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This paper considers an intense non-neutral ion beam propagating in the z direction through
a periodic-focusing quadrupole or solencidal field with transverse focusing force, —[«,(s)xé, +
Ky(s)y€,], on the beam ions. Here, s = B,ct is the axial coordinate, (y, — 1)myc? is the directed
axial kinetic energy of the beam ions, and the (oscillatory) lattice coefficients satisfy «,(s + S) = k. (s)
and k,(s + §) = k,(s), where S = const is the periodicity length of the focusing field. The
theoretical model employs the Vlasov-Maxwell equations to describe the nonlinear evolution of
the distribution function f,(x,y,x’,y’,s) and the (normalized) self-field potential (x,y,s) in the
transverse laboratory-frame phase space (x,y,x’,y’). Here, H(x,y,x',y',s) = (1/2) (x? + y?) +
(1/2) [k (s)x? + Ky(s)y*] + &(x,y,s) is the (dimensionless) Hamiltonian for particle motion in the
applied field plus self-field configurations, where (x,y) and (x,y’) are the transverse displacement
and velocity components, respectively, and (x,y,s) is the self-field potential. The Hamiltonian is
formally assumed to be of order e, a small dimensionless parameter proportional to the characteristic
strength of the focusing field as measured by the lattice coefficients «,(s) and «,(s). Using
a third-order Hamiltonian averaging technique developed by P.J. Channell [Phys. Plasmas 6, 982
(1999)], a canonical transformation is employed that utilizes an expanded generating function that
transforms away the rapidly oscillating terms. This leads to a Hamiltonian, H (X, ¥, X', V' s) =
(1/2) (X2 + ¥?) + (1/2)k; (X% + ¥?) + ¢(X,7,s), correct to order € in the “sow” transformed
variables (X, ¥, X', ¥’). Here, the transverse focusing coefficient in the transformed variables satisfies
Ky = const, and the asymptotic expansion procedure is expected to be valid for a sufficiently small
phase advance (o < 7 /3 = 60°, say). Properties of axisymmetric beam equilibrium distribution
functions, F,?(.’}-[O), with a/8s = 0 = 9/90, are calculated in the transformed variables, and the results
are transformed back to the laboratory frame. Corresponding properties of the periodically focused
distribution function £, (x, y,x’,y',s) are calculated correct to order €* in the laboratory frame, including
statistical averages such as the mean-square beam dimensions, (x2) (s) and {y?) (s), the unnormalized
transverse beam emittances, e,(s) and €,(s), the self-field potential, ¢ (x,y,s), the number density of
beam particles, n,(x,y,s), and the transverse flow velocity, V,(x,y,s). As expected, the beam cross
section in the laboratory frame is a pulsating ellipse for the case of a periodic-focusing quadrupole field

or a pulsating circular cross section for the case of a periodic-focusing solenoidal field.

PACS numbers: 29.27.Bd, 41.75.—i, 41.85.—p

. INTRODUCTION

Periodic focusing accelerators and transport systems
[1-5] have a wide range of applications ranging from
basic scientific research to applications such as heavy
ion fusion, tritium production, spallation neutron sources,
and nuclear waste treatment, to mention a few examples
[6-9]. Of particular interest, at the high beam currents
and charge densities of practical interest, are the combined
effects of the applied focusing field and the intense self-
fields produced by the beam space charge and current on
determining detailed equilibrium, stability, and transport
properties [1]. Through analytical studies based on the
nonlinear Vlasov-Maxwell equations, and numerical simu-
lations using particle-in-cell models and nonlinear pertur-
bative simulation techniques, considerable progress has
been made in devel oping an improved understanding of the
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collective processes and nonlinear beam dynamics char-
acteristic of high-intensity beam propagation in periodic-
focusing and uniform-focusing transport systems [10—33].
However, despite the extensive literature on intense beam
equilibrium and stability properties, until the present pa-
per, the Kapchinskij-Vladimirskij (KV) beam equilibrium
[10,11], including its recent generalization to a rotating
beam in a periodic-focusing solenoidal field [21—-23], has
been the only known periodically focused equilibrium
solution to the nonlinear Vlasov-Maxwell equations for an
intense beam propagating through an alternating-gradient
quadrupole or solenoidal field configuration. While
alowing for high space-charge intensity, the KV distri-
bution is nonetheless of very limited practical interest,
particularly because the (monoenergetic) distribution func-
tion has a highly-inverted (and unphysical) distribution
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in phase space and the corresponding density profile is
exactly uniformin the beam interior.

It is, therefore, very important to develop a framework
based on the nonlinear Vlasov-Maxwell equations [12,21]
that isableto investigate the equilibrium and stability prop-
erties of a far more general class of periodically focused
beam distribution functions. In a recent calculation [34],
Channell has developed a third-order Hamiltonian averag-
ing technique for investigating solutions to the nonlinear
Vlasov-Maxwell equations for systems subject to a peri-
odic externa force. Following the Von Zeipel procedure,
the formalism [34] uses a canonical transformation given
by an expanded generating function to transform away the
rapidly oscillating terms[35—38] and end up with aHamil-
tonian JH that depends only on “sow” variables. The
purpose of the present analysis is to apply this averaging
technique to intense beam propagation through a periodic-
focusing lattice. The asymptotic expansion procedure is
expected to be valid [34] for sufficiently small phase ad-
vance (o < 60°, say).

To briefly summarize, the present analysis considers
a high-intensity non-neutral beam of positive ions (with
charge +Z,e and rest mass m;) propagating in the z
direction with characteristic average axial momentum
v»my By c and directed kinetic energy (y, — 1)my,c?. The
beam propagates through an applied field that produces
a transverse focusing force, —[k.(s)xé&, + ky(s)yé,],
on the beam particles. Here, V, = B,c = const is
the average axia velocity, vy, = (1 — B2)~'/2 is the
relative mass factor, ¢ is the speed of light in vacuo,
s = Bpct is the axia coordinate, the ion motion in the
beam frame is assumed to be nonrelativistic, and the
lattice functions, «.(s) and «,(s), have axia periodicity
length § = const. Both the cases of a periodic-focusing
quadrupole field [Eqg. (9)] and a periodic-focusing
solenoidal field [EqQ. (11)] are considered in the present
analysis. Furthermore, the analysis assumes negligible
axial momentum spread, and the starting point is the
nonlinear Vlasov-Maxwell equations (3) and (4) for the
distribution function f,(x,y,x’,y’,s) and (normalized)
self-field potential ¢ (x, y, s) in the transverse phase space
(x,y,x’,y") in the laboratory frame [12,21]. Here, the
Hamiltonian for single-particle maotion in the laboratory
frame is given in dimensionless units by [Eq. (6)]

N 1
H(x,y,x',y/,s) — E (x/2 + y/2)

1
o L) 4wy (5)y7]
+ (x,y,8),
where k(s + §) = k.(s) and k, (s + §) = k,(s) arethe
(oscillating) lattice functions. The Hamiltonian 4 is for-

mally assumed to be of order e, a small dimensionless pa
rameter proportional to the characteristic strength of the
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focusing field as measured by the lattice coefficients «, (s)
and ky(s).

The organization of this paper is the following: The
assumptions and theoretical model are summarized in
Sec. 1, including the nonlinear Vlasov-Maxwell equations
for the distribution function £, (x, y, x, y’, s) and self-field
potential ¢(x, y, s) in the laboratory frame. In Sec. I1I, we
make use of Channell’ s third-order Hamiltonian averaging
technique [34] to transform from laboratory-frame vari-
ables (x,y,x’,y’) toanew Hamiltonian H (X, Y, X', Y’, s)
intheslow variables (X, Y, X', Y') correct to order e3. The
formalism employs a canonica transformation given by
an expanded generating function to transform away the
rapidly oscillating terms [35—38]. This leads to a Hamil-
tonian in the transformed variables of the form [EQ. (79)]

e e ey o~ 1 =~ -
HEX,7,X,Y,s) = 3()(’2 + ¥7?)

1 - . o
+ 5Kf(X2 + 7))+ yX,7,s),

where ky = const. Of course, an important by-product
of the generating function analysis is the determina-
tion of the coordinate transformation that relates the
laboratory-frame variables (x,y,x’,y’) to the dow
variables (X,Y,X’,Y') [Egs. (87)—(90)]. The major
simplification associated with transforming to the slow
variables (X,Y,X’,Y’) is immediately evident from
the expression for H (X,Y,X',Y’,s). In particular,
the focusing coefficient «, is both constant (indepen-
dent of s) and isotropic in the transverse plane. This
should be contrasted with the expression for the Hamil-
tonian H(x,y,x',y’,s) in the laboratory frame, where
the focusing coefficients «,(s) and «,(s) are rapidly
oscillating functions of s. In Sec. 1V, following a dis-
cussion of the nonlinear Vlasov-Maxwell equations for
Fp(X,7,X',Y",s) and ¢(X,Y,s) in the transformed
variables, we present several examples of axisymmetric
equilibrium solutions, i.e., distribution functions Fy(F ©)
with 9/9s = 0 and 9/90 = 0, corresponding to beam
equilibria with circular cross sections in the transformed
variables [12,21]. Of particular note is the class of
distribution functions that satisfy aFp(H?)/9H° < 0,
which can be shown to be stable [25,26]. Findly, in
Sec. V, we exploit the inverse coordinate transformation,
X(x,y,x",y',s), Y(x,y,x",y',s), etc., to determine prop-
erties of the periodically focused distribution function
fu(x,y,s",y',s) in the laboratory frame correct to order
€3, consistent with the class of constant-radius circular
cross-section beam equilibriaFg(ﬂ-[ 9) in the transformed
variables. A wide range of important physical quanti-
ties are determined, including the distribution function
folx,y,x',y', s); statistical averages such as the transverse
mean-square beam dimensions, (x?) (s) and {y?) (s), and
the unnormalized transverse emittances, e,(s) and €,(s);
and macroscopic properties such as the number density of
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beam particles, ny(x,y,s) = [dx'dy’ f,(x,y,x",y',s),
and the self-field potential, (x, v, s), €tc.

Finally, in the third-order averaging technique devel-
oped in Sec. I, it should be emphasized that the Hamil-
tonian is formally assumed to be of order €, a small
dimensionless parameter proportional to the characteris-
tic strength of the focusing field [see Egs. (6) and (15)] as
measured by the lattice coefficients «.(s) and «,(s). To
assure transverse confinement of the beam particles, the
space-charge potential (x,y,s) in Eq. (6) is, of course,
smaller than or comparable in size to the applied focus-
ing potentia, (1/2)[k.(s)x> + k,(s)y?], and the kinetic
energy contribution, (1/2) (x> + y’), is alowed to be
comparable in size to the applied focusing potentia in
the sense of a maximal ordering analysis. In this re-
gard, treating the single-particle Hamiltonian to be of or-
der e < 1, where € is proportional to the focusing-field
strength, is similar to the assumption made in standard
analyses of the particle dynamics in intense charged par-
ticle beams at moderate values of phase advance [1-5].
For completeness, in Sec. V D we provide a semiquanti-
tative estimate of the range of validity of the asymptotic
analysisin Secs. Il and IV by relating the small parame-
ter € to the focusing-field strength and the phase advance
for the case of a sinusoidal quadrupole focusing lattice,
Kq(s) = RgSiNQ2as/S).

I[I. VLASOV-MAXWELL DESCRIPTION AND
BASIC ASSUMPTIONS

In the present analysis, we consider a thin, intense
non-neutral ion beam with characteristic radius r;, and
average axial momentum y,m, B,c propagating in the
z direction through a periodic focusing field with axia
periodicity length S. Here, r, < S is assumed, (y, —
1)m,c? is the directed axial kinetic energy of the beam
ions, y, = (1 — B2)~!/2 is the reativistic mass factor,
Vi, = Byc is the average axial velocity, +Z,e and m,,
are the ion charge and rest mass, respectively, and ¢
is the speed of light in vacuo. The axial momentum
spread of the beam ions is assumed to be negligibly small,
and the ion motion in the beam frame is assumed to be
nonrelativistic. We introduce the scaled time variable
s = Bpct and the (dimensionless) transverse velocities
x" = dx/ds and y' = dy/ds. Then, within the context
of the assumptions summarized above, the nonlinear beam
dynamics in the transverse laboratory-frame phase space
(x,y,x',y") is described self-consistently by the nonlinear
Vlasov-Maxwell equations for the distribution function
fr(x,y,x',y',s) and the normalized self-field potential
lp(x»y?‘g) = Zbe¢(x9y7 S)/Fygmbﬂgczl Where ¢(x’y7 S)
is the electrostatic potential. For a thin beam (r, < §),
we take the applied transverse focusing force on a beam
particle to be of the form

Foe = _[KX(S)XéX + Ky(s)yéy]’ (l)
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where (x, y) is the transverse displacement from the beam
axis and the s-dependent focusing coefficients satisfy

Ke(s + 8) = ki(s),
Ky(s + 8) = ky(s),

where § = congt is the axia periodicity length. The
Vlasov-Maxwell eguations for f,(x,y,x',y’,s) and
¥ (x,y,s) can then be expressed as [12,21]

2

2 27K
—+aa—y2>w=— u ”fdxdyfb @

Here, n,(x,y,s) = [dx'dy' f,(x,y,x",y,s) is the num-
ber density of the beam ions, and the constants, K, and
N,, are the self-field perveance and the number of beam
ions per unit axial length, respectively, defined by
)
Ky = 205 _ ong,
Yoy Bic?

©)

Ny = f dx dy dx' dy' f,, = const.
The nonlinear Vlasov-Maxwell equations (3) and (4) can
be used to investigate detailed beam propagation and
stability properties [10—26] over a wide range of system
parameters and choices of periodic lattice functions, . (s)
and «,(s). As a general remark, it is important to
note that the characteristics of the Vlasov equation (3)
correspond to the single-particle equations of motion in
the applied field plus self-generated fields. For example,
the coefficient of 9/dx is dx/ds = x', the coefficient of
d/0x" is dx'/ds = —k(s)x — dy/dx, etc. Moreover,
the laboratory-frame Hamiltonian A for transverse single-
particle motion consistent with Egs. (3) and (4) is given
(in dimensionless units) by

N 1
H(x,y,x/,y/,s) — E (x/2 + yl2)

+ LIk + Ky (6]

+ (x,y,s). (6)
For H specified by Eq. (6), Hamilton's equations,
dx,/ds = 0H/ox', and dx' /ds = —dH/ox,, then
give the equations of mation
2
d

752 ) F rx(s)x(s) = === i(x,y,),
d2 9 (7)

7Y F () = =gt deys).
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for the transverse displacement, x,(s) = x(s)é, + 1 Lo
y(s)é,, of an individual beam ion in the laboratory frame. () = N, f dxdydx"dy xfv, (12)

In Sec. I1l, we will make use of Channell’s third-order
Hamiltonian averaging technique [34] to transform away
the rapidly oscillating terms [35—-38] in Eq. (6) and end
up with a Hamiltonian #{ that depends only on slow
variables (X, Y, X', Y').

