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The Vlasov-Maxwell equations are used to investigate the nonlinear evolution of an intense sheet beam
with distribution function fb�x, x0, s� propagating through a periodic focusing lattice kx�s 1 S� � kx�s�,
where S � const is the lattice period. The analysis considers the special class of distribution functions
with uniform phase-space density fb�x, x0, s� � A � const inside of the simply connected boundary
curves, x0

1�x, s� and x0
2�x, s�, in the two-dimensional phase space �x, x0�. Coupled nonlinear equations

are derived describing the self-consistent evolution of the boundary curves, x0
1�x, s� and x0

2�x, s�, and
the self-field potential c�x, s� � ebf�x, s��gbmbb

2
bc2. The resulting model is shown to be exactly

equivalent to a (truncated) warm-fluid description with zero heat flow and triple-adiabatic equation of
state with scalar pressure Pb�x, s� � const�nb�x, s��3. Such a fluid model is amenable to direct analysis
by transforming to Lagrangian variables following the motion of a fluid element. Specific examples of
periodically focused beam equilibria are presented, ranging from a finite-emittance beam in which the
boundary curves in phase space �x, x0� correspond to a pulsating parallelogram, to a cold beam in which
the number density of beam particles, nb�x, s�, exhibits large-amplitude periodic oscillations. For the case
of a sheet beam with uniform phase-space density, the present analysis clearly demonstrates the existence
of periodically focused beam equilibria without the undesirable feature of an inverted population in phase
space that is characteristic of the Kapchinskij-Vladimirskij beam distribution.
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I. INTRODUCTION

Periodic focusing accelerators, transport systems, and
storage rings [1–5] have a wide range of applications
ranging from basic research in high energy and nuclear
physics, to applications such as heavy ion fusion, spal-
lation neutron sources, tritium production, and nuclear
waste transmutation. Of particular importance at the
high beam currents and charge densities of practical
interest are the effects of the intense self-fields produced
by the beam space charge and current on determining
detailed equilibrium, stability, and transport properties.
In general, a complete description of collective pro-
cesses in intense charged particle beams is provided
by the nonlinear Vlasov-Maxwell equations [1] for the
self-consistent evolution of the beam distribution function,
fb�x, p, t�, and the electric and magnetic fields, E�x, t�
and B�x, t�. While considerable progress has been made
in analytical and numerical simulation studies of intense
beam propagation [6–34], the effects of finite geometry
and intense self-fields often make it difficult to obtain
detailed predictions of beam equilibrium, stability, and
transport properties based on the Vlasov-Maxwell equa-
tions. For example, the only known fully self-consistent
equilibrium solution (including electric and magnetic
self-fields) to the nonlinear Vlasov-Maxwell equations
for an intense beam propagating through a periodic
focusing field configuration is the so-called Kapchinskij-
Vladimirskij (KV) distribution function fKV

b [1,6–9].
Such a distribution, due to its highly inverted population
1098-4402�02�5(8)�084402(16)$20.00
in phase space, of course is of very limited practical
interest. While Hamiltonian averaging techniques have
been developed [31–34] that justify the smooth-focusing
approximation and thereby permit investigation of a
whole class of (approximate) beam equilibria, these
averaging techniques typically require sufficiently small
vacuum phase advance (svac , 60±, say) and other
approximations for their validity. Therefore, whether or
not there exist periodically focused non-KV solutions
to the Vlasov-Maxwell equations remains a question of
continued fundamental importance, which we examine in
this paper for an intense sheet beam propagating through
a periodic focusing field.

To briefly summarize, the present analysis considers an
intense sheet beam which is infinite in the y dimension
and propagates in the z direction with average axial veloc-
ity Vb � bbc � const and directed kinetic energy �gb 2

1�mbc2, where gb � �1 2 b
2
b�21�2 is the relativistic mass

factor, mb is the rest mass of a beam particle, and c is the
speed of light in vacuo. The beam propagates through a
periodic focusing lattice kx�s 1 S� � kx�s�, where S �
const is the lattice period, which provides transverse con-
finement of the beam particles in the x direction. The
self-consistent evolution of the system is described by the
nonlinear Vlasov-Poisson equations [Eqs. (1) and (2)] for
the beam distribution function, fb�x, x0, s�, and the normal-
ized self-field potential, c�x, s� � ebf�x, s��gbmbb

2
bc2.

Here x0 � dx�ds is the dimensionless velocity, eb is the
charge of a beam particle, and f�x, s� is the space-charge
potential. In the present analysis, we consider the special
© 2002 The American Physical Society 084402-1
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class of distribution functions with uniform phase-space
density in which fb�x, x0, s� � A � const [Eq. (23)] in-
side of the simply connected boundaries, x0

1�x, s� and
x0

2�x, s�, in the phase space �x, x0�. Coupled equations
are derived describing the self-consistent evolution of the
boundary curves, x0

1�x, s� and x0
2�x, s�, and the self-field

potential c�x, s� [Eqs. (27)–(29)]. Quite remarkably, the
resulting model is found to be exactly equivalent to a
(truncated) warm-fluid description with zero heat flow and
triple-adiabatic equation of state [Eqs. (33), (35), (36), and
(37)]. Such a fluid model is amenable to direct analysis by
transforming to Lagrangian variables following the motion
of a fluid element [35,36].

The organization of the paper is the following. The
theoretical model based on the Vlasov-Maxwell equations
is summarized in Sec. II, including a derivation of the
statistical rate equations describing the general nonlinear
evolution of the rms beam thickness, centroid motion,
and the unnormalized beam emittance. In Sec. III, the
Vlasov-Maxwell equations are simplified for the case of a
sheet beam with uniform phase-space density; the dynami-
cal equations are derived for the boundary curves, x0

1�x, s�
and x0

2�x, s�, in phase space (Sec. III A); and the equiva-
lence of the model to a (truncated) warm-fluid description
with triple-adiabatic equation of state is demonstrated
(Sec. III B). For the specific example of a pulsating
parallelogram with uniform phase-space density, closed
dynamical equations for the self-consistent evolution of the
system are derived in Sec. IV. Finally, in Sec. V, the
(closed) warm-fluid model derived in Sec. III is trans-
formed to Lagrangian variables �x0, t� following the
motion of a fluid element. This leads to a single nonlinear
partial differential equation [Eq. (76)] for the number
density nb�x0, t� of beam particles. Specific numerical
examples corresponding to large-amplitude collective
oscillations in the cold-beam limit are also considered in
Sec. V, including back transformation to the laboratory
frame.

For the case of a sheet beam with uniform phase-space
density, the present analysis clearly demonstrates the
existence of periodically focused beam equilibria without
the undesirable feature of an inverted population in phase
space that is characteristic of the Kapchinskij-Vladimirskij
beam distribution. It should be emphasized that the ex-
istence of periodically focused beam equilibrium for a
non-KV distribution with uniform density in the two-
dimensional phase space �x, x0� does not imply that peri-
odically focused beam equilibria exist for non-KV beam
distributions in four and six dimensions.

II. THEORETICAL MODEL

In the present analysis, we consider an intense sheet
beam, made up of particles with charge eb and rest mass
mb , which is infinite in the y dimension �≠�≠y � 0�, and
propagates in the z direction with average axial velocity
084402-2
Vb � bbc and directed kinetic energy �gb 2 1�mbc2,
where gb � �1 2 b

2
b�21�2 is the relativistic mass factor,

and c is the speed of light in vacuo. The beam propagates
through a periodic focusing lattice kx�s 1 S� � kx�s�,
where S � const is the lattice period, which provides
transverse confinement of the beam particles in the x
direction. Introducing the (dimensionless) self-field
potential c�x, s� � ebf�x, s��gbmbb

2
bc2, where f�x, s�

is the electrostatic (space-charge) potential, the nonlinear
Vlasov-Maxwell equations describing the self-consistent
nonlinear beam dynamics and collective processes in the
paraxial approximation are given by [37]

≠fb

≠s
1 x0 ≠fb

≠x
2

µ
kx�s�x 1

≠c

≠x

∂
≠fb

≠x0
� 0 , (1)

≠2c

≠x2 � 2
2pKb

Nb

Z
dx0 fb . (2)

