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Guiding-center Vlasov-Maxwell description of intense beam propagation
through a periodic focusing field

Ronald C. Davidson and Hong Qin
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

(Received 6 September 2001; published 24 October 2001)

This paper provides a systematic derivation of a guiding-center kinetic model that describes intense
beam propagation through a periodic focusing lattice with axial periodicity length S, valid for sufficiently
small phase advance (say, s , 60±). The analysis assumes a thin �a, b ø S� axially continuous beam, or
very long charge bunch, propagating in the z direction through a periodic focusing lattice with transverse
focusing coefficients kx�s 1 S� � kx�s� and ky�s 1 S� � ky�s�, where S � const is the lattice period.
By averaging over the (fast) oscillations occurring on the length scale of a lattice period S, the analysis
leads to smooth-focusing Vlasov-Maxwell equations that describe the slow evolution of the guiding-
center distribution function f̄b�x̄, ȳ, x̄0, ȳ0, s� and (normalized) self-field potential c̄�x̄, ȳ, s� in the four-
dimensional transverse phase space �x̄, ȳ, x̄0, ȳ0�. In the resulting kinetic equation for f̄b�x̄, ȳ, x̄0, ȳ0, s�, the
average effects of the applied focusing field are incorporated in constant focusing coefficients kx sf . 0
and ky sf . 0, and the model is readily accessible to direct analytical investigation. Similar smooth-
focusing Vlasov-Maxwell descriptions are widely used in the accelerator physics literature, often without
a systematic justification, and the present analysis is intended to place these models on a rigorous, yet
physically intuitive, foundation.
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I. INTRODUCTION

Periodic focusing accelerators and transport systems
[1–9] have a wide range of applications ranging from basic
scientific research in high energy and nuclear physics to
applications such as coherent radiation sources, heavy ion
fusion, tritium production, nuclear waste transmutation,
and spallation neutron sources for materials and biological
research [10,11]. At the high beam currents and charge
densities of practical interest, of particular importance are
the effects of the intense self-fields produced by the beam
space charge and current on determining the detailed
equilibrium, stability and transport properties, and the
nonlinear dynamics of the system. Through analytical
studies based on the nonlinear Vlasov-Maxwell equations
for the distribution function fb�x, p, t� and the self-
generated electric and fields Es�x, t� and Bs�x, t�, and
numerical simulations using particle-in-cell models and
nonlinear perturbative simulation techniques, considerable
progress has been made in developing an improved under-
standing of the collective processes and nonlinear beam
dynamics characteristic of high-intensity beam propaga-
tion in periodic focusing and uniform focusing transport
systems [1,12–38]. Theoretical progress has also been
made in the development and application of macroscopic
fluid models for the description of intense beam equi-
librium and stability properties [39–42]. Nonetheless,
given the complexity of a detailed description of intense
beam propagation based on the nonlinear Vlasov-Maxwell
equations, it remains important to develop simplified
kinetic models of beam propagation through periodic
focusing systems, particularly models which are analyti-
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cally tractable and robust in describing beam propagation
over large distances. The purpose of this article is
to provide a systematic derivation of a guiding-center
kinetic model that describes intense beam propagation
through a periodic focusing lattice with period S, valid for
sufficiently small phase advance (say, s , 60±). By av-
eraging over the (fast) oscillations occurring on the length
scale of a lattice period S, the analysis leads to smooth-
focusing Vlasov-Maxwell equations describing the slow
evolution of the guiding-center distribution function
f̄b�x̄, ȳ, x̄0, ȳ0, s� and (normalized) self-field potential
c̄�x̄, ȳ, s� in the four-dimensional transverse phase space
�x̄, ȳ, x̄0, ȳ0�.

To briefly summarize, we consider a thin �a, b ø S�
axially continuous beam (or very long charge bunch)
propagating in the z direction through a periodic focusing
lattice with transverse focusing coefficients kx�s 1 S� �
kx�s� and ky�s 1 S� � ky�s�, where S � const is the
axial periodicity length. The theoretical model describing
the evolution of the distribution function fb�x, y, x0, y0, s�
and (normalized) self-field potential c�x, y, s� in the four-
dimensional transverse phase space �x, y, x0, y0� is sum-
marized in Sec. II. Here, x0 � dx�ds and y0 � dy�ds
denote dimensionless transverse velocities. Assuming
slow axial variations �lx , ly ¿ S� of the average trans-
verse particle orbits, in Sec. III we derive approximate
equations describing the slow evolution of the guiding-
center trajectories x̄�s� and ȳ�s�. The corresponding
Hamiltonian H��x̄, ȳ, x̄0, ȳ0, s� defined in Eq. (54) for the
transverse guiding-center motion is then used in Sec. IV
to obtain the corresponding Vlasov-Maxwell equations
[(57) and (58)] for the guiding-center distribution function
© 2001 The American Physical Society 104401-1
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f̄b�x̄, ȳ, x̄0, ȳ0, s� and self-field potential c̄�x̄, ȳ, s�. Proper-
ties of the guiding-center kinetic equations are summarized
in Sec. IV, and the range of validity of the guiding-center
model is examined in Sec. V.

In the guiding-center Hamiltonian defined in Eq. (54)
and the corresponding Vlasov-Maxwell equations [(57)
and (58)], note that the average effects of the applied fo-
cusing field are incorporated in the constant coefficients
kx sf . 0 and ky sf . 0. While smooth-focusing Vlasov-
Maxwell equations similar to Eqs. (57) and (58) are widely
used in the accelerator physics literature [14], often with-
out a systematic justification, a primary purpose of this
paper is to place Eqs. (57) and (58) on a rigorous, yet
physically intuitive, foundation.

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we consider an axial continu-
ous intense charged particle beam (or very long charge
bunch) made up of particles with charge eb and rest mass
mb propagating in the z direction with average axial ve-
locity Vb � bbc � const and characteristic directed ki-
netic energy �gb 2 1�mbc2. Here, c is the speed of light
in vacuo, gb � �1 2 b

2
b�21�2 is the relativistic mass fac-

tor, and the beam propagates through a periodic focus-
ing lattice with axial periodicity length S � const. A
perfectly conducting cylindrical wall is located at radius
r � �x2 1 y2�1�2 � rw � const. Furthermore, the par-
ticle motion in the beam frame is assumed to be nonrela-
tivistic, the axial momentum spread of the beam particles
is treated as negligibly small, and the beam is assumed to
be thin, with characteristic transverse dimensions a and b
in the x and y directions satisfying

a, b ø S . (1)

Consistent with the paraxial approximation, it is also as-
sumed that the self-field perveance Kb satisfies [1]

Kb �
2Nbe2

b

g
3
bmbb

2
bc2

ø 1 . (2)

Here, Nb �
R

dx dy dx0 dy0 fb�x, y, x0, y0, s� is the
number of beam particles per unit axial length,
fb�x, y, x0, y0, s� is the distribution of particles in the
transverse phase space �x, y, x0, y0�, and s is an effective
axial coordinate which plays the role of a scaled time
variable �s � s0 1 bbct� moving with a beam particle.
Finally, assuming a thin beam with a, b ø S, we take
the applied focusing force on a beam particle to be of the
form [1]

Ffoc � 2�kx�s�xêx 1 ky�s�yêy� , (3)

where x, y is the transverse displacement from the beam
axis, and the s-dependent lattice coefficients correspond to
a periodic focusing field configuration with

kx�s 1 S� � kx�s�, ky�s 1 S� � ky�s� . (4)
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Here, S � const is the periodicity length of the focusing
lattice. In the thin-beam approximation, note from Eq. (3)
that the x and y components of the applied focusing force
are linearly proportional to x and y, respectively, over the
beam cross section.