In subsequent sections, we will consider two classes of
periodic-focusing lattices. The first corresponds to an ap-
plied alternating-gradient quadrupole magnetic field [12],

BI;OC(X) = qu(S) (yéx + Xéy)’ (8)
with coupling coefficient defined by

ZpeB(s)
Kgls) = ———, 9
o(s) Ybmmp Byc? ©
where B;(S) = (aBz/ay)(o’o) = ((")Bf\{/ax)(o)()). The sec-
ond corresponds to a periodic-focusing solenoidal mag-
netic field [12,21],

Kx(s) = _Ky(s) =

‘ A 1 . .
B¢ (x) = B,(s)é, — EB/Z(S) (xé, + yé&), (10

2
} . (1D)

where B.(s) = (dB./ds)00. An important distinc-
tion between the two cases is evident. For a periodic
quadrupole lattice, the average of «,(s) over one lattice
period S is zero, fg ds k,(s) = 0, and the periodic solu-
tions to Egs. (3) and (4) typically correspond to elliptical
cross-section beams with oscillating (as a function of s)
major and minor transverse dimensions, a(s) and b(s).
On the other hand, for a periodic-focusing solenoidal field,
the average of «,(s) over one lattice period S is nonzero,
fg ds ks(s) = Sk, # 0, and periodic solutionsto Egs. (3)
and (4) typically correspond to circular cross-section
beams with oscillating root-mean-square (rms) beam
radius, r,(s). Furthermore, for the case of a solenoidal
focusing field [EQ. (11)], the nonlinear Vlasov-Maxwell
equations (3) and (4) are vaid in a frame of reference
rotating about the beam axis at the Larmor frequency [21],
Qr(s) = —wep(s)/2 = —ZpeB_(s)/2y,mypc.

Following the third-order canonical transformation in
Sec. 111 to the new Hamiltonian { in the slow variables
(X,Y,X',Y"), in Secs. IV and V we examine the nonlin-
ear Vlasov-Maxwell equationsin the transformed variables
and utilize the back-transformation to laboratory-frame
variables(x, y, x’, y'). Inthisregard, for specific choices of
equilibrium distribution function Fi (3 °) with a/9s = 0
in the transformed variables, it is important to determine
key physical properties of the (periodically focused) ion
beam distribution function £, (x, y,x',y’, s) in the labora
tory frame. For future reference, in laboratory-frame vari-
ables, we denote the statistical average of a phase function

x(x,y,x',y',s) by

with coupling coefficient defined by

Kx(s) = Ky (s) = x5(s) = [%
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where N, = [dxdy dx'dy’ f, = const is the number of
beam ions per unit axial length. One key property of the
beam distribution function £, (x, y, x’, y’, s) is the density
profile defined by

np(x,y,s) = | dx'dy' fi(x,y,x",y',5). (13)
Other important properties include the rms beam radius,
rp(s), therms x and y dimensions of the beam, a(s) and
b(s), the unnormalized total transverse beam emittance,
€(s), and the unnormalized x- and y-transverse beam emit-
tances, €,(s) and €,(s). These quantities are defined by

ra(s) = (x> + y?),

a*(s) = (%),  b*s) = (y?),

€*(s) = 4[(x" + Yy (x> + y?) — (xx' + yy')], (19)
€1 (s) = A[(x) (x%) — (xx)?],

er(s) =4[y ) — ()],
where the statistical averages, (), are defined according
to Eq. (12).

1. CANONICAL TRANSFORMATION OF
HAMILTONIAN AND PARTICLE COORDINATES
TO SLOW VARIABLES

In this section, we make use of Channell’s third-order
Hamiltonian averaging technique [34] to transform
from laboratory-frame variables (x,y,x',y’) to the
slow variables (X,Y, X', Y’), with a new Hamiltonian
H(X,Y,X',Y' s). The formaliism employs a canonical
transformation given by an expanded generating function
[34] to transform away the rapidly oscillating terms
[35—-38]. We formally express the laboratory-frame
Hamiltonian H(x,y,x’,y’,s) as

H(x,y,x",y',s) = eH(x,y,x",y",s)

1
= E[E(x’z +y?) + V(x,y,9)

" w(x,y,s)] (15)

where A is defined in Eq. (6), and € isasmall dimension-
less parameter. In Eq. (15), the applied focusing potential
V(x,y,s) isexpressed as

Vix,y,s) = Ulx,y) + V(x,y,s), (16)
where U(x,y) is the steady (s-independent) contribution,
and V(x,y,s) is the rapidly oscillating part. For future
reference, from Egs. (6), (9), and (11) we express

Ux,y) = %[m2 + &yy?,
5 1 (17)
Vxy.s) = 3[Rl + &y ()],

where the oscillating focusing coefficients are defined
by &, (s) = k.(s) — ky and &, (s) = ky(s) — k,, and the
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average focusing coefficients are defined by k, =
s! jﬁ ds ky(s) and &k, = S~! fg ds ky(s). For an
alternating-gradient quadrupolefield with | g ds ky(s) =0
[Eq. (9)], it follows that
ke = —k, =0, (18)
Ri(s) = _R'y(s) = Kq(s)’

and therefore U,(x,y) = 0. On the other hand, for a
periodic-focusing solenoidal field [Eq. (11)] with k; =
SV [3 ds ky(s) # 0, it follows that

Ry =Ky =K; # 0, (19)

Rx(s) = Ry(s) = Rs(s) = Ks(s) - Ks,

and therefore U (x, ) is generally nonzero.

A. Canonical transformation

We introduce a near-identity canonical transfor-

S(x,y,X',Y' s) is defined by
S, v, X', Y, s) = xX" + yY’
+ Z €"S,(x,y,X",Y',s). (20)
n=1

Here, (x,y,x’,y’) are the laboratory-frame variables, and
(X,Y,X',Y") are the transformed variables. The trans-
formed Hamiltonian (X, Y,X’,Y’,s) in the new vari-
ablesis given by
HX, v, XY s)=H(x,y,x'y,s)
d
+ a—S(x,y,X',Y/,s), (2D
S

or  equivalently, expressing H =>7_,€" X
H,(X,Y,X',Y' s) and making use of Eq. (15), Eq. (21)

mation where the expanded generation function [34] | becomes

oo

> e H, (X, v, XY, 5) =

n=1

To determine the  transformed
H(X,Y,X',Y' s), note that the variables (x,y,x',y’)
occurring on the right-hand sides of Egs. (21) and (22)
have to be expressed in terms of (X,Y,X',Y',s), i.e,
x=x(X,Y, XY, s), x¥ =x'(X,Y,X",Y' s), etc. In
this regard, the coordinate transformation generated by
Eqg. (20) is given by

X = BX’ = Z Sn(x v, X, Y s),
- (23
Y = BY’ = Z Sn(x v, X', Y s),
and
oS
x'== e =X+ Ze a—Sn(xyX’ Y',s),

n=1

(24)

0S Jd
= ==Y+ " —S,(x, ,X/,Y/, .
y dy ’ZE 3y n(x y s)

Or, solving Eq. (23) iteratively for x(X,Y,X’,Y',s) and
y(X,Y,X', Y, )giv&s

x—X—Ze

—X + Z € x,(X,Y, X", Y s),

n=1

y=Y—Z

s

Sn(x v, XY, s)
a @)
oy —— Su(x,y, XY, 5)

"X, Y, XY, s),

where

074401-5

e[% (x? + y?) + V(x,y,s) + w(x,y,s)} +

Ze”aiSn(x,y,X’,Y’,s). (22)
s

n=1

Hamiltonian |

(X, Y, XY s) = _W SI(X, Y, X', Y )s),

26
/ / J / / ( )
yl(X,Y,X,Y,S):_aY/SI(X,Y,X,Y,S),

to leading order, etc. Similarly, solving Eq. (24) itera-
tively for x/(X,Y,X',Y’,s) and y/(X, Y, X', Y', s) gives

X=X+ Z €"
n=1

y/ —y 4+ Z €'y
n=1

(X, Y, X, Ys),

(27)
(X, Y, X, Y )s).

where

)
X (X, Y, XY s) = X S1(X, Y, X' Y,s),

; (28)
y{(X, Y, XY s) = ﬁSl(X, Y. X', Y s),
to leading order, etc.

We now make use of Egs. (25) and (27) to expand the
Hamiltonian H = eH defined in Eq. (15). For example,
making use of x =X + ex; + €?x, + --- and y =
Y + ey, + €%y, + ---, itisreadily shown from Egs. (16)
and (17) that the applied focusing potential can be
expressed as

V(X,y,s) = U(Xs Y) + VO(X,Y,S)
+ eVi(X,Y, XY s)

+ e2Vo(X, Y, XY s) + ---, (29)
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correct to order €. Here, the steady potential U (X, Y) and the oscillating components, Vj(X, Y, X, Y',s),j=0,1,2,
are defined by

1
UKX,Y) = = [rR:X? + &y Y?],

\S]

To(X.Y.5) = %[RX(S)XZ & (5)7?],

(30)
VI(X’ Y?Xl’ Y/9S) = [Rx(s) + Rx]xlx + [Ry(s) + R}*]YIY,

N 1 1
Vo (X, Y,Xl, Y/,S) = [Rx(s) + I_<x:| <XZX + Ex%) + [Ry(s) + R'y] <y2Y + Ey%)

In Eg. (30), the oscillatory orbit perturbations, x;(X,Y,X', Y’ s), x(X,Y,X", Y’ s), etc., are yet to be de
termined from Eg. (25). Similarly, we Taylor expand the self-field potential ¥ (x,y,s) = (X + ex; +
€’ xy + ---,Y + €y; + €%y, + ---,5) occurring in the definition of H in Eq. (15). This readily gives

Y, y,s) =YX, Y,s) + e(X,Y, X', Y s) + (X, Y, X, Y s) + ---. (31)

Here, #(X,Y,s) is the sowly varying self-field potential, and the oscillatory components, J1(X, Y, X', Y s) and
(X, Y, X', Y',s), are defined by

- 0 0
X, Y, XY, =< — + _> X,Y,s),
I ( s) oy Ty W ( s)
(32)
(X, Y, XY, s) = <x2 SO y2 S ix% > + iy% i + x1y1—2 >¢(X, Y,s).
X Y 2 9X? 2 Y2 0XoY

Finally, making use of x' = X' + ex] + €’xy + ---andy’ = Y’ + ey| + €?y; + --- in the kinetic energy contribu-
tion, (1/2) (x” + y'), to the definition of H = €H in Eq. (15), we obtain

1 1 1
3(x'2 + y?) = 3(X’2 +Y?) + e(x|X' + yY') + e{(xéX’ + yiY') + B (xP + yiz)i| + .o, (33)

In Eq. (33), the oscillatory velocity perturbations, x{(X, Y, X', Y',s), x4(X, Y, X', Y’, ), etc., are yet to be determined from
Egs. (24) and (27).
We now collect together the results in Egs. (29)—(33) and substitute them into the expression for the transformed
Hamiltonian H (X, Y, X", Y',s) = > €"H,(X, Y, X", Y',s) in Eq. (22). Thisreadily gives
o0 1 N
> " H, (X, Y, X, Y, 5) = e{; X? + Y% + UX,Y) + y(X,Y,s) + Vo(X,Y,s)
n=1

+ e[(X X + yY) + Vi(X, Y, X, Y s) + (X, Y, X, Y, s)]

1 ~
# @ G ) + TGP+ ) + T VXY s)

+ (X, Y, XY, s)} + }

0
+ E €e" Py S, (x(X, Y, X" Y, 5),y(X, Y, X", Y 5),X" Y 5s), (34)
s

n=1

where the oscillatory potentials Vo, Vi, Va, ¢, and ¢, are defined in Egs. (30) and (31). The main objective
of the present analysis is to transform to new coordinates (X,Y,X’,Y’) such that the transformed Hamil-
tonian H (X, Y, X', Y',s) => " H,(X,Y,X",Y',s) is dowly varying. Thus far, the generating function
SOy, X, Y s) =" €S,(x,y,X',Y',s) has been arbitrary and unspecified. We now make use of this freedom
to choose {S,} in such a way that the transformed Hamiltonian J{ (X,Y, X', Y’ s) is slowly varying correct to third
order in the expansion parameter €. The anaysis will involve s integrations over the periodic lattice functions
Re(s +8) = Re(s) and &, (s + S) = k,(s). For future reference, it is convenient to introduce the definitions of
several key quantities that occur in the subsequent analysis. The definitions are
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arls) = [ dswilo)

1 S
<ax> = E/;) ds ax(s)»
Buls) = fo dsla(s) — (a0

1 S
<,Bx> = Ef() ds BX(S)7
8:(s) = ai(s) — 2&:(s)Bu(s),

S
60 = ¢ fo ds 5,(s).

We now solve Eq. (34) order by order, beginning with
order e.

1. Canonical transformation to order €

Setting the coefficient of the terms of order e equa
to zero in EQ. (34) gives for the first-order transformed
Hamiltonian (X, Y, X', Y, s)

H, = %(x’2 + Y% + UX,Y) + ¢(X,Y,s)

- ad
+ Vo(X,Y,s) + 35 S1, (36)
s

where U(X, Y) isthe steady confining potential defined in
Eqg. (30), #(X,Y,s) isthe slowly varying self-field poten-
tial, and the lowest-order oscillatory confining potential
Vo(X,Y,s) is defined in Eq. (30). To assure that H; is
slowly varying, we choose the first-order generating func-
tion S; in EQ. (36) so that the final two terms on the right-
hand side of Eq. (36) exactly cancel. Integrating from
s = 0, this readily gives

SI(X.Y,5) = — f ds Vo(X, Y, 5)
0

= —%[QX(S)XZ + ay(s)Yz]’ (37)

where a,(s) and a,(s) are defined in Eq. (35). Be-
cause 9S;/ds = —Vo(X,Y,s), the expression for
H(X,Y,X', Y, s)in Eq. (36) reduces to

H, — %(Xﬂ +Y?) 4 UKX,Y) + (X, Y,5), (38)

which is slowly varying because of the choice of S; in
Eqg. (37). From Egs. (26), (28), and (37), it also follows
that the first-order transverse displacement coordinates
(x1, y1) and velocity coordinates (x}, y;) are given by

d
X1 = —ﬁSl =0,
39
s B (39)
= —551 =0,

and

074401-7

a6 = [ sk,

1 S
(ay) = E,/;) ds ay(s),
By(s) = fo dslary(s) — ()],

s (35)
<:8)> = %j;) ds By(s)’
8y(s) = ay(s) — 2Ry(s)By(s),
s
(6,) = %/;) ds 8,(s).
x; = (;—il = —a,(s)X,
(40)
v = % = —a,(s)Y.

