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This paper considers an intense non-neutral ion beam propagating in the z direction through
a periodic-focusing quadrupole or solenoidal field with transverse focusing force, 2�kx�s�xêx 1

ky�s�yêy�, on the beam ions. Here, s � bbct is the axial coordinate, �gb 2 1�mbc2 is the directed
axial kinetic energy of the beam ions, and the (oscillatory) lattice coefficients satisfy kx�s 1 S� � kx�s�
and ky�s 1 S� � ky�s�, where S � const is the periodicity length of the focusing field. The
theoretical model employs the Vlasov-Maxwell equations to describe the nonlinear evolution of
the distribution function fb�x, y, x0, y0, s� and the (normalized) self-field potential c�x, y, s� in the
transverse laboratory-frame phase space �x, y, x0, y0�. Here, Ĥ�x, y, x0, y0, s� � �1�2� �x02 1 y02� 1

�1�2� �kx�s�x2 1 ky�s�y2� 1 c�x, y, s� is the (dimensionless) Hamiltonian for particle motion in the
applied field plus self-field configurations, where �x, y� and �x0, y0� are the transverse displacement
and velocity components, respectively, and c�x, y, s� is the self-field potential. The Hamiltonian is
formally assumed to be of order e, a small dimensionless parameter proportional to the characteristic
strength of the focusing field as measured by the lattice coefficients kx�s� and ky�s�. Using
a third-order Hamiltonian averaging technique developed by P. J. Channell [Phys. Plasmas 6, 982
(1999)], a canonical transformation is employed that utilizes an expanded generating function that
transforms away the rapidly oscillating terms. This leads to a Hamiltonian, H �X̃ , Ỹ , X̃ 0, Ỹ 0, s� �
�1�2� �X̃ 02 1 Ỹ 02� 1 �1�2�kf�X̃2 1 Ỹ 2� 1 c�X̃ , Ỹ , s�, correct to order e3 in the “slow” transformed
variables �X̃, Ỹ , X̃ 0, Ỹ 0�. Here, the transverse focusing coefficient in the transformed variables satisfies
kf � const, and the asymptotic expansion procedure is expected to be valid for a sufficiently small
phase advance (s , p�3 � 60±, say). Properties of axisymmetric beam equilibrium distribution
functions, F0

b�H 0�, with ≠�≠s � 0 � ≠�≠Q, are calculated in the transformed variables, and the results
are transformed back to the laboratory frame. Corresponding properties of the periodically focused
distribution function fb�x, y, x0, y0, s� are calculated correct to order e3 in the laboratory frame, including
statistical averages such as the mean-square beam dimensions, �x2� �s� and � y2� �s�, the unnormalized
transverse beam emittances, ex�s� and ey�s�, the self-field potential, c�x, y, s�, the number density of
beam particles, nb�x, y, s�, and the transverse flow velocity, Vb�x, y, s�. As expected, the beam cross
section in the laboratory frame is a pulsating ellipse for the case of a periodic-focusing quadrupole field
or a pulsating circular cross section for the case of a periodic-focusing solenoidal field.

PACS numbers: 29.27.Bd, 41.75.– i, 41.85.–p
I. INTRODUCTION
Periodic focusing accelerators and transport systems

[1–5] have a wide range of applications ranging from
basic scientific research to applications such as heavy
ion fusion, tritium production, spallation neutron sources,
and nuclear waste treatment, to mention a few examples
[6–9]. Of particular interest, at the high beam currents
and charge densities of practical interest, are the combined
effects of the applied focusing field and the intense self-
fields produced by the beam space charge and current on
determining detailed equilibrium, stability, and transport
properties [1]. Through analytical studies based on the
nonlinear Vlasov-Maxwell equations, and numerical simu-
lations using particle-in-cell models and nonlinear pertur-
bative simulation techniques, considerable progress has
been made in developing an improved understanding of the
1098-4402�99�2(7)�074401(29)$15.00
collective processes and nonlinear beam dynamics char-
acteristic of high-intensity beam propagation in periodic-
focusing and uniform-focusing transport systems [10–33].
However, despite the extensive literature on intense beam
equilibrium and stability properties, until the present pa-
per, the Kapchinskij-Vladimirskij (KV) beam equilibrium
[10,11], including its recent generalization to a rotating
beam in a periodic-focusing solenoidal field [21–23], has
been the only known periodically focused equilibrium
solution to the nonlinear Vlasov-Maxwell equations for an
intense beam propagating through an alternating-gradient
quadrupole or solenoidal field configuration. While
allowing for high space-charge intensity, the KV distri-
bution is nonetheless of very limited practical interest,
particularly because the (monoenergetic) distribution func-
tion has a highly-inverted (and unphysical) distribution
© 1999 The American Physical Society 074401-1
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in phase space and the corresponding density profile is
exactly uniform in the beam interior.

It is, therefore, very important to develop a framework
based on the nonlinear Vlasov-Maxwell equations [12,21]
that is able to investigate the equilibrium and stability prop-
erties of a far more general class of periodically focused
beam distribution functions. In a recent calculation [34],
Channell has developed a third-order Hamiltonian averag-
ing technique for investigating solutions to the nonlinear
Vlasov-Maxwell equations for systems subject to a peri-
odic external force. Following the Von Zeipel procedure,
the formalism [34] uses a canonical transformation given
by an expanded generating function to transform away the
rapidly oscillating terms [35–38] and end up with a Hamil-
tonian H that depends only on “slow” variables. The
purpose of the present analysis is to apply this averaging
technique to intense beam propagation through a periodic-
focusing lattice. The asymptotic expansion procedure is
expected to be valid [34] for sufficiently small phase ad-
vance (s & 60±, say).

To briefly summarize, the present analysis considers
a high-intensity non-neutral beam of positive ions (with
charge 1Zbe and rest mass mb) propagating in the z
direction with characteristic average axial momentum
gbmbbbc and directed kinetic energy �gb 2 1�mbc2. The
beam propagates through an applied field that produces
a transverse focusing force, 2�kx�s�xêx 1 ky�s�yêy�,
on the beam particles. Here, Vb � bbc � const is
the average axial velocity, gb � �1 2 b

2
b�21�2 is the

relative mass factor, c is the speed of light in vacuo,
s � bbct is the axial coordinate, the ion motion in the
beam frame is assumed to be nonrelativistic, and the
lattice functions, kx�s� and ky�s�, have axial periodicity
length S � const. Both the cases of a periodic-focusing
quadrupole field [Eq. (9)] and a periodic-focusing
solenoidal field [Eq. (11)] are considered in the present
analysis. Furthermore, the analysis assumes negligible
axial momentum spread, and the starting point is the
nonlinear Vlasov-Maxwell equations (3) and (4) for the
distribution function fb�x, y, x0, y0, s� and (normalized)
self-field potential c�x, y, s� in the transverse phase space
�x, y, x0, y0� in the laboratory frame [12,21]. Here, the
Hamiltonian for single-particle motion in the laboratory
frame is given in dimensionless units by [Eq. (6)]

Ĥ�x, y, x0, y0, s� �
1
2

�x02 1 y02�

1
1
2

�kx�s�x2 1 ky�s�y2�

1 c�x, y, s� ,

where kx�s 1 S� � kx�s� and ky�s 1 S� � ky�s� are the
(oscillating) lattice functions. The Hamiltonian Ĥ is for-
mally assumed to be of order e, a small dimensionless pa-
rameter proportional to the characteristic strength of the
074401-2
focusing field as measured by the lattice coefficients kx�s�
and ky�s�.

The organization of this paper is the following: The
assumptions and theoretical model are summarized in
Sec. II, including the nonlinear Vlasov-Maxwell equations
for the distribution function fb�x, y, x0, y0, s� and self-field
potential c�x, y, s� in the laboratory frame. In Sec. III, we
make use of Channell’s third-order Hamiltonian averaging
technique [34] to transform from laboratory-frame vari-
ables �x, y, x0, y0� to a new Hamiltonian H �X̃, Ỹ , X̃ 0, Ỹ 0, s�
in the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� correct to order e3. The
formalism employs a canonical transformation given by
an expanded generating function to transform away the
rapidly oscillating terms [35–38]. This leads to a Hamil-
tonian in the transformed variables of the form [Eq. (79)]

H �X̃, Ỹ , X̃ 0, Ỹ 0, s� �
1
2

�X̃ 02 1 Ỹ 02�

1
1
2

kf�X̃2 1 Ỹ 2� 1 c�X̃, Ỹ , s� ,

where kf � const. Of course, an important by-product
of the generating function analysis is the determina-
tion of the coordinate transformation that relates the
laboratory-frame variables �x, y, x0, y0� to the slow
variables �X̃, Ỹ , X̃ 0, Ỹ 0� [Eqs. (87)–(90)]. The major
simplification associated with transforming to the slow
variables �X̃, Ỹ , X̃ 0, Ỹ 0� is immediately evident from
the expression for H �X̃, Ỹ , X̃ 0, Ỹ 0, s�. In particular,
the focusing coefficient kf is both constant (indepen-
dent of s) and isotropic in the transverse plane. This
should be contrasted with the expression for the Hamil-
tonian Ĥ�x, y, x0, y0, s� in the laboratory frame, where
the focusing coefficients kx�s� and ky�s� are rapidly
oscillating functions of s. In Sec. IV, following a dis-
cussion of the nonlinear Vlasov-Maxwell equations for
Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� and c�X̃, Ỹ , s� in the transformed
variables, we present several examples of axisymmetric
equilibrium solutions, i.e., distribution functions F0

b�H 0�
with ≠�≠s � 0 and ≠�≠Q � 0, corresponding to beam
equilibria with circular cross sections in the transformed
variables [12,21]. Of particular note is the class of
distribution functions that satisfy ≠F0

b�H 0��≠H 0 # 0,
which can be shown to be stable [25,26]. Finally, in
Sec. V, we exploit the inverse coordinate transformation,
X̃�x, y, x0, y0, s�, Ỹ �x, y, x0, y0, s�, etc., to determine prop-
erties of the periodically focused distribution function
fb�x, y, s0, y0, s� in the laboratory frame correct to order
e3, consistent with the class of constant-radius circular
cross-section beam equilibria F0

b�H 0� in the transformed
variables. A wide range of important physical quanti-
ties are determined, including the distribution function
fb�x, y, x0, y0, s�; statistical averages such as the transverse
mean-square beam dimensions, �x2� �s� and � y2� �s�, and
the unnormalized transverse emittances, ex�s� and ey�s�;
and macroscopic properties such as the number density of
074401-2
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beam particles, nb�x, y, s� �
R
dx0 dy0 fb�x, y, x0, y0, s�,

and the self-field potential, c�x, y, s�, etc.
Finally, in the third-order averaging technique devel-

oped in Sec. III, it should be emphasized that the Hamil-
tonian is formally assumed to be of order e, a small
dimensionless parameter proportional to the characteris-
tic strength of the focusing field [see Eqs. (6) and (15)] as
measured by the lattice coefficients kx�s� and ky�s�. To
assure transverse confinement of the beam particles, the
space-charge potential c�x, y, s� in Eq. (6) is, of course,
smaller than or comparable in size to the applied focus-
ing potential, �1�2� �kx�s�x2 1 ky�s�y2�, and the kinetic
energy contribution, �1�2� �x02 1 y02�, is allowed to be
comparable in size to the applied focusing potential in
the sense of a maximal ordering analysis. In this re-
gard, treating the single-particle Hamiltonian to be of or-
der e ø 1, where e is proportional to the focusing-field
strength, is similar to the assumption made in standard
analyses of the particle dynamics in intense charged par-
ticle beams at moderate values of phase advance [1–5].
For completeness, in Sec. V D we provide a semiquanti-
tative estimate of the range of validity of the asymptotic
analysis in Secs. III and IV by relating the small parame-
ter e to the focusing-field strength and the phase advance
for the case of a sinusoidal quadrupole focusing lattice,
kq�s� � k̂q sin�2ps�S�.

II. VLASOV-MAXWELL DESCRIPTION AND
BASIC ASSUMPTIONS

In the present analysis, we consider a thin, intense
non-neutral ion beam with characteristic radius rb and
average axial momentum gbmbbbc propagating in the
z direction through a periodic focusing field with axial
periodicity length S. Here, rb ø S is assumed, �gb 2

1�mbc2 is the directed axial kinetic energy of the beam
ions, gb � �1 2 b

2
b�21�2 is the relativistic mass factor,

Vb � bbc is the average axial velocity, 1Zbe and mb

are the ion charge and rest mass, respectively, and c
is the speed of light in vacuo. The axial momentum
spread of the beam ions is assumed to be negligibly small,
and the ion motion in the beam frame is assumed to be
nonrelativistic. We introduce the scaled time variable
s � bbct and the (dimensionless) transverse velocities
x0 � dx�ds and y0 � dy�ds. Then, within the context
of the assumptions summarized above, the nonlinear beam
dynamics in the transverse laboratory-frame phase space
�x, y, x0, y0� is described self-consistently by the nonlinear
Vlasov-Maxwell equations for the distribution function
fb�x, y, x0, y0, s� and the normalized self-field potential
c�x, y, s� � Zbef�x,y, s��g

3
bmbb

2
bc2, where f�x,y, s�

is the electrostatic potential. For a thin beam �rb ø S�,
we take the applied transverse focusing force on a beam
particle to be of the form

Ffoc � 2�kx�s�xêx 1 ky�s�yêy� , (1)
074401-3
where �x, y� is the transverse displacement from the beam
axis and the s-dependent focusing coefficients satisfy

kx�s 1 S� � kx�s� ,

ky�s 1 S� � ky�s� ,
(2)

where S � const is the axial periodicity length. The
Vlasov-Maxwell equations for fb�x, y, x0, y0, s� and
c�x, y, s� can then be expressed as [12,21]Ω

≠

≠s
1 x0

≠

≠x
1 y0

≠

≠y
2∑

kx�s�x 1
≠c

≠x

∏
≠

≠x0
2

∑
ky�s�y 1

≠c

≠y

∏
≠

≠y0

æ
fb � 0 ,

(3)

and √
≠2

≠x2
1

≠2

≠y2

!
c � 2

2pKb
Nb

Z
dx0 dy0 fb . (4)

Here, nb�x, y, s� �
R
dx0 dy0 fb�x, y, x0, y0, s� is the num-

ber density of the beam ions, and the constants, Kb and
Nb , are the self-field perveance and the number of beam
ions per unit axial length, respectively, defined by

Kb �
2NbZ

2
be2

g
3
bmbb

2
bc2

� const ,

Nb �
Z
dx dy dx0 dy0 fb � const .

(5)

The nonlinear Vlasov-Maxwell equations (3) and (4) can
be used to investigate detailed beam propagation and
stability properties [10–26] over a wide range of system
parameters and choices of periodic lattice functions, kx�s�
and ky�s�. As a general remark, it is important to
note that the characteristics of the Vlasov equation (3)
correspond to the single-particle equations of motion in
the applied field plus self-generated fields. For example,
the coefficient of ≠�≠x is dx�ds � x0, the coefficient of
≠�≠x0 is dx0�ds � 2kx�s�x 2 ≠c�≠x, etc. Moreover,
the laboratory-frame Hamiltonian Ĥ for transverse single-
particle motion consistent with Eqs. (3) and (4) is given
(in dimensionless units) by

Ĥ�x, y, x0, y0, s� �
1
2

�x02 1 y02�

1
1
2

�kx�s�x2 1 ky�s�y2�

1 c�x, y, s� . (6)

For Ĥ specified by Eq. (6), Hamilton’s equations,
dx��ds � ≠Ĥ�≠x0

� and dx0
��ds � 2≠Ĥ�≠x�, then

give the equations of motion

d2

ds2
x�s� 1 kx�s�x�s� � 2

≠

≠x
c�x, y, s� ,

d2

ds2
y�s� 1 ky�s�y�s� � 2

≠

≠y
c�x, y, s� ,

(7)
074401-3
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for the transverse displacement, x��s� � x�s�êx 1

y�s�êy , of an individual beam ion in the laboratory frame.
In Sec. III, we will make use of Channell’s third-order
Hamiltonian averaging technique [34] to transform away
the rapidly oscillating terms [35–38] in Eq. (6) and end
up with a Hamiltonian H that depends only on slow
variables �X,Y ,X0, Y 0�.

In subsequent sections, we will consider two classes of
periodic-focusing lattices. The first corresponds to an ap-
plied alternating-gradient quadrupole magnetic field [12],

Bfoc
q �x� � B0

q�s� �yêx 1 xêy� , (8)

with coupling coefficient defined by

kx�s� � 2ky�s� � kq�s� �
ZbeB0

q�s�
gbmbbbc2 , (9)

where B0
q�s� � �≠Bqx�≠y��0,0� � �≠Bqy�≠x��0,0�. The sec-

ond corresponds to a periodic-focusing solenoidal mag-
netic field [12,21],

Bfoc
sol �x� � Bz�s�êz 2

1
2
B0
z�s� �xêx 1 yêy� , (10)

with coupling coefficient defined by

kx�s� � ky�s� � ks�s� �

"
ZbeBz�s�

2gbmbbbc2

#2

, (11)

where B0
z�s� � �≠Bz�≠s��0,0�. An important distinc-

tion between the two cases is evident. For a periodic
quadrupole lattice, the average of kq�s� over one lattice
period S is zero,

RS
0 ds kq�s� � 0, and the periodic solu-

tions to Eqs. (3) and (4) typically correspond to elliptical
cross-section beams with oscillating (as a function of s)
major and minor transverse dimensions, a�s� and b�s�.
On the other hand, for a periodic-focusing solenoidal field,
the average of ks�s� over one lattice period S is nonzero,RS

0 ds ks�s� � Sk̄s fi 0, and periodic solutions to Eqs. (3)
and (4) typically correspond to circular cross-section
beams with oscillating root-mean-square (rms) beam
radius, rb�s�. Furthermore, for the case of a solenoidal
focusing field [Eq. (11)], the nonlinear Vlasov-Maxwell
equations (3) and (4) are valid in a frame of reference
rotating about the beam axis at the Larmor frequency [21],
VL�s� � 2vcb�s��2 � 2ZbeBz�s��2gbmbc.