It is convenient to introduce the (dimensionless) self-
field potential c�x, y, s� defined by [1]

c�x, y, s� �
ebf�x, y, s�
g

3
bmbb

2
bc2

, (5)

where f�x,y, s� is the space-charge potential determined
self-consistently in terms of the number density of
beam particles, nb�x, y, s� �

R
dx0 dy0 fb�x, y, x0, y0, s�,

from Poisson’s equation. Consistent with the assump-
tions enumerated above, the (dimensionless) Hamiltonian
H��x, y, s0, y0, s�, normalized to gbmbb

2
bc2, for transverse

particle motion in the applied field plus self-generated
field configuration is given by [43]

H� �
1
2 �x02 1 y02� 1

1
2 �kx�s�x2 1 ky�s�y2�

1 c�x, y, s� . (6)

As noted earlier, the beam particles are assumed to have
a negligibly small spread in axial momentum about the
average value gbmbbbc. Then in transverse phase-space
variables �x, y, x0, y0�, it is readily shown that the distri-
bution function fb�x, y, x0, y0, s� evolves according to the
nonlinear Vlasov equation [43]

≠fb

≠s
1 x0 ≠fb

≠x
1 y0 ≠fb

≠y
2

µ
kx�s�x 1

≠c

≠x

∂
≠fy

≠x0
2

µ
ky�s�y 1

≠c

≠y

∂
≠fb

≠y0
� 0 . (7)

Here, the normalized self-field potential c�x, y, s� is deter-
mined self-consistently fromµ

≠2

≠x2 1
≠2

≠y2

∂
c � 2

2pKb

Nb

Z
dx0 dy0 fb . (8)

In Eq. (8), the self-field perveance Kb is defined in Eq. (2),
nb�x, y, s� �

R
dx0 dy0 fb is the number density of beam

particles, and Nb �
R

dx dy nb�x, y, s� is the number of
beam particles per unit axial length. In Eq. (7) the quan-
tities x0 and y0 correspond to normalized velocity vari-
ables in the x-y plane (i.e., x0 denotes dx�ds and y0

denotes dy�ds). In addition, the coefficients of ≠fb�≠x0

and ≠fb�≠y0 correspond to the transverse accelerations,
dx0�ds � 2≠H��≠x and dy0�ds � 2≠H��≠y, respec-
tively. Assuming a perfectly conducting cylindrical wall
located at radius r � �x2 1 y2�1�2 � rw , Eqs. (7) and (8)
are to be solved subject to the boundary condition"

1
r

≠

≠u
c�r , u�

∏
r�rw

� 0 , (9)
104401-2
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which corresponds to zero tangential electric field at the
conducting wall, i.e., �Eu�r�rw � 2�r21≠f�≠u�r�rw �
0. Here, �r , u� corresponds to cylindrical polar coordinates
defined by x � r cosu and y � r sinu.

There are two classes of periodic focusing lattices of
practical interest. For the first class, the average of the
(oscillatory) lattice coefficients kx�s� and ky�s� over one
lattice period S is equal to zero, i.e.,Z s01S

s0

ds kx�s� � 0 �
Z s01S

s0

ds ky�s� . (10)

An example of a lattice satisfying Eq. (10) corre-
sponds to a periodic focusing quadrupole field, with
Bq � B0

q�z� �yêx 1 xêy�, with coupling coefficients
defined by [1]

kx�s� � 2ky�s� � kq�s� �
ebB0

q�s�
gbmbbbc2 . (11)

Here, B0
q�s� � �≠Bq

x�≠y��0,0� � �≠Bq
y�≠x��0,0�, and kq�s�

satisfies

kq�s 1 S� � kq�s�,
Z s01S

s0

ds kq�s� � 0 , (12)

where S is the axial periodicity length. For the example in
Eqs. (11) and (12), note that kx�s� and ky�s� have the same
magnitudes but opposite signs, and oscillate about zero
average value. That is, the force exerted by the applied
quadrupole field is alternately focusing and defocusing.

As a second example, we consider a periodic focusing
solenoidal field, Bsol � Bz�z�êz 2 �1�2�B0

z�z� �xêx 1

yêy�, where B0
z�z� � �≠Bsol

z �≠z��0,0�. In this case, in
Larmor frame variables, the Hamiltonian and nonlin-
ear Vlasov-Maxwell equations are identical in form to
Eqs. (6)–(8), and the lattice coefficients kx�s� and ky�s�
satisfy [1]

kx�s� � ky�s� � kz�s� �

µ
ebBz�s�

2gbmbbbc2

∂2

, (13)

where

kz�s 1 S� � kz�s� . (14)

Note from Eq. (13) that kx�s� and ky�s� have the same
magnitudes and (positive) sign, and the force exerted by
the applied solenoidal field is always focusing. We denote
the average of an s-dependent function over one lattice
period S by

�· · ·� �
1
S

Z s01S

S0

ds · · · . (15)

Denoting k̄x � �kx�s��, k̄y � �ky�s��, etc., it follows from
Eq. (13) that

k̄x � k̄y � k̄z , (16)

where
104401-3
k̄z �
1
S

Z s01S

S0

ds kz�s� , (17)

and k̄z . 0.
In concluding this section, we have provided two

examples of periodic focusing field configurations. One
example corresponds to a periodic focusing quadrupole
lattice in which the average of the lattice coefficients
kx�s� and ky�s� over one lattice period S is equal to zero
[Eqs. (10)–(12)]. The second example corresponds to a
periodic focusing solenoidal field in which the average
of the lattice coefficients kx�s� and ky�s� over one lattice
period S is nonzero [Eqs. (13)–(17)]. It is important
to keep in mind that the guiding-center formalism de-
veloped in Sec. III is applicable to both classes of field
configurations.

III. GUIDING-CENTER ORBIT EQUATIONS

We now return to the nonlinear Vlasov-Maxwell equa-
tions (7) and (8) and the Hamiltonian H��x, y, x0, y0, s�
defined in Eq. (6) for the particle motion in the transverse
phase space �x, y, x0, y0�. The characteristics of the non-
linear Vlasov equation (7), of course, correspond to the
equations of motion determined from

dx
ds

�
≠H�

≠x0
,

dx0

ds
� 2

≠H�

≠x
,

dy
ds

�
≠H�

≠y0
,

dy0

ds
� 2

≠H�

≠y
,

(18)

where x0 � dx�ds and y0 � dy�ds. Substituting Eq. (6)
into Eq. (18) readily gives the familiar equations of motion
for the transverse orbits x�s� and y�s�. We obtain

d2x
ds2 1 kx�s�x � 2

≠

≠x
c�x, y, s� , (19)

d2y
ds2 1 ky�s�y � 2

≠

≠y
c�x, y, s� , (20)

where the self-field potential c�x, y, s� is determined self-
consistently from Poisson’s equation (8). The acceleration
terms proportional to 2kx�s�x and 2ky�s�y in Eqs. (19)
and (20) describe the focusing and defocusing effects of
the applied field configuration, whereas the terms propor-
tional to 2≠c�≠x and 2≠c�≠y describe the acceleration
components due to self-field effects. Using the method
of characteristics [1], solving the nonlinear orbit equations
(19) and (20) is fully equivalent to solving the nonlinear
Vlasov-Maxwell equations (7) and (8).

A detailed analysis of Eqs. (19) and (20) for the general
self-field potential c�x, y, s� and corresponding self-
consistent distribution function fb�x, y, x0, y0, s� is
difficult, except in the context of ancillary simplifying
assumptions. The purpose of this article is to describe
one such case of considerable practical interest in which
simplification occurs. In the present analysis, we consider
circumstances in which the phase advance is sufficiently
104401-3
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small (say, s , 2p�6 � 60±) that the average orbits for
x�s� and y�s� are slowly varying over one lattice period
S. In particular, we express

x�s� � x̄ 1 dx�s�, y�s� � ȳ 1 dy�s� , (21)

where

�dx� � 0 � �dy� , (22)

and x̄�s� and ȳ�s� are slowly varying functions of s. Here,
�x̄, ȳ� is referred to as the guiding center of the transverse
particle orbits, and �· · ·� � S21

Rs01S
s0

ds · · · denotes an av-
erage over one lattice period S. Here the terminology
“guiding-center” orbit refers to the average orbit of a par-
ticle, where averages are taken over the (rapid) oscillations
of the focusing lattice.