Egs. (39) and (40) lead to severa simplifications in the
subsequent analysis. In particular, from Egs. (30), (32),
(39), and (40), it follows that the first- and second-order
contributions to the oscillatory focusing-field potential are
given by

Vi(X,Y, X", Y, s) =0,
Vo(X, Y, X', Y, s) = [Re(s) + Re]aX

(41)

and the first- and second-order contributions to the oscil-
latory self-field potential are given by
(X, Y, XY s) =0,
; (42)
(X, Y, XY s5) = <x2 X
In Egs. (41) and (42), the second-order perturbed orbits
x»(X,Y, X, Y, s) and y,(X,Y,X',Y',s) are yet to be
determined.

+y, %)c//(X, Y.s).

2. Canonical transformation to order €2

We now make use of V; =0 = ¢; and x; = 0 = y,
and set the coefficient of € equal to zero in Eq. (34).
This gives for the second-order transformed Hamiltonian
HrXx, v, X', Y, s)

d
.7‘[2 = xiX/ + in/ + 552
d
= —a,(s)XX' — a,(s)YY' + a—SZ, (43)
° N
where (x1, y}) is defined in Eq. (40), and the coefficients

a,(s) and a,(s) are defined in Eq. (35). We rewrite
Eg. (43) in the equivalent form

074401-7



PRST-AB 2

RONALD C. DAVIDSON, HONG QIN, AND PAUL J. CHANNELL

074401 (1999)

Hy = —(@)XX" = (a)YY" — [au(s) = (a)]XX' — [ay(s) — (a)]YY’ + %52, (44)

where () = S~ [3 ds a(s) and () = S7! [5 ds a,(s). To assure that H,(X,Y,X',Y',s) is slowly varying, we
choose the second-order generating function S, in Eq. (44) such that

S, = XX’ ]0 " dsla(s) — @] + vy fo ' dslay(s) — (a,)] = Bx()XX' + B,(s)YY', (45)

where the oscillatory coefficients B,(s) and B,(s) are
defined in Eq. (35). Substituting Eq. (45) into Eq. (44)
then gives for the second-order transformed Hamiltonian
HrXx, Y, X', Y, s)

Hy = —(a)XX' — {(a,)YY', (46)

where the coefficients (a,) and {a,) are constants (inde-
pendent of ). Furthermore, from Egs. (24), (25), (27), and
(45), the second-order transverse displacement coordinates
(x2, y2) and velocity coordinates (x5, y3) are given by

d

0= o Sr = —B:(5)X,
5 (47)
Y2 = Toy S> = —By(5)Y,
and
xh = iSz = B,(s)X’
29X ¥ ’
(48)

d
I = — = B.(s)Y’.
Y2 9Y S2 ,B)(S)

Asageneral remark, from the definitions of the oscillatory
coefficients, B,(s) and B,(s), in Eq. (35), we note that

I

IBX(S + §) = BX(S)? (49)
By(s + 8) = ,By(s)’

and that By(s = 0) = 0= B,(s = §) and B,(s = 0) =
0= ,By(s =9).

3. Canonical transformation to order €3

Returning to the expression for the transformed Hamil-
tonian H in Eq. (34), we set the coefficient of €3 equal to
zero and make use of the definitions of Vo(X,Y, X', Y, s)
and ¢»(X,Y,X',Y’,s) in Egs. (41) and (42). This gives,
for the third-order Hamiltonian H(X,Y, X', Y',s),

I
Hy =X+ yp¥' + = (0 + 97

+ [Re(s) + kyloX + [Ky(s) + Ry]y2Y

o 98,
v, 0 98 50
ox Ty T o (50)

Making use of the expressions for (x},y1), (x2,y»), and
(x3,y5) in Egs. (40), (47), and (48), it is straightforward

| to show that Eqg. (50) can be expressed as

I

H; = B.(s) [X’Z — kX2 - X —} + ,By(s)[Y/z - Ry -y —} + %[af(s) — 2&.(5) By (s)]X?

0X
a5
as

b

+ 2 [ad6) = 2R, (B +

Y

(51)

where the s-dependent factors B, (s), By(s), a(s), and a,(s) are defined in Eq. (35) in terms of the periodic lattice
functions &, (s + §) = k.(s) and &, (s + S) = k,(s). For the applications of interest here, not only are the averages

fg ds &.(s) = 0 and fg ds iy(s) = 0, but the lattice functions &, (s) and &, (s) are assumed to have odd half-period
symmetry (see examplesin Fig. 1) with

kx(s - S/z) = _kx[_(s - S/2)], (52)
ky(s = 8/2) = —ky[—(s — §/2)].

Some straightforward integration by parts that makes use of the definitions in Eq. (35) shows that the averages (8.) and
(B, can be expressed as

1 S
ds(s* — sS)i,(s) =

1 (S S\
(Bx) = 25 /s 25 J, dS(S - ?> Ri(s),
1 S 1 N S 2 (53)
(By) = 75 . ds(s* — sS)ky(s) = E]o ds(s — ?> Ry(s),
and the averages («,) and («,) can be expressed as
074401-8 074401-8
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@)=+ [ assi =+ [Cas(s = $)ruto,
(ay) = —%LS ds sky(s) = —%LS ds(s — %)Ry(s).

It therefore follows from Egs. (52)—(54) that

(54)

(Bx)=0= <,By>, (55)

whereas (a,) and (a,) are generally nonzero.
We now return to the third-order Hamiltonian in Eg. (51) and choose the generating function S5 to exactly cancel all
rapidly oscillating terms on the right-hand side of Eq. (51). Because(B,) = 0 = (8,), we pick

—foxdsﬂx(s) |:X’2 — kX2 — X%} — foxdsﬂy(s)|:Y/2 - RYP—Y aﬂ
- %( | astaits) - <6x>])x2 - %( | "astayo - <6)7>])Y2. 59)

Here, 8,(s) = af(s) — 2R (5)Bx(s) and 8,(s) = ayz(s) — 2Ry (s)By(s), and (6,) = s—1 fg ds 6,(s) and (8,) =
s fg ds 8,(s). Substituting Eq. (56) into Eq. (51) then gives for the slowly varying third-order Hamiltonian
Hi(X,v,X',Y',s)

H; = %<5X>X2 + %<6y>Y2. (57)

For future reference, we further simplify the expressions for (8,) and (8,). Making use of Eq. (35), k.(s) = da,/ds
and dB,/ds = a,(s) — (a,), gives

o=+ [ as(ar 2% p )= L [Cafal 2L @p + 2mte — (@] 69

Making use of the fact that B,(s) and B,(s) vanish a s =0 and s = S, EQ. (58) readily gives the compact
representations

G0 = 5 [ dsB3a3e) - A,
s (59)
(5,) = % ]0 ds[3a2(s) — 2a,)].

Finally, making use of Egs. (24), (25), (27), and (56), the third-order transverse displacement coordinates (x3, y3) and
velocity coordinates (x4, y) are given by

X3 = —g—f; = 2fsdsBX(S)X/
. (60)

y3 = —g—? = 2[ ds,By(s)Y/

and
88y P ‘ Rl O [y
SRR B W

_ ( f " ds[.(s) - <ax>]>x — ()i ()X -
61

/_8_53_ 851 9 9 %
BTy T o fdsﬁ’(s){z"’wray(yayn fdsﬁ"(s)[ Y( ax)}

— (fo ds[8y(s) — <8),>]>Y — a,(s)By(s)Y .
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Here, use has been made of the expressions for $1(X, Y, s)
and (x»,y,) in Egs. (37) and (47), and the O(e®) con-
tributions to x5 and y} from €S,(X,Y,s) = €S;(x —
€’x2,y — €%y,,s), have been included by Taylor expan-
sion in Eq. (24).

B. Third-order transformed Hamiltonian and
coor dinate transfor mation

The averaging approach developed in Sec. Il A rep-
resents a powerful formalism for determining the third-
order slowly varying Hamiltonian H (X,Y,X',Y’,s) =
eH, + H, + €Hz + -~ and the correspond-

ing coordinate transformations x(X,Y, X', Y’ s) =
X + ex; + €2x, + €3x3 + -+, XX, Y, XY, s) =
X'+ ex; + €2x) + x5 + ---, etc. From Egs. (38),

(46), and (57), we obtain, correct to third order in e,
HEX, Y, XY s)= % X2 +Y?+UKX,Y)
+ ¢ (X, Y,s) — [(a)XX' + {(a,)YY']

FSGIX G (6
where (), (a,), (8,), and (5,) are defined in Egs. (35)
and (59), and we have set the expansion parameter € = 1.
In Eq. (62), U(X,Y) is the steady focusing potential de-
finedby U(X,Y) = (1/2) (& X* + &, Y?), and (X, Y, s)
isthe slowly varying self-field potential in the transformed
variables. It is useful to introduce the average focusing
coefficients k¢, and «p, defined by

s
Kpy = %f ds[a?(s) — {a,)*] = const,
0
3 s (63)
Kpy = E.[ ds[a?(s) — (a,)*] = congt.
0 )
Rearranging terms in Eg. (62), and making use of

Egs. (59) and (63), it follows that Eq. (62) can be ex-
pressed in the equivaent form

HE. Y. X Ys5) = %[(x’ — @)X + (Y — {(a)1)]

1
+ UX,Y) + E(Kﬁcx2 + kpY?)

+ ¢(X,Y,s). (64)

For completeness, it should be pointed out that if we in-
troduce the additional canonical transformation (known as
a fiber transformation) to variables (X, Y, X', Y') defined
by [38]
X=X, y=v,

X' =X —(a)X, YV =Y —{(a)Y,
then the transformed Hamiltonian in Eq. (64) can aso be
expressed as

(65)

074401-10

- o~ o~ o~ 1 - -
HE,V,X.,7,s) = B X? + 77
+UKX.Y) + (X, 7,5)
1 N .
+ ?(KfXX2 + Knyz). (66)

For future reference in Sec. 1V, we now simplify the
expression for the transformed Hamiltonian { defined
in Eq. (64) for the two cases corresponding to: (a) the
aternating-gradient quadrupole focusing field in Egs. (9)
and (18) and (b) the periodic-focusing solenoidal field in
Egs. (11) and (19).

1. Transformed Hamiltonian for an
alternating-gradient quadrupole field

In this case, Ry(s) = —k,(s) = k,(s) and k, =
—ky = S [4 ds k,(s) = 0, and it follows that

a,(s) = _ay(s) = aq(s) = o ds Kq(s)s
S
() = () = (o) = + fo ds ay(s).

Be) = =B5) = Bols) = 5 [ dsla(s) = e,

(Bx) = —(By) =(Bg) =0, (67)
8x(5) = 8y(s) = 8y(s) = ag(s) — 2k4(5)By(s),

1

S
30 = (0 = 0 = 5 [ asTaad(s) = 2a¥],

3 S
Kiy = Kfy = Kfg = Efo ds[aé(s) — (aq>2].

From Egs. (64) and (67), for a periodic quadrupole lattice
with k(s + ) = k,(s) and S~ [} ds k,(s) = 0,
it follows that the dowly varying Hamiltonian
H,(X,Y,X",Y',s) is given correct to third order in
€ by the expression

H,(X,v, X', Y s) = %[(X’ — (@ )X)?
+ (Y + (a)Y)’]
+ %Kfq(x2 + Y% + ¢(X,Y,s).

(68)
Here, xy, = (3/5) [y ds[a2(s) — (a,)?] is the aver-
age quadrupole focusing coefficient, and use has been
made of U,(X,Y) = (1/2) (k,X*> + k,Y?) = 0 because
fg ds kq4(s) = 0.

For purposes of illustration, listed in Table | are the
values of the lattice functions defined in Eq. (67) for
the choice of a periodic-focusing quadrupole lattice with
Kq(s) = RySin2ms/S), where &, = const. Here, we
have introduced the dimensionless amplitude defined by
Aq = k4S8%/27 and the lattice wave number defined by

074401-10
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T
1.5 (a)
R
R (s) 0.0
K Lo
-1.5 \ \ \
0.0 0.5 1.0 1.5 2.0
s/S
1.5 \ \ ‘
(b)
2 --- > < -
el n/2 - |
k(s) 0.0
—K Lo
-1.5 \ \ \
0.0 0.5 1.0 1.5 2.0
s/S

FIG. 1. Examples of periodic-focusing lattice functions with
odd half-period symmetry [Eq. (52)] corresponding to (a) a
sinusoidal lattice function, &.(s) = ksin(2ws/S), with k =
congt, and (b) a periodic step-function lattice with amplitude
& = const and filling factor 7.

ks = S/27. Anidentical set of values is obtained from
Eqg. (69) for a periodic-focusing solenoidal lattice with
ks(s) = ks SNQR7s/S).

2. Transformed Hamiltonian for a periodic-focusing
solenoidal field

In this case, from Egs. (11) and (19), &,(s) = «(s) —
i, Where &, = S7! [S ds ky(s) # 0 and S™! [} ds ¥
ks(s) = 0, and there is a high degree of symmetry about
the beam axis because &, (s) = &, (s) = &,(s). Inparticu-
lar, from Egs. (35), (59), and (63), we find

a(s) = ay(s) = ay(x) = fo s &y (s),
S
() = ) = ) = ¢ fo ds a,(s).,

1 N
5 | e = @,

(69)

Bx(s) = By(s) = Bs(s)

<:8x> = <,B)> = <IBS> =0,
8.(s) = 5y(s) = 0,(s) = aSZ(S) - ZRS(S)BS(S)9

N
(50 = (5 = (6 = 5 | s = 2],

S
Kiy = Kfy = Kfs = %f ds[asz(s) — {a,)?].
0
From Egs. (64) and (69), for a periodic-focusing
solenoidd  field  with k(s + §) = ,(s) and
S7V [ ds ky(s) = &, # 0, it follows that the slowly
varying Hamiltonian H,(X,Y, X', Y',s) is given correct
| to third order in e by

LY X V) = I = @X) + (7 = (@)VP] + 3 Ry + ks (0 + V) + (X, V,5).

(70)

Here, use has been made of U (X,Y) = (1/2)k (X% + x4 ex] + €*xh + €3x} + .-, etc., obtained correct to

Y2),and ks, = (3/5) [5 ds[a?(s) — (a,)*]isthe average
focusing coefficient associated with the oscillating lattice
coefficient k(s + S) = ky(s).

To conclude Sec. 111, we collect together the results
for the coordinate transformations x(X,Y,X',Y’,s) =
X + ex; + €2x, + €3x3 + -+, XX, Y, XY, s) =

TABLE I.
k, = const. Here, A, = %,S?/2m and k, = 27/S.

order €3 from Egs. (39), (40), (47), (48), (60), and (61).
Again, we distinguish the two cases corresponding to
(a) an dternating-gradient quadrupole field described by
Egs. (9) and (18) and (b) a periodic-focusing solenoidal
field described by Egs. (11) and (19), making use of the
related symmetries in Egs. (67) and (69).

