◯ Velocity tilt $|v_{bz}| \rightarrow \leq 0.01$.
	- \bigcirc Beam radius $a \longrightarrow \times 2$.
	- O Half lattice period $L \longrightarrow \infty$ 1 2 .
	- \bigcirc Filling factor $\eta \longrightarrow \times 4$. $\eta B' \longrightarrow \times 4$.

 \sum \Rightarrow How do K, L, η , B', a, and b depend on s?

- \bigcirc $K(s)$ is given by the longitudinal dynamics.
- \bigcirc $L(s), \eta(s),$ and $B'(s)$ are determined by requirements such as constant vacuum phase advance.
- \bigcirc $a(s)$ and $b(s)$ are determined by the transverse envelope equations.

- \Rightarrow A lattice which keeps both the vacuum ^phase advance and depressed ^phase advance constant is less likely to induce beam mismatch.
- \Rightarrow Vacuum phase advance σ_v and depressed phase advance σ are given by

$$
2(1 - \cos \sigma_v) = (1 - \frac{2\eta}{3})\eta^2 \left(\frac{B'}{[B\rho]}\right)^2 L^4,\tag{66}
$$

$$
\sigma^2 = 2(1 - \cos \sigma_v) - K \left(\frac{2L}{\langle a \rangle}\right)^2.
$$
 (67)

 \Rightarrow Assuming $\eta \ll 1$, we obtain

$$
\eta^2 \left(\frac{B'}{[B\rho]}\right)^2 L^4 = const., \ K\left(\frac{2L}{\langle a \rangle}\right)^2 = const., \tag{68}
$$

for constant vacuum phase advance and constant depressed phase advance. \Rightarrow It is under-determined. As one possible choice, let

$$
L = L_0 \exp(-\ln 2 \frac{s}{s_f}), \qquad \eta = \eta_0 \exp(2 \ln 2 \frac{s}{s_f}), \qquad B' = const. \tag{69}
$$

 \Rightarrow Let the lattice lengths are L_0 , L_1 , ..., $L_N = L_f$,

$$
L_1 = L_0 \exp(-\ln 2 \frac{2L_0}{s_f}),
$$

\n
$$
L_2 = L_0 \exp(-\ln 2 \frac{2(L_0 + L_1)}{s_f}),
$$

\n......
\n
$$
L_i = L_0 \exp(-\ln 2 \frac{2 \sum_{i=1}^{i-1} L_i}{s_f}),
$$
\n(70)

$$
s_f
$$

2(L₁ + L₂ + ... + L_N) = S_f.

 \Rightarrow For $L_f = 3.36$ m, $L_0 = 6.72$ m, and $s_f = 421.5$ m, calculation gives $N = 45$.

- \sum Currently, there are no well-defined rules to determine *^a priori* which solution is adiabatically-matched.
- \Rightarrow In general, satisfactory results can be obtained by using an intuitive trialand-error approach.
- \Rightarrow A recently derived equation for the average beam envelope in non-periodic lattices will provide ^a systematic understanding of the adiabatically-matched solutions
- \Rightarrow For an adiabatically-matched solution,
	- The envelope is locally matched and contains no oscillations other than the local envelope oscillations.
	- ❍ On the global scale, the beam radius increases monotonically.

 \Rightarrow The solutions shown are not adiabatically-matched because the envelope oscillations have low frequency components

 \Rightarrow The solutions shown are adiabatically-matched. The average beam size increases by ^a factor of 2, which agrees with the design assumption.