In Eqs. (1) and (2), fb�x, x0, s� is the distribution of par-
ticles in the two-dimensional phase space �x, x0�, x0 �
dx�ds is the (dimensionless) velocity in the x direction,
s � s0 1 bbct is a normalized time variable, the focusing
coefficient kx�s 1 S� � kx�s� has dimensions �length�22,
and

nb�x, s� �
Z

dx0 fb�x, x0, s� (3)

is the number density of beam particles (number of beam
particles per unit volume). For present purposes, we as-
sume that perfectly conducting walls are located at x �
6xw (the case where xw ! ` is not excluded), and en-
force the boundary conditions

c�x � 6xw , s� � const (4)

in solving Eqs. (1) and (2). Furthermore, the constants Kb

and Nb occurring in Eqs. (1) and (2) are defined by

Kb �
2Nbe2

b

g
3
bmbb

2
bc2

� const, (5)

and

Nb �
Z

dx dx0 fb�x, x0, s� � const. (6)

Here, Kb is the normalized self-field perveance, with di-
mensions of �length�21, and Nb �

R
dx nb�x, s� is the

area number density of beam particles, with dimensions
of �length�22. The validity of Eqs. (1) and (2) assumes
negligibly small axial momentum spread in the z direction
and that the particle motions are nonrelativistic in a frame
of reference moving with the beam (axial velocity in the z
direction � bbc � const). We further assume that

f�x, x0 � 6`, s� � 0 ,

f�jxj . jx0j, x
0, s� � 0 ,

(7)

such that there are no beam particles beyond some trans-
verse x dimension jxj � jx0j , xw .
084402-2
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The Vlasov-Maxwell equations (1) and (2), subject to
the boundary conditions in Eqs. (4) and (7), are valid for
an intense sheet beam in the paraxial approximation and
can be used to describe the nonlinear beam dynamics and
collective processes in the phase space �x, x0� over a wide
range of system parameters and applied focusing field con-
figurations kx�s 1 S� � kx�s�. While the full solutions
for fb�x, x0, s� and c�x, s� are of special interest, it is also
possible to derive exact equations for the evolution of sta-
tistical averages �x� �s�. Here, the statistical average of
a general phase function x�x, x0, s� over the phase-space
distribution fb�x, x0, s� is defined by

�x� �
1

Nb

Z
dx dx0 xfb , (8)

where Nb �
R

dx nb �
R

dx dx0 fb � const is the area
number density of beam particles in the sheet beam. For
x � x and x � x0, taking the appropriate moments of
Eq. (1), readily gives [38]

d
ds

�x� � �x0� , (9)

and

d
ds

�x0� 1 kx�s� �x� � 2

ø
≠c

≠x

¿
, (10)

where use has been made of Eq. (7). Substituting Eq. (9)
into Eq. (10) readily gives for the evolution of the centroid
location �x� �s�,

d2

ds2 �x� 1 kx�s� �x� � 2

ø
≠c

≠x

¿
. (11)

In Eq. (11), the average self-field force, 2�≠c�≠x�, is
determined self-consistently from Eqs. (1), (2), and (8).
Similarly, it can be shown (exactly) from Eqs. (1) and (8)
that

d
ds

�x2� � 2�xx0� , (12)

and

d
ds

�xx0� 1 kx�s� �x2� � �x02� 2

ø
x

≠c

≠x

¿
, (13)

or equivalently,

d2

ds2

1
2

�x2� 1 kx�s� �x2� � �x02� 2

ø
x

≠c

≠x

¿
. (14)

In addition, it can be shown from Eqs. (1) and (8) that

d
ds

�x02� 1 2kx�s� �xx0� � 22

ø
x0 ≠c

≠x

¿
, (15)

or equivalently,

d
ds

�x02� 1 kx�s�
d
ds

�x2� � 22

ø
x0 ≠c

≠x

¿
, (16)
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where use is made of Eq. (12). Equations (11), (14), and
(16), derived from the Vlasov equation (1), are exact equa-
tions describing the nonlinear evolution of the statistical
averages �x� �s�, �x2� �s�, and �x02� �s�. In a similar man-
ner, making use of Eq. (1), dynamical equations can be
derived for the evolution of statistical averages for higher-
order moments, �xm�, �x0n�, and �xpx0q�, for m . 2, n .

2, etc.
For future reference, it is convenient to rewrite Eq. (14)

in terms of the mean-square beam dimension X2
b�s� defined

by

X2
b � ��x 2 �x��2� . (17)

We further make use of the identities

��x 2 �x��2� � �x2� 2 �x�2,

��x0 2 �x0��2� � �x02� 2 �x0�2, (18)

��x 2 �x�� �x0 2 �x0��� �
1
2

d
ds

��x 2 �x��2� .

Substituting Eqs. (17) and (18) into Eq. (14), and making
use of Eq. (11) to eliminate �d2�ds2� �x�, we readily obtain

d2

ds2

1
2

X2
b 1 kx�s�X2

b

� ��x0 2 �x0��2� 2

ø
�x 2 �x��

≠c

≠x

¿
. (19)

Subtracting out the centroid motion, it is convenient to
introduce the unnormalized beam emittance ex�s� defined
by

1
4

e2
x �s� � ��x0 2 �x0��2� ��x 2 �x��2�

2 ��x 2 �x�� �x0 2 �x0���2

� ��x0 2 �x0��2�X2
b 2 X2

b

µ
dXb

ds

∂2

, (20)

where X2
b � ��x 2 �x��2�, and use has been made of

Eq. (18). Using Eq. (20) to eliminate ��x0 2 �x0��2� in
favor of e2

x�s� in Eq. (19) gives directly the dynamical
equation

d2Xb

ds2 1 kx�s�Xb �
e2

x�s�
4X3

b
2

1
Xb

ø
�x 2 �x��

≠c

≠x

¿
.

(21)

Equation (21) is fully equivalent to Eq. (14) and describes
the nonlinear evolution of the rms beam thickness Xb�s�.

In a similar manner, Eq. (16) for �x02� �s� can be re-
placed by a dynamical equation for the unnormalized beam
emittance. Without presenting algebraic details, making
use of Eqs. (11), (14), (16), and (18), we obtain
084402-3
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d
ds

1
8

e2
x �s� � 2��x 2 �x��2�

ø
�x0 2 �x0��

≠c

≠x

¿

1 ��x 2 �x�� �x0 2 �x0���
ø

�x 2 �x��
≠c

≠x

¿

� 2X2
b

ø
�x0 2 �x0��

≠c

≠x

¿

1 Xb
dXb

ds

ø
�x 2 �x��

≠c

≠x

¿
. (22)

Equation (22) shows clearly that space-charge effects (pro-
portional to ≠c�≠x) generally cause a variation in the
beam emittance ex�s�. Only in the limit of very low beam
intensity �j≠c�≠xj ! 0�, or very special choices of distri-
bution function fb�x, x0, s� (see Sec. IV), is the emittance
a conserved quantity.

To summarize, Eqs. (11), (21), and (22) are exact
consequences of the Vlasov equation (1) and describe the
self-consistent dynamical evolution of the beam centroid
�x� �s�, rms thickness Xb�s�, and emittance ex�s�. In
general, Eqs. (11), (21), and (22) are not closed dynamical
equations because the statistical averages �≠c�≠x�, ��x 2

�x��≠c�≠x�, etc., require a knowledge of the self-field
potential c�x, s� which is determined self-consistently
in terms of the distribution function fb�x, x0, s� from the
Vlasov-Maxwell equations (1) and (2).

III. NONLINEAR VLASOV-MAXWELL
EQUATIONS FOR UNIFORM PHASE-SPACE

DENSITY

We now return to the Vlasov-Maxwell equations (1)
and (2) for the distribution function fb�x, x0, s� and
self-field potential c�x, s�. For specified applied focusing
field kx�s 1 S� � kx�s� and initial distribution function
fb�x, x0, s � 0�, obtaining the solutions to Eqs. (1) and
(2) is generally difficult analytically, although solutions
to Eqs. (1) and (2) are accessible using nonlinear df
simulation techniques [22–25]. For present purposes,
we consider a special case where considerable analytical
simplification occurs in the analysis of Eqs. (1) and
(2). In particular, as illustrated in Fig. 1, we consider
the case where the distribution function fb�x, x0, s� has
constant phase-space density (independent of x, x0, and
s) within the simply connected boundary curves x0

1�x, s�
and x0

2�x, s�, and zero phase-space density outside.
That is, we take

fb�x, x0, s� �

Ω
A � const, x0

2�x, s� , x0 , x0
1�x, s�,

0, otherwise.
(23)

If fb�x, x0, s� satisfies Eq. (23) initially at s � 0, then the
nonlinear Vlasov equation (1) assures that the phase-space
density remains constant at subsequent values of s as the
boundary curves x0

1�x, s� and x0
2�x, s� distort and evolve
084402-4
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b
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b
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=
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x x x′ = ′+ ( , ss)

FIG. 1. Phase-space plot of distribution function with uni-
form phase-space density fb�x, x0, s� � A � const in the region
x0

2�x, s� , x0 , x0
1�x, s� and x2

b �s� , x , x1
b �s� [Eq. (23)].

nonlinearly in response to the applied focusing field and
the self-generated fields. Of course as the system evolves,
Eq. (1) assures that

dNb�ds � �d�ds�
Z

dx dx0 fb�x, x0, s� � 0 ,

or equivalently from Eq. (23) and Fig. 1,

Nb � A
Z x1

b �s�

x2
b �s�

dx �x0
1�x, s� 2 x0

2�x, s�� � const. (24)

That is, no matter how complicated the evolution of the
boundary curves, x0

1�x, s� and x0
2�x, s� in Fig. 1, the total

area within the phase-space boundary remains constant.
In the subsequent analysis, we assume that the bound-
ary curves, x0

1�x, s� and x0
2�x, s�, in Fig. 1 remain single-

valued functions of x as the system evolves.