Values of lattice functions defined in Eq. (67) for a periodic quadrupole lattice with «,(s) = &, sin(27s/S), with

Function Vaue Function Vaue
ay(s) %"[1 — cos(kys)] 84(s) %[2 + Sinz(kxs)? — 2cos(kys)]
(as) L (8, L
aq(s) - <aq> _ATq COS(kSS) [?) ds ﬁq(s) L (2!#)2[1 - COS(kAS)]
B,y (s) — 3£ sin(k,s) [f) ds[6,(s) — (6,)] —ﬁ[% sin(2kys) + 2sin(ks)]
(B,) 0 Kry S i
074401-11 074401-11
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3. Coordinate transformation for an alternating-gradient quadrupole field
We make use of Egs. (39), (40), (47), (48), (60), and (61) to evaluate x(X,Y,X". Y s) = X + e€x; + €*xy +
€3x3 + -+, etc,, for an alternating-gradient quadrupole field with x,(s + §) = x,(s) and S ! 5 ds Kkq(s) = 0. Making
use of the symmetriesin Eq. (65) and setting e = 1, we obtain, correct to third order in e,

S

XY, XL Y 5) = X — By(s)X + 2[[ ds ,Bq(s)i|X’,
0

s (71)
yX, Y, XY s) =Y + Bys)Y — 2|:] ds,Bq(s)i|Y',
0
and
KLY.XLY8) = X — ay()X + By(s)X' + Uo ds ,Bq(s):| L (X% = Y%)
_ (]Y ds[8,(s) — <5q)])X — a,(s)B,(s)X,
0 (72)

VXY, XY s) =Y + a,(s)Y — By(s)Y' — Uo ds /3q(s)} % (y% _ X%)

_ ( fo s[5, (s) <5q>])y — ay(5)By ()Y .

Here, the coefficients in Egs. (71) and (72) are defined in Eq. (67). Moreover, the terms in Egs. (71) and (72)
proportional to a,(s), B,(s), [ods By(s), [ods[8,(s) — (8,)], and a,(s)B,(s) are of order e, €2, €3, €3, and €,
respectively. In Eq. (72), note that use has been made of k, = —k, = S~! fg ds k,(s) = 0 for a periodic quadrupole
field.

4. Coordinate transformation for a periodic-focusing solenoidal field

Finally, we make use of Egs. (39), (40), (47), (48), (60), and (61) to evaluate x(X, Y, X', Y',s) = X + ex; + €’x; +
€3x3 + ---, etc., for a periodic-focusing solenoidal field with x,(s + §) = «,(s) and S~! fg ds ks(s) = k; # 0.
Correct to order €3, making use of the symmetries in Eq. (69) and setting e = 1, we readily obtain

x(X, Y, X, Y s) =X — Bs(s)X + 2|:[Sds ,BS(S)):|X/,
0

: (73)
y(X,Y, X, Y s) =Y — Bs(s)Y + 2|:[ ds Bs(s)j|Y/,
0
and
XX, 7, XY s) = X' — a,(s)X + Bs(s)X' + |:f0Y ds ,Bs(s)j||:2RSX + %(X% + Y%)}
- ( | "astao - <6s>])x — @ 5)Bs X,
0 (74)

VY XY =¥ = a7+ B+ | [ s m(w} WY+ (X . Y%)
- ( jo ds[8,(s) — <6S>J)Y — a(s)B(s)Y .

Here, the coefficients in Egs. (73) and (74) are defined |
in Eqg. (69). In addition, the terms in Egs. (73) and (74) = of symmetry in the x and y motions for the case of a
proportional to a,(s), By(s), [ods Bs(s), [ods[8s(s) —  periodic-focusing solenoidal field.

(85)], and a,(s)B,(s) are of order €, €2, €, €, and In concluding this section, for the case of a periodic-
€, respectively. Finaly, as expected, it is evident focusing solenoidal field, we demonstrate an important
from Egs. (73) and (74) that there is a high degree  check on Egs. (73) and (74) related to the conservation
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of canonical angular momentum [21]. In laboratory-frame variables (actually Larmor-frame variables) the normalized
canonical angular momentum is defined by P, = xy’ — yx'. Expressing x = X + ex; + €’xy + €’x3 + -+, y/ =
Y' + ey] + €2y) + €3y4 + -+, etc., and making use of x; = 0 = y;, the canonical angular momentum can be

expressed as

Py =xy —yx' = XY — YX' + e(Xy| — Yx]) + €2(Xy) — Yxb + x2V' — y»X')

+ E(Xys — Yuh + x3¥Y" — y3X' + xoy) — yixh) + 0(e%).

Some dstraightforward algebra that makes use of
Egs. (73)—(75) gives

Py = XY' — YX' + Uosds/as(s)}()(% - Y%)

X (X% + Y%> + 0(e*), (76)

0X aY
where XY’ = YX' = Pg is the canonica angular
momentum in the slow variables. An important con-
clusion is immediately evident from Eg. (76). We
denote X = Rcos® and Y = Rsn®, where R =
(X2 + Y?)Y2, Then (X9/0X + Ya/aY)y(X,Y,s) =
R(0/3R)Y(R,©,s) and X9/oY — Y3/oX = 9/00O.
Equation (76) then reduces to
d 0

Py = Pg + |:/0 dS,Bs(S):|R§ Y J(R,0,s),
(77)

correct to order €. Therefore, as expected, when
Y(R,0,s) is axisymmetric in the transformed variables
with 94 /00 = 0, it follows that

Py = P = congt (independent of s),  (78)

corresponding to conservation of canonical angular mo-
mentum [12,21].

IV. NONLINEAR VLASOV-MAXWELL
EQUATIONS IN THE SLOW VARIABLES

In this section, we examine properties of the nonlinear
Vlasov-Maxwell equations for F,(X,Y, X', Y’ s) and
Y (X,Y,s) in the slow phase space variables (Sec. IV A)
and present several examples of equilibrium solutions
Fy(H°) with 9/0s =0 (Sec.IVB). The coordi-
nate transformations in Egs. (71) and (72) (periodic
quadrupole field) and in Egs. (73) and (74) (periodic
solenoidal field) are then used in Sec. V to examine
statistical averages and key properties of the periodi-
caly focused ion beam digtribution f,(x,y,x',y’,s)
in laboratory-frame variables. For completeness, the
linearized Vlasov-Maxwell equations in the transformed
variables are presented in Sec. 1V C.

A. Transformed Hamiltonian and nonlinear
Vlasov-M axwell equations in the slow variables

For present purposes, it is convenient to work with
the slow variables (X,Y,X’,Y’) which are related to
(X,Y,X', Y") by the fiber transformation [38] in Eq. (65).

074401-13

(75)

In this case, making use of Egs. (66), (68), and (70),
trle ~tr§nsf~ormed Hamiltonian in the sSlow variables
(X,Y,X', Y') can be expressed as

e 1 . y 1 . .
HE,V,X., 7,5 = E(XQ +¥?) + 7 k(X + 1?)
+¢(X.Y,s), (79)

correct to order 3. Here, for the case of a periodic-

focusing quadrupole field, (X, ¥,X’,¥’) and k; are de-
fined by

X =X, Y=y,
X =X —(a)X, Y =Y +(a,)Y, (80)

S
K =i =g [ dslads) = )

where use has been made of Egs. (65), (67), and (68).
On the other hand, for the case of a periodic-focusing
solenoidal field, (X, Y, X', Y’) and k are defined by

X =X, Y=Y,

X' =X —(ay)X, Y=Y —{a,)Y, (81)

S
Kf = Ky t Ky = Kg t %f dS[Ol?(S) - <as>2]’
0

where use has been made of Egs. (65), (69), and (70).

The major simplification associated with transforming
to the slow variables (X, ¥, X', ¥') isimmediately evident
from Eq. (79). In particular, the focusing coefficient «
occurring in Eq. (79) is both constant (independent of
s) and isotropic in the transverse plane. This should
be contrasted with the expression for the Hamiltonian
H(x,y,x',y’,s) inthelaboratory frame defined in Eq. (6),
where the focusing coefficients «.(s) and «,(s) are
rapidly oscillating functions of s.

For the Hamiltonian defined in Eq. (79), the single-
particle equations of motion are given by

d -~ 83‘[ BN v/a
gX:a)zl=Xex-‘rYey,
d - aH . va
d_SX/= _R = _Kf(Xex + Yey) (82)
9 o o
- —=yX,Y
ale( Y,s),

and the nonlinear Vlasov equation for F,(X, 7V, X' Y, s)
can be expressed as

074401-13
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L7l
oX oY

d
{ +X’
as

<KfX

P P
X ¢> ox! <Kf

¢p> aY/}F;,(X 7.X.7.5s)=0, (83)

where «; = const is defined in Egs. (80) and (81). Com- |
paring Egs. (82) and (83), note that the characteristics of
the Vlasov equation (83) correspond to the single-particle
equations of motion in the transformed variables. For ex-
ample, the coefficient of 9/9X isdX/ds = X', the coeffi-
cient of 9/0X' isdX'/ds = —«x;X — 9y /09X, etc. The
slowly varying self-field potential (X, Y, s) occurring in
Eq. (83) is determined self-consistently in terms of the
distribution function Fj,(X, Y, X', ¥’, s) from

)m, 7.5) = —27Kb f dx' 47’
Ny

>< Fb(X7 ?7 Xl? ?/7 S) b

which should be compared with Eq. (4).

The nonlinear Vlasov-Maxwell equations (83) and (84)
can be used to investigate detailed equilibrium and stabil-
ity properties in the slow variables (X,Y,X’,Y’) over a
wide range of system parameters [12,21], including beam
intensity (K},), focusing-field strength (« ), and choices of
equilibrium distribution function FY(3H9), consistent with
the assumption that the phase advance is sufficiently small
[34] to assure good convergence of the averaging technique
leading to Eq. (79). Of course, to determine proper-
ties of the (periodically focused) beam in the laboratory
frame, use will be made of the back-transformation to
the laboratory-frame coordinates (x,y,x’,y’) defined in
Egs. (71) and (72) (periodic-focusing quadrupole field)
or in Egs. (73) and (74) (periodic-focusing solenoidal
field).

For simplicity, in the subsequent analysis of Egs. (83)
and (84), we employ free boundary conditions in which
the conducting wall is assumed to be infinitely far
removed from the ion beam in the transverse plane.
Two points are especialy noteworthy in this regard.
First, while the variables (X,Y) are spacelike and the
variables (X', Y') are velocitylike in a forma analy-
sis of Egs. (83) and (84), it is clear that the back-
transformation to the laboratory-frame coordinates defined
in Egs. (71) and (72), or in Egs. (73) and (74), inex-
orably mixes the dependence of (x,y,x’,y’) on the vari-
ables (X, Y, X', Y'). Second, arigid conducting boundary
in the laboratory frame will typicaly have a pulsat-

ing (s-dependent) shape in the transformed variables. |

82 2
—~ A + T~ ~4
<8X2 aY?
(84)

For example, consider the coordinate transformation for
a periodic-focusing quadrupole field given in Egs. (71)
and (72). Correct to order €2, Eq. (71) gives x =
[1 = B,(s)]X and y =[1 + B,(s)]Y. Therefore, a cir-
cular cross-section conducting wall with constant radius
(x2 + y)¥/2 = r,, = const in the laboratory frame cor-
responds to a pulsating conducting wall with elliptical
cross section, X%/a2(s) + Y?/b? (s) =1, in the trans-
formed variables, where a2(s) = r2/[1 — B,(s)}* and
b2(s) = r2/[1 + B,(s)]. “As noted earlier, the subse-
guent analysisin Secs. |V and V effectively assumes that
the conducting wall is infinitely far removed from the
beam (r,, — ).

In concluding this section, it is important to emphasize
that the nonlinear Vlasov-Maxwell equations (83) and (84)
in the slow variables (X, Y, X', ¥’), when supplemented
by the coordinate transformations in Egs. (71) and (72)
(periodic-focusing quadrupole field) or in Egs. (73) and
(74) (periodic-focusing solenoida field), are fully equiv-
aent to the nonlinear Vlasov-Maxwell equations (3) and
(4) in the laboratory-frame variables (x, y, x', y’) correct
to order €3. In this regard, because the coordinate trans-
formation is canonical, the laboratory-frame distribution
function f,(x,y,x’,y’, s) isrelated to the transformed dis-
tribution function F,(X, ¥, X', Y', s) by

folx,y,x',y', s)dxdydx'dy’ = Fy(X,V,X",Y',s)

X dXdYdX'dY', (85)
and the Jacobian of the transformation is equa to unity;
i.e,

I(x,y,x',y")
KT R (80)
A direct calculation that makes use of Egs. (71) and (72),
or Egs. (73) and (74), appropriately expressed in terms of
the variables (X, Y, X', Y') defined in Egs. (80) and (81)
shows that Eq. (86) is indeed satisfied correct to order €.

For completeness and future reference in Sec. V,
we record here the coordinate transformations relating
(x,y,x',y") to (X,¥,X’,Y"). For the case of a periodic-
focusing quadrupole field, making use of Egs. (71), (72),
and (80), we obtain

x(X, Y, XY s) =1 = By(s)IX + 2|:[S dsﬁq(s)j|5(’
0

y(X7 ?’ l’ Y/’

074401-14

s) =[1 + B,(s)]Y — 2[[0 ds ﬁq(s)}?/

(87)
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R\
=
=
=

+ |:] ds,Bq(s)i| ( zi

/’ ?/’ s)=1[1+ lgq(s)]j(l + ‘_aq(s) + <aq> + <aq>ﬂq(s) - Olq(S)Bq(S) - (fos ds[‘sq(s) - <6q>])])~(

y%)
oy (88)

y/(X, ?,X’, ?l, s) = [1 - ,Bq(s)]?/ + ‘aq(s) - <aq> + <aq>:8q(s) - aq(s)ﬁq(s) - (]OS ds[aq(s) - <5q>])]?