Following the third-order canonical transformation in
Sec. III to the new Hamiltonian H in the slow variables
�X, Y ,X 0, Y 0�, in Secs. IV and V we examine the nonlin-
ear Vlasov-Maxwell equations in the transformed variables
and utilize the back-transformation to laboratory-frame
variables �x, y, x0, y0�. In this regard, for specific choices of
equilibrium distribution function F0

b�H 0� with ≠�≠s � 0
in the transformed variables, it is important to determine
key physical properties of the (periodically focused) ion
beam distribution function fb�x, y, x0, y0, s� in the labora-
tory frame. For future reference, in laboratory-frame vari-
ables, we denote the statistical average of a phase function
x�x, y, x0, y0, s� by
074401-4
�x� �s� �
1
Nb

Z
dx dy dx0 dy0 xfb , (12)

where Nb �
R
dx dy dx0 dy0 fb � const is the number of

beam ions per unit axial length. One key property of the
beam distribution function fb�x, y, x0, y0, s� is the density
profile defined by

nb�x, y, s� �
Z
dx0 dy0 fb�x, y, x0, y0, s� . (13)

Other important properties include the rms beam radius,
rb�s�, the rms x and y dimensions of the beam, a�s� and
b�s�, the unnormalized total transverse beam emittance,
e�s�, and the unnormalized x- and y-transverse beam emit-
tances, ex�s� and ey�s�. These quantities are defined by
r2
b�s� � �x2 1 y2� ,

a2�s� � �x2�, b2�s� � � y2� ,

e2�s� � 4��x02 1 y02� �x2 1 y2� 2 �xx0 1 yy0�2� , (14)

e2
x �s� � 4��x02� �x2� 2 �xx0�2� ,

e2
y �s� � 4�� y02� �y2� 2 � yy0�2� ,

where the statistical averages, �x�, are defined according
to Eq. (12).

III. CANONICAL TRANSFORMATION OF
HAMILTONIAN AND PARTICLE COORDINATES

TO SLOW VARIABLES

In this section, we make use of Channell’s third-order
Hamiltonian averaging technique [34] to transform
from laboratory-frame variables �x, y, x0, y0� to the
slow variables �X, Y ,X 0, Y 0�, with a new Hamiltonian
H �X,Y ,X 0, Y 0, s�. The formalism employs a canonical
transformation given by an expanded generating function
[34] to transform away the rapidly oscillating terms
[35–38]. We formally express the laboratory-frame
Hamiltonian H�x, y, x0, y0, s� as

H�x, y, x0, y0, s� � eĤ�x, y, x0, y0, s�

� e

∑
1
2

�x02 1 y02� 1 V �x, y, s�

1 c�x, y, s�
∏

, (15)

where Ĥ is defined in Eq. (6), and e is a small dimension-
less parameter. In Eq. (15), the applied focusing potential
V �x, y, s� is expressed as

V �x, y, s� � U�x, y� 1 Ṽ �x, y, s� , (16)
where U�x, y� is the steady (s-independent) contribution,
and Ṽ �x, y, s� is the rapidly oscillating part. For future
reference, from Eqs. (6), (9), and (11) we express

U�x, y� �
1
2

�k̄xx2 1 k̄yy
2� ,

Ṽ �x, y, s� �
1
2

�k̃x�s�x2 1 k̃y�s�y2� ,
(17)

where the oscillating focusing coefficients are defined
by k̃x�s� � kx�s� 2 k̄x and k̃y�s� � ky�s� 2 k̄y , and the
074401-4
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average focusing coefficients are defined by k̄x �
S21

RS
0 ds kx�s� and k̄y � S21

RS
0 ds ky�s�. For an

alternating-gradient quadrupole field with
RS

0 ds kq�s� � 0
[Eq. (9)], it follows that

k̄x � 2k̄y � 0 ,

k̃x�s� � 2k̃y�s� � kq�s� ,
(18)

and therefore Uq�x, y� � 0. On the other hand, for a
periodic-focusing solenoidal field [Eq. (11)] with k̄s �
S21

RS
0 ds ks�s� fi 0, it follows that

k̄x � k̄y � k̄s fi 0 ,

k̃x�s� � k̃y�s� � k̃s�s� � ks�s� 2 k̄s ,
(19)

and therefore Usol�x, y� is generally nonzero.

A. Canonical transformation

We introduce a near-identity canonical transfor-
mation where the expanded generation function [34]
074401-5
S�x, y,X 0,Y 0, s� is defined by

S�x, y,X 0, Y 0, s� � xX 0 1 yY 0

1
X̀
n�1

enSn�x, y,X 0, Y 0, s� . (20)

Here, �x, y, x0, y0� are the laboratory-frame variables, and
�X, Y ,X 0, Y 0� are the transformed variables. The trans-
formed Hamiltonian H �X, Y ,X 0, Y 0, s� in the new vari-
ables is given by

H �X,Y ,X 0, Y 0, s� � H�x, y, x0, y0, s�

1
≠

≠s
S�x, y,X 0,Y 0, s� , (21)

or equivalently, expressing H �
P`
n�1 en 3

Hn�X,Y ,X 0,Y 0, s� and making use of Eq. (15), Eq. (21)
becomes
X̀
n�1

enHn�X,Y ,X 0, Y 0, s� � e

∑
1
2

�x02 1 y02� 1 V �x, y, s� 1 c�x, y, s�
∏

1
X̀
n�1

en
≠

≠s
Sn�x, y,X 0, Y 0, s� . (22)
To determine the transformed Hamiltonian
H �X, Y ,X 0, Y 0, s�, note that the variables �x, y, x0, y0�
occurring on the right-hand sides of Eqs. (21) and (22)
have to be expressed in terms of �X, Y ,X 0, Y 0, s�, i.e.,
x � x�X,Y ,X 0, Y 0, s�, x0 � x0�X, Y ,X 0,Y 0, s�, etc. In
this regard, the coordinate transformation generated by
Eq. (20) is given by

X �
≠S
≠X 0

� x 1
X̀
n�1

en
≠

≠X 0
Sn�x, y,X 0, Y 0, s� ,

Y �
≠S
≠Y 0

� y 1
X̀
n�1

en
≠

≠Y 0
Sn�x, y,X 0, Y 0, s� ,

(23)

and

x0 �
≠S
≠x

� X 0 1
X̀
n�1

en
≠

≠x
Sn�x, y,X 0, Y 0, s� ,

y0 �
≠S
≠y

� Y 0 1
X̀
n�1

en
≠

≠y
Sn�x, y,X 0, Y 0, s� .

(24)

Or, solving Eq. (23) iteratively for x�X, Y ,X 0, Y 0, s� and
y�X,Y ,X 0,Y 0, s� gives

x � X 2
X̀
n�1

en
≠

≠X 0
Sn�x, y,X 0, Y 0, s�

� X 1
X̀
n�1

enxn�X,Y ,X 0,Y 0, s� ,

y � Y 2
X̀
n�1

en
≠

≠Y 0
Sn�x, y,X 0,Y 0, s�

(25)

� Y 1
X̀
n�1

enyn�X,Y ,X 0,Y 0, s� ,

where
x1�X, Y ,X 0, Y 0, s� � 2
≠

≠X 0
S1�X,Y ,X 0,Y 0, s� ,

y1�X, Y ,X 0, Y 0, s� � 2
≠

≠Y 0
S1�X,Y ,X 0,Y 0, s� ,

(26)

to leading order, etc. Similarly, solving Eq. (24) itera-
tively for x0�X,Y ,X 0,Y 0, s� and y0�X,Y ,X 0, Y 0, s� gives

x0 � X 0 1
X̀
n�1

enx0n�X, Y ,X 0, Y 0, s� ,

y0 � Y 0 1
X̀
n�1

eny0n�X, Y ,X 0, Y 0, s� .
(27)

where

x01�X, Y ,X 0,Y 0, s� �
≠

≠X
S1�X, Y ,X 0, Y 0, s� ,

y01�X, Y ,X 0,Y 0, s� �
≠

≠Y
S1�X, Y ,X 0, Y 0, s� ,

(28)

to leading order, etc.
We now make use of Eqs. (25) and (27) to expand the

Hamiltonian H � eĤ defined in Eq. (15). For example,
making use of x � X 1 ex1 1 e2x2 1 · · · and y �
Y 1 ey1 1 e2y2 1 · · ·, it is readily shown from Eqs. (16)
and (17) that the applied focusing potential can be
expressed as

V �x, y, s� � U�X, Y � 1 Ṽ0�X,Y , s�

1 eṼ1�X,Y ,X 0, Y 0, s�

1 e2Ṽ2�X,Y ,X 0,Y 0, s� 1 · · · , (29)
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correct to order e2. Here, the steady potential U�X,Y � and the oscillating components, Ṽj�X, Y ,X0,Y 0, s�, j � 0, 1, 2,
are defined by

U�X,Y� �
1
2

�k̄xX2 1 k̄yY
2� ,

Ṽ0�X,Y , s� �
1
2

�k̃x�s�X2 1 k̃y�s�Y2� ,

Ṽ1�X,Y ,X 0, Y 0, s� � �k̃x�s� 1 k̄x�x1X 1 �k̃y�s� 1 k̄y�y1Y ,
(30)

Ṽ2�X,Y ,X 0, Y 0, s� � �k̃x�s� 1 k̄x�
µ
x2X 1

1
2
x2

1

∂
1 �k̃y�s� 1 k̄y�

µ
y2Y 1

1
2
y2

1

∂
.

In Eq. (30), the oscillatory orbit perturbations, x1�X, Y ,X 0, Y 0, s�, x2�X, Y ,X 0, Y 0, s�, etc., are yet to be de-
termined from Eq. (25). Similarly, we Taylor expand the self-field potential c�x, y, s� � c�X 1 ex1 1

e2x2 1 · · · , Y 1 ey1 1 e2y2 1 · · · , s� occurring in the definition of H in Eq. (15). This readily gives

c�x, y, s� � c�X, Y , s� 1 ec̃1�X,Y ,X 0,Y 0, s� 1 e2c̃2�X,Y ,X 0,Y 0, s� 1 · · · . (31)

Here, c�X, Y , s� is the slowly varying self-field potential, and the oscillatory components, c̃1�X,Y ,X 0, Y 0, s� and
c̃2�X, Y ,X 0, Y 0, s�, are defined by

c̃1�X, Y ,X 0, Y 0, s� �

µ
x1

≠

≠X
1 y1

≠

≠Y

∂
c�X, Y , s� ,

c̃2�X, Y ,X 0, Y 0, s� �

µ
x2

≠

≠X
1 y2

≠

≠Y
1

1
2
x2

1
≠2

≠X2
1

1
2
y2

1
≠2

≠Y2
1 x1y1

≠2

≠X≠Y

∂
c�X, Y , s� .

(32)

Finally, making use of x0 � X 0 1 ex01 1 e2x02 1 · · · and y0 � Y 0 1 ey01 1 e2y02 1 · · · in the kinetic energy contribu-
tion, �1�2� �x02 1 y02�, to the definition of H � eĤ in Eq. (15), we obtain

1
2

�x02 1 y02� �
1
2

�X 02 1 Y 02� 1 e�x01X
0 1 y01Y

0� 1 e2

∑
�x02X

0 1 y02Y
0� 1

1
2

�x021 1 y021 �
∏

1 · · · . (33)

In Eq. (33), the oscillatory velocity perturbations, x01�X,Y ,X 0,Y 0, s�, x02�X, Y ,X 0, Y 0, s�, etc., are yet to be determined from
Eqs. (24) and (27).

We now collect together the results in Eqs. (29)–(33) and substitute them into the expression for the transformed
Hamiltonian H �X,Y ,X 0, Y 0, s� �

P
enHn�X, Y ,X 0, Y 0, s� in Eq. (22). This readily givesX̀

n�1

enHn�X,Y ,X 0, Y 0, s� � e

Ω
1
2

�X 02 1 Y 02� 1 U�X, Y � 1 c�X,Y , s� 1 Ṽ0�X,Y , s�

1 e��x01X
0 1 y01Y

0� 1 Ṽ1�X, Y ,X 0, Y 0, s� 1 c̃1�X,Y ,X 0, Y 0, s��

1 e2

∑
�x02X

0 1 y02Y
0� 1

1
2

�x021 1 y021 � 1 Ṽ2�X,Y ,X 0, Y 0, s�

1 c̃2�X, Y ,X 0, Y 0, s�
∏

1 · · ·

æ

1
X̀
n�1

en
≠

≠s
Sn���x�X, Y ,X 0, Y 0, s�, y�X,Y ,X 0, Y 0, s�,X 0,Y 0, s��� , (34)

where the oscillatory potentials Ṽ0, Ṽ1, Ṽ2, c̃1, and c̃2 are defined in Eqs. (30) and (31). The main objective
of the present analysis is to transform to new coordinates �X,Y ,X 0,Y 0� such that the transformed Hamil-
tonian H �X,Y ,X 0,Y 0, s� �

P`
n�1 enHn�X,Y ,X 0, Y 0, s� is slowly varying. Thus far, the generating function

S�x, y,X 0, Y 0, s� �
P`
n�1 enSn�x, y,X 0,Y 0, s� has been arbitrary and unspecified. We now make use of this freedom

to choose 	Sn
 in such a way that the transformed Hamiltonian H �X,Y ,X 0,Y 0, s� is slowly varying correct to third
order in the expansion parameter e. The analysis will involve s integrations over the periodic lattice functions
k̃x�s 1 S� � k̃x�s� and k̃y�s 1 S� � k̃y�s�. For future reference, it is convenient to introduce the definitions of
several key quantities that occur in the subsequent analysis. The definitions are
074401-6 074401-6
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ax�s� �
Z s

0
ds k̃x�s�, ay�s� �

Z s

0
ds k̃y�s� ,

�ax� �
1
S

Z S

0
dsax�s�, �ay� �

1
S

Z S

0
dsay�s� ,

bx�s� �
Z s

0
ds�ax�s� 2 �ax��, by�s� �

Z s

0
ds�ay�s� 2 �ay�� ,

�bx� �
1
S

Z S

0
dsbx�s�, �by� �

1
S

Z S

0
dsby�s� ,

(35)

dx�s� � a2
x�s� 2 2k̃x�s�bx�s�, dy�s� � a2

y�s� 2 2k̃y�s�by�s� ,

�dx� �
1
S

Z S

0
ds dx�s�, �dy� �

1
S

Z S

0
ds dy�s� .
We now solve Eq. (34) order by order, beginning with
order e.

1. Canonical transformation to order e

Setting the coefficient of the terms of order e equal
to zero in Eq. (34) gives for the first-order transformed
Hamiltonian H1�X,Y ,X0, Y 0, s�

H1 �
1
2

�X 02 1 Y 02� 1 U�X, Y � 1 c�X,Y , s�

1 Ṽ0�X,Y , s� 1
≠

≠s
S1 , (36)

where U�X,Y� is the steady confining potential defined in
Eq. (30), c�X,Y , s� is the slowly varying self-field poten-
tial, and the lowest-order oscillatory confining potential
Ṽ0�X, Y , s� is defined in Eq. (30). To assure that H1 is
slowly varying, we choose the first-order generating func-
tion S1 in Eq. (36) so that the final two terms on the right-
hand side of Eq. (36) exactly cancel. Integrating from
s � 0, this readily gives

S1�X, Y , s� � 2
Z s

0
ds Ṽ0�X,Y , s�

� 2
1
2

�ax�s�X2 1 ay�s�Y2� , (37)

where ax�s� and ay�s� are defined in Eq. (35). Be-
cause ≠S1�≠s � 2Ṽ0�X,Y , s�, the expression for
H1�X, Y ,X 0, Y 0, s� in Eq. (36) reduces to

H1 �
1
2

�X 02 1 Y 02� 1 U�X, Y � 1 c�X,Y , s� , (38)

which is slowly varying because of the choice of S1 in
Eq. (37). From Eqs. (26), (28), and (37), it also follows
that the first-order transverse displacement coordinates
�x1, y1� and velocity coordinates �x01, y01� are given by

x1 � 2
≠

≠X 0
S1 � 0 ,

y1 � 2
≠

≠Y 0
S1 � 0 ,

(39)

and
x01 �
≠S1

≠X
� 2ax�s�X ,

y01 �
≠S1

≠Y
� 2ay�s�Y .

(40)

Eqs. (39) and (40) lead to several simplifications in the
subsequent analysis. In particular, from Eqs. (30), (32),
(39), and (40), it follows that the first- and second-order
contributions to the oscillatory focusing-field potential are
given by

Ṽ1�X,Y ,X 0, Y 0, s� � 0 ,

Ṽ2�X,Y ,X 0, Y 0, s� � �k̃x�s� 1 k̄x�x2X
(41)

1 �k̃y�s� 1 k̄y�y2Y ,

and the first- and second-order contributions to the oscil-
latory self-field potential are given by

c̃1�X,Y ,X 0, Y 0, s� � 0 ,

c̃2�X,Y ,X 0, Y 0, s� �

µ
x2

≠

≠X
1 y2

≠

≠Y

∂
c�X, Y , s� .

(42)

In Eqs. (41) and (42), the second-order perturbed orbits
x2�X,Y ,X 0, Y 0, s� and y2�X,Y ,X 0, Y 0, s� are yet to be
determined.