A. Dynamical equations for x0
1���x, s��� and x0

2���x, s���

We now make use of Eqs. (1) and (23) to derive exact
dynamical equations for the boundary curves x0

1�x, s� and
x0

2�x, s�. Referring to Fig. 1 and Eq. (23), we operate on
Eq. (1) with

R`
2` dx0 · · ·. This readily gives

≠

≠s
�x0

1 2 x0
2� 1

≠

≠x
1
2

�x02
1 2 x02

2 � � 0 , (25)

for x2
b �s� , x , x1

b �s�. Here, use has been made ofR`

2` dx0 ≠fb�≠x0 � 0,
R`

2` dx0 fb � A�x0
1 2 x0

2�, andR`
2` dx0 x0fb � A�1�2� �x02

1 2 x02
2 �. In a similar manner,

operating on Eq. (1) with
R`

2` dx0 x0 · · ·, and making use
of

R`
2` dx0 x0 ≠fb�≠x0 � 2

R`
2` dx0 fb , we obtain

≠

≠s
1
2

�x02
1 2 x02

2 � 1
≠

≠x
1
3

�x03
1 2 x03

2 �

� 2�x0
1 2 x0

2�
µ
kx�s�x 1

≠c

≠x

∂
,

(26)
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for x2
b �s� , x , x1

b �s�. Finally, making use ofR
dx0 fb � A�x0

1 2 x0
2� for the choice of distribu-

tion function in Eq. (23), it is straightforward to show that
Eq. (2) for the self-field potential c�x, s� reduces to

≠2c

≠x2 �

8><
>:

0, 2xw # x , x2
b �s�,

2
2pKb

Nb
A�x0

1 2 x0
2�, x2

b �s� , x , x1
b �s�,

0, x1
b �s� , x # xw .

(27)

Equations (25) and (26) can be combined to give sepa-
rate dynamical equations for x0

1�x, s� and x0
2�x, s�. Some

straightforward algebraic manipulation gives

≠

≠s
x0

1 1 x0
1

≠

≠x
x0

1 � 2kx�s�x 2
≠c

≠x
, (28)

≠

≠s
x0

2 1 x0
2

≠

≠x
x0

2 � 2kx�s�x 2
≠c

≠x
, (29)

for x2
b �s� , x , x1

b �s�. Equations (28) and (29) are ex-
actly equivalent to Eqs. (25) and (26). Note that Eqs. (28)
and (29) are simply statements that the acceleration of
the upper �x0

1� and lower �x0
2� phase-space boundaries in

Fig. 1 is equal to 2kxx 2 ≠c�≠x, which corresponds to
the combined effects of the applied focusing force �2kxx�
and the self-field force �2≠c�≠x�.

In summary, for the case of constant phase-space density
in Eq. (23) and Fig. 1, there has been an enormous sim-
plification in the kinetic description based on the Vlasov-
Maxwell equations (1) and (2). In particular, Eqs. (1) and
(2), which are partial differential equations in the three
variables �x, x0, s�, are replaced exactly by Eqs. (27)–(29),
which are partial differential equations in the two variables
�x, s�. Equations (27)–(29) can be solved analytically in at
least one case of special interest (Sec. IV), and can be inte-
grated numerically for a wide range of initial phase-space
boundaries, x0

1�x, s � 0� and x0
2�x, s � 0�.

B. Equivalence to a warm-fluid model

It is instructive to recast the basic equations derived in
Sec. III A in a form familiar in macroscopic warm-fluid
descriptions widely used in plasma physics [35]. In this
regard, we introduce the number density nb�x, s�, and the
(normalized) macroscopic flow velocity, Vxb�x, s�, pres-
sure, Pb�x, s�, and heat flow, Qb�x, s�, defined by

nb �
Z

dx0 fb ,

nbVxb �
Z

dx0 x0 fb ,

Pb �
Z

dx0 �x0 2 Vxb�2fb ,
(30)

Qb �
Z

dx0 �x0 2 Vxb�3fb .
084402-5
Referring to Eq. (23) and Fig. 1, some straightforward al-
gebra gives

nb � A�x0
1 2 x0

2� ,

nbVxb �
1
2

A�x02
1 2 x02

2 � ,

Pb �
1

12A2 �A�x0
1 2 x0

2��3,
(31)

Qb � 0 ,

for x2
b �s� , x , x1

b �s�. Note from Eq. (31) that the trans-
verse flow velocity Vxb�x, s� is given by

Vxb �
1
2

�x0
1 1 x0

2� , (32)

and the pressure Pb�x, s� can be expressed as

Pb �
P̂b0

n̂3
b0

n3
b , (33)

where P̂b0�n̂3
b0 � 1�12A2 � const is a constant coeffi-

cient. Furthermore, because there is no “skew” in the x0

dependence of fb�x, x0, s� in Eq. (23), the heat flow Qb is
identically zero �Qb � 0�. Making use of the expressions
for nbVxb , Pb , and Vxb in Eqs. (31) and (32) gives the use-
ful identity

nbV 2
xb 1 Pb �

1
3

�x03
1 2 x03

2 � . (34)

We now return to the basic dynamical equations for x0
1

and x0
2 derived in Eqs. (25) and (26) in Sec. III A.

Substituting Eqs. (31)–(34) into Eqs. (25) and (26) gives
directly the familiar macroscopic continuity and force
balance equations,

≠

≠s
nb 1

≠

≠x
�nbVxb� � 0 , (35)

and

≠

≠s
nbVxb 1

≠

≠x
�nbVxbVxb� 1

≠Pb

≠x

� 2nb

µ
kx�s�x 1

≠c

≠x

∂
,

(36)

where Pb�x, s� � �P̂b0�n̂3
b0�n3

b�x, s� satisfies the triple-
adiabatic pressure relation in Eq. (33). Furthermore,
Poisson’s equation (27) is simply expressed as

≠2c

≠x2 � 2
2pKb

Nb
nb . (37)

Finally, Eq. (36) can be further simplified by making use
of Eqs. (33) and (35) to eliminate ≠nb�≠s. We readily
obtain
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≠

≠s
Vxb 1 Vxb

≠

≠x
Vxb 1

3
2

P̂b0

n̂3
b0

≠

≠x
n2

b

� 2kx�s�x 2
≠c

≠x
(38)

in the region where nb fi 0. Equation (38) shows clearly
that the transverse acceleration of a beam fluid element is
produced by the combined effects of the pressure-gradient
force �2n21

b ≠Pb�≠x�, the applied focusing force �2kxx�,
and the self-field force �2≠c�≠x�.

To summarize, for the case of constant phase-space
density in Eq. (23) and Fig. 1, the macroscopic fluid de-
scription provided by Eqs. (33), (35), (36), and (37), or
equivalently, Eqs. (35), (37), and (38), is fully equivalent
to the nonlinear Vlasov-Maxwell equations (1) and (2).
This remarkable simplification, i.e., closure of the macro-
scopic fluid equations with the first two velocity moments
for nb�x, s� and Vxb�x, s�, is a consequence of the fact that
the heat flow satisfies Qb�x, s� � 0 exactly for the class
of beam distribution functions in Eq. (23) and Fig. 1 [35].
Similar to Sec. III A, the Vlasov-Maxwell equations (1)
and (2), which are nonlinear partial differential equations
in the three variables �x, x0, s�, have been replaced by the
macroscopic fluid-Maxwell equations (35), (37), and (38),
which are nonlinear partial differential equations in the two
variables �x, s�. It should be pointed out that Eqs. (35),
(37), and (38) are readily amenable to numerical solution,
and can also be investigated analytically, e.g., by introduc-
ing a Lagrangian transformation to a frame of reference
moving with velocity Vxb�x, s� of a beam fluid element.
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Equations (35), (37), and (38) can be used to investigate
detailed beam propagation properties over a wide range
of focusing field configurations kx�s 1 S� � kx�s� and
system parameters. In this regard, it should be noted
that the dynamical equations for the beam centroid �x� �s�
[Eq. (11)], the rms beam thickness Xb�s� [Eq. (21)], and
the unnormalized beam emittance ex�s� [Eq. (22)], derived
in Sec. II, also apply to the class of distribution functions
described by Eq. (23) and Fig. 1.