In Eq. (21), the (rapid) oscillatory modulation of dx�s�
and dy�s� occurs on the length scale S, whereas the char-
acteristic length scales for the (slow) changes in x̄�s� and
ȳ�s�, which we denote by lx and ly , are assumed to be
much larger than the lattice period S, i.e.,

S ø lx , ly . (23)

In the subsequent analysis, we will show [see Eqs. (46) and
(47)] that the average applied forces acting on the guiding-
center orbits x̄ and ȳ are proportional to 2kx sfx̄ and
2ky sfȳ, respectively, where kx sf . 0 and ky sf . 0 are
positive (smooth-focusing) lattice coefficients [36] which
always correspond to an inward focusing force on the
guiding-center orbits. In this case, we estimate lx 	
2p�pkx sf and ly 	 2p�pky sf so that Eq. (23) is equiva-
lent to the requirement

p
kx sf S

2p
,

p
ky sf S

2p
	 D , 1 , (24)

where D is a small dimensionless parameter. Note that the
inequality in Eq. (24) corresponds to a transverse focus-
ing field with sufficiently low intensity (sufficiently small
phase advance).

We now return to the orbit equations (19) and (20) and
express

kx�s� � k̄x 1 dkx�s�, ky�s� � k̄y 1 dky�s� ,
(25)
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where k̄x � S21
Rs01S

s0
ds kx�s� and k̄y � S21 3Rs01S

s0
ds ky�s�, and dkx�s 1 S� � dkx�s� and dky�s 1

S� � dky�s� follow from Eq. (4). The averages of dkx�s�
and dky�s� over one lattice period are, of course, equal
to zero, i.e.,

�dkx�s�� � 0 � �dky�s�� , (26)

where �· · ·� � S21
Rs01S

s0
ds · · · . In the subsequent analy-

sis of Eqs. (19) and (20) we generally allow for nonzero
values of the constants k̄x and k̄y , although for the particu-
lar case of a periodic focusing quadrupole field described
by Eqs. (11) and (12), it follows that k̄x � 0 � k̄y . Sub-
stituting Eqs. (21) and (25) into the orbit equations (19)
and (20), we obtain

d2

ds2 �x̄ 1 dx� 1 �k̄x 1 dkx�s�� �x̄ 1 dx�

� 2
≠

≠x̄
c�x̄ 1 dx, ȳ 1 dy, s� , (27)

d2

ds2 � ȳ 1 dy� 1 �k̄y 1 dky�s�� � ȳ 1 dy�

� 2
≠

≠ȳ
c�x̄ 1 dx, ȳ 1 dy, s� . (28)

In the analysis of Eqs. (27) and (28), we formally treat the
kx , ky , and c terms to all be of order D, i.e.,

kx 	 ky 	 c � O�D� . (29)

In addition, the excursions �dx, dy� about the guiding-
center orbit �x̄, ȳ� are also assumed to be of order D, i.e.,

dx 	 dy � O�D� . (30)

From Eq. (29), note that the self-field potential is allowed
to be comparable in size to the applied focusing field.
This corresponds to a maximal ordering which is valid
for high beam intensity. Such an analysis automatically
includes the case of low-to-moderate beam intensity, where
c � O�D2�, say.

Next we make use of Eqs. (29) and (30) to Taylor ex-
pand the right-hand sides of Eqs. (27) and (28), formally
retaining terms to order D2. This gives the (approximate)
orbit equations
d2

ds2 �x̄ 1 dx� 1 �k̄x 1 dkx�s�� �x̄ 1 dx�

� 2
≠

≠x̄
�c̄�x̄, ȳ, s� 1 dc�x̄, ȳ, s�� 2

∑
dx

≠2

≠x̄2 1 dy
≠2

≠ȳ≠x̄

∏
c̄�x̄, ȳ, s� 1 · · · , (31)

d2

ds2 � ȳ 1 dy� 1 �k̄y 1 dky�s�� � ȳ 1 dy�

� 2
≠

≠ȳ
�c̄�x̄, ȳ, s� 1 dc�x̄, ȳ, s�� 2

∑
dy

≠2

≠ȳ2 1 dx
≠2

≠x̄≠ȳ

∏
c̄�x̄, ȳ, s� 1 · · · . (32)
104401-4
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In Eqs. (31) and (32), we expressed c�x̄, ȳ, s� �
c̄�x̄, ȳ, s� 1 dc�x̄, ȳ, s�, where c̄�x̄, ȳ, s� is a
slowly varying function of s, and the rapid oscil-
lations are incorporated in dc�x̄, ȳ, s� with �dc� �
�1�S�

Rs01S
s0

ds dc�x̄, ȳ, s� � 0. Equations (31) and
(32) can be used to obtain equations for the (slow)
evolution of the guiding-center orbits x̄ and ȳ. We
assume that c̄�x̄, ȳ, s� is a slowly varying function of
s, and make use of �dkx� � 0 � �dky� [Eq. (26)] and
�dx� � 0 � �dy� [Eq. (22)]. Operating on Eqs. (31) and
(32) with S21

Rs01S
s0

· · · then gives
104401-5
d2x̄
ds2 1 k̄xx̄ 1 �dkx�s�dx�s�� � 2

≠

≠x̄
c̄�x̄, ȳ, s� , (33)

d2ȳ
ds2 1 k̄yȳ 1 �dky�s�dy�s�� � 2

≠

≠ȳ
c̄�x̄, ȳ, s� , (34)

where the average �· · ·� is defined in Eq. (15). In
obtaining Eqs. (33) and (34), it was assumed that
dx�s 1 S� � dx�s� and dy�s 1 S� � dy�s�, so that
�d2dx�ds2� � 0 � �d2dy�ds2� when averaged over
one lattice period. Subtracting Eqs. (33) and (34) from
Eqs. (31) and (32), respectively, then gives for the evolu-
tion of dx�s� and dy�s�
d2dx
ds2 1 dkx�s�x̄ � �dkx�s�dx�s�� 2 �k̄x 1 dkx�s��dx 2

≠

≠x̄
dc�x̄, ȳ, s� 2

∑
dx

≠2

≠x̄2 1 dy
≠2

≠ȳ≠x̄

∏
c̄�x̄, ȳ, s� , (35)

d2dy
ds2 1 dky�s�ȳ � �dky�s�dy�s�� 2 �k̄y 1 dky�s��dy 2

≠

≠ȳ
dc�x̄, ȳ, s� 2

∑
dy

≠2

≠ȳ2 1 dx
≠2

≠x̄≠ȳ

∏
c̄�x̄, ȳ, s� , (36)

correct to order D2. Note that the terms proportional to dkx�s�x̄ and dky�s�ȳ in Eqs. (35) and (36) are formally of order
D, whereas the terms on the right-hand side of Eqs. (35) and (36) are proportional to kxdx, dxc̄ , dc, dyc̄ , and kydy,
which are of order D2 [Eqs. (29) and (30)]. Therefore, in leading order, we approximate Eqs. (35) and (36) by

d2

ds2 dx�s� 1 dkx�s�x̄ � 0 , (37)

d2

ds2 dy�s� 1 dky�s�ȳ � 0 , (38)

to the level of accuracy required to calculate the averages �dkxdx� and �dkydy� in the guiding-center orbit equations for
x̄ and ȳ in Eqs. (33) and (34).

We now return to Eqs. (33) and (34) to simplify the expressions for �dkxdx� and �dkydy�. For example, some straight-
forward algebra shows that

�dkx�s�dx�s�� �

øµ
d
ds

Z s

s0

ds dkx�s�
∂
dx�s�

¿
� 2

øµZ s

s0

ds dkx�s�
∂

d
ds

dx�s�
¿

, (39)

where we have integrated by parts with respect to s and made use of
Rs01S

s0
dsdkx�s� � 0 [Eq. (26)]. Integrating Eq. (37)

once with respect to s then gives

d
ds

dx�s� �
d
ds

dx

Ç
s�s0

2 x̄
Z s

s0

ds dkx�s� . (40)

Substituting Eq. (40) into Eq. (39), we obtain

�dkx�s�dx�s�� �

øµZ s

s0

ds dkx�s�
∂2¿

x̄ 2

øZ s

s0

ds dkx�s�
¿

d
ds

dx

Ç
s�s0

. (41)

The factor �ddx�ds�s�s0 occurring in Eq. (41) can be eliminated by making use of Eq. (40). Operating on Eq. (40) with
S21