[ O (§9¢ _ 59
Uo dsﬁ"(s)}af/( P)% Xa;?)’

correct to order €.

order €*.
obtain
x(X, ¥ y
y(X,7,X,Y
and

= [1 + ,Bs(s)]j(/

KL s) =1 — By(s)]F + 2[[ ds Bs(s):|l7’
0

; { ay(s) + {a) + {a)Bs(s)

+ 2KS|:[ ds Bs(s) :|

In obtaining Eq. (87), we have neglected terms proportional to (a,)[ [y ds B,(s)], which are of
Similarly, for the case of a periodic-focusing solenoidal field, making use of Egs. (72), (73), and (81), we

XLV =[1 - By(s)IX + 2[ [ ds m@}?/,
0

(89)

— ay(5)By(s) ( f ds[.(s) — <as>])

Y /4
X+|:f ds,BS(s:| X(X8X+Y8Y> ©0)

y/(Xv ?’X/’ ?/’ s)=[1+ ,BS(S)]?/ + ‘ —ay(s) + (ay) + <as>ﬂs(s) - as(s),BS(s) - (fY ds[8,(s) — <6s>]>

+ 2,-<SUOS ds,BX(s)j”f/ + U ds By (s)j| ( gi + Y%)

correct to order €. In obtaining Eq. (89), we have

neglected terms proportional to () [ [y ds Bs(s)], which
are of order €*. Finally, it should be noted that the slowly
varying self-field potential (X,Y,s) occurring in the
fina termsin Egs. (88) and (90) is to be determined self-
consistently in terms of F,(X, 7, X', Y, s) from Egs. (83)
and (84).

a;(s), {a;):
B(s):

The coordinate transformations in Egs. (87)—(90)
relate the laboratory-frame coordinates x(X, Y, X', Y/, s),
y(X,Y,X',Y' s), etc., directly to the slow variables
(X,7,X',Y"). In this regard, it is important to keep in
mind the size of the various terms in Egs. (87)—(90). In
particular, referring to the analysisin Sec. 11, the relative

| size of the termsin Egs. (87)—(90) is specified by
Terms of order €,

Terms of order €2, (91)

(a;)B(s), a;(s)Bj(s), |:jos ds ,Bj(s)i|, (]OS ds[8(s) — (5,-)]): Terms of order €3,

where j=¢qg (j=3s) refars to the quadrupole|

(solenoidal) focusing case. It will also be useful in
Sec. V to make use of the inverse transformation to
Egs. (87) (90) which express& the slow coordinates
X(x,y,x",y",5), Y(x,y,x',y',s), etc., dlrectlylntermsof
the laboratory-frame variables (x, y, x', y'). For complete-
ness, the inverse coordinate transformation is presented
correct to order €3 in the Appendix.

074401-15

B. Equilibrium solutions (8/ds = 0)
in the transformed variables

Because of the simple form of Egs. (83) and (84),
with constant focusing coefficient «; = const, the
nonlinear Vlasov-Maxwell equations in the slow vari-
ables (X,Y,X’, ¥') support a broad class of equilibrium
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solutions (denoted by Fp and °) for which a/ds = 0
[12,21]. We introduce the cylindrical polar coordinates
(R, ®) defined by X = Rcos® and ¥ = Rsin®, where
R = (X* + Y22 js the effective radia coordinate in
the slow variables. Because the focusing potentia in
Eq. (79) is of the form (1/2)k(X? + ¥?) = (1/2)ksR?,
the nonlinear Vlasov-Maxwell equations (83) and
(84) support axisymmetric equilibrium solutions with
9/00 =0 and 9/ds =0 in which F)(X,¥,X', 7"
and ¢°(X,Y) depend on X and ¥ exclusively through
the radial coordinate R = (X2 + ¥?)/2. Specifically,
because 91°/90® = 0 and 9y°/as = 0, the transformed
Hamiltonian H°(X,Y,X',¥') for transverse particle
motion in the equilibrium field configuration is given by

e 1 . . 1. .
HOX, 7,X,7) = B X%+ 77 + > kiR* + ¢°(R),

(92)

where H © is exactly conserved (d H °/ds = 0) because
ay®/as = 0.

The nonlinear Vlasov-Maxwell equations (83) and (84)
support a broad class of equilibrium solutions (6/9s = 0)
in which the equilibrium distribution function F} depends
on the variables (X,Y,X’,Y) exclusively through the
Hamiltonian H°; i.e,

FY)(X,7,X', 7" = F)(H?Y). (93)

Here, H°(X,Y,X’,Y’) is defined in Eq. (92). Substitut-
ing Eg. (93) into Eq. (83), it is readily shown that

1% 0 v 0
{X'i . <Kf5( + 5%)— - <Kff/ + LL)&}FQ(HO) —0 (94)
0X aY R 0 ax' R OR /oY’
is an exact conseguence of Eq. (92), where use |
can be made of the chain rule for differentiation = where 7 isdefined in Eq. (92), and
to express OFy/oX' = X'oF)/aH®, (8/aX)F) = ) o
(kX + (X/R)ayO/9R]0F)/9H°, etc. Here, we have ny(R) = [ dX'dY' F)(H"°) (96)

expressed  (9/0X)y°(R) = (X/R) (8/0R)y°(R), etc.
Because 9¢°/0@ = 0, the canonical angular momen-
tum Pg = XY’ — YX’' is dso an exact single-particle
constant of the motion (dPg/ds = 0) in the transformed
variables. Therefore, more generally speaking, the
equilibrium distribution function FY(HO, Pg) could also
depend explicitly on Pg as well as H° [12,21]. Such
beam equilibria are typically rotating and will not be
considered in the present analysis.

There is clearly enormous latitude in specifying the
functional form of the equilibrium distribution function
F)(FHO) in the transformed variables [12]. Once the
form of Fp(3°) is specified, however, the correspond-
ing equilibrium self-field potential °(R) is to be calcu-
lated self-consistently from Eq. (84). For 9/00® = 0 and
d/as = 0, Eq. (84) becomes

L -2k f %' AV FO(HO),

b

~ 0 0/
— —a~ R—14 (R) =
(95)

oR

is the radial density profile in the transformed variables.
Because H © depends explicitly on ¢°(R) [Eq. (92)], the
Maxwell equation (95) is generally a nonlinear differen-
tial equation for the self-field potential °(R). Express-
ing U =(1/2)(X? + ¥?) and H° = U + ksR*/2 +
#°(R), and converting the velocity integration range in
Egs. (95) and (96) according to [~ dX' [~ dY' .- =
27 [ dU -- -, the equilibrium density profile nj (R) in the
transformed variables can be expressed in the equivalent
form

n)(R) = 2 fom dU FJ[U + k;R*/2 + ¢°(R)]. (97)

Other equilibrium properties are also readily calculated in
terms of Fj(H°). For example, in the transformed vari-
ables, because H is an even function of X’ and Y/, the
average local flow velocity in the transverse planeis equal
to zero; i.e, Vo(X) = [ny(R)] "' Byc [dX'dV'(X'e, +
7'é,)F)(F°) = 0. Moreover, the effective perpendicu-
lar temperature 79, (R) in the transformed variablesis de-
fined (in energy units) by

~ ~ U | - -
ny(R)TY, (R) = [ dX'dY' = yymy Be* (X + Y2)F(H?)

= 27Tybmb,8,%czf dUUF)U + xsR*/2 + 4°(R)],
0

where U = (1/2) (X"> + Y.

The general class of equilibrium distribution functions
described by Egs. (92) and (93) corresponds to an intense
charged particle beam with circular cross section confined
in the transverse plane by a uniform focusing force («; =

074401-16

(98)

const). This class of distribution functions Fi(7H °) has
been extensively analyzed in the literature [12,16,17,21].
For present purposes, we summarize here several key
properties of the equilibrium and give specific examples
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PRST-AB 2 APPROXIMATE PERIODICALLY FOCUSED SOLUTIONS 074401 (1999)

of beam equilibria F(H °) in the transformed variables. R}, = (X* + V%),
These results will be very useful in Sec. V. when we 5 . 5 . (101)
y 2 = MRP + T2 + T2
transform back to the laboratory frame where the beam €0 0 0
properties are periodically focused as a function of s. where R,y and €, are constants (independent of s)
because 9 Fy(FH°)/as = 0. Because of the high degree
1. Statistical averages of symmetry of JH°, it also follows that
The statistical average of a phase function ~ _ 1 . _ 1
xX,Y,X' Y'.s) over the equilibrium distribution (X% = (¥ = 3<X2 + Y2y = ERz%o,
function Fy(F°) in the transformed variables is defined (102)

in the usulal manner by (X2 = (772 = %@/2 + 7).
(o = - [ dXa¥ ax a¥ & VXV ORG0), |

Ny Finally, some straightforward algebra that makes use of
(99)  Egs. (98) and (101) shows that

where H° is defined in Eq.(92), and N, = QR? - )

[dX d¥ dX'dV' Fy) = 2@ [ dR Rnj(R) is the num- € = %%[ dR Rn)(R)TY ,(R). (103)
. . . 2

ber of beam particles per unit axial length. Because NpypmyByc 0

HOX,¥,X',Y") isan even function of X, ¥, X/, and ¥/,
it follows that the statistical average of any odd power of
X, Y, X', or Y, or products thereof, is equal to zero. For
example, it follows that

(X)o =0=(Y),

That is, € is directly proportional to the perpendicular
pressure P}, (R) = n)(R)TY,(R), averaged over the ra-
dial cross section of the beam.

2. Radial force balance and envelope equation

(X" = 0= (¥, (100) for the rms beam radius R
XX =0=(YY"), The formal expression for the perpendicular pressure
XV = 0 = (VX' P, (R) = nd(R)T,(R) in Eq. (98) can be used to derive

the equation for equilibrium radial force balance on a

beam fluid element in the transformed variables. Taking

the derivative of Eq. (98) with respect to R, it is readily
| shown that

etc. Similarly, the rms beam radius R,y and unnormalized
beam emittance ¢y in the transformed variables are
defined by

B - oy o) - - s
ﬁp‘jb = y,,mb/a,%&(,cfk toF 277]0 dUUmFg[U + k/R*/2 + ¢O(R)]

0 o
= —ybmbﬁzc2<KfI~? + %)27[ dU FJ[U + k;R*/2 + ¢°(R)], (104)
0

where we have integrated by parts with respect to U |
and assumed [Fi]g—. = 0. Making use of ny(R) = The local force balance Eq. (106) can be used to derive
2 [5dU F[U + kR%/2 + ¢°(R)], Eq. (104) can be  a global radial force balance equation that relates the
expressed as emittance €, thefocusing coefficient « s, and the rms beam
3 o = 5 2 00 - o= radiusto.mTqb!ieflysummarize, we operate on Eq. (106)
-5 PLo(R) = —ypmy Bjycny(R) [KfR Py 34 (R)} with 27 [ dR R?--- and integrate by parts with respect
(105) to R, assuming PY,(R — ) = 0 = nj(R — »). Some
) ) ] ) i straightforward algebraic manipulation that makes use of
which will be recognized as the equation for local radial Eq. (103) and N, = 27 [; dR Rnd(R) readily gives the
forc_:e balance on a beam fluid element in the t_ransformed global force balance condition [21,24]
variables. Solving Eq. (95) for 9¢°(R)/oR in terms of

the radial density profile n)(R), Eg. (105) can aso be . _ € (107)
expressed as [21] TR ) T 4R,

i 0 (p) — _— 2.2 0(p

of DL (R) = —ypmy BycTny(R) where K, — 2N, Z2e? /yimy B2c? is the seif-field per-

omke 1 (R veance. Equation (107), valid for general choice of
X |:KfR - b Tf dR Rng(k)} FY(#H°), plays the role of an envelope equation for the
Ny R Jo rms beam radius R, and represents a powerful constraint

(106)  condition on beam equilibrium properties [21]. As
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expected, if we make the identification R,o = ry0//2,
Eq. (107) issimilar in form to the familiar envelope equa-
tion for the outer radius r,( of auniform-density KV beam
equilibrium [10,11] in the smooth-beam approximation
(dryo/ds = 0). For specified values of ks, K, and €,
note that Eq. (107) can be solved for the mean-square
beam radius to give

K K 2 2 1/2
R§O=—b+|:(—b> +ﬂ} .
4Ky 4Ky 4Ky

As expected, we find from Eq. (108) that R7, increases
with increasing beam intensity (K,), increasing beam
emittance (e,), and decreasing focusing-field strength («¢).

(108)

3. Phase advance o

It is convenient to introduce the effective phase ad-
vance oy over one lattice period S defined by oy =
eo [5 ds/2R}y = €S/2R}y, where RZ, = const is the
mean-square beam radius defined in Eqg. (108). Thisgives

00y

[1+ Grea)1? + s

o0 , (109)

where o, = [00]k,~0 = /K7 S is the vacuum phase
advance defined in the limit of negligible beam intensity,
K,/ /K7 2€0 — 0. As noted in Sec. |, the averaging
technique developed in Sec. Ill is expected to provide
good convergence properties [34] provided the phase
advance oy is sufficiently small (o < 60° = 7/3, say).
It is important to note from Eq. (109) that /o,
decreases monotonicaly from unity as the normalized
beam intensity K),/2,/Ky €o is increased. That is, self-
field effects (as measured by K;,) depress the phase
advance o from its vacuum value oy, .

4. Density inversion theorem and condition
for transverse confinement

As noted earlier for the specified equilibrium distribu-
tion function Fj (7 °), when the expression for the den-
sity profile nj)(R) in Eq. (97) is substituted into Eqg. (95),
the resulting equation for the self-field potential #°(R) is
generally nonlinear. Without loss of generality, we take
the zero of potential to be ¢°(R = 0) = 0 and denote the
on-axis value of beam density in the transformed variables

by n)(R = 0) = f,. Integration of Eq. (95) from R = 0 |

o oo Ny e o I 1 opn . o
U(s) = f dX d7{—2-|Vyl? + ] dX'dy'| = ky(X* + ¥ + = (X* + Y?) |F,
47Kp 2 2

S(s) =dedeX’dl7’G(Fh) = const.

074401-18

readily gives ¢°(R) = —(7/2) (Kpip/Np)R? for small
values of R < R,o. Careful examination of Egs. (95)
and (97) then shows that a necessary condition for a ra-
dially confined beam equilibrium with nf(R — «) = 0is
given by

1
22 A2
KfBpc” > 2y2 Db »
b

(110)

where c?)f,b = dnfp,Zie?/ypm, is the on-axis plasma
frequency sguared [12;, and use has been made of the
definition K, = 2N,Zse?/vim, Bic®. Theinequality in
Eg. (110) is simply a statement that the focusing force
(proportional to « ¢ B2c?) must exceed the repulsive space-
charge force (proportional to c?),z,,, /2) for there to be
transverse confinement of the beam particles.

A further important result is evident from the expres-
sion for ny(R) in Eq. (97). We introduce the effective
total potential V(R) defined by V(R) = (1/2)xsR* +
¢ (R). Then, taking the derivative of nj (V) with respect
to Vin Eq. (97) gives

amp _ wamdf] BT+ VR)]

av 0 au " '
Assuming Fo[U + V(R)]g—» = 0 and integrating by
parts with respect to U in Eq. (111) gives

Fg(g_[O) — _L[%}
V=30

(111)

112
27| oV (112)

for the distribution function Fj(FH°). Equation (112)
is known as the density inversion theorem [1,21]. In
particular, for specified density profile n)(R), we make
use of Eq. (95) to determine the self-field potentia °(R)
and evaluate the effective potential V(R) = (1/2)x;R? +
O(R). Solving then for R(V), assumed to be monotonic,
we evaluate an)/aV = (any/aR) (0R/aV) in Eq. (112),
which determines the equilibrium distribution function
FY(#H°) in the transformed variables.