IV. PULSATING PARALLELOGRAM WITH
UNIFORM PHASE-SPACE DENSITY

As an application of the analysis in Sec. III, we now
consider the uniform phase-space distribution illustrated
in Fig. 2, where the boundary curves x0

1�x, s�, x0
2�x, s�,

x1
b �s�, x2

b �s� corresponds instantaneously to a paral-
lelogram centered at the phase-space point (�x�, �x0�),
where �x� �s� is the centroid position, and �x0� �s� �
�d�ds� �x� �s� is the centroid velocity. Here, the boundary
curves are defined by

x0
1�x, s� � �x0� �s� 1 x0

b�s� 1 a�s� �x 2 �x� �s�� ,

x0
2�x, s� � �x0� �s� 2 x0

b�s� 1 a�s� �x 2 �x� �s�� ,

x1
b �s� � �x� �s� 1 xb�s� ,

(39)

x2
b �s� � �x� �s� 2 xb�s� ,

where a�s� is a (yet unspecified) s-dependent coefficient.
The distribution function fb�x, x0, s� with constant phase-
space density consistent with Eq. (39) and Fig. 2 is given
by
fb�x, x0, s� �

8<
:

A � const, �x0� 2 x0
b 1 a�x 2 �x�� , x0 , �x0� 1 x0

b 1 a�x 2 �x�� ,
�x� 2 xb , x , �x� 1 xb ,

0, otherwise.
(40)
It is clear from Eq. (40) and Fig. 2 that

1
Nb

Z
dx dx0 xfb � �x� ,

1
Nb

Z
dx dx0 x0 fb � �x0� ,

(41)

as required by the definition of statistical averages in
Eq. (8). In the subsequent analysis in Sec. IV, we consider
the class of solutions in which the phase-space boundaries
x2

b �s� and x1
b �s� in Fig. 2 remain vertical, i.e., there is not

an initial perturbation corresponding to a tilt (relative to
the vertical) of the boundaries x2

b and x1
b in Fig. 2.

A. Evaluation of macroscopic quantities and statistical
averages

The simple shape of the boundary curves in Fig. 2 and
Eq. (40) makes it straightforward to calculate the various
macroscopic properties and statistical averages of physical
interest. For example, it follows directly from Eq. (40) and
Fig. 2 that the density profile nb�x, s� �

R
dx0 fb�x, x0, s�

corresponds to the simple step-function profile

nb�x, s� �

8<
:

0, 2xw # x , x2
b �s�,

A2x0
b�s�, x2

b �s� , x , x1
b �s�,

0, x1
b �s� , x # xw ,

(42)

and the area number density Nb �
R

dx dx0 fb�x, x0, s� is
given by

Nb � A2x0
b�s�2xb�s� � const. (43)

Here, 2xb�s� and 2x0
b�s� are the thicknesses of the par-

allelogram in Fig. 2 in the x direction and the x0 direc-
tion, respectively. While both xb�s� and x0

b�s� depend on
s, it is clear from Eq. (43) that the product xb�s�x0

b�s� is
constant. Furthermore, combining Eqs. (42) and (43), the
084402-6
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x

x ′

x x ′( ),

x s x x s
b b

=  ++ ( ) ( )

x s x x s
b b

=        −− ( ) ( )

x x s x x s
b

′ = ′ + ′
+ ( , ) ( ))

( )+             −( )α s x x

( , ) ( )

( )

′ = ′ − ′

+ −( )
−

α

x x s x x s

s x x

b

f x x s A

cons t
b

′ =
=

( , , )

.

FIG. 2. Phase-space plot of distribution function fb�x, s0, s� �
A � const in Eq. (40). Note that the boundary curves in the
figure correspond to the parallelogram x0 � x0

6�x, s� � �x0� 6
x0

b�s� 1 a�s� �x 2 �x�� and x � x6
b �s� � �x� 6 xb�s�, and that

the parallelogram is centered at �x, x0� � ��x�, �x0��.

particle number density nb�s� � 2Ax0
b�s� in the interval

2xb , x 2 �x� , xb can be expressed as

nb�s� �
Nb

2xb�s�
. (44)

The average flow velocity Vxb�x, s� � n21
b

R
dx0 3

x0fb�x, x0, s� is also straightforward to calculate from
Eq. (40) and Fig. 2. Some algebraic manipulation gives

Vxb�x, s� �
1
2

�x0
1�x, s� 1 x0

2�x, s��

� �x0� �s� 1 a�s� �x 2 �x� �s�� , (45)

where �x� �s� and �x0� �s� � �d�ds� �x� �s� are the centroid
position and velocity.

To evaluate the statistical averages �x2�, �x02� and �xx0�,
we make use of the identities (see Sec. II)

�x2� � ��x 2 �x��2� 1 �x�2,

�x02� � ��x0 2 �x0��2� 1 �x0�2, (46)

�xx0� � ��x 2 �x�� �x0 2 �x0��� 1 �x� �x0� �
d
ds

1
2

�x2� ,

where statistical averages are defined by �x� �
N21

b

R
dx dx0 xfb . Some straightforward algebraic ma-

nipulation that makes use of Eqs. (40) and (43) and Fig. 2
gives the simple expressions
084402-7
��x 2 �x��2� �
1
3

x2
b�s� ,

��x0 2 �x0��2� �
1
3

�x02
b �s� 1 a2�s�x2

b�s�� ,

(47)

��x 2 �x�� �x0 2 �x0��� �
1
3

a�s�x2
b�s� .

Therefore, from Eq. (47), the mean-square beam thickness
X2

b�s� � ��x 2 �x��2� is given by

X2
b�s� �

1
3

x2
b�s� , (48)

where xb�s� is the half thickness of the beam. Substi-
tuting ��x 2 �x�� �x0 2 �x0��� � a�s�X2

b�s� [Eq. (47)] into
Eq. (46) gives

d
ds

1
2

�x2� � �x� �x0� 1 a�s�X2
b�s� . (49)

Making use of �x2� � X2
b 1 �x�2 [Eq. (46)] and

�d�ds� �x� � �x0�, Eq. (49) gives directly

a�s� �
1

Xb

dXb

ds
, (50)

where Xb�s� � �1�
p

3 �xb�s� is the rms beam thickness.
Equation (50) determines a�s� in terms of Xb�s�. Making
use of Eqs. (48) and (50), the expressions in Eq. (47) re-
duce exactly to

��x 2 �x��2� � X2
b�s� �

1
3

x2
b�s� ,

��x0 2 �x0��2� �
1
3

x02
b �s� 1

µ
dXb

ds

∂2

, (51)

��x 2 �x�� �x0 2 �x0��� � Xb
dXb

ds
,

for the choice of distribution function in Eq. (40) and
Fig. 2.

The unnormalized beam emittance (subtracting out the
centroid motion) defined in Eq. (20) is a quantity of con-
siderable physical interest. Making use of Eqs. (20) and
(51), we obtain

1
4

e2
x�s� � ��x0 2 �x0��2� ��x 2 �x��2�

2 ��x 2 �x�� �x0 2 �x0���2

�
1
3

x02
b X2

b 1

µ
dXb

ds

∂2

2

µ
dXb

ds

∂2

�
1
3

x02
b �s�X2

b�s� , (52)

for the choice of distribution function in Eq. (40). Substi-
tuting X2

b�s� � �1�3�x2
b�s� into Eq. (52), and making use

of 2x0
b�s�2xb�s� � Nb�A � const [Eq. (43)], we obtain
084402-7
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e2
x �s� �

4
9

�x0
b�s�xb�s��2

�
1
36

N2
b

A2 � e2
x0 � const, (53)

where Nb � const is the area number density of beam par-
ticles, and A � const is the phase-space density of beam
particles. The fact that e2

x �s� � e
2
x0 � const for the choice

of distribution function in Eq. (40) and Fig. 2 leads to
enormous simplification in the analysis of the dynamical
equation (21) for the evolution of the rms beam thickness
Xb�s� � �1�

p
3 �xb�s�.
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We now turn to a determination of the self-field poten-
tial c�x, s� required in evaluating the statistical averages
�≠c�≠x� and ��x 2 �x��≠c�≠x� occurring in the rate equa-
tions (11) and (21) for the centroid position �x� �s� and rms
beam thickness Xb�s�.