Rs01S
s0

ds · · · , and making use of ��d�ds�dx�s�� � 0, readily gives �ddx�ds�s�s0 � x̄�
Rs

s0
ds dkx�s��. Substituting

into Eq. (41) then gives the compact result

�dkx�s�dx�s�� �

∑øµZ s

s0

ds dkx�s�
∂2¿

2

øZ s

s0

ds dkx�s�
¿2∏

x̄ �

øµZ s

s0

ds dkx�s� 2

øZ s

s0

ds dkx�s�
¿∂2¿

x̄ . (42)

In a completely analogous manner, it can be shown from Eq. (38) that

�dky�s�dy�s�� �

∑øµZ s

s0

ds dky�s�
∂2¿

2

øZ s

s0

ds dky�s�
¿2∏

ȳ �

øµZ s

s0

ds dky�s� 2

øZ s

s0

ds dky�s�
¿∂2¿

ȳ . (43)
104401-5
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Equations (42) and (43) constitute the final expressions
for �dkxdx� and �dkydy� required in Eqs. (33) and (34)
for the guiding-center orbits x̄ and ȳ. In this regard, we in-
troduce the (s-independent) smooth-focusing coefficients
kx sf and ky sf defined by

kx sf � k̄x 1

øµZ s

s0

ds dkx�s� 2

øZ s

s0

ds dkx�s�
¿∂2¿

,

(44)

ky sf � k̄y 1

øµZ s

s0

ds dky�s� 2

øZ s

s0

ds dky�s�
¿∂2¿

.

(45)

Making use of Eqs. (42)–(45), the orbit equations [(33)
and (34)] describing the slow evolution of the guiding-
center orbits x̄�s� and ȳ�s� can be expressed as

d2x̄
ds2 1 kx sfx̄ � 2

≠

≠x̄
c̄�x̄, ȳ, s� , (46)

d2ȳ
ds2 1 ky sfȳ � 2

≠

≠ȳ
c̄�x̄, ȳ, s� , (47)

where kx sf and ky sf are the positive constants defined in
Eqs. (44) and (45).

Equations (46) and (47) constitute the final dynamical
equations for the guiding-center orbits x̄ and ȳ correct
to leading order in the small parameter D [Eq. (24)].
Several features of Eqs. (46) and (47) are noteworthy.
First, because kx sf . 0 and ky sf . 0, the applied-force
terms in Eqs. (46) and (47) are always focusing. Second,
because kx sf and ky sf are constants (independent of s), an
analysis of Eqs. (46) and (47) for the guiding-center orbits
is considerably more straightforward than an analysis of
Eqs. (19) and (20) for the exact trajectories x�s� and y�s�.
Indeed, in Eqs. (19) and (20), the focusing coefficients
kx�s� and ky�s� are rapidly varying functions of s, which
makes a detailed analysis of Eqs. (19) and (20) consider-
ably more difficult. Furthermore, the terms proportional
to 2≠c̄�≠x̄ and 2≠c̄�≠ȳ in Eqs. (46) and (47) describe
the important influence of the average self-fields gener-
ated by the beam space charge and axial current on the
evolution of the guiding-center orbits x̄ and ȳ. That is, no
a priori assumption that the beam intensity is low and that
self-field effects are correspondingly weak has been made
in the derivation of Eqs. (46) and (47). As a consequence,
Eqs. (46) and (47) can be used to investigate the guiding-
center dynamics for a broad range of guiding-center
distributions f̄b�x̄, ȳ, x̄0, ȳ0, s� and corresponding self-field
potential c̄�x̄, ȳ, s�. Finally, it is evident from Eqs. (46)
and (47) that the characteristic oscillation wavelengths
in x̄ and ȳ induced by the average effects of the applied
focusing field are lx 	 2p�pkx sf and ly 	 2p�pky sf.
Therefore, the assumption that the lattice period S
satisfies S ø lx , ly in the derivation of Eqs. (46) and
(47) is equivalent to the inequality assumed in Eq. (24).
104401-6
An important feature of the present analysis is that, at
sufficiently high beam intensity, the self-field terms in
Eqs. (46) and (47) become increasingly important, and the
phase advance is further depressed relative to the vacuum
estimates lx 	 2p�pkx sf and ly 	 2p�pky sf.

In concluding this section, we emphasize that the anal-
ysis leading to the guiding-center orbit equations (46) and
(47) is valid for a wide range of choices of lattice functions
with periodic waveform, kx�s 1 S� � kx�s� and ky�s 1

S� � ky�s�, including the case where kx sf fi ky sf. As
one example, for the periodic focusing quadrupole field
described by Eqs. (11) and (12) with kx�s� � 2ky�s� �
kq�s�, kq�s 1 S� � kq�s�, and

Rs01S
s0

ds kq�s� � 0, it fol-
lows that

k̄x � 0 � k̄y , kx sf � ky sf � k
q
sf , (48)

where k
q
sf is defined by

k
q
sf �

øµZ s

s0

ds kq�s� 2

øZ s

s0

ds kq�s�
¿∂2¿

. (49)

If kq�s� has the form of the step-function lattice with con-
stant amplitude k̂q and filling factor h, shown in Fig. 1(a),
then it follows from Eq. (49) that [44]

k
q
sf �

1
16

h2k̂2
qS2

µ
1 2

2
3

h

∂
. (50)

FIG. 1. Examples of a periodic focusing quadrupole lattice
kq�s 1 S� � kq�s� satisfying Eqs. (11) and (12). In (a) kq�s�
corresponds to a periodic step-function lattice with amplitude
k̂q � const and fill factor h. In (b) kq�s� � k̂q cos�2ps�S�,
where k̂q � const is the amplitude.
104401-6
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On the other hand, for a sinusoidal lattice function with
kq�s� � k̂q cos�2ps�S�, where k̂q � const, as shown in
Fig. 1(b), it follows from Eq. (49) that [44]

k
q
sf �

1
2

k̂2
qS2

�2p�2 . (51)

Note from Eqs. (50) and (51) that k
q
sf tends to scale as

k̂2
qS2 times a factor that depends on the waveform of the

lattice function kq�s�. As a second example, for the peri-
odic focusing solenoidal field described by Eqs. (13) and
(14) with kx�s� � ky�s� � kz�s�, kz�s 1 S� � kz�s�,
and k̄z � S21

Rs01S
s0

ds kz�s�, it follows that

k̄x � k̄y � k̄z , kx sf � ky sf � ksol
sf , (52)

where k
sol
sf is defined by

ksol
sf � k̄z 1

øµZ s

s0

ds dkz�s� 2

øZ s

s0

ds dkz�s�
¿∂2¿

.

(53)

Closed expressions for k
sol
sf can similarly be determined

for various choices of lattice function kz�s 1 S� � kz�s�.

IV. GUIDING-CENTER VLASOV-MAXWELL
EQUATIONS

The guiding-center orbit equations (46) and (47) include
both the average effects of the applied focusing field (the
acceleration terms proportional to 2kx sfx̄ and 2ky sfȳ)
and the average effects of the self-generated fields pro-
duced by the beam space charge and axial current (the
terms proportional to 2≠c̄�≠x̄ and 2≠c̄�≠ȳ). Indeed,
Eqs. (46) and (47) can be used to derive the corresponding
Vlasov-Maxwell equations that describe the self-
consistent nonlinear evolution of the guiding-center dis-
tribution function f̄b�x̄, ȳ, x̄0, ȳ0, s� and self-field potential
c̄�x̄, ȳ, s� in the four-dimensional phase space �x̄, ȳ, x̄0, ȳ0�.
We first note that the Hamiltonian H��x̄, ȳ, x̄0, ȳ0, s� de-
scribing the transverse guiding-center motion in Eqs. (46)
and (47) is given by

H� �
1
2 �x̄02 1 ȳ02� 1

1
2 �kx sfx̄

2 1 ky sfȳ
2� 1 c̄�x̄, ȳ, s� ,

(54)

where x̄0 � dx̄�ds and ȳ0 � dȳ�ds denote the transverse
components of guiding-center velocity. From Eq. (54), it
follows that the transverse orbit equations for x̄ and ȳ are
given by

dx̄
ds

�
≠H�

≠x̄0
� x̄0,

dx̄0

ds
� 2

≠H�

≠x̄
� 2

µ
kx sfx̄ 1

≠c̄

≠x̄

∂
,

(55)

and
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dȳ
ds

�
≠H�

≠ȳ0
� ȳ0,

dȳ0

ds
� 2

≠H�

≠ȳ
� 2

µ
ky sfȳ 1

≠c̄

≠ȳ

∂
,

(56)

which reduce directly to the orbit equations in Eqs. (46)
and (47). Of course, the orbit equations in Eqs. (55)
and (56) are the characteristics of the nonlinear Vlasov
equation for the guiding-center distribution function
f̄b�x̄, ȳ, x̄0, ȳ0, s� in the four-dimensional phase space
�x̄, ȳ, x̄0, ȳ0�. Therefore, f̄b�x̄, ȳ, x̄0, ȳ0, s� evolves accord-
ing to