5. Kinetic stability theorem

An important kinetic stability theorem [25,26]
can be demonstrated from the nonlinear Vlasov-
Maxwell equations (83) and (84) for the distribution
function F,(X,Y,X',Y’,s) and sef-field potential
(X, ¥,s). In particular, we express Fj, = Fo(H ) +
SFy(X, Y, XY s) and ¢ = ¢°(R) + Sy(X,Y,s) and
make use of the global conservation constraints for total
energy U (s) and generalized entropy S(s) satisfied exactly
by Egs. (83) and (84); i.e.,

= const,

(113)
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Here, dU/ds = 0 = dS/ds, and G(F},) is a smooth, dif-
ferentiable function of F, with G(F,, — 0) = 0. Without
presenting algebraic details, it can be shown [25,26] that a
sufficient condition for stability is that the equilibrium dis-
tribution function F} (7 °) be a monotonically decreasing
function of energy H?; i.e,

p 5‘:0 FY(H% =o0. (114)

That is, whenever Eq. (114) is sdtisfied, the system is
stable, and the perturbations 6 and 6 F, do not amplify.
The stability theoremin Eq. (114) isavery powerful result
and isvalid nonlinearly (finite-amplitude perturbations) as
well as for small-amplitude perturbations. For example,
Eqg. (114) implies that a beam with therma equilibrium
[1,18,21] distribution Fi(7°) [Eq. (115)] is stable and
can propagate quiescently over large distances. On the
other hand, a Kapchinskij-VIadimirskij beam equilibrium
[Eq. (116)] has an inverted populationin  °, and there is
(in principle) free energy available to cause the perturba
tions 64 and § F), to amplify [10—14].

6. Examples of self-consistent beam equilibria

For future reference, we briefly consider several ex-
amples of beam equilibria, Fy(H ), in the transformed
variables (X, Y, X', Y’). Specifically, we consider the fol-
lowing choices of Fj(F°):

Thermal Equilibrium: [1,18,21]

0(af0y _ <7bmb,3i36’2) l ypmy B)c> o]

Fb(g‘[)znb A~ eXp—Aig'[ s
27TTL;, le
(115)
Kapchinskij-Vladimirskij Equilibrium; [10-12,21]

FpIH) = T2 6(H° = Toy/yomoBic?).  (116)
Waterbag Equilibrium: [16,17,21]
FO(H) = ﬁb<7bmb,3§02)U<7b”zb,3£02 5_{0)_

27T 1b

(117)

Here, 71, and 7', are positive constants with dimensions
of density and temperature (energy units), respectively,
HO=(1/2)(X? + ¥ + (1/2)x:R* + y°(R) is the
(dimensionless) Hamiltonian defined in Eqg. (92), and
U(x) is the unit step function defined by U(x) = 1 for
0=x<1and U(x) =0 for x > 1. We take the on-
axis self-field potential to be ¢°(R = 0) = 0 and identify
A, = ny(R = 0) with the on-axis beam density. For each
choice of F(#°) in Egs. (115)—(117), the self-field
potential °(R) is determined self-consistently in terms
of the beam density nj(R) = [dX'd¥' Fi(H°) from
Eqg. (95). Finaly, for the genera class of beam equilib-
ria, F(F°), the transverse temperature profile 79, (R) is
defined by Eq. (98).

A detailed evaluation of beam equilibrium properties
for the choices of distribution functions in Egs. (115)—
(117) is presented elsewhere [21], and essentia re-
sults are summarized in Tablell. For each example,
the inequality x;Bic? > @3,/2y; is required to as-
sure radial confinement of the beam particles, where
@y = 4w Zpe*iy/ypmy isthe on-axis plasma frequency
squared. Moreover, in each case, the rms beam radius
R,o and unnormalized beam emittance ¢, defined in
Eq. (101) are related by the globa force balance con-
gtraint in Eq. (107), and the unnormalized emittance eg
can be expressed as the average over perpendicular pres-
sure given in Eq. (103).

It is evident from Table Il that the equilibrium profiles
for the density nj)(R) and perpendicular temperature
7Y, (R) differ significantly for the three choices of
equilibrium distribution functions in Egs. (115)—(117).
First, for the choice of therma equilibrium distri-
bution in Eq. (115), we note from Table |l that the
equilibrium density profile exhibits a highly nonlinear
dependence on the self-field potential °(R), which must
generally be determined by numerical integration of
Eq. (95). The corresponding density profile, nj(R) =
ity exp{—(ypmp Brc?/2T 1) [k R? + 2°(R)]}, is gener-
aly bell shaped and radially diffuse, assuming a maximum
value (7,) at R = 0, and decreasing monotonically to zero

TABLE II.  Equilibrium properties for various choices of Fy(F ).

Transverse

Distribution function Density profile Temperature profile emittance
Fy(H?) ny(R) T7,(R) &

1. Thermal equilibrium Ay exp{—“Z—I;ﬁZ‘L’Z[K‘,RZ + 24T 7., = const yhii—;”bcz 20

in Eg. (115) i .

2. KV distribution A, = const 7,0 - £ T g2,

in Eq. (116) for 0 = R < ryo = v2Ry0; for0 =R < r,,org V2Rp0; e
(zero, otherwise) (zero, otherwise)
3. Waterbag distribution Io(roo/Ap) —loR/Ap) T, R Determined

To(rpo/Ap)=1
for0=R < b0,
(zero, otherwise)

in Eqg. (117)

fip

from Eqg. (103)
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with n)(R — ©) = 0. At sufficiently low beam in-
tensity with @5,/2y; < k;B5¢?, it is found that the
density profile is approximately Gaussian, with nj(R) =
iy eXp{—’ybmbﬂgcszRZ/Zle}. On the other hand, at
very high beam intensity with («;B5c> — @3y/273)/
Kfﬁﬁcz = § < 1, the density profile evaluated numeri-
cally from Table Il and Eq. (95) is found to be radialy
very broad [21] in units of the thermal Debye length; i.e.,
Rpo > Ap = (viT ., /4w Z2e?)' /2. In this case, the
density is approximately constant in the beam interior
with nj)(R) = a, = const, and nj(R) drops rapidly to
exponentially small values over a few Debye lengths
a the beam surface. For the choice of equilibrium
distribution function in Eq. (115), it also follows that the
transverse temperature profile is uniform over the beam
cross section, with 7, ,(R) = T, = const. Moreover,
because dF)(FH ) /9 H° < 0 for the choice of distribu-
tion function in Eq. (115), it follows from Eq. (114) that
the equilibrium is stable [25,26].

By contrast, at any beam intensity, the choice of (mono-
energetic) equilibrium distribution function in Eq. (116)
gives a step-function density profile, with n)(R) = #, =
const for 0 = R < rpo = v/2Rpo, and nj)(R) = 0 for
R > rpo. In this case, the beam has a “sharp” outer
boundary at radius r,o determined self-consistently from
(1/2)krrig + $°(rpo) = T1s/ysmpBic?, which gives
roo = QT 1p/vpmp) (k7 Bic® — @pp/2v5)"".  More-
over, from Tablell, unlike the therma equilibrium
case, the transverse temperature profile is parabolic,
with 7%, (R) = T.,(1 — R?/r},) in the beam interior
(0 = R < rpo). Finally, a most important feature of
Eq. (116) is that Fi(FH°) has a highly inverted popula-
tion in energy, which is (singularly) peaked at H° =
Tlh/ybmbﬁ,%cz. Therefore, as expected, there is free

ot X Y

and

92 92
- +
2 T o Sy(X,Y,s) =

Here, use has been made of Eq. (92) and the chain |

rule for differentiation to express 9Fy(H)/oX' =
X'9FQ(FH)/0 3", etc. Because k; = const, a detailed
stability analysis [12,21] based on Egs. (118) and (119) in
the transformed variables is greatly simplified in compar-
ison with a stability analysis based on a linearization of
Egs. (3) and (4) in laboratory-frame variables. Further-
more, as noted earlier, a sufficient condition for stability
[25,26] in the transformed variables is that the equilib-
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energy available to drive collective instabilities [10—14]
for the choice of equilibrium distribution function in
Eq. (116), at least at sufficiently high beam intensity.

Finaly, from Table Il, the choice of waterbag equi-
librium distribution [16,17,21] in Eq. (117) aso gives a
density profile n)(R) with sharp outer boundary at radius
rpo. Inthiscase, ryg is determined self- consstently from
Io(roo/Ap) = Ky Brc?/(krBic® — @pp/2v5),  Where
Iy(x) is the modified Bessel function of the first kind
of order zero, and Ap = (y2T.,/4mh,Zie?)V? is the
thermal Debye length. Unlike the KV beam equilibrium,
however, we note from Table Il that the density profile
nb(R) decreases monotonicaly from the vaue 7, a
R = 0tozeroat R = ryo. Moreover, the transverse tem-
perature profile has exactly the same radial shape as the
density profile, with 79,(R) = (T ,/A»)ny(R). Similar
to the case of athermal equilibrium beam, the distribution
function in Eq. (117) satisfies aF)(H %) /o H° < 0, and
the waterbag equilibrium is expected to be stable [25,26]
by virtue of Eq. (114).

C. Linearized Vlasov-Maxwell equations
in the transformed variables

For completeness, and for application in future
calculations of detailed stability properties, we sum-
marize here the linearized Vlasov-Maxwell equations
in the transformed variables (X,Y,X’,Y’), assuming
small-amplitude perturbations about the equilibrium
distribution function FJ(H°) and sdlf-field potential
y°(R). In particular, we express F,(X,Y,X',Y',s) =
FYHO) + 6F(X,7,X,¥,s) and (X, 7,5 =

yO°(R) + 8y(X,Y,s) in the Vlasov-Maxwell equations
(83) and (84). In the linearization approximation,

| Egs. (83) and (84) reduce to

I o, _, 9 - X oay®\ o - Y ayt\ o
- R : R

v/ J v/ d v v d 0 0
=~ + =~
|:(X % Y o7 Sy(X,Y,s) p s Fy(H?), (119
j dX'dY' 8Fy(X, Y, X', Y' s). (119)

rium distribution F(F °) be a monotonically decreasing
function of energy H°; ie, aFy(H%/0H* <0 in
Eqg. (114). Whenever the inequdity in Eq. (114) is sat-
isfied, the perturbations 6 F, and ¢ solving Egs. (118)
and (119) do not grow exponentially. Equations (118)
and (119), of course, can be used to determine detailed
stability properties [12] for a wide variety of choices of
equilibrium distribution function Fo(H©).
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V. PERIODICALLY FOCUSED BEAM
PROPERTIES IN THE LABORATORY FRAME

As discussed in Sec. IV, in the slow variables
(X,7,X',Y"), awide variety of equilibrium and stability
properties can be calculated in a straightforward manner
because the focusing force is constant (k; = const) in the
transformed variables, and the simplest class of equilib-
rium distribution functions, F(H °), correspond to beams
with circular cross section. When transformed back to
the laboratory frame, however, the beam is periodically
focused, and its properties are generally s dependent.
In this section, we carry out the back-transformation
to the laboratory frame and calculate several proper-
ties of the beam, such as (a) the distribution function
frlx,y,x',y',s) (Sec. V A), (b) statistical averages such
as the mean-square transverse beam dimensions, (x2) (s)
and (y?)(s), and the unnormalized emittances, e, (s) and
€,(s) (Sec. VB), and (c) macroscopic properties of the
beam in the laboratory frame, such as the density profile
np(x,y,s) (Sec. V C). Throughout Sec. V, extensive use
will be made of the inverse coordinate transformation,
X(x,y,x",y',s), Y(x,v,x',y',s), etc., defined correct

to order €* in the Appendix [Egs. (A1) and (A2) for a
periodic-focusing quadrupole field and Egs. (A3) and
(A4) for a periodic-focusing solenoidal field]. In cal-
culating the statistical averages in Sec. VB, we will
also make use of the forward coordinate transformation,
x(X, Y, XY s), y(X,¥,X', Y, s), etc., defined correct to
order € in Egs. (87)—(90). In this regard, it is important
to keep in mind the relative ordering of the various terms
in Egs. (87)—(90) and Egs. (A1)—(A4). For example,
a,(s) and (a,) are of order €, B,(s) is of order €,
etc. [see Eq. (91)].

A. Laboratory-frame distribution function
Sox,y.x'y'.s)

Once the distribution function F,(X,Y,X’,Y’,s) in
the slow variables is calculated from Egs. (83) and (84),
it is straightforward to determine the corresponding
distribution function f,(x,y,x’,y’,s) in the laboratory
frame. Specifically, we make use of f;(x,y,x',y’,s) X
dxdydx'dy' = F,(X,Y,X',Y',s)dXdYdX'dY' [Eq. (85)]
and the fact that the Jacobian of the (canonical) transfor-

| mation is equal to unity [EQ. (86)] to obtain

Fole,y.x'sy's) = Fp(X(x,y,x",y",8), Y (x,y, %',y 5), X (x, y, X', 5", 5), Y (x, ., %', ¥, 5), 5) . (120)

In Eq. (120), the coordinate transformation X(x,y,x’,y’,s), Y(x,y,x’,y’,s), etc., is defined correct to order € in
Egs. (A1) and (A2) for a periodic-focusing quadrupole field and in Egs. (A3) and (A4) for a periodic-focusing
solenoidal field. In the important case where F, (X, ¥, X', ¥/, s) corresponds to an equilibrium distribution F(# °)
in the transformed variables (see Sec. |V B), then the periodically focused distribution function in the laboratory frame

isgiven by

fr(e,y,x,y,s) = FOLH O (X (x,y,x",y",5), ¥ (x, y, x, ¥/, 9), X (e, y, X0y, 9), V' (x, y, 2!,y s)],

where HH ° is defined by

(121)

HOX(x,y,x",y,9), Y (x,y,x",y",5), X (x, v, x, y', ), X'(x, y, %, y', 5))

1. 3 1 . 3
= E[Xa(x,y,x’,y’,s) + Y2, y,x, 9, 9)] + > kiR (x,y,x", 3" s) + POR(x,y, %",y s)).  (122)

Here, use has been made of Eq. (92), and R(x,y,x",y’, s) |

is defined by RZ(x,y,x’,y,s) = X2(x,y,x',y",s) +
Y2(x,v,x',y',s). Because the s-dependent coefficients
a;(s), B;(s), etc., occurring in the orbit equations (A1)—
(A4) have axia periodicity length S = const, it follows
that the laboratory-frame distribution function defined in
Eq. (121) also satisfies
Oy, x",y',s +8) = flx,y,x",y,5). (123)
Therefore, Egs. (121) and (122) together with the coor-
dinate transformations in Egs. (A1)—(A4), map the equi-
librium distribution function F5(F ), which is uniformly
focused and has circular cross section in the transformed
variables, into a pulsating, periodically focused distribu-
tion function in the laboratory frame.
The result in Eq. (121), together with the associated
definitions in Eq. (122) and the Appendix, make acces-
sible for the first time a broad class of high-intensity,

074401-21

periodically focused distribution functions that are analyti-
cally tractable, in addition to the familiar Kapchinskij-
Vladimirskij equilibrium. Therefore, it is anticipated that
Eqg. (121) together with the results in Sec. IV B will be
very useful in providing input data for numerical simula-
tion studies based on the nonlinear Vlasov-Maxwell equa-
tions, as well as experimenta studies of beam matching
into periodic-focusing channels.