B. Solution for self-field potential c���x, s���

We now solve Poisson’s equation (37) for the choice of
step-function density profile nb�x, s� in Eq. (42), which
corresponds to the distribution function fb�x, x0, s� in
Eq. (40) and Fig. 2. Making use of Eqs. (42)–(44),
Poisson’s equation (37) becomes
≠2c

≠x2 �

8><
>:

0, 2xw # x , x2
b �s� � �x� 2 xb�s�,

2
2pKb

Nb
nb�s�, x2

b �s� � �x� 2 xb�s� , x , x1
b �s� � �x� 1 xb�s�,

0, x1
b �s� � �x� 1 xb�s� , x # xw ,

(54)

where nb�s� � Nb�2xb�s� is the particle number density. Referring to Fig. 3, Eq. (54) can be solved for c�x, s�, enforc-
ing the boundary conditions c�x � 6xw , s� � 0 at the conducting walls, and continuity of c�x, s� and ≠c�x, s��≠x at
the leftmost boundary of the density profile, x2

b �s� � �x� 2 xb�s�, and at the rightmost boundary of the density profile,
x1

b �s� � �x� 1 xb�s�, in Fig. 3. For the three regions in Fig. 3, making use of Eq. (54) and nb�s� � Nb�2xb�s�, the
solution for c�x, s� can be expressed as

c�x, s� �

8>>>>>>><
>>>>>>>:

cI �x, s� �
pKb

xw
�x 1 xw� �xw 2 �x��,

for 2 xw # x , x2
b �s� � �x� 2 xb�s�,

cII�x, s� � 2
pKb

2xb

h
x2 1 2 �x�

xw
�xb 2 xw�x 1 �x�2 1 x2

b 2 2xbxw

i
,

for x2
b �s� � �x� 2 xb�s� , x , x1

b �s� � �x� 1 xb�s�,
cIII �x, s� �

pKb

xw
�xw 2 x� �xw 1 �x��,

for x1
b �s� � �x� 1 xb�s� , x # xw .

(55)
The solution for c�x, s� in Eq. (55) is valid even in
the case where the centroid �x� �s� undergoes nonlinear
motion, provided the beam surfaces do not come in contact
with the conducting walls at x � 6xw . Of course Eq. (55)
simplifies for the case of a centered beam with �x� � 0.

Of particular interest in the rate equations (11) and (21)
for the centroid position �x� �s� and rms beam thickness

x

xwxw−

n x sb( , )

x

N x sb b/ ( )2

0 xx s
b

+ ( )x s
b

− ( )

I

II

III

FIG. 3. Plot versus x of the step-function density profile
nb�x, s� in Eq. (42) corresponding to the parallelogram distri-
bution in Eq. (40) and Fig. 2. Here, nb�s� � Nb�2xb�s�, and
the density profile is centered at x � �x� �s�.
Xb�s� are the statistical averages �≠c�≠x� and
��x 2 �x��≠c�≠x� defined by [see Eq. (8)]ø

≠c

≠x

¿
�

1
Nb

Z
dx dx0 ≠c

≠x
fb

�
1

Nb

Z
dx

≠c

≠x
nb ,

ø
�x 2 �x��

≠c

≠x

¿
�

1
Nb

Z
dx dx0 �x 2 �x��

≠c

≠x
fb

(56)

�
1

Nb

Z
dx �x 2 �x��

≠c

≠x
nb ,

where nb�x, s� �
R

dx0 fb�x, x0, s� is the number density
of beam particles. For the choice of distribution function
in Eq. (40) and Fig. 2, the density profile nb�x, s� has the
step-function profile in Eq. (42) and Fig. 3, and the ex-
pression for �≠c�≠x� in Eq. (56) reduces toø

≠c

≠x

¿
�

1
Nb

nb�s�
Z �x�1xb�s�

�x�2xb�s�
dx

≠

≠x
cII�x, s� , (57)

where cII �x, s� is defined in Eq. (55), and nb�s� �
Nb�2xb�s� follows from Eq. (44). Substituting Eq. (55)
into Eq. (57) readily gives
084402-8
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ø
≠c

≠x

¿
� 2

pKb

xw
�x� . (58)

In a similar manner, it can be shown from Eqs. (55) and
(56) thatø

�x 2 �x��
≠c

≠x

¿
� 2

pKb

3
xb � 2

pKbp
3

Xb , (59)

where use is made of Xb�s� � xb�s��
p

3. The expressions
for the statistical averages in Eqs. (58) and (59), valid for
the choice of distribution function in Eq. (40) and Fig. 2,
can be used directly in the rate equations for �x� �s� and
Xb�s� in Eqs. (11) and (21).

C. Rate equations for ���x��� ���s��� and Xb���s���

We substitute Eqs. (58) and (59) into the rate equations
(11) and (21) for the motion of the beam centroid �x� �s�
and rms beam thickness Xb�s� � ��x 2 �x��2�1�2. This
gives

d2

ds2 �x� 1

∑
kx�s� 2

pKb

xw

∏
�x� � 0 , (60)

and

d2

ds2 Xb 1

∑
kx�s� 2

pKbp
3 Xb

∏
Xb �

e
2
x0

4X3
b

, (61)

where ex0 is the constant emittance defined in Eq. (53).
Note from Eqs. (58) and (60) that the self-field force on
the beam centroid, 2�≠c�≠x� � �pKb�xw� �x�, is always
defocusing and is proportional to the displacement �x�
from the center position �x � 0�, and the constant factor
pKb�xw . Furthermore, the self-field force in Eq. (60) is
associated with image charges in the conducting wall. In
particular, at fixed beam intensity �Kb�, the self-field force
in Eq. (60) becomes negligibly small as xw ! `. On the
other hand, from Eqs. (59) and (61), the self-field force
term is 2X21

b ��x 2 �x��≠c�≠x� � pKb�
p

3 � const,
which is also defocusing, but is independent of Xb

and �x�.
Equations (60) and (61) constitute closed dynamical

equations for the motion of the beam centroid �x� �s�
and rms beam thickness Xb�s�. Moreover, Eqs. (60)
and (61) can be integrated numerically for a wide range
of choices of lattice function kx�s�, beam emittance
ex0, beam intensity Kb , and conducting wall location
xw . Note from Eq. (60) that if the beam is initially
centered with �x� �s � 0� � 0 � �d�x��ds�s�0, then
�x� � 0 � �d�ds� �x� at all subsequent s. Most impor-
tantly, solving Eqs. (60) and (61) for �x� �s� and Xb�s� is
fully equivalent to solving the nonlinear Vlasov-Maxwell
equations (1) and (2) for the choice of parallelogram dis-
tribution in Eq. (40) and Fig. 2 with constant phase-space
density fb�x, x0, s� � A � const. Making the identifica-
tions xb�s� �

p
3 Xb�s� [Eq. (51)], a�s� � X21

b dXb�ds
[Eq. (50)], x0

b�s� � �
p

3�2�ex0�Xb�s� [Eq. (53)], and
084402-9
�x0� �s� � �d�ds� �x� �s� [Eq. (9)], it follows directly from
Eq. (39) that the phase-space boundaries in Eqs. (39),
(40), and Fig. 2 are given by

x0
6�x, s� �

d
ds

�x� �s� 6

p
3

2
ex0

Xb�s�

1
1

Xb

dXb

ds
���x 2 �x� �s���� , (62)

x6
b �s� � �x� �s� 6

p
3 Xb�s� .

Therefore, a determination of �x� �s� and Xb�s� from
Eqs. (60) and (61) fully specifies the distribution function
in Eq. (40) and Fig. 2. For matched-beam solutions
Xb�s 1 S� � Xb�s� to the nonlinear rms envelope
equation (61), the shape of the parallelogram in Fig. 2
pulsates with period S in a frame of reference centered
at ��x�, �x0��. Depending on the initial conditions for
�x� �s � 0� and ��d�ds� �x��s�0, however, the motion of
the centroid ��x�, �x0�� in Fig. 2 can be more irregular, with
both fast-oscillatory and slow-oscillatory components.