≠f̄b

≠s
1 x̄ 0 ≠f̄b

≠x̄
1 ȳ0 ≠f̄b

≠ȳ
2

µ
kx sfx̄ 1

≠c̄

≠x̄

∂
≠f̄b

≠x̄0
2

µ
ky sfȳ 1

≠c̄

≠ȳ

∂
≠f̄b

≠ȳ0
� 0 . (57)

Here, the self-field potential c�x̄, ȳ, s� solves Poisson’s
equationµ

≠2

≠x̄2 1
≠2

≠ȳ2

∂
c̄ � 2

2pKb

Nb

Z
dx̄0 dȳ0 f̄b , (58)

where Kb is the self-field perveance defined in Eq. (2),
nb�x̄, ȳ, s� �

R
dx̄0 dȳ0 f̄b�x̄, ȳ, x̄0, ȳ0, s� is the number

density of beam particles, and Nb �
R

dx̄ dȳ nb�x̄, ȳ, s� �
const is the number of beam particles per unit axial
length.

Equations (57) and (58) constitute the final form of
the guiding-center Vlasov-Maxwell equations and can be
used to describe the average properties of intense beam
propagation through a periodic focusing lattice for a
wide range of distribution functions and choices of lattice
functions. The range of validity of Eqs. (57) and (58)
is similar to the range of validity of the guiding-center
orbit equations (46) and (47) derived in Sec. III. That
is, Eqs. (57) and (58) are valid to leading order in D

[Eq. (24)] and describe the slow nonlinear evolution of the
distribution function f̄b�x̄, ȳ, x̄0, ȳ0, s� and self-field poten-
tial c̄�x̄, ȳ, s� over axial length scales long in comparison
with the lattice period S. Information on the (fast) oscilla-
tion length scale S, of course, has been lost in the averaging
procedure leading to Eqs. (57) and (58). Nonetheless,
there is an enormous amount of information contained
in Eqs. (57) and (58) on the detailed equilibrium and
stability properties of intense beam propagation over large
distances. Furthermore, because the focusing coefficients
in Eq. (57) are both constant (s independent) and positive
(kx sf . 0 and ky sf . 0), corresponding to an average
inward focusing force, a detailed analysis of the guiding-
center Vlasov-Maxwell equations (57) and (58) is far more
tractable than an analysis of the original Vlasov-Maxwell
equations (7) and (8).
104401-7
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Smooth-focusing Vlasov-Maxwell equations similar
to Eqs. (57) and (58) are widely used in the accelerator
physics literature [14], most often without a systematic
justification, to describe the nonlinear dynamics and
collective properties of intense beam propagation. While
the primary purpose of this paper is to place Eqs. (57) and
(58) on a rigorous, yet physically intuitive, foundation, for
completeness we briefly summarize below several general
properties of Eqs. (57) and (58) that have important
practical consequences.

A. Intense beam equilibria

The guiding-center Vlasov-Maxwell equations (57) and
(58) support a broad class of quasisteady equilibrium so-
lutions with ≠�≠s � 0. For example, specializing to the
symmetric case with

kx sf � ky sf � ksf , (59)

Eqs. (57) and (58) support azimuthally symmetric equilib-
rium solutions (≠�≠u � 0 and ≠�≠s � 0) for distribution
functions f̄0

b�r̄ , x̄0, ȳ0� of the form [1,36]

f̄0
b � f̄0

b�H0
�� . (60)

Here,

H0
� �

1
2 �x̄02 1 ȳ02� 1

1
2ksfr̄

2 1 c̄0�r̄� (61)

is the (s-independent) Hamiltonian in the equilibrium field
configuration, r̄ � �x̄2 1 ȳ2�1�2 is the radial distance from
the beam axis, and we have introduced cylindrical polar
coordinates x̄ � r̄ cosu and ȳ � r̄ sinu. In Eqs. (60) and
(61), for ≠�≠u � 0, the equilibrium self-field potential
c̄0�r̄� is determined self-consistently in terms of f0

b�H0
��

from Poisson’s equation (58), i.e.,

1
r̄

≠

≠r̄
r̄

≠

≠r̄
c̄0�r̄� �

22pKb

Nb

Z
dx̄0 dȳ0 f̄0

b�H0
�� . (62)

Equations (60)–(62) can be used to investigate detailed
equilibrium properties for a wide variety of choices of
self-consistent equilibrium distribution function f̄0

b�H0
��

[1,36]. Note that Eqs. (60)–(62) contain the full influ-
ence of equilibrium self-field effects, and, depending on
the choice of distribution function f̄0

b�H0
��, Poisson’s equa-

tion (62) is generally a nonlinear differential equation for
the self-field potential c0�r̄�. It is important to note that
the class of guiding-center beam equilibria described by
Eqs. (59)–(62) has a circular cross section.

B. Equilibrium radial force balance

We introduce the equilibrium root-mean-square beam
radius rb0 and unnormalized transverse emittance e0 de-
fined by

r2
bo � �x̄2 1 ȳ2�0 ,

e2
0 � 4��x̄2 1 ȳ2�0�x̄02 1 ȳ02�0 2 �x̄x̄0 1 ȳȳ0�2

0� .
(63)
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Here, �x�0 � N21
b

R
dx̄ dȳ dx̄0 dȳ0 xf̄0

b denotes the statis-
tical average of a phase function x over the equilibrium
distribution f0

b�H0
��, and �x̄x̄0 1 ȳȳ0�0 � 0 for the class

of beam equilibria described by Eqs. (60)–(62). Without
presenting algebraic details [1,36], the radial force balance
equation, µ

ksf 2
Kb

2r2
b0

∂
rb0 �

e
2
0

4r3
b0

, (64)

is an exact consequence of the steady-state Vlasov-
Maxwell equations for the entire class of self-consistent
beam equilibria described by Eqs. (60)–(62). That is,
Eq. (64) is valid whatever the choice of equilibrium
distribution function f0

b�H0
�� and corresponding form

of the equilibrium density profile n0
b�r̄� �

R
dx̄0dȳ0f̄0

b .
Equation (64) is a simple statement of (average) radial
force balance on a fluid element and corresponds to a
balance between the inward force of the applied focusing
field �2ksfrb0� and the outward forces due to self-field
effects �1Kb�2rb0� and the average pressure-gradient
force �1e

2
0�4r3

b0�. Equation (64) is a powerful constraint
condition for the class of beam equilibria described by
Eqs. (60)–(62). For example, solving Eq. (64) for the
equilibrium mean-square beam radius gives

r2
b0 �

Kb

4ksf
1

∑µ
Kb

4ksf

∂2

1
e

2
0

4ksf

∏1�2

. (65)

Equation (65) shows clearly how r2
b0 increases with in-

creasing beam intensity �Kb� and emittance �e0�, and de-
creases with increasing focusing field strength �ksf �.