B. Statistical averagesin the laboratory frame

From Eq. (12), the statistical average of a phase
function y(x,y,x’,y’,s) over the laboratory-frame distri-
bution function f;(x,y,x’,y’,s) is defined by (x)(s) =
N, ! [dxdydx'dy' x(x,y,x",y',s)fs(x,v,x',y',s). For
specified y, the expressions for f(x,y,x’,y’,s) in
Eq. (120) or Eg. (121) can be used for adirect calculation
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of (x)(s)---. As an dternative (and simpler) approach we make use of the identity, f;(x,y,x’,y’, s)dxdydx'dy" =
F(X,Y,X',Y',s)dXdYdX'dY', in Eq. (85) to express {x) (s) in the equivalent form

() (s) = f A% d¥ dX' 4V Fy(X. 7. %7 5)

X y(xX, 7V, X, 7,8),yX, Y, X'V s)xX(X,7V,X',Y,5),y(X,V,X',Y',5),s). (124)
Here, the forward coordinate transformation, x(X, ¥, X', Y’,s),y(X,Y,X',Y',s), etc., is defined correct to order € in
Egs. (87) and (88) for a periodic-focusing quadrupole field and in Egs. (89) and (90) for a periodic-focusing solenoidal
field. For the case where F,,(X, ¥,X’,¥',s) corresponds to the class of self-consistent Vlasov equilibria, F)(H©),
considered in Sec. 1V, the statistical average defined in Eq. (124) further reduces to
() (s) = f d% 47 A%’ d¥' FO(H)

X y(x(X, 7, X, Y, s),yX, Y, X, Y, 5),x(X,Y,X',Y,5),y(X,Y,X',Y',s),5). (125)

Given the relatively simple dependence of the coordi- ! (x) = 0= (y),
nate transformations in Egs. (87)—(90) on (X, Y,X’,Y’), A
Eq. (125) provides a very straightforward prescription for . Y
evaluating statistical averages such as (x>} (s), (y)(s),  (¥2)(s) = [1 = By() (X + [ay(s) — (erg)(X0.

(x) s), etc. in the laboratory frame. (72 (5) = [1 + By() (TN + [ay(s) — arg) P70,

1. Periodic focusing quadrupole field (ex')? = [arg(s) — Ca) XY,

To illustrate the application of Eq. (125) to a periodic- (V') = [ag(s) = a)TXP?). (128)
focusing quadrupole field, we make use of Egs. (87) correct to order €. Here, use has been made of
and (125) to evaluate (x?)(s). This readily gives Eq. (100), and we have expressed Xay°(R)/oX —
() (s) = [1 = Bg()P(X2)o + 4[[ods By() X% + Yoy (R)/aY = (X2 — PRy (R)/oR in the or-
411 — By [ods By(s)1(XX")y, where (---) denotes hits for x/(X,¥,X’.¥’,s) and y'(X,7,X',¥’,s) in
the statistical average over Fy)(# °) asdefined in Eq. (99). Eq. (88). Moreover, from Eq. (102), keep in mind that
Because (XX') = 0 = (¥¥'), [Eq. (100)] and because  (X%)y = (¥2)y = Rpo/2 and (X)y = (¥7)y = (1/2) X
[[ods B,(s)]* isof order €® [Eq. (91)], we obtain (X2 + 77),.

- Equations (126) and (128) can be used to calculate the

() () =1 = By(s)F(Xo, (126) transverse emittances in the laboratory frame, e;(s) =

(¥ (s) = [1 + B,(s)X¥, 4[(x?) () — (xx)*] and €3(s) = 4[(y2 (¥ — ()],

\ - ) 5 defined in Eq. (14). Because B,(s) is of order €2

correct toorder €”. Here, (X >02= (Y*)o = Rio/ 2§°|£0W5 [Eq. (91)], we note that 1 — B2(s) = 1 correct to order
from Eq. (102)2- Def|n|2ng a*(s) = [1 - :3211(;)] Roo = €3, Therefore, from Egs. (126) and (128) we readily
[1 - 2,3q2(S)JRb0 and b7(s) = [1 + B4(s)FRjo =[1 +  obtain
2B4(s)]Rpo, it follows from Eq. (126) that €2(s) = HX(X) = €, = condt,

2 2 ~ ~
<X > + <y > =1. (127) 6}2,(S) — 4<Y2>0<Y/2>0 2

€,0 = condt,
a’(s) b(s) 3

correct to order €. Therefore, from Eqg. (129), the trans-
We conclude from Egs. (126) and (127) that the beam  verse emittances, €,(s) and €,(s), are conserved quanti-
cross section in the laboratory frame corresponds to a  ties (independent of s) correct to €. In summary, the
pulsating ellipse (in an rms sense) with minor axes, a(s)  expressionsfor the laboratory-frame statistical averagesin
and b(s). Itshouldasobekeptinmindthat Egs. (126) and  Egs. (126)—(129) represent very powerful results, particu-
(127) apply to the entire class of equilibrium distributions,  larly because they apply to the entire class of equilibrium
Fy(H"), in the transformed variables, and that self-field  distribution functions, F})(J{°), and because they alow

effects are allowed to be arbitrarily intense, consistent with ~ for arbitrary beam intensity.
radial confinement of the beam particles by the focusing It is important to recognize the implications and lim-
field [Eq. (110)]. itations of EQ. (129); that is, the transverse emittances,
Other statistical averages of practical interest are also  e.(s) and €,(s), are conserved quantities when the
readily calculated from Egs. (87), (88), and (125). With-  back-transformation to the laboratory frame is carried
out presenting algebraic details, it is straightforward to  out. First, and very important, Eqg. (129) pertains to
show that the class of equilibrium distributions Fj(°), which

(129)
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correspond to matched, constant-radius beam equilibriain
the transformed variables (Sec. 1V B) and transform back
to matched, periodically focused solutions with period
S in the laboratory frame [Egs. (121)—(123)], at least to
order €3. That is, Eq. (129) pertains to the transverse
emittances associated with periodically focused beam
equilibriain the laboratory frame. Of course, if the system
is perturbed about equilibrium, i.e., F,(X, 7, X', Y s) =
FY(HO) + 6F,(X,7,X',¥',5), then the perturbations
evolve self-consistently according to Egs. (83) and (84),
and there will be a corresponding change in the total
laboratory-frame transverse emittances e.(s) and e,(s)
[see Egs. (14) and (120)] associated with the changes
in F,, and . It is well known that such variations
in the laboratory-frame emittances about equilibrium
values can be sizable [2,5], particularly if the equilibrium
distribution F5(H ) is unstable, and there is a significant
redistribution of particles in phase space. Second, and
aso important, in the equilibrium case it is important
to keep in mind that Eq. (129) is an approximate result
obtained in the context of the asymptotic analysis in
Secs. |1l and IV (correct to order €?), and there are un-
doubtedly corrections to Eq. (129) of order * or smaller.
Finally, referring ahead to Sec. V C, there is an important
comparison to be made with Sacherer’s classic analysis
[39] of periodically focused intense beam propagation.
For the case of constant emittances, €, and ¢,, analysis of
Sacherer’s rms envelope equations [39] shows that beam
density profiles with an oscillatory elliptical cross section
constitute self-consistent periodically focused solutions for
intense beam propagation through a periodic quadrupole
lattice. In Sec. V C, for a periodic quadrupole lattice, we
find that the laboratory-frame density profile n,(x,y,s)
corresponding to the beam equilibrium Fj(F°) indeed
has an oscillatory elliptical cross section [Eg. (136)]. In
addition, however, the asymptotic analysis presented here
demonstrates that the transverse emittances are constant,
at least to order €.

2. Periodic focusing solenoidal field

We now summarize several key results for statistical
averages in the laboratory frame for the case of a periodic-
focusing solenoidal field. In this case, we make use of
Eqg. (125), together with the coordinate transformations
for x(X,Y,X,Y's), y(X,Y,X',Y' ), etc., defined in
Egs. (89) and (90). The high degree of symmetry in the
x and y motions in the solenoidal focusing field is, of
course, reflected in the statistical averages. Paralleling the
analysis for the quadrupole focusing case, and making use
of Egs. (89), (125), and (XX')y = 0 = (YY’)y, we readily
obtain

() () = [1 = Bs()X?o,
(3 () = [1 = By(s) T,

(130)
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correct to order €3. Here, (X2)y = (¥2)y = R%,/2 fol-
lows from Eg. (102). From Eg. (130), the mean-square
radius, rZ(s) = (x2 + y2)(s), in the laboratory frame is
given by

ry(s) = [1 = By(s)PRio- (131)
Because S,(s) is of order €> [Eqg. (91)], we can also
express [1 — Bs(s)]* =1 — 2B,(s) correct to order &>
in Eq. (131). From Egs. (130) and (131), for a periodic-
focusing solenoida field, we conclude that the beam cross
section is circular and that the rms beam radius r;(s)
oscillates with periodicity length S.

Other statistical averages of practical interest are
also readily calculated from Egs. (89), (90), and (125).
Without presenting details, some straightforward al-
gebraic manipulation that makes use of Eq. (102) and
Xy (R)/oX + Yay°(R)/9Y = Roy°(R)/oR gives

(x) =0={(y),
(x') =0 =y,
(7 + ¥ () = [1 + Bs() (X2 + 77 (132)
+ [as(s) - <as>]2<)~(2 + }72>O’
(xx! + 3y (s) = [as(s) — () (X* + V2,

correct to order 3. Equations (131) and (132) can be
used to calculate the total transverse emittance in the
laboratory frame, defined by €(s) = 4[(x> + y>) (x> +
y?y — (xx’ + yy’)?]. Because B,(s) is of order €, we
note that 1 — B2(s) = 1 correct to order €3. Therefore,
from Egs. (131) and (132) we obtain

€X(s) = HX* + VHo(X? + 7)) = €5 = condt,
(133)

correct to order €. Therefore, from Eq. (133), the trans-
verse emittance e(s) is a conserved quantity (independent
of s) correct to order €>.

Similar to the quadrupole focusing case, the results
summarized in Egs. (130)—(133) have a wide range of
applicability. In particular, the results apply to the entire
class of equilibrium distribution functions Fy (3 °), and
the self fields are allowed to have arbitrary intensity.

C. Macroscopic profiles in the laboratory frame

Equation (121), supplemented by the definition
of H° in Eq. (122), provides a closed expres-
sion for the laboratory-frame distribution function
folx,y,x',y',s) in terms of the transformed distri-
bution function F,(X,Y,X’,¥’',s) for the case where
F), = Fy(3{°) corresponds to an equilibrium distribu-
tion in the transformed variables. As such, Egs. (121)
and (122), supplemented by the orbit transforma-
tions for X(x,y,x’,y,s), Y(x,y,x,y',s), etc., defined
in Egs. (A1)—(A4) can be used for a direct evalu-
ation of a wide variety of macroscopic profiles in the
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laboratory frame, such as the beam density profile,
ny(x,y,s) = [dx'dy' f,(x,y,x',y',s), the transverse
flow velocity, V,(x,y,s) = nj, ' Boc [dx'dy' (x'é; +
Y& fplx,y, X',y 5), etc.

1. Density profile np(x, y, s)

For our purposes here, we illustrate an alternative (and
perhaps simpler) approach for calculating the density
profile n,(x,y,s) in the laboratory frame. Specifi-
caly, we express the density profile as n,(x,y,s) =
[dx dy dx' dy' f,(%,5,x',y,5)8(F% — x)8(5 —y) and
make use of the identity f5(%,5,x',y',s)dxdydx'dy’ =
FYX,7,X',V)dXdVdX'dY', which follows from |

X, 7,X.,Y,s)

X VX, Y s) —y=[1+ ,Bq(s)]‘f/ -~

—x=[1- B, X — [1 — B,(5)]

Eq. (85). Here, FY(X,7.X. V') = F)HO) is the
equilibrium distribution function in the transformed
variables (see Sec. IV B). It follows that n,(x,y,s) can
be expressed in the equivalent form

ny sy, ) = j 4% d¥ d%' a¥' FOR, ¥, X', ¥')
X 8[x(X,Y, X", Y, s) — x]
X 8[3(X,Y, X" Y s) — y]. (134)
In Eg. (134), the coordinate transformations for

(X, 7,X.Y,s) and 3(X,Y,X',Y',s) are defined in
Eq. (87) for a periodic-focusing quadrupole field and in
Egs. (89) and (90) for a periodic-focusing solenoidal field.

For a periodic-focusing quadrupole field, we obtain
from Eq. (87)

X 2[/(; ds ,Bq(s)] &/
T By)] X]’
y_ALdsB6I

[+ B [0+ Byl

] (135)

where B,(s) is of order €2, and [;ds B,(s) is of order |
€. Therefore, in leading order, the delta functions in
Eq. (134) select X = x/[1 — B,(s)] and ¥ = y/[1 +
B,(s)].  Moreover, F)(X,7,X,¥) = F)(H in
Eq. (134), and H° = (1/2) (X" + ¥") + (1/2)ksR* +
°(R) depends on X and Y exclusively through the
effective radial variable R = (X2 + ¥2)!/2. Substituting
Eq. (135) into Eq. (134) then gives to leading order

1

np(x,y,s) = mng[k(x,y,s)]. (136)
Here, R(x,y,s) is defined by R?(x,y,s) =
/1= By + y*/[1 + By(s)’, and we can

approximate the multiplying factor 1/[1 — ,Bg(s)] = 1in
Eq. (136) correct to order €3. In Eq. (136), the functional
form of nj(R) corresponds to the equilibrium density
profile calculated self-consistently from Eg. (95) in the
transformed variables. As such, Eq. (136) is applicable
to a broad range of choices of equilibrium distribution
functions Fy(F °).

For a periodic-focusing solenoidal field, the analysis
proceeds in a completely analogous manner, making use
of the coordinate transformations for (X, ¥, X', Y, s) and
J(X,Y,X', Y s) defined in Eq. (89). Without presenting
algebraic details, we obtain to leading order

_ 1 ors
nb(-x7yvs) - [1 _ ,BX(S)]Z ”b[R(x»)’»S)]» (137)
where  R(x,y,s) is defined by R*(x,y,s) =
x2/[1 = Bs(s)P + y*/[1 — By(s)]* in the periodic

solenoidal case.