For present purposes, we examine Eqs. (60) and
(61) for the choice of a periodic step-function lattice
kx�s 1 S� � kx�s� illustrated in Fig. 4. Here, k̂x �
const is the lattice amplitude, and h is the filling fac-
tor. For simplicity we consider here a centered beam
with ��x��s�0 � �d�x��ds�s�0 � 0, so that �x� � d�x��
ds � 0 at all subsequent s. Typical numerical results ob-
tained from Eq. (61) for the rms beam thickness Xb�s� are
shown in Fig. 5, where Xb�s��

p
ex0S is plotted versus s�S

for a matched beam with moderate space-charge intensity
propagating through the periodic step-function lattice
in Fig. 4. Here, the dimensionless system parameters
correspond to k̂xS2 � 14.92, filling factor h � 0.3, and
normalized beam intensity KbS�

p
ex0S � 5.0. Moreover,

the vacuum phase advance per lattice period corresponds
to svac � limKb!0�ex0�2�

Rs01S
s0

ds�X2
b�s� � 60±, and

the depressed phase advance �Kb fi 0� corresponds to
s � 3.4±. Note from Fig. 5 that the solution for Xb�s�
corresponds to a matched beam with Xb�s 1 S� � Xb�s�,

Full-Period 
sx

x

x

κ

κ

κ

( )

ˆ

ˆ

+

−

s S/

/

0

2

/1 2 1

η

/ 4η

FIG. 4. Plot of lattice function kx�s� versus s�S for a periodic
step-function lattice with amplitude k̂x � const and filling fac-
tor h.
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1
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X
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S
b

x
(

)/
ε

0

FIG. 5. Illustrative plot of Xb�s��
p

ex0S versus s�S obtained
numerically from Eq. (61) for a matched beam with moderate
space-charge intensity propagating through the periodic step-
function lattice in Fig. 4. Here, the dimensionless system param-
eters correspond to k̂xS2 � 14.92, h � 0.3, and KbS�

p
ex0S �

5, with vacuum phase advance svac � 60± and depressed phase
advance s � 3.4±.

and the corresponding phase-space boundaries in Eq. (62)
correspond to a periodically focused beam equilibrium
with x0

6�x, s 1 S� � x0
6�x, s� and x6

b �s 1 S� � x6
b �s�.

V. LAGRANGIAN DESCRIPTION OF NONLINEAR
BEAM DYNAMICS

For the case of uniform phase-space density, it was
shown in Sec. III B that the basic dynamical equations
for a planar sheet beam propagating through a periodic
focusing field could be cast into the form of the macro-
scopic warm-fluid equations (35)–(37) with triple-
adiabatic pressure relation Pb�x, s� � �P̂b�n̂3

b0�n3
b�x, s�

and zero heat flow Qb�x, s� � 0. Introducing the (normal-
ized) electric field Ex�x, s� � 2≠c�x, s��≠x and making
use of Eqs. (35)–(37), it follows that the number density
nb�x, s� �

R
dx0 fb and (normalized) average velocity

Vxb�x, s� � �
R

dx0 x0 fb���
R

dx0 fb� evolve exactly ac-
cording toµ

≠

≠s
1 Vxb

≠

≠x

∂
nb 1 nb

≠Vxb

≠x
� 0 , (63)

µ
≠

≠s
1 Vxb

≠

≠x

∂
Vxb 1

3
2

y2
Tb

≠

≠x
n2

b � 2kx�s�x 1 Ex ,

(64)

where Ex�x, s� solves

≠Ex

≠x
�

2pKb

Nb
nb . (65)

Here, y
2
Tb � P̂b�n̂3

b0 � const is the normalized thermal
speed. As noted in Sec. III, for uniform phase-space den-
sity, Eqs. (63)–(65) are exactly equivalent to the Vlasov-
Maxwell equations (1) and (2), and Eqs. (27)–(29) for
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c�x, s� and the phase-space boundary curves, x0
1�x, s� and

x0
2�x, s�.

A. Dynamical equations in Lagrangian variables

The fluid-Maxwell equations (63)–(65) are particularly
amenable to analysis in Lagrangian variables following the
motion of a fluid element [35,36]. We introduce the La-
grangian variables �x0, t� following a fluid element defined
by

t � s ,

x0 � x 2
Z t

0
dt0 Vxb�x0, t0� .

(66)

Here, t is a (normalized) time variable, and it follows
exactly from Eq. (66) that derivatives transform according
to

≠

≠x
�

∑
1 1

Z t

0
dt0 ≠

≠x0
Vxb�x0, t0�

∏21 ≠

≠x0
,

≠

≠s
�

≠

≠t
2 Vxb�x0, t� (67)

3

∑
1 1

Z t

0
dt0 ≠

≠x0
Vxb�x0, t0�

∏21 ≠

≠x0
.

From Eq. (67) we obtain

≠

≠s
1 Vxb

≠

≠x
�

≠

≠t
, (68)

and the continuity equation (63) in Lagrangian variables
becomes

≠

≠t
nb�x0, t� 1

nb�x0, t�
�1 1

R
t
0 dt0 ≠Vxb�x0, t0��≠x0�

3

≠

≠x0
Vxb�x0, t� � 0 .

(69)

Equation (69) can be integrated exactly with respect to t

to give

nb�x0, t� �
nb�x0, 0�

�1 1
Rt

0 dt0 ≠Vxb�x0, t0��≠x0�
. (70)

Note that Eq. (70) gives a closed expression for nb�x0, t� in
Lagrangian variables in terms of nb�x0, 0� and Vxb�x0, t�.

Poisson’s equation (65) also simplifies in Lagrangian
variables. Making use of Eq. (67) we obtain

1
�1 1

R
t
0 dt0 ≠Vxb�x0, t0��≠x0�

3

≠

≠x0
Ex�x0, t� �

2pKb

Nb
nb�x0, t� ,

(71)
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where nb�x0, t� is given by Eq. (70). Equations (70) and (71) readily give

≠

≠x0
Ex�x0, t� �

2pKb

Nb
nb�x0, 0� . (72)

A very important consequence of transforming to Lagrangian variables is evident from Eq. (72). In particular, Ex�x0, t� �
Ex�x0, 0� is independent of t, and depends only on the initial density profile nb�x0, 0�.

We now return to the force balance equation (64), transforming to Lagrangian variables according to (67), (68), and
(70). This gives (exactly)

≠

≠t
Vxb�x0, t� 1

3
2

y
2
Tb

�1 1
Rt

0 dt0 ≠Vxb�x0, t0��≠x0�
≠

≠x0

Ω
nb�x0, 0�

�1 1
Rt

0 dt0 ≠Vxb�x0, t0��≠x0�

æ2

� Ex�x0, t� 2 kx�t�
∑
x0 1

Z t

0
dt0 Vxb�x0, t0�

∏
, (73)

where Ex�x0, t� is determined self-consistently in terms of nb�x0, 0� from Eq. (72). Operating on Eq. (73) with ≠�≠x0
and rearranging terms, we readily obtain

≠2

≠t2

∑
1 1

Z t

0
dt0 ≠

≠x0
Vxb�x0, t0�

∏
1 kx�t�

∑
1 1

Z t

0
dt0 ≠

≠x0
Vxb�x0, t0�

∏
1

y2
Tb

≠

≠x0

∑
1

nb�x0, 0�
≠

≠x0

Ω
nb�x0, 0�

�1 1
R

t
0 dt0 ≠Vxb�x0, t0��≠x0�

æ3∏
�

2pKb

Nb
nb�x0, 0� . (74)
Equation (74) is a closed, partial differential equation for
the density compression factor

nb�x0, 0�
nb�x0, t�

� 1 1
Z t

0
dt0 ≠

≠x0
Vxb�x0, t0� (75)

in Lagrangian variables, which is fully equivalent to the
original dynamical equations (63)–(65) in laboratory-
frame variables. Substituting Eq. (75) into Eq. (74) gives
directly

≠2

≠t2

∑
1

nb�x0, t�

∏
1 kx�t�

∑
1

nb�x0, t�

∏
1

y
2
Tb

nb�x0, 0�
≠

≠x0

∑
1

nb�x0, 0�
≠

≠x0
	nb�x0, t�
3

∏
�

2pKb

Nb

(76)

in the region where nb�x0, 0� is nonzero.
Equation (76) [or equivalently, Eq. (74)] constitutes the

final dynamical equation in Lagrangian variables and can
be used to investigate the detailed nonlinear dynamics of
intense beam propagation for a wide variety of input den-
sity profiles nb�x0, 0�, lattice functions kx�t�, normalized
beam intensity �Kb�, and beam emittance (proportional to
y

2
Tb). Furthermore, Eq. (76) is well posed as an initial-

value problem. For specified nb�x0, 0� and Vxb�x0, 0�, it
follows from Eq. (75) that

≠

≠t
nb�x0, t�

Ç
t�0

� 2nb�x0, 0�
≠

≠x0
Vxb�x0, 0� , (77)

and Eq. (76) can generally be integrated numerically to
determine nb�x0, t� once the initial profiles for nb�x0, 0�
and Vxb�x0, 0� and beam parameters are specified.