- \sum At the end of drift compression:
	- O Length $z_{bf} = 10ns \times βc = 0.5937m$. Perveance $K = 1.470 \times 10^{-4}m$.
	- Longitudinal perveance $K_l = 1.309 \times 10^{-4}$ m.
	- Velocity tilt $|v_{zbf}| \leq 0.01$.
	- Beam radius $a \sim 12$ cm, $b \sim 16$ cm.
	- Half lattice period $L_f = 3.36$ m.
	- σ Filling factor $\eta_f = 0.144$. $\eta_f B_f' = 4.567$ T/m. Phase advance $\sigma_v = \pi/5$.
- \sum At the beginning of drift compression:
	- Length $z_{b0} = 0$ ns × $\beta c = 9.5$ m. Perveance $K = 9.18 \times 10^{-6}$ m.
	- Longitudinal perveance $K_l = 1.309 \times 10^{-4}$ m.
	- \bigcirc Velocity tilt $v_{z\bar{b}0} \leq 0.0227$.
	- Beam radius $a = 6cm, b = 8cm$.
	- Half lattice period $L_0 = 6.72$ m.
	- Filling factor $\eta_0 = 0.036$. $\eta_f B_f' = 1.14 \text{T/m}$. Phase advance $\sigma_v = \pi/5$.

Conclusions

- \Rightarrow The longitudinal dynamics of drift compression and pulse shaping have been studied using ^a one-dimensional warm-fluid model.
- \Rightarrow It was found that at least two self-similar drift compression solutions exist for the one-dimensional warm-fluid equations: the linear self-similar drift compression solution, and the parabolic self-similar drift compression solution.
- \Rightarrow Detailed analysis showed that the latter solution has several desirable features and is ^a good candidate for practical drift compression schemes.
- \Rightarrow The pulse shaping problem is solved perturbatively in the weak spacecharge limit, such that an arbitrary pulse shape produced after the acceleration ^phase can be shaped into those required by the self-similar drift compression solutions.
- \Rightarrow A non-periodic quadrupole lattice configuration has been designed for a beam undergoing drift compression with fixed vacuum ^phase advance and depressed phase advance.
- \Rightarrow An adiabatically-matched solution was found for the transverse envelope equations in the non-periodic lattice.

Heavy Ion Fusion Virtual National Laboratory

- \Rightarrow Other self-similar drift compression solutions may exist. A systematic method to discover families of self-similar drift compression solutions is needed.
- \Rightarrow Pulse shaping problem in strong space-charge region and over the entire beam path.
- \implies Coupling between longitudinal and transverse dynamics.
- \Rightarrow Stability (sensitivity) using fluid and kinetic models.
- \Rightarrow Emittance growth during the compression.
- \implies Longitudinal "shock" formation during the compression.

References

- [1]I. Haber, Proc. of the Symposium on Accelerator Aspects of Heavy Ion Fusion, GSI-82-8, Darmstadt, W. Germany, ³⁷² (1982).
- [2]I. Hofmann and Bozsik, *ibid*, 362.
- [3]J. Bisognano, E. P. Lee, and J. W.-K Mark, Laser Program Annual Report **⁸⁴**, LLNL, 3-28 (1985).
- [4]D. D.-M. Ho, S. T. Brandon, and E. P. Lee, Particle Accelerators **³⁵**, 15(1991).
- [5]M. J. L. de Hoon, Ph.D. Dissertation, UC Berkeley (2001).
- [6]E. P. Lee and J. J. Barnard, Proceedings of ²⁰⁰¹ Particle Accelerator Conferences, ²⁹²⁸ (2001).
- [7]H. Qin, C. Jun, R. C. Davidson, and P. Heitzenroeder, Proceedings of ²⁰⁰¹ Particle Accelerator Conferences, ¹⁷⁶¹ (2001).
- [8]D. Neuffer, Particle Accelerators. **¹¹**, ²³ (1980).
- [9]S. M. Lund and R. C. Davidson, Phys. Plasmas **⁵**, ³⁰²⁸ (1998).
- [10]R. C. Davidson and H. Qin, *Physics of Intense Charged Particle Beams in High Energy Accelerators*, World Scientific (2001).
- [11]S. Yu, private communication (2001).
- [12]F. J. Sacherer, IEEE Trans. Nucl. Sci. **¹⁸**, ¹¹⁰⁵ (1971); See also pp. 128–140 of Ref. [10] .
- [13]J. J. Barnard, private communication (2001).
- [14]E. P. Lee, private communication (2001).
- [15]H. Qin and R. C. Davidson, PRST-AB **⁵**, ⁰³⁴⁴⁰¹ (2002).