C. Kinetic stability theorem

Detailed stability properties can be calculated for the
class of beam equilibria described by Eqs. (60)–(62). A
small-amplitude stability analysis proceeds by linearizing
Eqs. (57) and (58) for perturbations about the equilibrium
distribution function f̄0

b�H0
�� and corresponding self-field

potential c̄0�r̄�, and determining the evolution of the per-
turbations df̄b�x̄, ȳ, x̄0, ȳ0, s� and dc̄�x̄, ȳ, s� [1]. A non-
linear analysis of Eqs. (57) and (58) typically requires
implementation of numerical simulation techniques such
as the nonlinear perturbative simulation method developed
by Qin et al. for intense beam applications [1,29]. Direct
calculations of detailed stability properties from Eqs. (57)
and (58) are typically difficult, but there is a powerful
stability theorem that can be demonstrated analytically
[27,28]. In particular, for perturbations about the general
class of beam equilibria f̄0

b�H0
��, it can be shown [27,28]

that a sufficient condition for stability is that the equilib-
rium distribution function be a monotonically decreasing
function of energy H0

�, i.e.,

≠

≠H0
�

f̄0
b�H0

�� # 0 . (66)
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Whenever Eq. (66) is satisfied, the perturbations df̄b and
dc̄ do not grow, but rather damp or remain oscillatory. The
stability theorem in Eq. (66) is a very powerful result, and
is valid nonlinearly (finite-amplitude perturbations) as well
as for small-amplitude perturbations. For example, the sta-
bility theorem in Eq. (66) implies that a beam with thermal
equilibrium distribution [Eq. (67)] is stable and can propa-
gate quiescently over large distances. On the other hand,
a Kapchinskij-Vladimirskij distribution [Eq. (68)] has an
inverted population in H0

�, thereby violating Eq. (66), and
there is, in principle, free energy available to cause the per-
turbations df̄b and dc̄ to amplify. Both of these important
conclusions are validated by numerical simulations [1,29].

D. Examples of self-consistent beam equilibria

As noted earlier, Eqs. (60)–(62) can be used to
investigate detailed equilibrium properties for a wide
variety of self-consistent equilibrium distributions f̄0

b�H0
��

[1,36]. Several choices of f̄0
b�H0

�� are discussed in the lit-
erature, and for our purposes here, we simply summarize
three illustrative examples. Without loss of generality, we
choose c̄0�r̄ � 0� � 0 and c̄0�r̄ � rw� � c0

w � const
consistent with the boundary condition at the conducting
wall in Eq. (9). In particular, we consider the following
choices of f̄0

b�H0
�� corresponding to the thermal equilib-

rium distribution [1,20,21,23],

f̄0
b�H0

�� � n̂b

µ
gbmbb

2
bc2

2pT̂�b

∂
exp

Ω
2

gbmbb
2
bc2

T̂�b
H0

�

æ
,

(67)

the Kapchinskij-Vladimirskij equilibrium [1,12–16,23],

f̄0
b�H0

�� �
n̂b

2p
d�H0

� 2 T̂�b�gbmbb2
bc2� , (68)

and the waterbag equilibrium [1,18,19,23],

f̄0
b�H0

�� � n̂b

µ
gbmbb

2
bc2

2pT̂�b

∂
U

µ
gbmbb

2
bc2

T̂�b
H0

�

∂
, (69)

where H0
� � �1�2� �x̄02 1 ȳ02� 1 �1�2�ksfr̄2 1 c0�r̄� is

defined in Eq. (61), and U�x� is the unit step function de-
fined by U�x� � 11 for 0 # x , 1 and U�x� � 0 for
x . 1. In Eqs. (67)–(69), n̂b and T̂�b are positive con-
stants, where T�b has units of energy, and n̂b � n0

b�r̄ �
0� is the on-axis number density of beam particles. In
Eq. (67), T̂�b � �e2

0�8r2
b0�gbmbb

2
bc2 can be identified

with the uniform kinetic temperature in thermal equilib-
rium, whereas in Eq. (68) T̂�b � �e2

0�4r2
b0�gbmbb

2
bc2 �

T0
�b�r̄ � 0� can be identified with the on-axis transverse

temperature of the beam particles. For all three distribution
functions in Eqs. (67)–(69), the rms beam radius �rb0�, the
focusing field strength �ksf�, the self-field perveance �Kb�,
and the transverse emittance �e0� are related by the ra-
dial force balance constraint in Eq. (64), or equivalently,
Eq. (65).
104401-9
As would be expected, detailed equilibrium properties,
such as the density profile n0

b�r̄� �
R

dx̄0 dȳ0 f̄0
b�H0

��,
are markedly different for the different choices of dis-
tribution function in Eqs. (67)–(69) [1]. For example,
the density profile calculated from Eq. (67) is generally
bell shaped and diffuse, assuming a maximum value
�n̂b� at r̄ � 0 and decreasing monotonically to zero as
r̄ ! `. At low beam intensity and moderate emittance
�Kb�2 ø ksfr

2
b0 
 e

2
0�4r2

b0�, Eqs. (62) and (67) give
approximately a Gaussian density profile with n0

b�r̄� 

n̂b exp�2r̄2�r2

b0�. At high beam intensity and low emit-
tance �Kb�2 
 ksfr

2
b0 ¿ e

2
0�4r2

b0�, however, Eqs. (62)
and (67) give approximately a flattop density pro-
file with n0

b�r̄� 
 n̂b � const, for 0 # r̄ &
p

2 rb0,
which falls abruptly to zero over a few Debye
lengths lD � �g2

bT̂�b�4pn̂be2
b�1�2 at the beam edge

�r̄ �
p

2 rb0�. By contrast, for arbitrary values of
beam intensity �Kb� and emittance �e0� consistent with
Eq. (64), the Kapchinskij-Vladimirskij distribution in
Eq. (68) gives (exactly) a step-function density pro-
file with n0

b�r̄� � n̂b � const in the beam interior
�0 # r̄ ,

p
2 rb0�, and n0

b�r̄� � 0 for r̄ .
p

2 rb0.
Finally, the waterbag equilibrium in Eq. (69) gives a
bell-shaped density profile for n0

b�r̄�, which decreases
monotonically to zero for increasing values of r̄ . An
important difference between the equilibrium distribu-
tions in Eqs. (67) and (69), however, is that the density
profile n0

b�r̄� corresponding to the waterbag equilibrium
in Eq. (69) can be calculated in closed analytical form
[1], and the beam has a “sharp” outer edge at r � r̂b0
determined self-consistently from

I0�r̂b0�lD� �
1

1 2 sb
. (70)

Here, lD � �g2
bT̂�b�4pn̂be2

b�1�2 is the effective Debye
length, and sb , 1 is the normalized beam inten-
sity defined by sb � v̂

2
pb�2g

2
bv

2
b�. Here, v̂pb �

�4pn̂be2
b�gbmb�1�2 is the on-axis relativistic plasma

frequency, and vb� � �ksfb
2
bc2�1�2 is the transverse

focusing frequency associated with the (smooth-focusing)
lattice coefficient ksf. The preceding is a very brief sum-
mary of selected equilibrium properties associated with
the distribution functions in Eqs. (67)–(69). Of course, as
noted earlier, the stability properties of the beam equilibria
described by Eqs. (67)–(69) can be markedly different.

V. RANGE OF VALIDITY OF THE
GUIDING-CENTER MODEL

The analysis leading to the guiding-center or-
bit equations (46) and (47), and the corresponding
Vlasov-Maxwell equations for f̄b�x̄, ȳ, x̄0, ȳ0, s� and
c̄�x̄, ȳ, s� in Eqs. (57) and (58), is, of course, approxi-
mate since we have averaged over the (fast) oscillations
occurring on the length scale S of the lattice period.
As indicated earlier, validity of such a guiding-center
104401-9
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model requires sufficiently small phase advance s, or,
equivalently, sufficiently small values of the parameter
p

kx sf S�2p 	 p
ky sf S�2p 	 D [Eq. (24)]. To as-

sess the range of validity of the guiding-center model,
we consider the particular example of a Kapchinskij-
Vladimirskij distribution function fKV

b �x, y, x0, y0, s�
[43], which provides an exact periodically focused so-
lution to the full Vlasov-Maxwell equations (7) and (8).
We further assume a periodic quadrupole lattice with
kx�s� � 2ky�s� � kq�s� [Eq. (11)] with kq�s 1 S� �
kq�s� and

Rs01S
s0

ds kq�s� � 0. Without presenting
algebraic details, the corresponding density profile
nb�x, y, s� �

R
dx0 dy0 fKV

b can be expressed as [43]

nb�x, y, s� �

8<
:

Nb

pab
, 0 # x2�a2 1 y2�b2 , 1 ,

0, x2�a2 1 y2�b2 . 1 ,
(71)

and the self-field potential in the beam interior is given by
[43]

c�x, y, s� � 2
Kb

a 1 b

∑
1
a

x2 1
1
b

y2

∏
, (72)

for 0 # x2�a2�s� 1 y2�b2�s� , 1. Note from Eq. (71)
that the density profile nb�x, y, s� � Nb�pab is uniform
within the pulsating elliptical cross section x2�a2�s� 1

y2�b2�s� � 1. Moreover, the envelope equations for the
ellipse dimensions, a�s� and b�s�, are given by [1]

d2

ds2 a 1

∑
kq�s� 2

2Kb

a�a 1 b�

∏
a �

e2

a3 , (73)

d2

ds2 b 1

∑
2kq�s� 2

2Kb

b�a 1 b�

∏
b �

e2

b3 , (74)

where we have assumed e2
x � e2

y � e2. Substituting
Eq. (72) into the orbit equations (19) and (20) gives

d2

ds2 x 1

∑
kq�s� 2

2Kb

a�a 1 b�

∏
x � 0 , (75)

d2

ds2 y 1

∑
2kq�s� 2

2Kb

b�a 1 b�

∏
y � 0 , (76)

which can be used to determine the exact particle trajec-
tories x�s� and y�s�. In Eqs. (75) and (76), note that a�s�
and b�s� are determined self-consistently from the enve-
lope equations (73) and (74).