Once nb�x0, t� is determined from Eq. (76), the ex-
pression for nb�x0, 0��n0�x0, t� can be used to formally
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determine the inverse transformation to laboratory-frame
variables �x, s� defined in Eq. (66). For example, con-
sider the case where the initial density profile is an even
function of x0 with nb�2x0, 0� � nb�x0, 0�, and the ini-
tial flow velocity profile is an odd function of x0 with
Vxb�2x0, 0� � 2Vxb�x0, 0� and Vxb�x0 � 0, 0� � 0. It
readily follows from Eqs. (74)–(76) that

nb�2x0, t� � nb�x0, t� ,

Vxb�2x0, t� � 2Vxb�x0, t� ,
(78)

where Vxb�x0 � 0, t� � 0 for all values of t. Integrating
Eq. (75) with respect to x0 then gives

x0 1
Z t

0
dt0 Vxb�x0, t0� �

Z x0

0
dx0

nb�x0, 0�
nb�x0, t�

, (79)

which is required to determine the inverse transformation
from Lagrangian variables �x0, t� to laboratory-frame vari-
ables �x, s� in Eq. (66).

B. Cold-beam limit

As noted earlier, Eq. (76) [or equivalently, Eq. (74)] can
be used to describe in Lagrangian variables the beam dy-
namics for a wide variety of initial profiles and system
parameters. For present purposes, we consider the special
case of a cold beam with negligible transverse emittance,
i.e.,

y2
Tb ! 0 . (80)

In this case, Eq. (76) simplifies to become

≠2

≠t2

∑
1

nb�x0, t�

∏
1 kx�t�

∑
1

nb�x0, t�

∏
�

2pKb

Nb
. (81)
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Note that Eq. (81) is an inhomogeneous, linear, ordinary
differential equation for 1�nb�x0, t�, with x0 occurring as
a continuous parameter. Indeed, Eq. (81) can be integrated
numerically with respect to t for a wide variety of periodic
lattice functions kx�t 1 S� � kx�t�, and initial density
profiles nb�x0, 0� consistent with Eq. (77).

A useful representation of the general solution to
Eq. (81) is

1
nb�x0, t�

� A�x0, t�w�x0, t� cosc�x0, t�

1 B�x0, t�w�x0, t� sinc�x0, t� . (82)

In Eq. (82), the envelope function w�x0, t� is taken to solve

≠2

≠t2 w�x0, t� 1 kx�t�w�x0, t� �
1

w3�x0, t�
, (83)

and the phase function c�x0, t� is defined by

c�x0, t� �
Z t

0

dt0

w2�x0, t0�
. (84)

Substituting Eqs. (82)–(84) into Eq. (81), we obtain

1
w

∑
2

≠B
≠t

1
≠

≠t

µ
≠A
≠t

w2

∂∏
cosc 1

1
w

∑
22

≠A
≠t

1
≠

≠t

µ
≠B
≠t

w2

∂∏
sinc �

2pKb

Nb
, (85)

where we have suppressed the �x0, t� arguments in
Eq. (85). It is readily shown that Eq. (85) is satisfied
exactly provided the amplitudes A�x0, t� and B�x0, t�
solve

≠A
≠t

� 2
2pKb

Nb
w sinc ,

≠B
≠t

�
2pKb

Nb
w cosc .

(86)

Equations (83), (84), and (86) can be used to determine
w�x0, t�, A�x0, t�, and B�x0, t�, and therefore the solution
for 1�nb�x0, t� in Eq. (82). Some straightforward algebra
that makes use of Eqs. (77), (82), (84), and (86) shows that
the appropriate initial conditions at t � 0 are given by

1
nb�x0, 0�

� �Aw�t�0 ,

≠

≠x0
Vxb�x0, 0� � 2

∑
1
w

≠w
≠t

1
B

Aw2

∏
t�0

.
(87)

For specified initial conditions, once the solutions
for w�x0, t�, A�x0, t�, and B�x0, t� are obtained from
Eqs. (83), (84), and (86), the solution for n�x0, t� can be
determined from Eq. (82), and the inverse transforma-
tion to laboratory-frame variables �x, s� obtained from
Eqs. (66) and (79).
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C. Examples in cold-beam limit

The Lagrangian formulation developed in Secs. V A and
V B can be applied to a wide variety of intense beam pro-
files nb�x0, 0� and Vxb�x0, 0�. To illustrate the power of the
Lagrangian formalism in analyzing the beam dynamics, we
consider here two simple examples in the cold-beam limit.

The first example corresponds to a periodic step-
function lattice in which kx�t 1 s� � kx�t� has the
waveform illustrated in Fig. 4 with filling factor h and
constant amplitude k̂x . In this case, the periodic solutions
wx�t 1 s� � wx�t� obtained (numerically) from Eq. (83)
have vacuum phase advance svac determined from

svac �
Z s01S

s0

dt

w2 . (88)

Moreover, the corresponding value of the (approximate)
smooth-focusing coefficient ksf is given by [1]

ksfS
2 �

1
16

h2

µ
1 2

2
3

h

∂
k̂2

xS4. (89)

In the first example, we consider the choice of initial den-
sity profile at t � 0 corresponding to

nb�x0, 0� �

Ω
n̂b�1 1 D�1 2 x2

0�x2
b0��, 0 # jx0j , xb0 ,

0, jx0j . xb0 .
(90)

Here, n̂b � nb�x0 � 6xb0, 0� is the initial edge density
of the sheet beam, and D is a (dimensionless) measure of
the amplitude of the initial density perturbation at x0 � 0,
with nb�x0 � 0, 0� � n̂b�1 1 D�. It is further assumed
that Vxb�x0, 0� � 0, and therefore nb�x0, t� and Vxb�x0, t�
evolve according to the symmetries in Eq. (78). Finally,
we introduce the (dimensionless) measure of normalized
beam intensity sb defined by

sb �
v̂

2
pb

g
2
bv

2
b�

, (91)

where v̂
2
pb � 4pn̂be2

b�gbmb is the relativistic plasma
frequency squared, and vb� �

p
ksf bbc is the (smooth-

focusing) betatron frequency. Then, making use of the
definition of Kb in Eq. (5), the dynamical equation (81)
for nb�x0, t� in Lagrangian variables can be expressed
(exactly) in the equivalent form

S2 ≠2

≠t2

∑
n̂b

nb�x0, t�

∏
1 kx�t�S2

∑
n̂b

nb�x0, t�

∏
� sbksfS

2.

(92)

As a numerical example corresponding to the step-
function lattice in Fig. 4 and the initial density profile in
Eq. (90), we consider the choice of system parameters

k̂qS2 � 14.92, h � 0.3, svac � 60±,

ksfS
2 � 1.0, sb � 1, D � 20.2 .

(93)
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Note from Eq. (93) that the beam has large intensity close
to the space-charge limit �sb � 1�, and that the density
perturbation (relative to the uniform beam density) has
moderately large amplitude �D � 20.2�. The numerical
results corresponding to Eq. (93) are illustrated in
Figs. 6–8. In Fig. 6, the profile for nb�x0, t� obtained
numerically from Eqs. (82)–(86) is plotted versus x0 and
t. Note that nb�x0, t� � nb�2x0, t� evolves symmetri-
cally, as expected from Eqs. (78) and (90). In Lagrangian
variables, it is evident from Fig. 6 that the layer maintains
constant thickness 2xb0, but undergoes strong oscillatory
modulation as a function of t�S, and over the layer cross
section as a function of x0�xb0. From Eqs. (66) and (79),
the corresponding backtransformation to laboratory-frame
variables �x, s� consistent with Eq. (92) and Fig. 6 is
determined from

x�x0, s� �
Z x0

0
dx0

0
nb�x0

0, 0�
nb�x0

0, s�
. (94)

For example, at the layer edge 6xb�s�, Fig. 7 shows
a plot of xb�s� � x�xb0, s� obtained numerically from
Eqs. (82)–(86) and Eq. (93). Note from Fig. 7 that the
layer edge in the laboratory frame, 6xb�s�, has a fast
oscillatory modulation with period equal to the lattice
period S, plus a slow oscillatory modulation with pe-
riod approximately equal to 2p�pksf � 2pS. Finally,
making use of Eq. (70), or equivalently, the numerical
solution for nb�x0, t� obtained from Eqs. (82)–(86), with
t � s and x0 � x0�x, s�, the density profile nb�x, t� in
laboratory-frame variables �x, s� is illustrated in Fig. 8,
which clearly shows the large-amplitude modulation of
the density profile in the laboratory frame.