2. Canonical transformation to order e2

We now make use of Ṽ1 � 0 � c̃1 and x1 � 0 � y1

and set the coefficient of e2 equal to zero in Eq. (34).
This gives for the second-order transformed Hamiltonian
H2�X,Y ,X 0, Y 0, s�

H2 � x01X
0 1 y01Y

0 1
≠

≠s
S2

� 2ax�s�XX 0 2 ay�s�YY 0 1
≠

≠s
S2 , (43)

where �x01, y01� is defined in Eq. (40), and the coefficients
ax�s� and ay�s� are defined in Eq. (35). We rewrite
Eq. (43) in the equivalent form
074401-7
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H2 � 2�ax�XX 0 2 �ay�YY 0 2 �ax�s� 2 �ax��XX 0 2 �ay�s� 2 �ay��YY 0 1
≠

≠s
S2 , (44)

where �ax� � S21
RS

0 dsax�s� and �ay� � S21
RS

0 dsay�s�. To assure that H2�X, Y ,X 0, Y 0, s� is slowly varying, we
choose the second-order generating function S2 in Eq. (44) such that

S2 � XX 0
Z s

0
ds�ax�s� 2 �ax�� 1 YY 0

Z s

0
ds�ay�s� 2 �ay�� � bx�s�XX 0 1 by�s�YY 0, (45)
where the oscillatory coefficients bx�s� and by�s� are
defined in Eq. (35). Substituting Eq. (45) into Eq. (44)
then gives for the second-order transformed Hamiltonian
H2�X, Y ,X 0, Y 0, s�

H2 � 2�ax�XX 0 2 �ay�YY 0, (46)

where the coefficients �ax� and �ay� are constants (inde-
pendent of s). Furthermore, from Eqs. (24), (25), (27), and
(45), the second-order transverse displacement coordinates
�x2, y2� and velocity coordinates �x02, y02� are given by

x2 � 2
≠

≠X 0
S2 � 2bx�s�X ,

y2 � 2
≠

≠Y 0
S2 � 2by�s�Y ,

(47)

and

x02 �
≠

≠X
S2 � bx�s�X 0,

y02 �
≠

≠Y
S2 � by�s�Y 0.

(48)

As a general remark, from the definitions of the oscillatory
coefficients, bx�s� and by�s�, in Eq. (35), we note that
074401-8
bx�s 1 S� � bx�s� ,

by�s 1 S� � by�s� ,
(49)

and that bx�s � 0� � 0 � bx�s � S� and by�s � 0� �
0 � by�s � S�.

3. Canonical transformation to order e3

Returning to the expression for the transformed Hamil-
tonian H in Eq. (34), we set the coefficient of e3 equal to
zero and make use of the definitions of Ṽ2�X,Y ,X 0,Y 0, s�
and c̃2�X,Y ,X 0, Y 0, s� in Eqs. (41) and (42). This gives,
for the third-order Hamiltonian H3�X, Y ,X 0, Y 0, s�,

H3 � x02X
0 1 y02Y

0 1
1
2

�x021 1 y021 �

1 �k̃x�s� 1 k̄x�x2X 1 �k̃y�s� 1 k̄y�y2Y

1 x2
≠c

≠X
1 y2

≠c

≠Y
1

≠S3

≠s
. (50)

Making use of the expressions for �x01, y01�, �x2, y2�, and
�x02, y02� in Eqs. (40), (47), and (48), it is straightforward
to show that Eq. (50) can be expressed as
H3 � bx�s�
∑
X 02 2 k̄xX

2 2 X
≠c

≠X

∏
1 by�s�

∑
Y 02 2 k̄yY

2 2 Y
≠c

≠Y

∏
1

1
2

�a2
x �s� 2 2k̃x�s�bx�s��X2

1
1
2

�a2
y �s� 2 2k̃y�s�by�s��Y2 1

≠S3

≠s
, (51)

where the s-dependent factors bx�s�, by�s�, ax�s�, and ay�s� are defined in Eq. (35) in terms of the periodic lattice
functions k̃x�s 1 S� � k̃x�s� and k̃y�s 1 S� � k̃y�s�. For the applications of interest here, not only are the averagesRS

0 ds k̃x�s� � 0 and
RS

0 ds k̃y�s� � 0, but the lattice functions k̃x�s� and k̃y�s� are assumed to have odd half-period
symmetry (see examples in Fig. 1) with

k̃x�s 2 S�2� � 2k̃x�2�s 2 S�2�� ,

k̃y�s 2 S�2� � 2k̃y�2�s 2 S�2�� .
(52)

Some straightforward integration by parts that makes use of the definitions in Eq. (35) shows that the averages �bx� and
�by� can be expressed as

�bx� �
1

2S

Z S

0
ds�s2 2 sS�k̃x�s� �

1
2S

Z S

0
ds

µ
s 2

S
2

∂2

k̃x�s� ,

�by� �
1

2S

Z S

0
ds�s2 2 sS�k̃y�s� �

1
2S

Z S

0
ds

µ
s 2

S
2

∂2

k̃y�s� ,
(53)

and the averages �ax� and �ay� can be expressed as
074401-8



PRST-AB 2 APPROXIMATE PERIODICALLY FOCUSED SOLUTIONS 074401 (1999)
�ax� � 2
1
S

Z S

0
ds sk̃x�s� � 2

1
S

Z S

0
ds

µ
s 2

S
2

∂
k̃x�s� ,

�ay� � 2
1
S

Z S

0
ds sk̃y�s� � 2

1
S

Z S

0
ds

µ
s 2

S
2

∂
k̃y�s� .

(54)

It therefore follows from Eqs. (52)–(54) that

�bx� � 0 � �by� , (55)

whereas �ax� and �ay� are generally nonzero.
We now return to the third-order Hamiltonian in Eq. (51) and choose the generating function S3 to exactly cancel all

rapidly oscillating terms on the right-hand side of Eq. (51). Because �bx� � 0 � �by�, we pick

S3 � 2
Z s

0
dsbx�s�

"
X 02 2 k̄xX

2 2 X
≠c

≠X

#
2

Z s

0
dsby�s�

"
Y 02 2 k̄yY

2 2 Y
≠c

≠Y

#

2
1
2

√Z s

0
ds�dx�s� 2 �dx��

!
X2 2

1
2

√Z s

0
ds�dy�s� 2 �dy��

!
Y2. (56)

Here, dx�s� � a2
x �s� 2 2k̃x�s�bx�s� and dy�s� � a2

y �s� 2 2k̃y�s�by�s�, and �dx� � S21
RS

0 ds dx�s� and �dy� �
S21

RS
0 ds dy�s�. Substituting Eq. (56) into Eq. (51) then gives for the slowly varying third-order Hamiltonian

H3�X, Y ,X 0, Y 0, s�

H3 �
1
2

�dx�X2 1
1
2

�dy�Y2. (57)

For future reference, we further simplify the expressions for �dx� and �dy�. Making use of Eq. (35), k̃x�s� � dax�ds
and dbx�ds � ax�s� 2 �ax�, gives

�dx� �
1
S

Z S

0
ds

µ
a2
x 2 2

dax

ds
bx

∂
�

1
S

Z S

0
ds

∑
a2
x 2 2

d
ds

�axbx� 1 2ax�ax 2 �ax��
∏

. (58)

Making use of the fact that bx�s� and by�s� vanish at s � 0 and s � S, Eq. (58) readily gives the compact
representations

�dx� �
1
S

Z S

0
ds�3a2

x �s� 2 2�ax�2� ,

�dy� �
1
S

Z S

0
ds�3a2

y �s� 2 2�ay�2� .
(59)

Finally, making use of Eqs. (24), (25), (27), and (56), the third-order transverse displacement coordinates �x3, y3� and
velocity coordinates �x03, y03� are given by

x3 � 2
≠S3

≠X 0
� 2

Z s

0
dsbx�s�X 0,

y3 � 2
≠S3

≠Y 0
� 2

Z s

0
dsby�s�Y 0,

(60)

and

x03 �
≠S3

≠X
2 x2

≠2S1

≠X2
�

Z s

0
dsbx�s�

"
2k̄xX 1

≠

≠X

√
X

≠c

≠X

!#
1

Z s

0
dsby�s�

"
≠

≠X

√
Y

≠c

≠Y

!#

2

√Z s

0
ds�dx�s� 2 �dx��

!
X 2 ax�s�bx�s�X ,

y03 �
≠S3

≠Y
2 y2

≠2S1

≠Y 2
�

Z s

0
dsby�s�

"
2k̄yY 1

≠

≠Y

√
Y

≠c

≠Y

!#
1

Z s

0
dsbx�s�

"
≠

≠Y

√
X

≠c

≠X

!# (61)

2

√Z s

0
ds�dy�s� 2 �dy��

!
Y 2 ay�s�by�s�Y .
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Here, use has been made of the expressions for S1�X, Y , s�
and �x2, y2� in Eqs. (37) and (47), and the O�e3� con-
tributions to x03 and y03 from eS1�X,Y , s� � eS1�x 2

e2x2, y 2 e2y2, s�, have been included by Taylor expan-
sion in Eq. (24).

B. Third-order transformed Hamiltonian and
coordinate transformation

The averaging approach developed in Sec. III A rep-
resents a powerful formalism for determining the third-
order slowly varying Hamiltonian H �X, Y ,X 0, Y 0, s� �
eH1 1 e2H2 1 e3H3 1 · · · and the correspond-
ing coordinate transformations x�X, Y ,X 0, Y 0, s� �
X 1 ex1 1 e2x2 1 e3x3 1 · · ·, x0�X, Y ,X 0, Y 0, s� �
X 0 1 ex01 1 e2x02 1 e3x03 1 · · ·, etc. From Eqs. (38),
(46), and (57), we obtain, correct to third order in e,

H �X, Y ,X 0, Y 0, s� �
1
2

�X 02 1 Y 02� 1 U�X, Y �

1 c�X, Y , s� 2 ��ax�XX 0 1 �ay�YY 0�

1
1
2

�dx�X2 1
1
2

�dy�Y2, (62)

where �ax�, �ay�, �dx�, and �dy� are defined in Eqs. (35)
and (59), and we have set the expansion parameter e � 1.
In Eq. (62), U�X, Y � is the steady focusing potential de-
fined by U�X,Y� � �1�2� �k̄xX2 1 k̄yY 2�, and c�X, Y , s�
is the slowly varying self-field potential in the transformed
variables. It is useful to introduce the average focusing
coefficients kfx and kfy defined by

kfx �
3
S

Z S

0
ds�a2

x �s� 2 �ax�2� � const ,

kfy �
3
S

Z S

0
ds�a2

y �s� 2 �ay�2� � const .
(63)

Rearranging terms in Eq. (62), and making use of
Eqs. (59) and (63), it follows that Eq. (62) can be ex-
pressed in the equivalent form

H �X, Y ,X 0, Y 0, s� �
1
2

��X 0 2 �ax�X�2 1 �Y 0 2 �ay�Y�2�

1 U�X,Y� 1
1
2

�kfxX2 1 kfyY
2�

1 c�X,Y , s� . (64)

For completeness, it should be pointed out that if we in-
troduce the additional canonical transformation (known as
a fiber transformation) to variables �X̃, Ỹ , X̃ 0, Ỹ 0� defined
by [38]

X̃ � X, Ỹ � Y ,

X̃ 0 � X 0 2 �ax�X, Ỹ 0 � Y 0 2 �ay�Y ,
(65)

then the transformed Hamiltonian in Eq. (64) can also be
expressed as
074401-10
H �X̃, Ỹ , X̃ 0, Ỹ 0, s� �
1
2

�X̃ 02 1 Ỹ 02�

1 U�X̃, Ỹ� 1 c�X̃, Ỹ , s�

1
1
2

�kfxX̃2 1 kfyỸ
2� . (66)

For future reference in Sec. IV, we now simplify the
expression for the transformed Hamiltonian H defined
in Eq. (64) for the two cases corresponding to: (a) the
alternating-gradient quadrupole focusing field in Eqs. (9)
and (18) and (b) the periodic-focusing solenoidal field in
Eqs. (11) and (19).

1. Transformed Hamiltonian for an
alternating-gradient quadrupole field

In this case, k̃x�s� � 2k̃y�s� � kq�s� and k̄x �
2k̄y � S21

RS
0 ds kq�s� � 0, and it follows that

ax�s� � 2ay�s� � aq�s� �
Z s

0
ds kq�s� ,

�ax� � 2�ay� � �aq� �
1
S

Z S

0
dsaq�s� ,

bx�s� � 2by�s� � bq�s� �
1
S

Z s

0
ds�aq�s� 2 �aq�� ,

�bx� � 2�by� � �bq� � 0 , (67)

dx�s� � dy�s� � dq�s� � a2
q�s� 2 2kq�s�bq�s� ,

�dx� � �dy� � �dq� �
1
S

Z S

0
ds�3a2

q�s� 2 2�aq�2� ,

kfx � kfy � kfq �
3
S

Z S

0
ds�a2

q�s� 2 �aq�2� .

From Eqs. (64) and (67), for a periodic quadrupole lattice
with kq�s 1 S� � kq�s� and S21

RS
0 ds kq�s� � 0,

it follows that the slowly varying Hamiltonian
Hq�X,Y ,X 0,Y 0, s� is given correct to third order in
e by the expression

Hq�X,Y ,X 0, Y 0, s� �
1
2

��X 0 2 �aq�X�2

1 �Y 0 1 �aq�Y �2�

1
1
2

kfq�X2 1 Y 2� 1 c�X,Y , s� .

(68)
Here, kfq � �3�S�

RS
0 ds�a2

q�s� 2 �aq�2� is the aver-
age quadrupole focusing coefficient, and use has been
made of Uq�X,Y � � �1�2� �k̄xX2 1 k̄yY 2� � 0 becauseRS

0 ds kq�s� � 0.
For purposes of illustration, listed in Table I are the

values of the lattice functions defined in Eq. (67) for
the choice of a periodic-focusing quadrupole lattice with
kq�s� � k̂q sin�2ps�S�, where k̂q � const. Here, we
have introduced the dimensionless amplitude defined by
lq � k̂qS2�2p and the lattice wave number defined by
074401-10
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FIG. 1. Examples of periodic-focusing lattice functions with
odd half-period symmetry [Eq. (52)] corresponding to (a) a
sinusoidal lattice function, k̃x�s� � k̂ sin�2ps�S�, with k̂ �
const, and (b) a periodic step-function lattice with amplitude
k̂ � const and filling factor h.
074401-11
ks � S�2p. An identical set of values is obtained from
Eq. (69) for a periodic-focusing solenoidal lattice with
k̃s�s� � k̂s sin�2ps�S�.

2. Transformed Hamiltonian for a periodic-focusing
solenoidal field

In this case, from Eqs. (11) and (19), k̃s�s� � ks�s� 2

k̄s, where k̄s � S21
RS

0 ds ks�s� fi 0 and S21
RS

0 ds 3

k̃s�s� � 0, and there is a high degree of symmetry about
the beam axis because k̃x�s� � k̃y�s� � k̃s�s�. In particu-
lar, from Eqs. (35), (59), and (63), we find

ax�s� � ay�s� � as�x� �
Z s

0
ds k̃s�s� ,

�ax� � �ay� � �as� �
1
S

Z S

0
dsas�s� ,

bx�s� � by�s� � bs�s� �
1
S

Z s

0
ds�as�s� 2 �as�� ,

�bx� � �by� � �bs� � 0 , (69)

dx�s� � dy�s� � ds�s� � a2
s �s� 2 2k̃s�s�bs�s� ,

�dx� � �dy� � �ds� �
1
S

Z S

0
ds�3a2

s �s� 2 2�as�2� ,

kfx � kfy � kfs �
3
S

Z S

0
ds�a2

s �s� 2 �as�2� .

From Eqs. (64) and (69), for a periodic-focusing
solenoidal field with ks�s 1 S� � ks�s� and
S21

RS
0 ds ks�s� � k̄s fi 0, it follows that the slowly

varying Hamiltonian Hs�X,Y ,X0, Y 0, s� is given correct
to third order in e by
Hs�X,Y ,X 0, Y 0, s� �
1
2

��X 0 2 �as�X�2 1 �Y 0 2 �as�Y �2� 1
1
2

�k̄s 1 kfs� �X2 1 Y 2� 1 c�X,Y , s� . (70)
Here, use has been made of Us�X,Y � � �1�2�k̄s�X2 1

Y 2�, and kfs � �3�S�
RS

0 ds�a2
s �s� 2 �as�2� is the average

focusing coefficient associated with the oscillating lattice
coefficient k̃s�s 1 S� � k̃s�s�.

To conclude Sec. III, we collect together the results
for the coordinate transformations x�X, Y ,X 0, Y 0, s� �
X 1 ex1 1 e2x2 1 e3x3 1 · · ·, x0�X, Y ,X 0, Y 0, s� �
X 0 1 ex01 1 e2x02 1 e3x03 1 · · ·, etc., obtained correct to
order e3 from Eqs. (39), (40), (47), (48), (60), and (61).
Again, we distinguish the two cases corresponding to
(a) an alternating-gradient quadrupole field described by
Eqs. (9) and (18) and (b) a periodic-focusing solenoidal
field described by Eqs. (11) and (19), making use of the
related symmetries in Eqs. (67) and (69).
TABLE I. Values of lattice functions defined in Eq. (67) for a periodic quadrupole lattice with kq�s� � k̂q sin�2ps�S�, with
k̂q � const. Here, lq � k̂qS2�2p and ks � 2p�S.

Function Value Function Value

aq�s� lq
S �1 2 cos�kss�� dq�s�

l2
q

S2 �2 1 sin2�kss� 2 2 cos�kss��
�aq� lq

S �dq� 5
2

l2
q

S2

aq�s� 2 �aq� 2
lq
S cos�kss�

Rs
0 dsbq�s� lqS

�2p�2 �1 2 cos�kss��
bq�s� 2

lq
2p sin�kss�

Rs
0 ds�dq�s� 2 �dq�� 2

l2
q

2pS � 1
4 sin�2kss� 1 2 sin�kss��

�bq� 0 kfqS2 3
2 l2

q

074401-11
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3. Coordinate transformation for an alternating-gradient quadrupole field

We make use of Eqs. (39), (40), (47), (48), (60), and (61) to evaluate x�X, Y ,X0,Y 0, s� � X 1 ex1 1 e2x2 1

e3x3 1 · · ·, etc., for an alternating-gradient quadrupole field with kq�s 1 S� � kq�s� and S21
RS

0 ds kq�s� � 0. Making
use of the symmetries in Eq. (65) and setting e � 1, we obtain, correct to third order in e,

x�X,Y ,X 0, Y 0, s� � X 2 bq�s�X 1 2

"Z s

0
dsbq�s�

#
X 0,

y�X, Y ,X 0, Y 0, s� � Y 1 bq�s�Y 2 2

"Z s

0
dsbq�s�

#
Y 0,

(71)

and

x0�X, Y ,X 0, Y 0, s� � X 0 2 aq�s�X 1 bq�s�X 0 1

"Z s

0
dsbq�s�

#
≠

≠X

√
X

≠c

≠X
2 Y

≠c

≠Y

!