On the other hand, for the axisymmetric guiding-center
Kapchinskij-Vladimirskij equilibrium in Eq. (68), the self-
field potential within the uniform density beam is given by
c̄0�r̄� � 2�1�4�Kbr̄2�r2

b0, where

ā � b̄ �
p

2 rb0 (77)

is the outer envelope of the (average) beam cross section,
and the rms beam radius rb0 is determined self-consistently
from the radial force balance equation (64), or equivalently,
104401-10
Eq. (65). Substituting c̄0�r̄� into Eqs. (46) and (47), we
obtain

d2

ds2 x̄ 1

∑
k

q
sf 2

Kb

2r2
b0

∏
x̄ � 0 , (78)

d2

ds2 ȳ 1

∑
k

q
sf 2

Kb

2r2
b0

∏
ȳ � 0 , (79)

which determines the (slow) evolution of the guiding-
center orbits x̄�s� and ȳ�s�. Here k

q
sf � const is defined

in Eq. (49) for general periodic quadrupole lattice kq�s 1

S� � kq�s�. The coefficients in Eqs. (78) and (79) are
constant (independent of s), and the solutions are simple
combinations of cos��kq

sf 2 Kb�2r2
b0�1�2s� and sin��kq

sf 2

Kb�2r2
b0�s�. By contrast, the (oscillatory) coefficients in

the orbit equations (75) and (76) are s dependent, and it
is most convenient to solve Eqs. (75) and (76) numerically
for the particle orbits x�s� and y�s�.

As an illustrative numerical example, we consider the
step-function quadrupole lattice illustrated in Fig. 1(a)
with filling factor h � 0.25 and normalized amplitude
k̂qS2 � 9.08. Numerical integration of the envelope
equations (73) and (74), assuming matched-beam so-
lutions with a�s 1 S� � a�s� and b�s 1 S� � b�s�,
shows that the vacuum phase advance [1] is given by
sy � 30± � p�6, where sy is defined by

sy � lim
Kb!0

e
Z s01S

s0

ds
a2�s�

� lim
Kb!0

e
Z s01S

s0

ds
b2�s�

. (80)

Periodic solutions to the envelope equations (73) and (74)
for the choice of system parameters h � 0.25, k̂qS2 �
9.08, and sy � 30± � p�6 are shown in Fig. 2. For this
choice of parameters, note from Eq. (50) that

k
q
sfS

2 � 0.268 , (81)

which corresponds to
q

k
q
sf S�2p � 0.082 � D

[Eq. (24)]. Two cases are illustrated in Fig. 2, where the
normalized beam dimensions, a�s��

p
eS and b�s��

p
eS,

are plotted versus s�S for periodic matched-beam
solutions to Eqs. (73) and (74). The results in Fig. 2(a)
correspond to a very-low-intensity beam with 2eS�a2 ¿
KbS�e � 0.01, whereas the plots shown in Fig. 2(b)
correspond to a moderate-intensity beam with 2eS�a2 	
KbS�e � 0.8. The total phase advance s (including
space-charge depression) is s � 29.7± in Fig. 2(a) and
s � 14.85± in Fig. 2(b). From Figs. 2(a) and 2(b),
the (numerically determined) average beam envelope
dimensions obtained from Eqs. (73) and (74) are found
to be ā�

p
eS � b̄�

p
eS � 1.402 in Fig. 2(a), and

ā�
p

eS � b̄�
p

eS � 1.983 in Fig. 2(b). On the other
hand, from the guiding-center estimates in Eqs. (65) and
(77), we obtain

p
2 rb0�

p
eS � 1.396 for the choice of

system parameters in Fig. 2(a), and
p

2 rb0�
p

eS � 1.982
for the choice of system parameters in Fig. 2(b). Evi-
dently, for the choice of parameters in Fig. 2, the guid-
ing-center model developed in Secs. III and IV provides
104401-10
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FIG. 2. Matched beam solutions for a�s��
p

eS and b�s��
p

eS
obtained numerically from Eqs. (73) and (74) are plotted versus
s�S for the step-function lattice in Fig. 1(a) for system parame-
ters corresponding to h � 0.25, k̂qS2 � 9.08 and sy � 30±,
and normalized beam intensity corresponding to (a) KbS�e �
0.01 and s � 29.7±, and (b) KbS�e � 0.8 and s � 14.85±.

an excellent description of the average transverse beam
dimensions, even in the regime of high self-field intensity.

Illustrative solutions to the exact orbit equations (75)
and (76) for x�s� and y�s�, and the guiding-center orbit
equations (78) and (79) for x̄�s� and ȳ�s� are shown in
Fig. 3. Here, the system parameters in Fig. 3(a) are the
same as those in Fig. 2(a), and the system parameters
in Fig. 3(b) are the same as those in Fig. 2(b). In both
cases, we integrate the orbit equations from s � s0 � 0
to s � 60S. In Figs. 3(a) and 3(b), the smooth curves
without small length-scale variations correspond to plots of
x̄�s��

p
eS versus s�S determined from Eq. (78) for initial

conditions x̄0�
p

eS � 0.5ā�
p

eS and �dx̄�ds�s�0 � 0,
where x̄0 � x̄�s � 0�. On the other hand, the curves
with small length-scale variations in Figs. 3(a) and
3(b) correspond to the numerical solutions to the exact
orbit equation (75) for x�s� for initial conditions corre-
sponding to x�s � 0� � x̄0 1 dx�s � 0� � 1.12x̄0 and
�dx�ds�s�0 � 0. Note from Fig. 3 that x�s� oscillates
(with period S) about the average guiding-center orbit
x̄�s�. Indeed, it is clear from Fig. 3 that the guiding-center
orbit x̄�s� calculated from Eq. (78) gives an excellent
approximation to the average orbit for x�s� determined
from the exact orbit equation (75). This is true for both the
104401-11
FIG. 3. The solutions for x�s��
p

eS and x̄�s��
p

eS obtained
from Eqs. (75) and (78) are plotted versus s�S for the step-
function lattice in Fig. 1(a) for system parameters corresponding
to h � 0.25, k̂qS2 � 9.08 and sy � 30±, and normalized beam
intensity corresponding to (a) KbS�e � 0.01 and s � 29.7±,
and (b) KbS�e � 0.8 and s � 14.85±. Initial conditions corre-
spond to x̄0 � 0.5ā�

p
eS and x�s � 0� � x̄0 1 dx�s � 0� �

1.12x̄0.

case of low beam intensity [Fig. 3(a)] and the case of high
beam intensity [Fig. 3(b)]. Furthermore, for high beam
intensity [Fig. 3(b)], the axial period of the guiding-center
orbit x̄�s� is longer than for the case of low beam intensity
[Fig. 3(a)]. For the system parameters in Fig. 3(a), the
guiding-center model overestimates the (slow) oscillation
wavelength by 1.1%, whereas, in Fig. 3(b), the guiding-
center model overestimates the oscillation wavelength
by 1.6%.