As a second example, we adopt a smooth-focusing
model in which the lattice function kx�t� is replaced by
the constant value ksf � const in Eq. (81), or equiva-
lently, in (92). In this case, Eq. (92) is exactly integrable
for general initial density profile nb�x0, 0�. Assum-
ing initial conditions with nb�2x0, 0� � nb�x0, 0� and
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,
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ˆ
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S/τ

FIG. 6. Plot of density profile nb�x0, t� in Lagrangian variables
obtained numerically from Eqs. (82)– (86) for the initial density
profile in Eq. (90) and choice of system parameters in Eq. (93).
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FIG. 7. Plot of layer edge location xb�s� � x�xb0, s� obtained
numerically from Eqs. (82)– (86) and Eq. (94) for the initial
density profile in Eq. (90) and choice of system parameters in
Eq. (93).

Vxb�2x0, 0� � 2Vxb�x0, 0�, it follows exactly from
Eqs. (75) and (92) that the solutions for nb�x0, t� and
Vxb�x0, t� can be expressed as

nb�x0, t�

�
nb�x0, 0�

sbnb�x0, 0��n̂b 1 �1 2 sbnb�x0, 0��n̂b� cos�kbt�
,

(95)

and

Vxb�x0, t� � 2kb

∑
x0 2

sb

n̂b

Z x0

0
dx0

0 nb�x0
0, 0�

∏
sin�kbt� ,

(96)

where we have introduced the notation kb �
p

ksf.
Furthermore, it follows from Eqs. (66) and (96) that the
laboratory-frame variables �x, s� and Lagrangian variables
�x0, s� are related by
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FIG. 8. Plot of laboratory-frame density profile nb�x, s� �
nb�x0�x, s�, s� obtained numerically from Eqs. (82)– (86) and
Eq. (94) for the initial density profile in Eq. (90) and choice of
system parameters in Eq. (93).
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x � x0 1

∑
x0 2

sb

n̂b

Z x0

0
dx0

0 nb�x0
0, 0�

∏
�cos�kbt� 2 1� ,

s � t.
(97)

The condition for the backtransformation (97) to remain
single valued is given by ≠x�≠x0 . 0, which is equivalent
to the requirement that the solution for nb�x0, t� in Eq. (95)
remain non-negative. Evaluating Eq. (95) or Eq. (97) at
kbt � p , some straightforward algebra shows that the
condition for the transformation to remain single valued
is given by

sb

n̂b
nb�x0, 0� .

1
2

, (98)

which assures that wave breaking does not occur.
As a particular choice of initial density profile, we con-

sider the case where

nb�x0, 0� �

Ω
n̂b�1 1 D cos�k0x0��, 0 # jxj , xb0 ,
0, jx0j . xb0 ,

(99)

which is illustrated in Fig. 9 for k0xb0 � 5p�2 and D �
0.45. Note from Eq. (99) and Fig. 9 that nb�x0, 0� cor-
responds to a sinusoidal density perturbation with ampli-
tude Dn̂b superimposed on a flattop density profile with
constant density n̂b . The corresponding transformation of
variables consistent with Eqs. (97) and (99) is given by

k0x � k0x0 1 ��1 2 sb�k0x0 2 sbD sin�k0x0��

3 �cos�kbt� 2 1� , (100)

s � t ,

and the inequality in Eq. (98) gives the requirement

sb�1 2 jDj� .
1
2

, (101)
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FIG. 9. Initial density profile in Eq. (99) for k0xb0 � 5p�2
and D � 0.45.
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FIG. 10. Plot of k0x�x0, s� versus k0x0 obtained from Eq. (100)
at kbs � 0, p�2, p, 3p�2, 2p for the choice of system param-
eters sb � 1, D � 0.45, and k0xb0 � 5p�2.

which assures that the transformation in Eq. (100) remains
single valued. As a numerical example, we consider the
choice of parameters

sb � 1, D � 0.45, k0xb0 �
5p

2
. (102)

Shown in Fig. 10 is a plot of the inverse transformation
x�x0, s� versus x0 obtained from Eq. (100) at kbs �
0, p�2, p , 3p�2, 2p for the choice of system parameters
in Eq. (102), over the interval k0jx0j , k0xb0 � 5p�2.
Note from Fig. 10 that ≠x�≠x0 . 0 and the transfor-
mation remains single valued, as expected. Consistent
with Eqs. (95), (99), and (100), shown in Fig. 11 is a
plot of the laboratory-frame density profile nb�x, s� �
nb�x0�x, s�, t � s� obtained numerically for the choice of
system parameters in Eq. (102). In Fig. 11, the density
profile nb�x, s� is plotted over the beam cross section jxj ,

xb�s�. Of course, as a function of s, the density profile
nb�x, s 1 L� � nb�x, s� is periodic, with fundamental
periodicity length L � 2p�kb . What is most remarkable
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FIG. 11. Plot of laboratory-frame density profile nb�x, s� �
nb�x0�x, s�, t � s� obtained numerically from Eqs. (95), (99),
and (100) for the choice of system parameters sb � 1, D �
0.45, and k0xb0 � 5p�2.
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in Fig. 11 is that at kbs � p, 3p , 5p, . . . , very-large-
amplitude density compression peaks with �nb�max�n̂b �
5.5 occur at k0x � 60.4, and large-amplitude density
rarefactions with �nb�min�n̂b � 0.55 occur at k0x � 60.4
when kbs � 0, 2p, 4p , . . . . Therefore, in the context
of the present cold-fluid model, the planar beam configu-
ration supports large-amplitude collective oscillations,
with peak density compression far exceeding the limiting
space-charge density for a uniform density beam. (Keep
in mind that sb � 1 has been assumed in the numerical
example presented here.)

VI. CONCLUSIONS

In this paper, the Vlasov-Maxwell equations (1) and (2)
were used to investigate the evolution of an intense sheet
beam with distribution function fb�x, x0, s� propagating
through a periodic focusing lattice kx�s 1 S� � kx�s�,
where S � const is the lattice period. The analysis
considered the special class of distribution functions with
uniform phase-space density fb�x, x0, s� � A � const
inside of the simply connected boundary curves, x0

1�x, s�
and x0

2�x, s�, in the two-dimensional phase space �x, x0�
[Eq. (23)]. Coupled nonlinear equations were derived
describing the self-consistent evolution of the boundary
curves, x0

1�x, s� and x0
2�x, s�, and the self-field potential

c�x, s� � ebf�x, s��gbmbb
2
bc2 [Eqs. (27)–(29)]. The

resulting model was shown to be exactly equivalent to
a (truncated) warm-fluid description with zero heat flow
and triple-adiabatic equation of state with scalar pressure
Pb�x, s� � const�nb�x, s��3 [Eqs. (36)–(38)]. Such a
model is amenable to direct analysis by transforming to
Lagrangian variables �x0, t� following the motion of a
fluid element. This resulted in the single nonlinear partial
differential equation (76) for the number density nb�x0, t�
of beam particles in Lagrangian variables, with back-
transformation to the laboratory-frame variables �x, s�
specified by Eq. (66). Specific examples of periodically
focused beam equilibria were presented, ranging from
a finite-emittance beam in which the boundary curves
in phase space correspond to a pulsating parallelogram
(Sec. IV), to a cold beam in which the number density
of beam particles exhibits large-amplitude periodic os-
cillations (Sec. V). For the case of a sheet beam with
uniform phase-space density [Eq. (23)], the present
analysis clearly demonstrates the existence of periodi-
cally focused beam equilibria without the undesirable
feature of an inverted population in phase space that is
characteristic of a KV beam distribution. In future work,
the warm-fluid model developed in Secs. III B and V I
will be used to derive a nonlinear Schrödinger equation
describing the evolution of perturbations about a uniform
density beam, including soliton solutions. It should be
emphasized that the existence of periodically focused
beam equilibrium for a non-KV distribution with uniform
density in the two-dimensional phase space �x, x0� does
084402-15
not imply that periodically focused beam equilibria
exist for non-KV beam distributions in four and six
dimensions.
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