2

√Z s

0
ds�dq�s� 2 �dq��

!
X 2 aq�s�bq�s�X ,

y0�X, Y ,X 0, Y 0, s� � Y 0 1 aq�s�Y 2 bq�s�Y 0 2

"Z s

0
dsbq�s�

#
≠

≠Y

√
Y

≠c

≠Y
2 X

≠c

≠X

! (72)

2

√Z s

0
ds�dq�s� 2 �dq��

!
Y 2 aq�s�bq�s�Y .

Here, the coefficients in Eqs. (71) and (72) are defined in Eq. (67). Moreover, the terms in Eqs. (71) and (72)
proportional to aq�s�, bq�s�,

Rs
0 dsbq�s�,

Rs
0 ds�dq�s� 2 �dq��, and aq�s�bq�s� are of order e, e2, e3, e3, and e3,

respectively. In Eq. (72), note that use has been made of k̄x � 2k̄y � S21
RS

0 ds kq�s� � 0 for a periodic quadrupole
field.

4. Coordinate transformation for a periodic-focusing solenoidal field

Finally, we make use of Eqs. (39), (40), (47), (48), (60), and (61) to evaluate x�X, Y ,X 0, Y 0, s� � X 1 ex1 1 e2x2 1

e3x3 1 · · ·, etc., for a periodic-focusing solenoidal field with ks�s 1 S� � ks�s� and S21
RS

0 dsks�s� � k̄s fi 0.
Correct to order e3, making use of the symmetries in Eq. (69) and setting e � 1, we readily obtain

x�X, Y ,X 0, Y 0, s� � X 2 bs�s�X 1 2

"Z s

0
dsbs�s��

#
X 0,

y�X, Y ,X 0, Y 0, s� � Y 2 bs�s�Y 1 2

"Z s

0
dsbs�s�

#
Y 0,

(73)

and

x0�X, Y ,X 0, Y 0, s� � X 0 2 as�s�X 1 bs�s�X 0 1

"Z s

0
dsbs�s�

# "
2k̄sX 1

≠

≠X

√
X

≠c

≠X
1 Y

≠c

≠Y

!#

2

√Z s

0
ds�ds�s� 2 �ds��

!
X 2 as�s�bs�s�X ,

y0�X, Y ,X 0, Y 0, s� � Y 0 2 as�s�Y 1 bs�s�Y 0 1

"Z s

0
dsbs�s�

# "
2k̄sY 1

≠

≠Y

√
X

≠c

≠X
1 Y

≠c

≠Y

!# (74)

2

√Z s

0
ds�ds�s� 2 �ds��

!
Y 2 as�s�bs�s�Y .
Here, the coefficients in Eqs. (73) and (74) are defined
in Eq. (69). In addition, the terms in Eqs. (73) and (74)
proportional to as�s�, bs�s�,

Rs
0 dsbs�s�,

Rs
0 ds�ds�s� 2

�ds��, and as�s�bs�s� are of order e, e2, e3, e3, and
e3, respectively. Finally, as expected, it is evident
from Eqs. (73) and (74) that there is a high degree
074401-12
of symmetry in the x and y motions for the case of a
periodic-focusing solenoidal field.

In concluding this section, for the case of a periodic-
focusing solenoidal field, we demonstrate an important
check on Eqs. (73) and (74) related to the conservation
074401-12
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of canonical angular momentum [21]. In laboratory-frame variables (actually Larmor-frame variables) the normalized
canonical angular momentum is defined by Pu � xy0 2 yx0. Expressing x � X 1 ex1 1 e2x2 1 e3x3 1 · · ·, y0 �
Y 0 1 ey01 1 e2y02 1 e3y03 1 · · ·, etc., and making use of x1 � 0 � y1, the canonical angular momentum can be
expressed as

Pu � xy0 2 yx0 � XY 0 2 YX 0 1 e�Xy01 2 Yx01� 1 e2�Xy02 2 Yx02 1 x2Y
0 2 y2X

0�

1 e3�Xy03 2 Yx03 1 x3Y
0 2 y3X

0 1 x2y
0
1 2 y1x

0
2� 1 O�e4� . (75)
Some straightforward algebra that makes use of
Eqs. (73)–(75) gives

Pu � XY 0 2 YX 0 1

"Z s

0
dsbs�s�

# √
X

≠

≠Y
2 Y

≠

≠X

!

3

√
X

≠c

≠X
1 Y

≠c

≠Y

!
1 O�e4� , (76)

where XY 0 � YX 0 � PQ is the canonical angular
momentum in the slow variables. An important con-
clusion is immediately evident from Eq. (76). We
denote X � R cosQ and Y � R sinQ, where R �
�X2 1 Y 2�1�2. Then �X≠�≠X 1 Y≠�≠Y �c�X,Y , s� �
R�≠�≠R�c�R, Q, s� and X≠�≠Y 2 Y≠�≠X � ≠�≠Q.
Equation (76) then reduces to

Pu � PQ 1

"Z s

0
dsbs�s�

#
R

≠

≠R
≠

≠Q
c�R, Q, s� ,

(77)

correct to order e3. Therefore, as expected, when
c�R, Q, s� is axisymmetric in the transformed variables
with ≠c�≠Q � 0, it follows that

Pu � PQ � const �independent of s� , (78)

corresponding to conservation of canonical angular mo-
mentum [12,21].

IV. NONLINEAR VLASOV-MAXWELL
EQUATIONS IN THE SLOW VARIABLES

In this section, we examine properties of the nonlinear
Vlasov-Maxwell equations for Fb�X,Y ,X 0,Y 0, s� and
c�X,Y , s� in the slow phase space variables (Sec. IV A)
and present several examples of equilibrium solutions
F0
b�H 0� with ≠�≠s � 0 (Sec. IV B). The coordi-

nate transformations in Eqs. (71) and (72) (periodic
quadrupole field) and in Eqs. (73) and (74) (periodic
solenoidal field) are then used in Sec. V to examine
statistical averages and key properties of the periodi-
cally focused ion beam distribution fb�x, y, x0, y0, s�
in laboratory-frame variables. For completeness, the
linearized Vlasov-Maxwell equations in the transformed
variables are presented in Sec. IV C.

A. Transformed Hamiltonian and nonlinear
Vlasov-Maxwell equations in the slow variables

For present purposes, it is convenient to work with
the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� which are related to
�X, Y ,X 0, Y 0� by the fiber transformation [38] in Eq. (65).
074401-13
In this case, making use of Eqs. (66), (68), and (70),
the transformed Hamiltonian in the slow variables
�X̃, Ỹ , X̃ 0, Ỹ 0� can be expressed as

H �X̃, Ỹ , X̃ 0, Ỹ 0, s� �
1
2

�X̃ 02 1 Ỹ 02� 1
1
2

kf �X̃2 1 Ỹ 2�

1 c�X̃, Ỹ , s� , (79)

correct to order e3. Here, for the case of a periodic-
focusing quadrupole field, �X̃, Ỹ , X̃ 0, Ỹ 0� and kf are de-
fined by

X̃ � X, Ỹ � Y ,

X̃ 0 � X 0 2 �aq�X , Ỹ 0 � Y 0 1 �aq�Y , (80)

kf � kfq �
3
S

Z S

0
ds�a2

q�s� 2 �aq�2� ,

where use has been made of Eqs. (65), (67), and (68).
On the other hand, for the case of a periodic-focusing
solenoidal field, �X̃, Ỹ , X̃ 0, Ỹ 0� and kf are defined by

X̃ � X, Ỹ � Y ,

X̃ 0 � X 0 2 �as�X, Ỹ 0 � Y 0 2 �as�Y , (81)

kf � k̄s 1 kfs � k̄s 1
3
S

Z S

0
ds�a2

s �s� 2 �as�2� ,

where use has been made of Eqs. (65), (69), and (70).
The major simplification associated with transforming

to the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� is immediately evident
from Eq. (79). In particular, the focusing coefficient kf
occurring in Eq. (79) is both constant (independent of
s) and isotropic in the transverse plane. This should
be contrasted with the expression for the Hamiltonian
Ĥ�x, y, x0, y0, s� in the laboratory frame defined in Eq. (6),
where the focusing coefficients kx�s� and ky�s� are
rapidly oscillating functions of s.

For the Hamiltonian defined in Eq. (79), the single-
particle equations of motion are given by

d
ds

X̃ �
≠H

≠X̃0
� X̃ 0êx 1 Ỹ 0êy ,

d
ds

X̃0 � 2
≠H

≠X̃
� 2kf�X̃êx 1 Ỹ êy� (82)

2
≠

≠X̃
c�X̃, Ỹ , s� ,

and the nonlinear Vlasov equation for Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s�
can be expressed as
074401-13
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Ω
≠

≠s
1 X̃0 ≠

≠X̃
1 Ỹ 0 ≠

≠Ỹ
2

µ
kfX̃ 1

≠

≠X̃
c

∂
≠

≠X̃ 0
2

µ
kfỸ 1

≠

≠Ỹ
c

∂
≠

≠Ỹ 0

æ
Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� � 0 , (83)
where kf � const is defined in Eqs. (80) and (81). Com-
paring Eqs. (82) and (83), note that the characteristics of
the Vlasov equation (83) correspond to the single-particle
equations of motion in the transformed variables. For ex-
ample, the coefficient of ≠�≠X̃ is dX̃�ds � X̃ 0, the coeffi-
cient of ≠�≠X̃ 0 is dX̃ 0�ds � 2kfX̃ 2 ≠c�≠X̃, etc. The
slowly varying self-field potential c�X̃, Ỹ , s� occurring in
Eq. (83) is determined self-consistently in terms of the
distribution function Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� fromµ

≠2

≠X̃2
1

≠2

≠Ỹ 2

∂
c�X̃, Ỹ , s� � 2

2pKb
Nb

Z
dX̃ 0 dỸ 0

3 Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� , (84)

which should be compared with Eq. (4).
The nonlinear Vlasov-Maxwell equations (83) and (84)

can be used to investigate detailed equilibrium and stabil-
ity properties in the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� over a
wide range of system parameters [12,21], including beam
intensity �Kb�, focusing-field strength �kf�, and choices of
equilibrium distribution function F0

b�H 0�, consistent with
the assumption that the phase advance is sufficiently small
[34] to assure good convergence of the averaging technique
leading to Eq. (79). Of course, to determine proper-
ties of the (periodically focused) beam in the laboratory
frame, use will be made of the back-transformation to
the laboratory-frame coordinates �x, y, x0, y0� defined in
Eqs. (71) and (72) (periodic-focusing quadrupole field)
or in Eqs. (73) and (74) (periodic-focusing solenoidal
field).

For simplicity, in the subsequent analysis of Eqs. (83)
and (84), we employ free boundary conditions in which
the conducting wall is assumed to be infinitely far
removed from the ion beam in the transverse plane.
Two points are especially noteworthy in this regard.
First, while the variables �X̃, Ỹ� are spacelike and the
variables �X̃ 0, Ỹ 0� are velocitylike in a formal analy-
sis of Eqs. (83) and (84), it is clear that the back-
transformation to the laboratory-frame coordinates defined
in Eqs. (71) and (72), or in Eqs. (73) and (74), inex-
orably mixes the dependence of �x, y, x0, y0� on the vari-
ables �X̃, Ỹ , X̃ 0, Ỹ 0�. Second, a rigid conducting boundary
in the laboratory frame will typically have a pulsat-
ing (s-dependent) shape in the transformed variables.
4

For example, consider the coordinate transformation for
a periodic-focusing quadrupole field given in Eqs. (71)
and (72). Correct to order e2, Eq. (71) gives x �
�1 2 bq�s��X̃ and y � �1 1 bq�s��Ỹ . Therefore, a cir-
cular cross-section conducting wall with constant radius
�x2 1 y2�1�2 � rw � const in the laboratory frame cor-
responds to a pulsating conducting wall with elliptical
cross section, X̃2�a2

w�s� 1 Ỹ2�b2
w�s� � 1, in the trans-

formed variables, where a2
w�s� � r2

w��1 2 bq�s��2 and
b2
w�s� � r2

w��1 1 bq�s��2. As noted earlier, the subse-
quent analysis in Secs. IV and V effectively assumes that
the conducting wall is infinitely far removed from the
beam �rw ! `�.

In concluding this section, it is important to emphasize
that the nonlinear Vlasov-Maxwell equations (83) and (84)
in the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0�, when supplemented
by the coordinate transformations in Eqs. (71) and (72)
(periodic-focusing quadrupole field) or in Eqs. (73) and
(74) (periodic-focusing solenoidal field), are fully equiv-
alent to the nonlinear Vlasov-Maxwell equations (3) and
(4) in the laboratory-frame variables �x, y, x0, y0� correct
to order e3. In this regard, because the coordinate trans-
formation is canonical, the laboratory-frame distribution
function fb�x, y, x0, y0, s� is related to the transformed dis-
tribution function Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� by

fb�x, y, x0, y0, s�dxdydx0dy0 � Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s�
3 dX̃dỸdX̃ 0dỸ 0, (85)

and the Jacobian of the transformation is equal to unity;
i.e.,

≠�x, y, x0, y0�
≠�X̃, Ỹ , X̃ 0, Ỹ 0�

� 1 . (86)

A direct calculation that makes use of Eqs. (71) and (72),
or Eqs. (73) and (74), appropriately expressed in terms of
the variables �X̃, Ỹ , X̃ 0, Ỹ 0� defined in Eqs. (80) and (81)
shows that Eq. (86) is indeed satisfied correct to order e3.

For completeness and future reference in Sec. V,
we record here the coordinate transformations relating
�x, y, x0, y0� to �X̃, Ỹ , X̃ 0, Ỹ 0�. For the case of a periodic-
focusing quadrupole field, making use of Eqs. (71), (72),
and (80), we obtain
x�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 2 bq�s��X̃ 1 2

"Z s

0
dsbq�s�

#
X̃ 0,

y�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 1 bq�s��Ỹ 2 2

"Z s

0
dsbq�s�

#
Ỹ 0,

(87)
074401-14
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and

x0�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 1 bq�s��X̃ 0 1

(
2aq�s� 1 �aq� 1 �aq�bq�s� 2 aq�s�bq�s� 2

√Z s

0
ds�dq�s� 2 �dq��

!)
X̃

1

"Z s

0
dsbq�s�

#
≠

≠X̃

√
X̃

≠c

≠X̃
2 Ỹ

≠c

≠Ỹ

!
,

y0�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 2 bq�s��Ỹ 0 1

(
aq�s� 2 �aq� 1 �aq�bq�s� 2 aq�s�bq�s� 2

√Z s

0
ds�dq�s� 2 �dq��

!)
Ỹ

(88)

2

"Z s

0
dsbq�s�

#
≠

≠Ỹ

√
Ỹ

≠c

≠Ỹ
2 X̃

≠c

≠X̃

!
,

correct to order e3. In obtaining Eq. (87), we have neglected terms proportional to �aq� �
Rs

0 dsbq�s��, which are of
order e4. Similarly, for the case of a periodic-focusing solenoidal field, making use of Eqs. (72), (73), and (81), we
obtain

x�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 2 bs�s��X̃ 1 2

"Z s

0
dsbs�s�

#
X̃ 0,

y�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 2 bs�s��Ỹ 1 2

"Z s

0
dsbs�s�

#
Ỹ 0,

(89)

and

x0�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 1 bs�s��X̃ 0 1

(
2as�s� 1 �as� 1 �as�bs�s� 2 as�s�bs�s� 2

√Z s

0
ds�ds�s� 2 �ds��

!

1 2k̄s

"Z s

0
dsbs�s�

#)
X̃ 1

"Z s

0
dsbs�s�

#
≠

≠X̃

√
X̃

≠c

≠X̃
1 Ỹ

≠c

≠Ỹ

!
,

y0�X̃, Ỹ , X̃ 0, Ỹ 0, s� � �1 1 bs�s��Ỹ 0 1

(
2as�s� 1 �as� 1 �as�bs�s� 2 as�s�bs�s� 2

√Z s

0
ds�ds�s� 2 �ds��

!(90)

1 2k̄s

"Z s

0
dsbs�s�

#)
Ỹ 1

"Z s

0
dsbs�s�

#
≠

≠Ỹ

√
X̃

≠c

≠X̃
1 Ỹ

≠c

≠Ỹ

!
,

correct to order e3. In obtaining Eq. (89), we have
neglected terms proportional to �as� �

Rs
0 dsbs�s��, which

are of order e4. Finally, it should be noted that the slowly
varying self-field potential c�X̃, Ỹ , s� occurring in the
final terms in Eqs. (88) and (90) is to be determined self-
consistently in terms of Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� from Eqs. (83)
and (84).
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The coordinate transformations in Eqs. (87)–(90)
relate the laboratory-frame coordinates x�X̃, Ỹ , X̃ 0, Ỹ 0, s�,
y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, etc., directly to the slow variables
�X̃, Ỹ , X̃ 0, Ỹ 0�. In this regard, it is important to keep in
mind the size of the various terms in Eqs. (87)–(90). In
particular, referring to the analysis in Sec. III, the relative
size of the terms in Eqs. (87)–(90) is specified by
aj�s�, �aj�: Terms of order e ,

bj�s�: Terms of order e2, (91)

�aj�bj�s�, aj�s�bj�s�,

"Z s

0
dsbj�s�

#
,

√Z s

0
ds�dj�s� 2 �dj��

!
: Terms of order e3,
where j � q � j � s� refers to the quadrupole
(solenoidal) focusing case. It will also be useful in
Sec. V to make use of the inverse transformation to
Eqs. (87)–(90), which expresses the slow coordinates
X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, etc., directly in terms of
the laboratory-frame variables �x, y, x0, y0�. For complete-
ness, the inverse coordinate transformation is presented
correct to order e3 in the Appendix.
B. Equilibrium solutions ���≠≠≠���≠≠≠s 5 0���
in the transformed variables

Because of the simple form of Eqs. (83) and (84),
with constant focusing coefficient kf � const, the
nonlinear Vlasov-Maxwell equations in the slow vari-
ables �X̃, Ỹ , X̃ 0, Ỹ 0� support a broad class of equilibrium
074401-15
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solutions (denoted by F0
b and c0) for which ≠�≠s � 0

[12,21]. We introduce the cylindrical polar coordinates
�R̃, Q� defined by X̃ � R̃ cosQ and Ỹ � R̃ sinQ, where
R̃ � �X̃2 1 Ỹ2�1�2 is the effective radial coordinate in
the slow variables. Because the focusing potential in
Eq. (79) is of the form �1�2�kf�X̃2 1 Ỹ 2� � �1�2�kfR̃2,
the nonlinear Vlasov-Maxwell equations (83) and
(84) support axisymmetric equilibrium solutions with
≠�≠Q � 0 and ≠�≠s � 0 in which F0

b�X̃, Ỹ , X̃0, Ỹ 0�
and c0�X̃, Ỹ� depend on X̃ and Ỹ exclusively through
the radial coordinate R̃ � �X̃2 1 Ỹ 2�1�2. Specifically,
because ≠c0�≠Q � 0 and ≠c0�≠s � 0, the transformed
Hamiltonian H 0�X̃, Ỹ , X̃ 0, Ỹ 0� for transverse particle
motion in the equilibrium field configuration is given by
074401-16
H 0�X̃, Ỹ , X̃ 0, Ỹ 0� �
1
2

�X̃ 02 1 Ỹ 02� 1
1
2

kfR̃
2 1 c0�R̃� ,

(92)

where H 0 is exactly conserved �dH 0�ds � 0� because
≠c0�≠s � 0.