In Fig. 4, the ratio between the smooth-focusing phase
advance ssf � �kq

sf 2 Kb�2r2
b0�1�2S [44] and the exact

phase advance s is plotted versus the vacuum phase

FIG. 4. The ratio between the smooth-focusing phase advance
ssf and the exact phase advance s is plotted versus the vac-
uum phase advance sy for system parameters h � 0.25 and
0 , k̂qS2 , 21.5. The upper and lower curves correspond to
the low and high space-charge cases with KbS�e � 0.01 and
KbS�e � 2.5, respectively.
104401-11
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advance sy for system parameters corresponding to
h � 0.25. The variation domain of the vacuum
phase advance is 0± , sy , 60±, corresponding to
0 , k̂qS2 , 21.5. As evident from the plot, the error in
phase advance introduced by the smooth-focusing guiding-
center model is less than 9% for both the low and the high
space-charge cases corresponding to KbS�e � 0.01 and
KbS�e � 2.5, respectively.

VI. CONCLUSIONS

In this paper, we provided a systematic derivation of
a guiding-center kinetic model that describes intense
beam propagation through a periodic focusing lattice with
axial periodicity length S, valid for sufficiently small
phase advance (say, s , 60±). The analysis assumed a
thin �a, b ø S� axially continuous beam, or very long
charge bunch, propagating in the z direction through a
periodic focusing lattice with transverse focusing coeffi-
cients kx�s 1 S� � kx�s� and ky�s 1 S� � ky�s�, where
S � const is the lattice period (Sec. II). By averaging
over the (fast) oscillations occurring on the length scale of
a lattice period S (Sec. III), the analysis led to the smooth-
focusing Vlasov-Maxwell equations (57) and (58)
(Sec. IV) that describe the slow evolution of the guiding-
center distribution function f̄b�x̄, ȳ, x̄0, ȳ0, s� and (normal-
ized) self-field potential c̄�x̄, ȳ, s� in the four-dimensional
transverse phase space �x̄, ȳ, x̄0, ȳ0�. In the resulting
kinetic equation (57) for f̄b�x̄, ȳ, x̄0, ȳ0, s�, the average
effects of the applied focusing field are incorporated in
the constant focusing coefficients kx sf . 0 and ky sf . 0
defined in Eqs. (44) and (45), and the model is readily ac-
cessible to direct analytical investigation. Similar smooth-
focusing Vlasov-Maxwell descriptions are widely used
in the accelerator physics literature, often without a sys-
tematic justification, and the present analysis places these
models on a rigorous, yet physically intuitive, foundation.

ACKNOWLEDGMENTS

This research was supported by the Department of
Energy and in part by the Office of Naval Research.

[1] R. C. Davidson and H. Qin, Physics of Intense Charged
Particle Beams in High Energy Accelerators (World Sci-
entific, Singapore, 2001).

[2] T. P. Wangler, Principles of RF Linear Accelerators (Wiley,
New York, 1998).

[3] A. W. Chao, Physics of Collective Beam Instabilities in
High Energy Accelerators (Wiley, New York, 1993).

[4] M. Reiser, Theory and Design of Charged Particle Beams
(Wiley, New York, 1994).

[5] S. Y. Lee, Accelerator Physics (World Scientific, Singa-
pore, 1999).

[6] H. Wiedemann, Particle Accelerator Physics II: Nonlinear
and Higher-Order Beam Dynamics (Springer-Verlag, New
York, 1998).
104401-12
[7] H. Wiedemann, Particle Accelerator Physics I: Basic Prin-
ciples and Linear Beam Dynamics (Springer-Verlag, New
York, 1999).

[8] D. A. Edwards and M. J. Syphers, An Introduction to the
Physics of High Energy Accelerators (Wiley, New York,
1993).

[9] J. D. Lawson, The Physics of Charged Particle Beams
(Oxford Science Publications, New York, 1988).

[10] See, for example, Proceedings of the 1999 Particle Ac-
celerator Conference, New York (IEEE, Piscataway, NJ,
1999), pp. 1–3778.

[11] See, for example, Proceedings of the International Heavy
Ion Fusion Symposium [Nucl. Instrum. Methods Phys. Res.,
Sect. A 464, 1–674 (2001)].

[12] I. M. Kapchinskij and V. V. Vladimirskij, in Proceedings of
the International Conference on High Energy Accelerators
and Instrumentation (CERN, Geneva, 1959), p. 274.

[13] R. L. Gluckstern, in Proceedings of the 1970 Proton
Linear Accelerator Conference, Batavia, IL,, edited by
M. R. Tracy (National Accelerator Laboratory, Batavia,
IL, 1971), p. 811.

[14] See, for example, Chaps. 4–8 of Ref. [1], and references
therein.

[15] T.-S. Wang and L. Smith, Part. Accel. 12, 247 (1982).
[16] I. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part.

Accel. 13, 145 (1983).
[17] J. Struckmeier, J. Klabunde, and M. Reiser, Part. Accel.

15, 47 (1984).
[18] I. Hofmann and J. Struckmeier, Part. Accel. 21, 69 (1987).
[19] J. Struckmeier and I. Hofmann, Part. Accel. 39, 219 (1992).
[20] N. Brown and M. Reiser, Phys. Plasmas 2, 965 (1995).
[21] R. C. Davidson and H. Qin, Phys. Rev. ST Accel. Beams

2, 114401 (1999).
[22] R. L. Gluckstern, W.-H. Cheng, and H. Ye, Phys. Rev. Lett.

75, 2835 (1995).
[23] R. C. Davidson and C. Chen, Part. Accel. 59, 175 (1998).
[24] C. Chen, R. Pakter, and R. C. Davidson, Phys. Rev. Lett.

79, 225 (1997).
[25] C. Chen and R. C. Davidson, Phys. Rev. E 49, 5679 (1994).
[26] R. C. Davidson, W. W. Lee, and P. Stoltz, Phys. Plasmas 5,

279 (1998).
[27] R. C. Davidson, Phys. Rev. Lett. 81, 991 (1998).
[28] R. C. Davidson, Phys. Plasmas 5, 3459 (1998).
[29] H. Qin, R. C. Davidson, and W. W. Lee, Phys. Rev. ST

Accel. Beams 3, 084401 (2000); 3, 109901 (2000).
[30] P. H. Stoltz, R. C. Davidson, and W. W. Lee, Phys. Plasmas

6, 298 (1999).
[31] W. W. Lee, Q. Qian, and R. C. Davidson, Phys. Lett. A 230,

347 (1997).
[32] Q. Qian, W. W. Lee, and R. C. Davidson, Phys. Plasmas 4,

1915 (1997).
[33] A. Friedman, D. P. Grote, and I. Haber, Phys. Fluids B 4,

2203 (1992).
[34] A. Friedman, J. J. Barnard, D. P. Grote, and I. Haber, Nucl.

Instrum. Methods Phys. Res., Sect. A 415, 455 (1998).
[35] S. M. Lund, J. J. Barnard, G. D. Craig, A. Friedman, D. P.

Grote, H. S. Hopkins, T. S. Sangster, W. M. Sharp, S. Eylon,
T. T. Fessenden, E. Henestroza, S. Yu, and I. Haber, Nucl.
Instrum. Methods Phys. Res., Sect. A 415, 345 (1998).

[36] R. C. Davidson, H. Qin, and P. J. Channell, Phys. Rev. ST
Accel. Beams 2, 074401 (1999); 3, 029901 (2000).
104401-12



PRST-AB 4 GUIDING-CENTER VLASOV-MAXWELL DESCRIPTION … 104401 (2001)
[37] P. J. Channell, Phys. Plasmas 6, 982 (1999).
[38] R. A. Kishek, P. G. O’Shea, and M. Reiser, Phys. Rev. Lett.

85, 4514 (2000).
[39] S. M. Lund and R. C. Davidson, Phys. Plasmas 5, 3028

(1998).
[40] R. C. Davidson and S. Strasburg, Phys. Plasmas 7, 2657
104401-13
(2000).
[41] S. Strasburg and R. C. Davidson, Phys. Lett. A 269, 40

(2000).
[42] I. Hofmann, Phys. Rev. E 57, 4713 (1998).
[43] See, for example, Chap. 5 of Ref. [1].
[44] See, for example, Sec. 3.5 of Ref. [1].
104401-13