The nonlinear Vlasov-Maxwell equations (83) and (84)
support a broad class of equilibrium solutions �≠�≠s � 0�
in which the equilibrium distribution function F0

b depends
on the variables �X̃, Ỹ , X̃ 0, Ỹ� exclusively through the
Hamiltonian H 0; i.e.,

F0
b�X̃, Ỹ , X̃ 0, Ỹ 0� � F0

b�H 0� . (93)

Here, H 0�X̃, Ỹ , X̃ 0, Ỹ 0� is defined in Eq. (92). Substitut-
ing Eq. (93) into Eq. (83), it is readily shown that
Ω
X̃ 0 ≠

≠X̃
1 Ỹ 0 ≠

≠Ỹ
2

µ
kfX̃ 1

X̃

R̃

≠c0

≠R̃

∂
≠

≠X̃ 0
2

µ
kfỸ 1

Ỹ

R̃

≠c0

≠R̃

∂
≠

≠Ỹ 0

æ
F0
b�H 0� � 0 (94)
is an exact consequence of Eq. (92), where use
can be made of the chain rule for differentiation
to express ≠F0

b�≠X̃ 0 � X̃ 0≠F0
b�≠H 0, �≠�≠X̃�F0

b �
�kf X̃ 1 �X̃�R̃�≠c0�≠R̃�≠F0

b�≠H 0, etc. Here, we have
expressed �≠�≠X̃�c0�R̃� � �X̃�R̃� �≠�≠R̃�c0�R̃�, etc.
Because ≠c0�≠Q � 0, the canonical angular momen-
tum PQ � X̃Ỹ 0 2 Ỹ X̃ 0 is also an exact single-particle
constant of the motion �dPQ�ds � 0� in the transformed
variables. Therefore, more generally speaking, the
equilibrium distribution function F0

b�H 0,PQ� could also
depend explicitly on PQ as well as H 0 [12,21]. Such
beam equilibria are typically rotating and will not be
considered in the present analysis.

There is clearly enormous latitude in specifying the
functional form of the equilibrium distribution function
F0
b�H 0� in the transformed variables [12]. Once the

form of F0
b�H 0� is specified, however, the correspond-

ing equilibrium self-field potential c0�R� is to be calcu-
lated self-consistently from Eq. (84). For ≠�≠Q � 0 and
≠�≠s � 0, Eq. (84) becomes

1
R̃

≠

≠R̃
R̃

≠

≠R̃
c0�R̃� � 2

2pKb
Nb

Z
dX̃ 0 dỸ 0 F0

b�H 0� ,

(95)
where H 0 is defined in Eq. (92), and

n0
b�R̃� �

Z
dX̃ 0 dỸ 0 F0

b�H 0� (96)

is the radial density profile in the transformed variables.
Because H 0 depends explicitly on c0�R̃� [Eq. (92)], the
Maxwell equation (95) is generally a nonlinear differen-
tial equation for the self-field potential c0�R̃�. Express-
ing Ũ � �1�2� �X̃ 02 1 Ỹ 02� and H 0 � Ũ 1 kfR̃2�2 1

c0�R̃�, and converting the velocity integration range in
Eqs. (95) and (96) according to

R`
2` dX̃

0
R`

2` dỸ
0 · · · �

2p
R`

0 dŨ · · ·, the equilibrium density profile n0
b�R̃� in the

transformed variables can be expressed in the equivalent
form

n0
b�R̃� � 2p

Z `

0
dŨ F0

b�Ũ 1 kfR̃
2�2 1 c0�R̃�� . (97)

Other equilibrium properties are also readily calculated in
terms of F0

b�H 0�. For example, in the transformed vari-
ables, because H 0 is an even function of X̃ 0 and Ỹ 0, the
average local flow velocity in the transverse plane is equal
to zero; i.e., V0

b �X̃� � �n0
b�R̃��21bbc

R
dX̃ 0 dỸ 0�X̃ 0êx 1

Ỹ 0êy�F0
b�H 0� � 0. Moreover, the effective perpendicu-

lar temperature T 0
�b�R̃� in the transformed variables is de-

fined (in energy units) by
n0
b�R̃�T 0

�b�R̃� �
Z
dX̃ 0 dỸ 0 1

2
gbmbb

2
bc

2�X̃ 02 1 Ỹ 02�F0
b�H 0�

� 2pgbmbb2
bc

2
Z `

0
dŨ ŨF0

b�Ũ 1 kfR̃
2�2 1 c0�R̃�� , (98)
where Ũ � �1�2� �X̃ 02 1 Ỹ 02�.
The general class of equilibrium distribution functions

described by Eqs. (92) and (93) corresponds to an intense
charged particle beam with circular cross section confined
in the transverse plane by a uniform focusing force (kf �
const). This class of distribution functions F0
b�H 0� has

been extensively analyzed in the literature [12,16,17,21].
For present purposes, we summarize here several key
properties of the equilibrium and give specific examples
074401-16
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of beam equilibria F0
b�H 0� in the transformed variables.

These results will be very useful in Sec. V when we
transform back to the laboratory frame where the beam
properties are periodically focused as a function of s.

1. Statistical averages

The statistical average of a phase function
x�X̃, Ỹ , X̃ 0, Ỹ 0, s� over the equilibrium distribution
function F0

b�H 0� in the transformed variables is defined
in the usual manner by

�x�0 �
1
Nb

Z
dX̃ dỸ dX̃ 0 dỸ 0 x�X̃, Ỹ , X̃ 0, Ỹ 0, s�F0

b�H 0� ,

(99)
where H 0 is defined in Eq. (92), and Nb �R
dX̃ dỸ dX̃ 0 dỸ 0 F0

b � 2p
R`

0 dR̃ R̃n
0
b�R̃� is the num-

ber of beam particles per unit axial length. Because
H 0�X̃, Ỹ , X̃ 0, Ỹ 0� is an even function of X̃, Ỹ , X̃ 0, and Ỹ 0,
it follows that the statistical average of any odd power of
X̃, Ỹ , X̃ 0, or Ỹ 0, or products thereof, is equal to zero. For
example, it follows that

�X̃�0 � 0 � �Ỹ �0 ,

�X̃ 0�0 � 0 � �Ỹ 0�0 ,

�X̃X̃ 0�0 � 0 � �Ỹ Ỹ 0�0 ,
(100)

�X̃Ỹ 0�0 � 0 � �Ỹ X̃ 0�0 ,
etc. Similarly, the rms beam radius Rb0 and unnormalized
beam emittance e0 in the transformed variables are
defined by
074401-17
R2
b0 � �X̃2 1 Ỹ2�0 ,

e2
0 � 4�X̃ 02 1 Ỹ 02�0�X̃2 1 Ỹ 2�0 ,

(101)

where Rb0 and e0 are constants (independent of s)
because ≠F0

b�H 0��≠s � 0. Because of the high degree
of symmetry of H 0, it also follows that

�X̃2�0 � �Ỹ2�0 �
1
2

�X̃2 1 Ỹ 2�0 �
1
2
R2
b0 ,

�X̃ 02�0 � �Ỹ 02�0 �
1
2

�X̃ 02 1 Ỹ 02�0 .
(102)

Finally, some straightforward algebra that makes use of
Eqs. (98) and (101) shows that

e2
0 �

8R2
b0

Nbgbmbb
2
bc2

2p
Z `

0
dR̃ R̃n0

b�R̃�T0
�b�R̃� . (103)

That is, e
2
0 is directly proportional to the perpendicular

pressure P0
�b�R̃� � n0

b�R̃�T 0
�b�R̃�, averaged over the ra-

dial cross section of the beam.

2. Radial force balance and envelope equation
for the rms beam radius Rb0

The formal expression for the perpendicular pressure
P0

�b�R̃� � n0
b�R̃�T 0

�b�R̃� in Eq. (98) can be used to derive
the equation for equilibrium radial force balance on a
beam fluid element in the transformed variables. Taking
the derivative of Eq. (98) with respect to R̃, it is readily
shown that
≠

≠R̃
P0

�b � gbmbb
2
bc

2

√
kfR̃ 1

≠c0

≠R̃

!
2p

Z `

0
dŨ Ũ

≠

≠Ũ
F0
b�Ũ 1 kfR̃

2�2 1 c0�R̃��

� 2gbmbb2
bc

2

√
kfR̃ 1

≠c0

≠R̃

!
2p

Z `

0
dŨ F0

b�Ũ 1 kfR̃
2�2 1 c0�R̃�� , (104)
where we have integrated by parts with respect to Ũ
and assumed �F0

b�Ũ!` � 0. Making use of n0
b�R̃� �

2p
R`

0 dŨ F
0
b�Ũ 1 kfR̃2�2 1 c0�R̃��, Eq. (104) can be

expressed as
≠

≠R̃
P0

�b�R̃� � 2gbmbb2
bc

2n0
b�R̃�

∑
kfR̃ 1

≠

≠R̃
c0�R̃�

∏
,

(105)
which will be recognized as the equation for local radial
force balance on a beam fluid element in the transformed
variables. Solving Eq. (95) for ≠c0�R̃��≠R̃ in terms of
the radial density profile n0

b�R̃�, Eq. (105) can also be
expressed as [21]

≠

≠R̃
P0

�b�R̃� � 2gbmbb2
bc

2n0
b�R̃�

3

"
kfR̃ 2

2pKb
Nb

1
R̃

Z R̃

0
dR̃ R̃n0

b�R̃�

#
.

(106)
The local force balance Eq. (106) can be used to derive
a global radial force balance equation that relates the
emittance e0, the focusing coefficient kf , and the rms beam
radius Rb0. To briefly summarize, we operate on Eq. (106)
with 2p

R`

0 dR̃ R̃
2 · · · and integrate by parts with respect

to R̃, assuming P0
�b�R̃ ! `� � 0 � n0

b�R̃ ! `�. Some
straightforward algebraic manipulation that makes use of
Eq. (103) and Nb � 2p

R`
0 dR̃ R̃n

0
b�R̃� readily gives the

global force balance condition [21,24]√
kf 2

Kb
2R2

b0

!
Rb0 �

e
2
0

4R3
b0

, (107)

where Kb � 2NbZ
2
be2�g

3
bmbb

2
bc2 is the self-field per-

veance. Equation (107), valid for general choice of
F0
b�H 0�, plays the role of an envelope equation for the

rms beam radius Rb0 and represents a powerful constraint
condition on beam equilibrium properties [21]. As
074401-17
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expected, if we make the identification Rb0 � rb0�
p

2,
Eq. (107) is similar in form to the familiar envelope equa-
tion for the outer radius rb0 of a uniform-density KV beam
equilibrium [10,11] in the smooth-beam approximation
�drb0�ds � 0�. For specified values of kf , Kb , and e

2
0 ,

note that Eq. (107) can be solved for the mean-square
beam radius to give

R2
b0 �

Kb
4kf

1

"√
Kb
4kf

!2

1
e

2
0

4kf

#1�2

. (108)

As expected, we find from Eq. (108) that R2
b0 increases

with increasing beam intensity �Kb�, increasing beam
emittance �e0�, and decreasing focusing-field strength �kf�.

3. Phase advance s0

It is convenient to introduce the effective phase ad-
vance s0 over one lattice period S defined by s0 �
e0

RS
0 ds�2R2

b0 � e0S�2R2
b0, where R2

b0 � const is the
mean-square beam radius defined in Eq. (108). This gives

s0 �
s0y

�1 1 � Kb
2
p

kf e0
�2�1�2 1 � Kb

2
p

kfe0
�

, (109)

where s0y � �s0�Kb!0 � p
kf S is the vacuum phase

advance defined in the limit of negligible beam intensity,
Kb�pkf 2e0 ! 0. As noted in Sec. I, the averaging
technique developed in Sec. III is expected to provide
good convergence properties [34] provided the phase
advance s0 is sufficiently small (s0 , 60± � p�3, say).
It is important to note from Eq. (109) that s0�s0y

decreases monotonically from unity as the normalized
beam intensity Kb�2

p
kf e0 is increased. That is, self-

field effects (as measured by Kb) depress the phase
advance s0 from its vacuum value s0y .

4. Density inversion theorem and condition
for transverse confinement

As noted earlier for the specified equilibrium distribu-
tion function F0

b�H 0�, when the expression for the den-
sity profile n0

b�R̃� in Eq. (97) is substituted into Eq. (95),
the resulting equation for the self-field potential c0�R̃� is
generally nonlinear. Without loss of generality, we take
the zero of potential to be c0�R̃ � 0� � 0 and denote the
on-axis value of beam density in the transformed variables
by n0

b�R̃ � 0� � n̂b . Integration of Eq. (95) from R̃ � 0
074401-18
readily gives c0�R̃� � 2�p�2� �Kbn̂b�Nb�R̃2 for small
values of R̃ ø Rb0. Careful examination of Eqs. (95)
and (97) then shows that a necessary condition for a ra-
dially confined beam equilibrium with n0

b�R̃ ! `� � 0 is
given by

kfb2
bc

2 .
1

2g
2
b

v̂2
pb , (110)

where v̂
2
pb � 4pn̂bZ

2
be2�gbmb is the on-axis plasma

frequency squared [12], and use has been made of the
definition Kb � 2NbZ

2
be2�g

3
bmbb

2
bc2. The inequality in

Eq. (110) is simply a statement that the focusing force
(proportional to kfb

2
bc2) must exceed the repulsive space-

charge force (proportional to v̂
2
pb�2) for there to be

transverse confinement of the beam particles.
A further important result is evident from the expres-

sion for n0
b�R̃� in Eq. (97). We introduce the effective

total potential V �R̃� defined by V �R̃� � �1�2�kfR̃2 1

c0�R̃�. Then, taking the derivative of n0
b�V � with respect

to V in Eq. (97) gives

≠n0
b

≠V
� 2p

Z `

0
dŨ

≠

≠Ũ
F0
b�Ũ 1 V �R̃�� . (111)

Assuming F0
b�Ũ 1 V �R̃��Ũ!` � 0 and integrating by

parts with respect to Ũ in Eq. (111) gives

F0
b�H 0� � 2

1
2p

"
≠n0

b

≠V

#
V�H 0

(112)

for the distribution function F0
b�H 0�. Equation (112)

is known as the density inversion theorem [1,21]. In
particular, for specified density profile n0

b�R̃�, we make
use of Eq. (95) to determine the self-field potential c0�R̃�
and evaluate the effective potential V �R̃� � �1�2�kfR̃2 1

c0�R̃�. Solving then for R̃�V �, assumed to be monotonic,
we evaluate ≠n0

b�≠V � �≠n0
b�≠R̃� �≠R̃�≠V � in Eq. (112),

which determines the equilibrium distribution function
F0
b�H 0� in the transformed variables.

5. Kinetic stability theorem

An important kinetic stability theorem [25,26]
can be demonstrated from the nonlinear Vlasov-
Maxwell equations (83) and (84) for the distribution
function Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� and self-field potential
c�X̃, Ỹ , s�. In particular, we express Fb � F0

b�H 0� 1

dFb�X̃, Ỹ , X̃ 0, Ỹ 0, s� and c � c0�R̃� 1 dc�X̃, Ỹ , s� and
make use of the global conservation constraints for total
energy U�s� and generalized entropy S�s� satisfied exactly
by Eqs. (83) and (84); i.e.,
U�s� �
Z
dX̃ dỸ

(
Nb

4pKb
j=̃cj2 1

Z
dX̃ 0 dỸ 0

"
1
2

kf�X̃2 1 Ỹ 2� 1
1
2

�X̃ 02 1 Ỹ 02�

#
Fb

)
� const ,

S�s� �
Z
dX̃ dỸ dX̃ 0 dỸ 0G�Fb� � const .

(113)
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Here, dU�ds � 0 � dS�ds, and G�Fb� is a smooth, dif-
ferentiable function of Fb with G�Fb ! 0� � 0. Without
presenting algebraic details, it can be shown [25,26] that a
sufficient condition for stability is that the equilibrium dis-
tribution function F0

b�H 0� be a monotonically decreasing
function of energy H 0; i.e.,

≠

≠H 0
F0
b�H 0� # 0 . (114)

That is, whenever Eq. (114) is satisfied, the system is
stable, and the perturbations dc and dFb do not amplify.
The stability theorem in Eq. (114) is a very powerful result
and is valid nonlinearly (finite-amplitude perturbations) as
well as for small-amplitude perturbations. For example,
Eq. (114) implies that a beam with thermal equilibrium
[1,18,21] distribution F0

b�H 0� [Eq. (115)] is stable and
can propagate quiescently over large distances. On the
other hand, a Kapchinskij-Vladimirskij beam equilibrium
[Eq. (116)] has an inverted population in H 0, and there is
(in principle) free energy available to cause the perturba-
tions dc and dFb to amplify [10–14].

6. Examples of self-consistent beam equilibria

For future reference, we briefly consider several ex-
amples of beam equilibria, F0

b�H 0�, in the transformed
variables �X̃, Ỹ , X̃0, Ỹ 0�. Specifically, we consider the fol-
lowing choices of F0

b�H 0�:
Thermal Equilibrium: [1,18,21]

F0
b�H 0� � n̂b

√
gbmbb

2
bc2

2pT̂�b

!
exp

(
2

gbmbb
2
bc2

T̂�b
H 0

)
,

(115)

Kapchinskij-Vladimirskij Equilibrium: [10–12,21]

F0
b�H 0� �

n̂b
2p

d�H 0 2 T̂�b�gbmbb2
bc

2� , (116)

Waterbag Equilibrium: [16,17,21]

F0
b�H 0� � n̂b

√
gbmbb

2
bc2

2pT̂�b

!
U

√
gbmbb

2
bc2

T̂�b
H 0

!
.

(117)
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Here, n̂b and T̂�b are positive constants with dimensions
of density and temperature (energy units), respectively,
H 0 � �1�2� �X̃ 02 1 Ỹ 02� 1 �1�2�kfR̃2 1 c0�R̃� is the
(dimensionless) Hamiltonian defined in Eq. (92), and
U�x� is the unit step function defined by U�x� � 1 for
0 # x , 1 and U�x� � 0 for x . 1. We take the on-
axis self-field potential to be c0�R̃ � 0� � 0 and identify
n̂b � n0

b�R̃ � 0� with the on-axis beam density. For each
choice of F0

b�H 0� in Eqs. (115)–(117), the self-field
potential c0�R̃� is determined self-consistently in terms
of the beam density n0

b�R̃� �
R
dX̃ 0 dỸ 0 F0

b�H 0� from
Eq. (95). Finally, for the general class of beam equilib-
ria, F0

b�H 0�, the transverse temperature profile T 0
�b�R̃� is

defined by Eq. (98).
A detailed evaluation of beam equilibrium properties

for the choices of distribution functions in Eqs. (115)–
(117) is presented elsewhere [21], and essential re-
sults are summarized in Table II. For each example,
the inequality kfb

2
bc2 . v̂

2
pb�2g

2
b is required to as-

sure radial confinement of the beam particles, where
v̂

2
pb � 4pZ2

be2n̂b�gbmb is the on-axis plasma frequency
squared. Moreover, in each case, the rms beam radius
Rb0 and unnormalized beam emittance e0 defined in
Eq. (101) are related by the global force balance con-
straint in Eq. (107), and the unnormalized emittance e0

can be expressed as the average over perpendicular pres-
sure given in Eq. (103).

It is evident from Table II that the equilibrium profiles
for the density n0

b�R̃� and perpendicular temperature
T 0

�b�R̃� differ significantly for the three choices of
equilibrium distribution functions in Eqs. (115)–(117).
First, for the choice of thermal equilibrium distri-
bution in Eq. (115), we note from Table II that the
equilibrium density profile exhibits a highly nonlinear
dependence on the self-field potential c0�R̃�, which must
generally be determined by numerical integration of
Eq. (95). The corresponding density profile, n0

b�R̃� �
n̂b exp	2�gbmbb

2
bc2�2T̂�b� �kfR̃2 1 2c0�R̃��
, is gener-

ally bell shaped and radially diffuse, assuming a maximum
value �n̂b� at R̃ � 0, and decreasing monotonically to zero
TABLE II. Equilibrium properties for various choices of F0
b�H 0�.

Transverse
Distribution function Density profile Temperature profile emittance

F0
b�H 0� n0

b�R̃� T0
�b�R̃� e

2
0

1. Thermal equilibrium n̂b exp	2 gbmbb
2
bc

2

2T̂�b
�kf R̃2 1 2c0�
 T̂�b � const 8T̂�b

gbmbb
2
bc

2R
2
b0

in Eq. (115)

2. KV distribution n̂b � const T̂�b�1 2
R̃2

r2
b0

� 4T̂�b

gbmbb
2
bc

2R
2
b0

in Eq. (116) for 0 # R̃ , rb0 �
p

2Rb0; for 0 # R̃ , rb0 �
p

2Rb0;

(zero, otherwise) (zero, otherwise)

3. Waterbag distribution I0�rb0�lD �2I0�R̃�lD �
I0�rb0�lD �21 T̂�b

n0
b �R̃�
n̂b

Determined

in Eq. (117) for 0 # R̃ , rb0; from Eq. (103)
(zero, otherwise)
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with n0
b�R̃ ! `� � 0. At sufficiently low beam in-

tensity with v̂
2
pb�2g

2
b ø kfb

2
bc2, it is found that the

density profile is approximately Gaussian, with n0
b�R̃� �

n̂b exp	2gbmbb
2
bc2kfR̃2�2T̂�b
. On the other hand, at

very high beam intensity with �kfb
2
bc2 2 v̂

2
pb�2g

2
b��

kfb
2
bc2 � d ø 1, the density profile evaluated numeri-

cally from Table II and Eq. (95) is found to be radially
very broad [21] in units of the thermal Debye length; i.e.,
Rb0 ¿ lD � �g2

bT̂�b�4p n̂bZ
2
be2�1�2. In this case, the

density is approximately constant in the beam interior
with n0

b�R̃� � n̂b � const, and n0
b�R̃� drops rapidly to

exponentially small values over a few Debye lengths
at the beam surface. For the choice of equilibrium
distribution function in Eq. (115), it also follows that the
transverse temperature profile is uniform over the beam
cross section, with T�b�R̃� � T̂�b � const. Moreover,
because ≠F0

b�H 0��≠H 0 # 0 for the choice of distribu-
tion function in Eq. (115), it follows from Eq. (114) that
the equilibrium is stable [25,26].

By contrast, at any beam intensity, the choice of (mono-
energetic) equilibrium distribution function in Eq. (116)
gives a step-function density profile, with n0

b�R̃� � n̂b �
const for 0 # R̃ , rb0 �

p
2Rb0, and n0

b�R̃� � 0 for
R̃ . rb0. In this case, the beam has a “sharp” outer
boundary at radius rb0 determined self-consistently from
�1�2�kfr2

b0 1 c0�rb0� � T̂�b�gbmbb
2
bc2, which gives

r2
b0 � �2T̂�b�gbmb� �kfb2

bc2 2 v̂
2
pb�2g

2
b�21. More-

over, from Table II, unlike the thermal equilibrium
case, the transverse temperature profile is parabolic,
with T 0

�b�R̃� � T̂�b�1 2 R̃2�r2
b0� in the beam interior

�0 # R̃ , rb0�. Finally, a most important feature of
Eq. (116) is that F0

b�H 0� has a highly inverted popula-
tion in energy, which is (singularly) peaked at H 0 �
T̂�b�gbmbb

2
bc2. Therefore, as expected, there is free
074401-20
energy available to drive collective instabilities [10–14]
for the choice of equilibrium distribution function in
Eq. (116), at least at sufficiently high beam intensity.

Finally, from Table II, the choice of waterbag equi-
librium distribution [16,17,21] in Eq. (117) also gives a
density profile n0

b�R̃� with sharp outer boundary at radius
rb0. In this case, rb0 is determined self-consistently from
I0�rb0�lD� � kfb

2
bc2��kfb2

bc2 2 v̂
2
pb�2g

2
b�, where

I0�x� is the modified Bessel function of the first kind
of order zero, and lD � �g2

bT̂�b�4pn̂bZ
2
be2�1�2 is the

thermal Debye length. Unlike the KV beam equilibrium,
however, we note from Table II that the density profile
n0
b�R̃� decreases monotonically from the value n̂b at
R̃ � 0 to zero at R̃ � rb0. Moreover, the transverse tem-
perature profile has exactly the same radial shape as the
density profile, with T0

�b�R̃� � �T̂�b�n̂b�n0
b�R̃�. Similar

to the case of a thermal equilibrium beam, the distribution
function in Eq. (117) satisfies ≠F0

b�H 0��≠H 0 # 0, and
the waterbag equilibrium is expected to be stable [25,26]
by virtue of Eq. (114).

C. Linearized Vlasov-Maxwell equations
in the transformed variables

For completeness, and for application in future
calculations of detailed stability properties, we sum-
marize here the linearized Vlasov-Maxwell equations
in the transformed variables �X̃, Ỹ , X̃0, Ỹ 0�, assuming
small-amplitude perturbations about the equilibrium
distribution function F0

b�H 0� and self-field potential
c0�R̃�. In particular, we express Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� �
F0
b�H 0� 1 dFb�X̃, Ỹ , X̃ 0, Ỹ 0, s� and c�X̃, Ỹ , s� �

c0�R̃� 1 dc�X̃, Ỹ , s� in the Vlasov-Maxwell equations
(83) and (84). In the linearization approximation,
Eqs. (83) and (84) reduce to
(
≠

≠t
1 X̃ 0 ≠

≠X̃
1 Ỹ 0 ≠

≠Ỹ
2

√
kfX̃ 1

X̃

R̃

≠c0

≠R̃

!
≠

≠X̃ 0
2

√
kfỸ 1

Ỹ

R̃

≠c0

≠R̃

!
≠

≠Ỹ 0

)
dFb�X̃, Ỹ , X̃ 0, Ỹ 0, s�

�

"√
X̃ 0 ≠

≠X̃
1 Ỹ 0 ≠

≠Ỹ

!
dc�X̃, Ỹ , s�

#
≠

≠H 0 F
0
b�H 0� , (118)

and √
≠2

≠X̃2
1

≠2

≠Ỹ 2

!
dc�X̃, Ỹ , s� � 2

2pKb
Nb

Z
dX̃ 0 dỸ 0 dFb�X̃, Ỹ , X̃ 0, Ỹ 0, s� . (119)
Here, use has been made of Eq. (92) and the chain
rule for differentiation to express ≠F0

b�H 0��≠X̃ 0 �
X̃ 0≠F0

b�H 0��≠H 0, etc. Because kf � const, a detailed
stability analysis [12,21] based on Eqs. (118) and (119) in
the transformed variables is greatly simplified in compar-
ison with a stability analysis based on a linearization of
Eqs. (3) and (4) in laboratory-frame variables. Further-
more, as noted earlier, a sufficient condition for stability
[25,26] in the transformed variables is that the equilib-
rium distribution F0
b�H 0� be a monotonically decreasing

function of energy H 0; i.e., ≠F0
b�H 0��≠H 0 # 0 in

Eq. (114). Whenever the inequality in Eq. (114) is sat-
isfied, the perturbations dFb and dc solving Eqs. (118)
and (119) do not grow exponentially. Equations (118)
and (119), of course, can be used to determine detailed
stability properties [12] for a wide variety of choices of
equilibrium distribution function F0

b�H 0�.
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V. PERIODICALLY FOCUSED BEAM
PROPERTIES IN THE LABORATORY FRAME

As discussed in Sec. IV, in the slow variables
�X̃, Ỹ , X̃0, Ỹ 0�, a wide variety of equilibrium and stability
properties can be calculated in a straightforward manner
because the focusing force is constant (kf � const) in the
transformed variables, and the simplest class of equilib-
rium distribution functions, F0

b�H 0�, correspond to beams
with circular cross section. When transformed back to
the laboratory frame, however, the beam is periodically
focused, and its properties are generally s dependent.
In this section, we carry out the back-transformation
to the laboratory frame and calculate several proper-
ties of the beam, such as (a) the distribution function
fb�x, y, x0, y0, s� (Sec. V A), (b) statistical averages such
as the mean-square transverse beam dimensions, �x2� �s�
and � y2� �s�, and the unnormalized emittances, ex�s� and
ey�s� (Sec. V B), and (c) macroscopic properties of the
beam in the laboratory frame, such as the density profile
nb�x, y, s� (Sec. V C). Throughout Sec. V, extensive use
will be made of the inverse coordinate transformation,
X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, etc., defined correct
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to order e3 in the Appendix [Eqs. (A1) and (A2) for a
periodic-focusing quadrupole field and Eqs. (A3) and
(A4) for a periodic-focusing solenoidal field]. In cal-
culating the statistical averages in Sec. V B, we will
also make use of the forward coordinate transformation,
x�X̃, Ỹ , X̃ 0, Ỹ 0, s�, y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, etc., defined correct to
order e3 in Eqs. (87)–(90). In this regard, it is important
to keep in mind the relative ordering of the various terms
in Eqs. (87)–(90) and Eqs. (A1)–(A4). For example,
aq�s� and �aq� are of order e, bq�s� is of order e2,
etc. [see Eq. (91)].

A. Laboratory-frame distribution function
fb���x,y,x0,y0,s���

Once the distribution function Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� in
the slow variables is calculated from Eqs. (83) and (84),
it is straightforward to determine the corresponding
distribution function fb�x, y, x0, y0, s� in the laboratory
frame. Specifically, we make use of fb�x, y, x0, y0, s� 3

dxdydx0dy0 � Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s�dX̃dỸdX̃ 0dỸ 0 [Eq. (85)]
and the fact that the Jacobian of the (canonical) transfor-
mation is equal to unity [Eq. (86)] to obtain
fb�x, y, x0, y0, s� � Fb���X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, X̃ 0�x, y, x0, y0, s�, Ỹ 0�x, y, x0, y0, s�, s��� . (120)

In Eq. (120), the coordinate transformation X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, etc., is defined correct to order e3 in
Eqs. (A1) and (A2) for a periodic-focusing quadrupole field and in Eqs. (A3) and (A4) for a periodic-focusing
solenoidal field. In the important case where Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� corresponds to an equilibrium distribution F0

b�H 0�
in the transformed variables (see Sec. IV B), then the periodically focused distribution function in the laboratory frame
is given by

fb�x, y, x0, y0, s� � F0
b�H 0���X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, X̃ 0�x, y, x0, y0, s�, Ỹ 0�x, y, x0, y0, s����� , (121)

where H 0 is defined by

H 0���X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, X̃ 0�x, y, x0, y0, s�, X̃ 0�x, y, x0, y0, s����

�
1
2

�X̃ 02�x, y, x0, y0, s� 1 Ỹ 02�x, y, x0, y0, s�� 1
1
2

kfR̃
2�x, y, x0, y0, s� 1 c0���R̃�x, y, x0, y0, s���� . (122)
Here, use has been made of Eq. (92), and R̃�x, y, x0, y0, s�
is defined by R̃2�x, y, x0, y0, s� � X̃2�x, y, x0, y0, s� 1

Ỹ 2�x, y, x0, y0, s�. Because the s-dependent coefficients
aj�s�, bj�s�, etc., occurring in the orbit equations (A1)–
(A4) have axial periodicity length S � const, it follows
that the laboratory-frame distribution function defined in
Eq. (121) also satisfies

f�x, y, x0, y0, s 1 S� � f�x, y, x0, y0, s� . (123)

Therefore, Eqs. (121) and (122) together with the coor-
dinate transformations in Eqs. (A1)–(A4), map the equi-
librium distribution function F0

b�H 0�, which is uniformly
focused and has circular cross section in the transformed
variables, into a pulsating, periodically focused distribu-
tion function in the laboratory frame.

The result in Eq. (121), together with the associated
definitions in Eq. (122) and the Appendix, make acces-
sible for the first time a broad class of high-intensity,
periodically focused distribution functions that are analyti-
cally tractable, in addition to the familiar Kapchinskij-
Vladimirskij equilibrium. Therefore, it is anticipated that
Eq. (121) together with the results in Sec. IV B will be
very useful in providing input data for numerical simula-
tion studies based on the nonlinear Vlasov-Maxwell equa-
tions, as well as experimental studies of beam matching
into periodic-focusing channels.

B. Statistical averages in the laboratory frame

From Eq. (12), the statistical average of a phase
function x�x, y, x0, y0, s� over the laboratory-frame distri-
bution function fb�x, y, x0, y0, s� is defined by �x� �s� �
N21
b

R
dx dy dx0 dy0 x�x, y, x0, y0, s�fb�x, y, x0, y0, s�. For

specified x , the expressions for f�x, y, x0, y0, s� in
Eq. (120) or Eq. (121) can be used for a direct calculation
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of �x� �s� · · ·. As an alternative (and simpler) approach we make use of the identity, fb�x, y, x0, y0, s�dxdydx0dy0 �
F�X̃, Ỹ , X̃ 0, Ỹ 0, s�dX̃dỸdX̃ 0dỸ 0, in Eq. (85) to express �x� �s� in the equivalent form

�x� �s� �
Z
dX̃ dỸ dX̃ 0 dỸ 0 Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s�

3 x���x�X̃ , Ỹ , X̃ 0, Ỹ 0, s�, y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, x0�X̃, Ỹ , X̃ 0, Ỹ 0, s�, y0�X̃, Ỹ , X̃ 0, Ỹ 0, s�, s��� . (124)

Here, the forward coordinate transformation, x�X̃, Ỹ , X̃ 0, Ỹ 0, s�, y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, etc., is defined correct to order e3 in
Eqs. (87) and (88) for a periodic-focusing quadrupole field and in Eqs. (89) and (90) for a periodic-focusing solenoidal
field. For the case where Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� corresponds to the class of self-consistent Vlasov equilibria, F0

b�H 0�,
considered in Sec. IV, the statistical average defined in Eq. (124) further reduces to

�x� �s� �
Z
dX̃ dỸ dX̃ 0 dỸ 0 F0

b�H 0�

3 x���x�X̃ , Ỹ , X̃ 0, Ỹ 0, s�, y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, x0�X̃, Ỹ , X̃ 0, Ỹ 0, s�, y0�X̃, Ỹ , X̃ 0, Ỹ 0, s�, s��� . (125)
Given the relatively simple dependence of the coordi-
nate transformations in Eqs. (87)–(90) on �X̃, Ỹ , X̃ 0, Ỹ 0�,
Eq. (125) provides a very straightforward prescription for
evaluating statistical averages such as �x2� �s�, � y2� �s�,
�x02� �s�, etc., in the laboratory frame.

1. Periodic focusing quadrupole field

To illustrate the application of Eq. (125) to a periodic-
focusing quadrupole field, we make use of Eqs. (87)
and (125) to evaluate �x2� �s�. This readily gives
�x2� �s� � �1 2 bq�s��2�X̃2�0 1 4�

Rs
0 dsbq�s��2�X̃ 02�0 1

4�1 2 bq�s�� �
Rs

0 dsbq�s�� �X̃X̃ 0�0, where �· · ·� denotes
the statistical average over F0

b�H 0� as defined in Eq. (99).
Because �X̃X̃ 0�0 � 0 � �Ỹ Ỹ 0�0 [Eq. (100)] and because
�
Rs

0 dsbq�s��2 is of order e6 [Eq. (91)], we obtain

�x2� �s� � �1 2 bq�s��2�X̃2�0 ,

� y2� �s� � �1 1 bq�s��2�Ỹ 2�0 ,
(126)

correct to order e3. Here, �X̃2�0 � �Ỹ2�0 � R2
b0�2 follows

from Eq. (102). Defining a2�s� � �1 2 bq�s��2R2
b0 �

�1 2 2bq�s��R2
b0 and b2�s� � �1 1 bq�s��2R2

b0 � �1 1

2bq�s��R2
b0, it follows from Eq. (126) that

�x2�
a2�s�

1
� y2�
b2�s�

� 1 . (127)

We conclude from Eqs. (126) and (127) that the beam
cross section in the laboratory frame corresponds to a
pulsating ellipse (in an rms sense) with minor axes, a�s�
and b�s�. It should also be kept in mind that Eqs. (126) and
(127) apply to the entire class of equilibrium distributions,
F0
b�H 0�, in the transformed variables, and that self-field

effects are allowed to be arbitrarily intense, consistent with
radial confinement of the beam particles by the focusing
field [Eq. (110)].

Other statistical averages of practical interest are also
readily calculated from Eqs. (87), (88), and (125). With-
out presenting algebraic details, it is straightforward to
show that
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�x� � 0 � � y� ,

�x0� � 0 � � y0� ,

�x02� �s� � �1 2 bq�s��2�X̃ 02�0 1 �aq�s� 2 �aq��2�X̃2�0 ,

� y02� �s� � �1 1 bq�s��2�Ỹ 02�0 1 �aq�s� 2 �aq��2�Ỹ 2�0 ,

�xx0�2 � �aq�s� 2 �aq��2�X̃2�2
0 ,

� yy0�2 � �aq�s� 2 �aq��2�Ỹ 2�2
0 , (128)

correct to order e3. Here, use has been made of
Eq. (100), and we have expressed X̃≠c0�R̃��≠X̃ 2

Ỹ≠c0�R̃��≠Ỹ � �X̃2 2 Ỹ2�R̃21≠c0�R̃��≠R̃ in the or-
bits for x0�X̃, Ỹ , X̃ 0, Ỹ 0, s� and y0�X̃, Ỹ , X̃ 0, Ỹ 0, s� in
Eq. (88). Moreover, from Eq. (102), keep in mind that
�X̃2�0 � �Ỹ 2�0 � R2

b0�2 and �X̃ 02�0 � �Ỹ 02�0 � �1�2� 3

�X̃ 02 1 Ỹ 02�0.
Equations (126) and (128) can be used to calculate the

transverse emittances in the laboratory frame, e2
x�s� �

4��x2� �x02� 2 �xx0�2� and e2
y�s� � 4�� y2� � y02� 2 � yy0�2�,

defined in Eq. (14). Because bq�s� is of order e2

[Eq. (91)], we note that 1 2 b2
q�s� � 1 correct to order

e3. Therefore, from Eqs. (126) and (128) we readily
obtain

e2
x �s� � 4�X̃2�0�X̃ 02�0 � e2

x0 � const ,

e2
y �s� � 4�Ỹ 2�0�Ỹ 02�0 � e2

y0 � const ,
(129)

correct to order e3. Therefore, from Eq. (129), the trans-
verse emittances, ex�s� and ey�s�, are conserved quanti-
ties (independent of s) correct to e3. In summary, the
expressions for the laboratory-frame statistical averages in
Eqs. (126)–(129) represent very powerful results, particu-
larly because they apply to the entire class of equilibrium
distribution functions, F0

b�H 0�, and because they allow
for arbitrary beam intensity.

It is important to recognize the implications and lim-
itations of Eq. (129); that is, the transverse emittances,
ex�s� and ey�s�, are conserved quantities when the
back-transformation to the laboratory frame is carried
out. First, and very important, Eq. (129) pertains to
the class of equilibrium distributions F0

b�H 0�, which
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correspond to matched, constant-radius beam equilibria in
the transformed variables (Sec. IV B) and transform back
to matched, periodically focused solutions with period
S in the laboratory frame [Eqs. (121)–(123)], at least to
order e3. That is, Eq. (129) pertains to the transverse
emittances associated with periodically focused beam
equilibria in the laboratory frame. Of course, if the system
is perturbed about equilibrium, i.e., Fb�X̃, Ỹ , X̃0, Ỹ 0, s� �
F0
b�H 0� 1 dFb�X̃, Ỹ , X̃ 0, Ỹ 0, s�, then the perturbations

evolve self-consistently according to Eqs. (83) and (84),
and there will be a corresponding change in the total
laboratory-frame transverse emittances ex�s� and ey�s�
[see Eqs. (14) and (120)] associated with the changes
in Fb and c . It is well known that such variations
in the laboratory-frame emittances about equilibrium
values can be sizable [2,5], particularly if the equilibrium
distribution F0

b�H 0� is unstable, and there is a significant
redistribution of particles in phase space. Second, and
also important, in the equilibrium case it is important
to keep in mind that Eq. (129) is an approximate result
obtained in the context of the asymptotic analysis in
Secs. III and IV (correct to order e3), and there are un-
doubtedly corrections to Eq. (129) of order e4 or smaller.
Finally, referring ahead to Sec. V C, there is an important
comparison to be made with Sacherer’s classic analysis
[39] of periodically focused intense beam propagation.
For the case of constant emittances, ex and ey , analysis of
Sacherer’s rms envelope equations [39] shows that beam
density profiles with an oscillatory elliptical cross section
constitute self-consistent periodically focused solutions for
intense beam propagation through a periodic quadrupole
lattice. In Sec. V C, for a periodic quadrupole lattice, we
find that the laboratory-frame density profile nb�x, y, s�
corresponding to the beam equilibrium F0

b�H 0� indeed
has an oscillatory elliptical cross section [Eq. (136)]. In
addition, however, the asymptotic analysis presented here
demonstrates that the transverse emittances are constant,
at least to order e3.

2. Periodic focusing solenoidal field

We now summarize several key results for statistical
averages in the laboratory frame for the case of a periodic-
focusing solenoidal field. In this case, we make use of
Eq. (125), together with the coordinate transformations
for x�X̃, Ỹ , X̃ 0, Ỹ 0, s�, y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, etc., defined in
Eqs. (89) and (90). The high degree of symmetry in the
x and y motions in the solenoidal focusing field is, of
course, reflected in the statistical averages. Paralleling the
analysis for the quadrupole focusing case, and making use
of Eqs. (89), (125), and �X̃X̃ 0�0 � 0 � �Ỹ Ỹ 0�0, we readily
obtain

�x2� �s� � �1 2 bs�s��2�X̃2�0 ,

� y2� �s� � �1 2 bs�s��2�Ỹ 2�0 ,
(130)
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correct to order e3. Here, �X̃2�0 � �Ỹ2�0 � R2
b0�2 fol-

lows from Eq. (102). From Eq. (130), the mean-square
radius, r2

b�s� � �x2 1 y2� �s�, in the laboratory frame is
given by

r2
b�s� � �1 2 bs�s��2R2

b0 . (131)

Because bs�s� is of order e2 [Eq. (91)], we can also
express �1 2 bs�s��2 � 1 2 2bs�s� correct to order e3

in Eq. (131). From Eqs. (130) and (131), for a periodic-
focusing solenoidal field, we conclude that the beam cross
section is circular and that the rms beam radius rb�s�
oscillates with periodicity length S.

Other statistical averages of practical interest are
also readily calculated from Eqs. (89), (90), and (125).
Without presenting details, some straightforward al-
gebraic manipulation that makes use of Eq. (102) and
X̃≠c0�R̃��≠X̃ 1 Ỹ≠c0�R̃��≠Ỹ � R̃≠c0�R̃��≠R̃ gives

�x� � 0 � � y� ,

�x0� � 0 � � y0� ,

�x02 1 y02� �s� � �1 1 bs�s��2�X̃ 02 1 Ỹ 02�0 (132)

1 �as�s� 2 �as��2�X̃2 1 Ỹ 2�0 ,

�xx0 1 yy0�2�s� � �as�s� 2 �as��2�X̃2 1 Ỹ2�2
0 ,

correct to order e3. Equations (131) and (132) can be
used to calculate the total transverse emittance in the
laboratory frame, defined by e2�s� � 4��x2 1 y2� �x02 1

y02� 2 �xx0 1 yy0�2�. Because bs�s� is of order e2, we
note that 1 2 b2

s �s� � 1 correct to order e3. Therefore,
from Eqs. (131) and (132) we obtain

e2�s� � 4�X̃2 1 Ỹ2�0�X 02 1 Ỹ 02�0 � e2
0 � const ,

(133)

correct to order e3. Therefore, from Eq. (133), the trans-
verse emittance e�s� is a conserved quantity (independent
of s) correct to order e3.

Similar to the quadrupole focusing case, the results
summarized in Eqs. (130)–(133) have a wide range of
applicability. In particular, the results apply to the entire
class of equilibrium distribution functions F0

b�H 0�, and
the self fields are allowed to have arbitrary intensity.

C. Macroscopic profiles in the laboratory frame

Equation (121), supplemented by the definition
of H 0 in Eq. (122), provides a closed expres-
sion for the laboratory-frame distribution function
fb�x, y, x0, y0, s� in terms of the transformed distri-
bution function Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� for the case where
Fb � F0

b�H 0� corresponds to an equilibrium distribu-
tion in the transformed variables. As such, Eqs. (121)
and (122), supplemented by the orbit transforma-
tions for X̃�x, y, x0, y0, s�, Ỹ�x, y, x0, y0, s�, etc., defined
in Eqs. (A1)–(A4) can be used for a direct evalu-
ation of a wide variety of macroscopic profiles in the
074401-23
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laboratory frame, such as the beam density profile,
nb�x, y, s� �

R
dx0 dy0 fb�x, y, x0, y0, s�, the transverse

flow velocity, Vb�x, y, s� � n21
b bbc

R
dx0 dy0�x0êx 1

y0êy�fb�x, y, x0, y0, s�, etc.

1. Density profile nb���x, y, s���

For our purposes here, we illustrate an alternative (and
perhaps simpler) approach for calculating the density
profile nb�x, y, s� in the laboratory frame. Specifi-
cally, we express the density profile as nb�x, y, s� �R
dx̃ dỹ dx0 dy0 fb�x̃, ỹ, x0, y0, s�d�x̃ 2 x�d�ỹ 2 y� and

make use of the identity fb�x̃, ỹ, x0, y0, s�dx̃dỹdx0dy0 �
F0
b�X̃, Ỹ , X̃ 0, Ỹ 0�dX̃dỸdX̃ 0dỸ 0, which follows from
074401-24
Eq. (85). Here, F0
b�X̃, Ỹ , X̃ 0, Ỹ 0� � F0

b�H 0� is the
equilibrium distribution function in the transformed
variables (see Sec. IV B). It follows that nb�x, y, s� can
be expressed in the equivalent form

nb�x, y, s� �
Z
dX̃ dỸ dX̃ 0 dỸ 0 F0

b�X̃, Ỹ , X̃ 0, Ỹ 0�

3 d�x̃�X̃, Ỹ , X̃ 0, Ỹ 0, s� 2 x�
3 d�ỹ�X̃, Ỹ , X̃ 0, Ỹ 0, s� 2 y� . (134)

In Eq. (134), the coordinate transformations for
x̃�X̃, Ỹ , X̃ 0, Ỹ 0, s� and ỹ�X̃, Ỹ , X̃ 0, Ỹ 0, s� are defined in
Eq. (87) for a periodic-focusing quadrupole field and in
Eqs. (89) and (90) for a periodic-focusing solenoidal field.

For a periodic-focusing quadrupole field, we obtain
from Eq. (87)
x̃�X̃, Ỹ , X̃ 0, Ỹ 0, s� 2 x � �1 2 bq�s��

(
X̃ 2

x
�1 2 bq�s��

1
2�

Rs
0 dsbq�s��

�1 2 bq�s��
X̃ 0

)
,

ỹ�X̃, Ỹ , X̃ 0, Ỹ 0, s� 2 y � �1 1 bq�s��

(
Ỹ 2

y
�1 1 bq�s��

2
2�

Rs
0 dsbq�s��

�1 1 bq�s��
Ỹ 0

)
,

(135)
where bq�s� is of order e2, and
Rs

0 dsbq�s� is of order
e3. Therefore, in leading order, the delta functions in
Eq. (134) select X̃ � x��1 2 bq�s�� and Ỹ � y��1 1

bq�s��. Moreover, F0
b�X̃, Ỹ , X̃ 0, Ỹ 0� � F0

b�H 0� in
Eq. (134), and H 0 � �1�2� �X̃ 02 1 Ỹ 02� 1 �1�2�kfR̃2 1

c0�R̃� depends on X̃ and Ỹ exclusively through the
effective radial variable R̃ � �X̃2 1 Ỹ2�1�2. Substituting
Eq. (135) into Eq. (134) then gives to leading order

nb�x, y, s� �
1

�1 2 b2
q�s��

n0
b�R̃�x, y, s�� . (136)

Here, R̃�x, y, s� is defined by R̃2�x, y, s� �
x2��1 2 bq�s��2 1 y2��1 1 bq�s��2, and we can
approximate the multiplying factor 1��1 2 b2

q�s�� � 1 in
Eq. (136) correct to order e3. In Eq. (136), the functional
form of n0

b�R̃� corresponds to the equilibrium density
profile calculated self-consistently from Eq. (95) in the
transformed variables. As such, Eq. (136) is applicable
to a broad range of choices of equilibrium distribution
functions F0

b�H 0�.
For a periodic-focusing solenoidal field, the analysis

proceeds in a completely analogous manner, making use
of the coordinate transformations for x̃�X̃, Ỹ , X̃ 0, Ỹ 0, s� and
ỹ�X̃, Ỹ , X̃ 0, Ỹ 0, s� defined in Eq. (89). Without presenting
algebraic details, we obtain to leading order

nb�x, y, s� �
1

�1 2 bs�s��2 n
0
b�R̃�x, y, s�� , (137)

where R̃�x, y, s� is defined by R̃2�x, y, s� �
x2��1 2 bs�s��2 1 y2��1 2 bs�s��2 in the periodic
solenoidal case.

As expected, the density contours in the laboratory
frame have an elliptical cross section for a periodic-focus-
ing quadrupole field [Eq. (136)] and a circular cross sec-
tion for a periodic-focusing solenoidal field [Eq. (137)].
Moreover, in both cases, it can be shown from Eqs. (136)
and (137) that the number of particles per unit ax-
ial length is conserved; i.e., Nb �

R
dx dy nb�x, y, s� �

2p
R`

0 dR̃ R̃n
0
b�R̃� � const (independent of s).

Equations (136) and (137) are particularly attractive
representations of the density profile nb�x, y, s� because
the s-dependent distortion of the profiles appears explic-
itly in the definitions of R̃�x, y, s�. It should be pointed
out, however, for continuously varying profiles n0

b�R̃�,
that Eqs. (136) and (137) can also be Taylor expanded
locally about a radius r � �x2 1 y2�1�2 in the labora-
tory frame, treating bq�s� and bs�s� as small parameters
(of order e2). For example, in the periodic quadrupole
case, R̃�x, y, s� � �x2��1 2 bq�2 1 y2��1 1 bq�2�1�2 �
r 1 bq�s� �x2 2 y2��r for small bq�s�. The expression
for nb�x, y, s� in Eq. (136) can then be approximated by

nb�x, y, s� � n0
b�r� 1 bq�s�

�x2 2 y2�
r

≠

≠r
n0
b�r� ,

(138)
correct to order e3. Equation (138) shows quite naturally
the quadrupole distortion of the density profile in the lab-
oratory frame by the periodic-focusing quadrupole field.
Similarly, in the periodic solenoidal case, R̃�x, y, s� �
��x2 1 y2���1 2 bs�2�1�2 � r 1 bs�s�r, and the expres-
sion for nb�x, y, s� in Eq. (137) can be approximated by

nb�x, y, s� � n0
b�r� 1 bs�s�

∑
2n0

b�r� 1 r
≠

≠r
n0
b�r�

∏

� n0
b�r� 1

bs�s�
r

≠

≠r
�r2n0

b�r�� , (139)

correct to order e3. The (pulsating) profile in Eq. (139) of
course remains axisymmetric in the laboratory frame for
the case of a periodic-focusing solenoidal field.
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2. Self-field potential c���x, y, s���

The self-field potential c�x, y, s� in the laboratory frame
is determined self-consistently in terms of the density
profile nb�x, y, s� by integrating the Maxwell equation
(4). For the case of a periodic-focusing quadrupole
field, the density profile has the form given in Eq. (136).
074401-25
We introduce the minor dimensions defined by a2�s� �
�1 2 bq�s��2R2

b0 and b2�s� � �1 1 bq�s��2R2
b0 [see

Eq. (127)], where R2
b0 � N21

b 2p
R`

0 dR̃ R̃
3n0

b�R̃� �
const is the mean-square radius associated with the equi-
librium distribution F0

b�H 0� in the transformed variables
defined in Eq. (101). Substituting Eq. (136) into Eq. (4)
then gives
√
≠2

≠x2
1

≠2

≠y2

!
c�x, y, s� � 2

2pKb
Nb

R2
b0

a�s�b�s�
n0
b

"
R̃�x, y, s�
Rb0

#
, (140)

where R̃�x, y, s��Rb0 is defined by

R̃�x, y, s�
Rb0

�

"
x2

a2�s�
1

y2

b2�s�

#1�2

. (141)

In Eq. (140), we have introduced the scaled radial variable R̃�x, y, s��Rb0 in the argument of n0
b�R̃�Rb0� without loss of

generality. Taking c , ≠c�≠x, and ≠c�≠y to be equal to zero at �x, y� � �0, 0�, the exact solutions to Eq. (140) for the
self-field force components in the laboratory frame, Fsx � 2≠c�≠x and Fsy � 2≠c�≠y, are given by [39]

2
≠

≠x
c�x, y, s� �

pKb
Nb

R2
b0x

Z `

0

djn0
b�T �x, y, s, j��

�a2�s� 1 j�3�2�b2�s� 1 j�1�2
,

2
≠

≠y
c�x, y, s� �

pKb
Nb

R2
b0y

Z `

0

djn0
b�T �x, y, s, j��

�a2�s� 1 j�1�2�b2�s� 1 j�3�2
,

(142)
where T �x, y, s, j� is defined by

T �x, y, s, j� �

"
x2

a2�s� 1 j
1

y2

b2�s� 1 j

#1�2

. (143)

For a specified functional form of n0
b�R̃�Rb0�, Eq. (142)

can be used to calculate the detailed dependence of
2≠c�≠x and 2≠c�≠y on �x, y, s�.

The transverse self-field force is even simpler to
determine for the case of a periodic-focusing solenoidal
field because of the azimuthal symmetry of c�r , s� in
the laboratory frame. In this case we introduce the
mean-square radius r2

b�s� � �1 2 bs�s��2R2
b0 defined in

Eq. (131) and express R̃�x, y, s��Rb0 � ��x2 1 y2���1 2

bs�2R2
b0�1�2 � r�rb�s�. Substituting Eq. (137) into the

Maxwell equation (4) for c�r , s� then gives

1
r

≠

≠r
r

≠

≠r
c�r , s� � 2

2pKb
Nb

R2
b0

r2
b�s�

n0
b

"
r

rb�s�

#
.

(144)

Solving Eq. (144) for the radial self-field force, Fsr �
2≠c�≠r , then gives

2
≠

≠r
c�r , s� �

2pKb
Nb

R2
b0

r

Z r�rb�s�

0
dT Tn0

b�T � . (145)

Similar to the periodic quadrupole case, once the func-
tional form of n0

b�R̃� is determined self-consistently for
a specified equilibrium distribution function, F0

b�H 0�, in
the transformed variables, Eq. (145) can be used to deter-
mine the corresponding self-field force in the laboratory
frame which is a periodic function of s.

3. Transverse flow velocity Vb���x, y, s���

For a specified equilibrium distribution function,
F0
b�H 0�, in the transformed variables, the corresponding

laboratory-frame distribution function, fb�x, y, x0, y0, s�,
defined in Eq. (121) can be used to calculate other macro-
scopic properties, such as the transverse temperature
profiles, flow velocity components, etc. We illustrate this
with a direct calculation of the transverse flow velocity
defined (in dimensional units) by

Vb�x, y, s� � �nb�x, y, s��21bbc
Z
dx0 dy0�x0êx 1 y0êy�

3 fb�x, y, x0, y0, s� . (146)

For present purposes, we consider the case of a periodic-
focusing solenoidal field, where the inverse coordinate
transformation, X̃�x, y, x0, y0, s�, Ỹ �x, y, x0, y0, s�, etc.,
occurring in the definition of H 0 in Eq. (122) is de-
fined in Eqs. (A3) and (A4). Of particular importance
when calculating the velocity moments in Eq. (146)
are the symmetries associated with the kinetic energy
term, �1�2� �X̃ 02�x, y, x0, y0, s� 1 Ỹ 02�x, y, x0, y0, s��, in
Eq. (122). Making use of x≠c�≠x 1 y≠c�≠y �
r≠c�≠r , we find from Eqs. (A3) and (A4) that
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�X̃02�x, y, x0, y0, s� 1 Ỹ 02�x, y, x0, y0, s�� �

"
�1 2 bs�s��x0 2

(
2�as�s� 2 �as�� �1 1 bs�s�� 2

√Z s

0
ds�ds�s� 2 �ds��

!

1 2k̄s

"Z s

0
dsbs�s�

#
2

"Z s

0
dsbs�s�

#
1
r

≠

≠r
r

≠c

≠r

)
x

#2

1

"
�1 2 bs�s��y0 2

(
2�as�s� 2 �as�� �1 1 bs�s��

2

√Z s

0
ds�ds�s� 2 �ds��

!
1 2k̄s

"Z s

0
dsbs�s�

#

2

"Z s

0
dsbs�s�

#
1
r

≠

≠r
r

≠c

≠r

)
y

#2

. (147)

To calculate the transverse flow velocity defined in Eq. (146), we make use of Eqs. (121), (122), and (147), keeping
in mind the relative size of the various terms in Eq. (147) [see Eq. (91)] and approximating (for example) �1 2

bs�x0 2 	· · ·
x � �1 2 bs� �x0 2 	· · ·
x��1 2 bs�� � �1 2 bs� �x0 2 	· · ·
 �1 1 bs�x�. Some straightforward algebra
shows that the transverse flow velocity is purely radial with

Vb�x, y, s� � Vrb�r , s�êr , (148)

where Vrb�r , s� is defined by

Vrb�r , s� � bbc

(
�2as�s� 1 �as�� �1 1 2bs�s�� 2

√Z s

0
ds�ds�s� 2 �ds��

!
1 2k̄s

"Z s

0
dsbs�s�

#

2

"Z s

0
dsbs�s�

#
1
r

≠

≠r
r

≠c

≠r

)
r , (149)
correct to order e3. Here, xêx 1 yêy � rêr , where
êr � cosuêx 1 sinuêy is a unit vector in the radial
direction, and we have neglected terms proportional to
bs�s� �

Rs
0 dsbs�s��, which are of order e5.

The transverse flow velocity can be calculated in a
similar manner for a periodic-focusing quadrupole field,
although the flow pattern is more complicated than
in Eq. (148) because of the elliptical cross section of
the beam.

D. Range of validity of asymptotic expansion
procedure

To conclude Sec. V, we summarize the illustrative con-
ditions required for validity of the present asymptotic
expansion procedure for the case of a periodic-focusing
quadrupole lattice with the sinusoidal waveform con-
sidered in Table I. Here, the strength of the focusing
field is measured by the dimensionless parameter lq �
k̂qS2�2p , and the characteristic vacuum phase advance is
defined by soy �

p
kfq S, where kfq � �3�2�l2

q�S2 [see
Table I and Eq. (109)]. For this choice of focusing lat-
tice, it follows that lq and soy are related by
074401-26
lq

2p
�

s
2
3

soy

2p
. (150)

Therefore, lq , �2�3�1�2 � 0.82 corresponds to soy ,

1 (vacuum phase advance less than 60±). We now con-
sider the relative size of the various terms in the coor-
dinate transformation relating �x, y, x0, y0� to �X̃, Ỹ , X̃ 0, Ỹ 0�
in Eqs. (87) and (88). Here, we estimate the characteristic
(maximum) values by

jxj � jX̃j � jyj � jỸ j � rb ,

jx0j � jX̃ 0j � jy0j � jỸ 0j � rb�S , (151)

jcj � Kb ,
where rb is the characteristic (rms) beam radius, Kb is
the dimensionless self-field perveance defined in Eq. (5),
and use has been made of Maxwell’s equation (84) and
Nb � pr2

bnb to estimate jcj � Kb . The correction terms
to x � X̃ and y � Ỹ in Eq. (87) then stand in the ratio

jbqj:
j
Rs

0 dsbqj

S
. (152)

Similarly, the correction terms to x0 � X̃ 0 and y0 � Ỹ 0 in
Eq. (88) stand in the ratio
jbqj:Sjaqj:Sjaqbqj:S

É Z s

0
ds�dq 2 �dq��

É
:
j
Rs

0 dsbqj

S
S2jcj

r2
b

, (153)

where we have estimated j≠c�≠X̃j � jcj�rb , etc.
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We now make use of the entries in Table I and the
estimate jcj � Kb in Eq. (151) to compare the size of the
various terms in Eqs. (152) and (153). We readily find
that the correction terms in Eq. (152) stand in the ratio

lq

2p
:

2lq

�2p�2 . (154)

Similarly, the correction terms in Eq. (153) stand in the
ratio

lq

2p
:lq:

l2
q

2p
:
l2
q

2p
:

lq

�2p�2
?
S2Kb
r2
b

. (155)

From Eq. (107), the largest value of the self-field per-
veance Kb allowed in the limit of negligibly small trans-
verse emittance is Kb � kfqr

2
b , which gives KbS2�r2

b �
kfqS2 � �3�2�l2

q. Therefore, in the limit of intense space-
charge field, the ratio of terms in Eq. (155) reduces to

lq

2p
:lq:

l2
q

2p
:
l2
q

2p
:

3
2

l3
q

�2p�2 . (156)

Therefore, from Eqs. (154) and (156), we conclude
that the key small parameter required for validity of the
present asymptotic analysis is e � lq�2p , 1, at least
for the case of a sinusoidal quadrupole focusing field
considered in Table I. From Eq. (150), this corresponds
to soy�2p , �3�2�1�2, which leads to the conjecture
(Sec. I) that the phase advance s0 should be smaller than
60± (� p�3). The important practical test of the range of
validity awaits detailed comparison with experiment and
numerical simulations.

VI. CONCLUSIONS

In this paper, we have developed and applied a third-
order Hamiltonian averaging technique for investigating
solutions to the nonlinear Vlasov-Maxwell equations for
the case of an intense ion beam propagating through a
periodic-focusing quadrupole field or a periodic-focusing
solenoidal field. The formalism used a canonical trans-
formation given by an expanded generating function
to transform away the rapidly oscillating terms and
end up with a Hamiltonian H that depends only on
slow variables. The assumptions and theoretical model
were summarized in Sec. II, including the nonlinear
Vlasov-Maxwell equations for the distribution function
fb�x, y, x0, y0, s� and self-field potential c�x, y, s� in the
laboratory frame. In Sec. III, we made use of Channell’s
third-order Hamiltonian averaging technique [34] to
transform from laboratory-frame variables �x, y, x0, y0�
to a new Hamiltonian H �X̃, Ỹ , X̃ 0, Ỹ 0, s� in the slow
variables �X̃, Ỹ , X̃ 0, Ỹ 0� correct to order e3. The for-
malism employed a canonical transformation given by
an expanded generating function to transform away the
rapidly oscillating terms. This led to a Hamiltonian
H �X̃, Ỹ , X̃ 0, Ỹ 0, s� in the transformed variables of the
form given in Eq. (79), where kf � const. An im-
074401-27
portant by-product of the generating function analysis
was the determination of the coordinate transformation
that relates the laboratory-frame variables �x, y, x0, y0� to
the slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� [Eqs. (87)–(90)]. The
major simplification associated with transforming to the
slow variables �X̃, Ỹ , X̃ 0, Ỹ 0� is immediately evident from
the expression for H �X̃, Ỹ , X̃ 0, Ỹ 0, s� in Eq. (79). In
particular, the focusing coefficient kf is both constant
(independent of s) and isotropic in the transverse plane.
This should be contrasted with the expression in Eq. (6)
for the Hamiltonian Ĥ�x, y, x0, y0, s� in the laboratory
frame, where the focusing coefficients kx�s� and ky�s�
are rapidly oscillating functions of s. In Sec. IV, fol-
lowing a discussion of the nonlinear Vlasov-Maxwell
equations for Fb�X̃, Ỹ , X̃ 0, Ỹ 0, s� and c�X̃, Ỹ , s� in the
transformed variables, we presented several examples
of axisymmetric equilibrium solutions, i.e., distribution
functions F0

b�H 0� with ≠�≠s � 0 and ≠�≠Q � 0 cor-
responding to constant-radius beam equilibria with a
circular cross section in the transformed variables [12,21].
Of particular note is the class of distribution functions
that satisfy ≠F0

b�H 0��≠H0 # 0, which can be shown
to be stable [25,26]. Finally, in Sec. V, we exploited
the inverse coordinate transformation, X̃�x, y, x0, y0, s�,
Ỹ �x, y, x0, y0, s�, etc., to determine properties of the peri-
odically focused distribution function fb�x, y, x0, y0, s� in
the laboratory frame, correct to order e3, consistent with
the class of constant-radius circular cross-section beam
equilibria F0

b�H 0� in the transformed variables. A wide
range of important physical quantities were determined,
including the distribution function fb�x, y, x0, y0, s�;
statistical averages such as the transverse mean-square
beam dimensions, �x2� �s� and � y2� �s�, and the unnor-
malized emittances, ex�s� and ey�s�; and macroscopic
properties such as the number density of beam particles,
nb�x, y, s� �

R
dx0 dy0 fb�x, y, x0, y0, s�, the self-field

potential, c�x, y, s�, etc. Finally, in Sec. V D, we sum-
marized the illustrative conditions required for validity of
the present asymptotic expansion procedure for the case
of a periodic-focusing quadrupole lattice with sinusoidal
waveform (Table I). The important practical test awaits
detailed comparison with experiment and numerical
simulations.
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APPENDIX: INVERSE COORDINATE
TRANSFORMATION

The coordinate transformations in Eqs. (87)–(90)
relate the laboratory-frame coordinates x�X̃, Ỹ , X̃ 0, Ỹ 0, s�,
y�X̃, Ỹ , X̃ 0, Ỹ 0, s�, etc., directly to the slow variables
074401-27
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�X̃, Ỹ , X̃0, Ỹ 0�. The inverse transformations, which relate
the slow coordinates X̃�x, y, x0, y0, s�, Ỹ �x, y, x0, y0, s�,
etc., to the laboratory-frame variables �x, y, x0, y0�, can
be calculated from Eqs. (87)–(90) correct to order e3.
In this regard, it is important to make use of the relative
sizes of the various terms in Eqs. (87)–(90), which
correspond to the orderings summarized in Eq. (91).

The procedure for calculating the inverse transfor-
mation is relatively straightforward. For example,
for the case of a periodic-focusing quadrupole field
074401-28
it follows from Eq. (87) that X̃ � x��1 2 bq� 2

2�
Rs

0 dsbq�s��X̃ 0, which can be approximated by
X̃ � �1 1 bq�x 2 2�

Rs
0 dsbq�s��x0 correct to order e3,

where use has been made of Eqs. (88) and (91). A similar
expression for Ỹ in terms of y and y0 can be obtained
from Eqs. (87), (88), and (91), and Eq. (88) can also be
solved for X̃ 0 and Ỹ 0 in terms of the laboratory-frame
variables �x, y, x0, y0�. Without presenting algebraic
details, for the case of a periodic-focusing quadrupole
field, we obtain from Eqs. (87), (88), and (91) the inverse
transformation
X̃�x, y, x0, y0, s� � �1 1 bq�s��x 2 2

"Z s

0
dsbq�s�

#
x0,

Ỹ �x, y, x0, y0, s� � �1 2 bq�s��y 1 2

"Z s

0
dsbq�s�

#
y0,

(A1)

and

X̃ 0�x, y, x0, y0, s� � �1 2 bq�s��x0 2

(
2�aq�s� 2 �aq�� �1 1 bq�s�� 2

√Z s

0
ds�dq�s� 2 �dq��

!)
x

2

"Z s

0
dsbq�s�

#
≠

≠x

√
x

≠c

≠x
2 y

≠c

≠y

!
,

Ỹ 0�x, y, x0, y0, s� � �1 1 bq�s��y0 2

(
�aq�s� 2 �aq�� �1 2 bq�s�� 2

√Z s

0
ds�dq�s� 2 �dq��

!)
y

(A2)

1

"Z s

0
dsbq�s�

#
≠

≠y

√
y

≠c

≠y
2 x

≠c

≠x

!
,

correct to order e3.
Similarly, for the case of a periodic-focusing solenoidal field, we obtain from Eqs. (89)–(91) the inverse

transformation

X̃�x, y, x0, y0, s� � �1 1 bs�s��x 2 2

"Z s

0
dsbs�s�

#
x0,

Ỹ �x, y, x0, y0, s� � �1 1 bs�s��y 2 2

"Z s

0
dsbs�s�

#
y0,

(A3)

and

X̃ 0�x, y, x0, y0, s� � �1 2 bs�s��x02

(
2�as�s� 2 �as�� �1 1 bs�s�� 2

√Z s

0
ds�ds�s� 2 �ds��

!

1 2k̄s

"Z s

0
dsbs�s�

#)
x 2

"Z s

0
dsbs�s�

#
≠

≠x

√
x

≠c

≠x
1 y

≠c

≠y

!
,

Ỹ 0�x, y, x0, y0, s� � �1 2 bs�s��y02

(
2�as�s� 2 �as�� �1 1 bs�s�� 2

√Z s

0
ds�ds�s� 2 �ds��

! (A4)

1 2k̄s

"Z s

0
dsbs�s�

#)
y 2

"Z s

0
dsbs�s�

#
≠

≠y

√
x

≠c

≠x
1 y

≠c

≠y

!
,

correct to order e3.
In obtaining Eqs. (A1)–(A4), we have made use of the fact that the self-field contributions in Eqs. (88) and (90) are

proportional to
Rs

0 dsbq�s� and
Rs

0 dsbs�s�, respectively, which are of order e3 [see Eq. (91)]. Therefore, to leading
order, we approximate �≠�≠X̃� �X̃≠�≠X̃ 2 Ỹ≠�≠Ỹ �c�X̃, Ỹ , s� by �≠�≠x� �x≠�≠x 2 y≠�≠y�c�x, y, s�, etc., in obtaining
the inverse transformations in Eqs. (A2) and (A4).
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