As expected, the density contours in the laboratory
frame have an dlliptical cross section for a periodic-focus-
ing quadrupole field [Eq. (136)] and a circular cross sec-
tion for a periodic-focusing solenoidal field [Eq. (137)].
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Moreover, in both cases, it can be shown from Egs. (136)
and (137) that the number of particles per unit ax-
ial length is conserved i.e, Ny = [dxdyny(x,y,s) =
27 [§ dR Rnj(R) = const (independent of s).

Equations (136) and (137) are particularly attractive
representations of the density profile n,(x,y,s) because
the s-dependent distortion of the profiles appears explic-
itly in the definitions of R(x,y,s). It should be pointed
out, however, for continuously varying profiles nj(R),
that Egs. (136) and (137) can aso be Taylor expanded
locally about a radius r = (x2 + y?)!/2 in the labora-
tory frame, treating B,(s) and B,(s) as small parameters
(of order €2). For example, in the periodic quadrupole
case, R(x,y,s) = [x?/(1 = By)* + y?/(1 + By)*]/? =
r + By(s) (x> — y2)/r for smal B,(s). The expression
for ny(x,y,s) in Eg. (136) can then be approximated by

0 (> —y?) 9 0
np(x,y,8) = ny(r) + Bg(s) ———— —n,(r),
r ar

(138)
correct to order €3. Equation (138) shows quite naturally
the quadrupole distortion of the density profile in the lab-
oratory frame by the periodic-focusing quadrupole field.
Similarly, in the periodic solenoidal case, R(x,y,s) =
(6% + y7)/(1 = Bo))]'? = r + Bi(s)r, and the expres-
sion for ny(x,y,s) in Eq. (137) can be approximated by

ny(x,y,5) = ny(r) + Bs(s) [2n2(r) +r %ng(r)}

£:6) 2
= () + 2 [Pa ()],

correct to order €. The (pulsatl ng) profilein Eq. (139) of
course remains aX|symmetr|c in the laboratory frame for
the case of a periodic-focusing solenoidal field.

(139)
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2. Sdf-field potential ¥ (x, y, s)

The self-field potential  (x, y, s) in the laboratory frame
is determined self-consistently in terms of the density
profile n,(x,y,s) by integrating the Maxwell equation
(4). For the case of a periodic-focusing quadrupole
field, the density profile has the form given in Eq. (136).

We introduce the minor dimensions defined by a?(s) =
[1 — B,()PRyy and b(s) = [1 + B,(s)PRpy [see
Eq. (127)], where R}, = N, "2 [ dR R*nj(R) =
const is the mean-square radius associated with the equi-
librium distribution F(7H ) in the transformed variables
defined in Eq. (101). Substituting Eg. (136) into Eq. (4)

| then gives
92 92 27K, RZ, ol R(x,y,5)
N + JRE— = —
(6x2 ayz)c,//(x,y,s) Ny a()b(s) | Reo ’ (140)
where R(x, y, s)/Ryo is defined by
R(x,y,s) v 17
L = + . 141
Ruo Lﬂﬂ b%J (141

In Eq. (140), we have introduced the scaled radial variable R(x, y, s)/Ry0 in the argument of ny(R/R,) without loss of
generality. Taking ¢, d¢/ox, and d¢r /9y to be equal to zero at (x,y) = (0,0), the exact solutions to Eq. (140) for the

self-field force components in the laboratory frame, F; =

7TK},

a e}
_2 Ly, 8) = L2720 p2 f
o y(x,y,s) b0% o

Ny

0
Ty Ylx,y,s) =

where T'(x, v, s, £) is defined by
2 2

. . 1/2
20 + wm+§}'(“$

T(x,y’s,f) = |:

For a specified functional form of n)(R/Ry), EQ. (142)
can be used to calculate the detailed dependence of
—di/ox and —ayg/dy on (x,y,s).

The transverse self-field force is even simpler to
determine for the case of a periodic-focusing solenoidal
field because of the azimutha symmetry of ¢(r,s) in
the laboratory frame. In this case we introduce the
mean-square radius rZ(s) = [1 — B,(s)]?R2, defined in
Eq. (131) and express R(x,y,s)/Ryo = [(x* + y?)/(1 —
Bs)*R%1"2 = r/ry(s). Substituting Eq. (137) into the
Maxwell equation (4) for (r, s) then gives

1 o 2wk, R} 0[ r }

d
75radl(h” TN, ri(s) " rp(s)
(144)
Solving Eq. (144) for the radial self-field force, F) =
—dy/ar, then gives
27Ky R
Ny r

Similar to the periodic quadrupole case, once the func-
tional form of n)(R) is determined self-consistently for
a specified equilibrium distribution function, Fj(#°), in

r/ry(s)
- ai y(r,s) = f dT Tnd(T). (145)
r 0
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—dy/ox and Fy = —ay/dy, are given by [39]

dénd[T(x,y,s, £)]

[@2(s) + EFPB2) + 172

dény[T(x,y. s, £)] (142)

—R
N, b0Y o

[a2(s) + EVPB2(s) + P72

the transformed variables, Eq. (145) can be used to deter-
mine the corresponding self-field force in the laboratory
frame which is a periodic function of s.

3. Transverse flow velocity Vi (x, y,s)

For a specified equilibrium distribution function,
FY(#H°), in the transformed variables, the corresponding
laboratory-frame distribution function, f,(x,y,x’,y’,s),
defined in Eq. (121) can be used to calculate other macro-
scopic properties, such as the transverse temperature
profiles, flow velocity components, etc. We illustrate this
with a direct calculation of the transverse flow velocity
defined (in dimensional units) by

Vy(x,y,s) = [nb(x,y,s)]_lﬂbcf dx'dy'[x'é, + y'é&,]

X frlx,y,x",y',s). (146)

For present purposes, we consider the case of a periodic-
focusing solenoidal field, where the inverse coordinate
transformation, X(x,y,x’,y’,s), Y(x,y,x’,y’,s), etc.,
occurring in the definition of H° in Eq. (122) is de-
fined in Egs. (A3) and (A4). Of particular importance
when caculating the velocity moments in Eq. (146)
are the symmetries associated with the kinetic energy
term, (1/2)[X"?(x,y,x",y',s) + Y?(x,y,x',y',s)], in
Eg. (122). Making use of xd¢/dx + yay/dy =
rdy/or, we find from Egs. (A3) and (A4) that
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[X7(x,y, 2"y, 8) + P2(x,y,0", )", 5)] =[[1 = Bs()' — {—[as(S) = (a)][1 + Bs(s)] — (on ds[8,(s) — <5s>]>

K s 2
[ fomo]-[[omo] 2

+ |:[1 - Bs(s)]yl - ‘_[as(s) - <av>][1 + BY(S)]

- ( | astao - <as>]) " zk{ | "as /A(s)}
0 0
s 1 a oy

- U dsﬂx(”}?wﬂy} -

To calculate the transverse flow velocity defined in Eq. (146), we make use of Egs. (121), (122), and (147), keeping

in mind the relative size of the various terms in Eq. (147) [see Eq. (91)] and approximating (for example) (1 —

Box' = {dx = (1 = B)[x" = {-Jx/(1 = Bl = (1 = By)[x" = {-} (1 + B,)x]. Some straightforward algebra
shows that the transverse flow velocity is purely radial with

(247)

Vb(x’yss) = Vrh(r’s)ér 5 (148)
where V,,,(r, s) is defined by
Vip(r,s) = Bbc[[—as(s) + (a1 + 2B8,(s)] — (fo ds[8,(s) — <5s>]> + ZR{fO ds Bs(s)}
— |:j dsﬁ‘y(s)}lirﬁ}r, (149
0 r or or

correct to order €. Here, xé, + vé, = ré,, where |
€, = coshé, + singé, is a unit vector in the radial A >
direction, and we have neglected terms proportional to 4 _ \/j Tov (150)
Bs(s) [ [ ds Bs(s)], which are of order €. 27 3 27

The transverse flow velocity can be calculated in a
similar manner for a periodic-focusing quadrupole field,
athough the flow pattern is more complicated than
in Eq. (148) because of the dliptical cross section of
the beam.

D. Range of validity of asymptotic expansion
procedure

To conclude Sec. V, we summarize the illustrative con-
ditions required for validity of the present asymptotic
expansion procedure for the case of a periodic-focusing
quadrupole lattice with the sinusoidal waveform con-
sidered in Tablel. Here, the strength of the focusing
field is measured by the dimensionless parameter A, =
#4S*/2r, and the characteristic vacuum phase advance is
defined by o, = /K75 S, Where ks, = (3/2)A%/S* [see
Table | and Eq. (109)]. For this choice of focusing lat-
tice, it follows that A, and o, are related by

18,1:Slarg|:Slatg B, I:S ’ fo ds8, — (5,)]

where we have estimated |dy/0X| ~ ||/rp, €tc.
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Therefore, A, < (2/3)'/2 = 0.82 corresponds to o, <
1 (vacuum phase advance less than 60°). We now con-
sider the relative size of the various terms in the coor-
dinate transformation relating (x, y, x’,y’) to (X, ¥, X', ¥')
in Egs. (87) and (88). Here, we estimate the characteristic
(maximum) values by
el ~ X1 ~ Iyl ~ 1¥] ~ ry,
'l ~ X~ Iy~ 1Y~ r /S,
lyl ~ Ky,
where r;, is the characteristic (rms) beam radius, K, is
the dimensionless self-field perveance defined in Eq. (5),
and use has been made of Maxwell’s equation (84) and
N, ~ wrin, toestimate || ~ K,,. The correction terms
tox = X andy = Y in Eq. (87) then stand in the ratio
g, Lo s Bl (152

Similarly, the correction termsto x' = X’ and y’ = ¥’ in

(151)

| Eg. (88) stand in the ratio

s 2
‘:lfoisﬂql S |2¢|, (153)

I'p
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We now make use of the entries in Table| and the
estimate |¢#| ~ K, in Eq. (151) to compare the size of the
various terms in Egs. (152) and (153). We readily find
that the correction termsin Eq. (152) stand in the ratio

Ay 2)

27 (2m)?

Similarly, the correction terms in Eq. (153) stand in the
ratio

(154)

2 2
/\q _/\‘I.AQ_ /\q

S2K,
2w M o ) e (155)
From Eq. (107), the largest value of the self-field per-
veance K, alowed in the limit of negligibly small trans-
verse emittance is K, ~ Kfqrg, which gives KyS?/ry ~
K7qS? = (3/2)A}. Therefore, inthelimit of intense space-
charge field, the ratio of termsin Eq. (155) reduces to

A M N3 A
20 2w 2 2 (2m)?

Therefore, from Egs. (154) and (156), we conclude
that the key small parameter required for validity of the
present asymptotic analysis is e = A,/27 < 1, at least
for the case of a sinusoidal quadrupole focusing field
considered in Table |. From Eq. (150), this corresponds
to o,,/27 < (3/2)"/2, which leads to the conjecture
(Sec. 1) that the phase advance o should be smaller than
60° (= 7/3). Theimportant practica test of the range of
validity awaits detailed comparison with experiment and
numerical simulations.

(156)

VI]. CONCLUSIONS

In this paper, we have developed and applied a third-
order Hamiltonian averaging technique for investigating
solutions to the nonlinear Vlasov-Maxwell equations for
the case of an intense ion beam propagating through a
periodic-focusing quadrupole field or a periodic-focusing
solenoidal field. The formalism used a canonica trans-
formation given by an expanded generating function
to transform away the rapidly oscillating terms and
end up with a Hamiltonian # that depends only on
slow variables. The assumptions and theoretical model
were summarized in Sec. Il, including the nonlinear
Vlasov-Maxwell equations for the distribution function
fr(x,y,x',y',s) and self-field potentia (x,y,s) in the
laboratory frame. In Sec. 111, we made use of Channell’s
third-order Hamiltonian averaging technique [34] to
transform from laboratory-frame variables (x,y,x’,y’)
to a new Hamiltonian H (X,Y,X’,Y',s) in the slow
variables (X,Y,X’,Y’) correct to order €3. The for-
malism employed a canonical transformation given by
an expanded generating function to transform away the
rapidly oscillating terms.  This led to a Hamiltonian
HX,7,X',Y,s) in the transformed variables of the
form given in Eq. (79), where x; = const. An im-
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portant by-product of the generating function analysis
was the determination of the coordinate transformation
that relates the laboratory-frame variables (x, y, x’, y’) to
the slow variables (X, Y,X’,Y’) [Egs. (87)—(90)]. The
major simplification associated with transforming to the
sow variables (X, Y, X', Y’) is immediately evident from
the expression for H (X,Y,X'. Y’ s) in EqQ. (79). In
particular, the focusing coefficient «; is both constant
(independent of s) and isotropic in the transverse plane.
This should be contrasted with the expression in Eq. (6)
for the Hamiltonian H(x,y,x’,y’,s) in the laboratory
frame, where the focusing coefficients . (s) and «,(s)
are rapidly oscillating functions of s. In Sec. 1V, fol-
lowing a discussion of the nonlinear Vlasov-Maxwell
equations for F,(X,Y,X',Y'.s) and ¢(X,Y,s) in the
transformed variables, we presented several examples
of axisymmetric equilibrium solutions, i.e., distribution
functions F)(H°) with 9/as = 0 and 9/00 = 0 cor-
responding to constant-radius beam equilibria with a
circular cross section in the transformed variables [12,21].
Of particular note is the class of distribution functions
that satisfy 9Fp(H°)/aH® < 0, which can be shown
to be stable [25,26]. Findly, in Sec. V, we exploited
the inverse coordinate transformation, X(x,y,x’,y’,s),
Y(x,y,x',y',s), etc., to determine properties of the peri-
odically focused distribution function f,(x,y,x',y’,s) in
the laboratory frame, correct to order €, consistent with
the class of constant-radius circular cross-section beam
equilibria FY(H ) in the transformed variables. A wide
range of important physica quantities were determined,
including the distribution function f,(x,y,x’,y’,s);
statistical averages such as the transverse mean-square
beam dimensions, (x?)(s) and (y2)(s), and the unnor-
malized emittances, €,(s) and €,(s); and macroscopic
properties such as the number density of beam particles,
np(x,y,s) = [dx'dy' fp(x,y,x",y',s), the sdf-fied
potential, ¥ (x,y,s), etc. Finaly, in Sec. V D, we sum-
marized the illustrative conditions required for validity of
the present asymptotic expansion procedure for the case
of a periodic-focusing quadrupole lattice with sinusoidal
waveform (Table ). The important practical test awaits
detailed comparison with experiment and numerical
simulations.
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APPENDIX: INVERSE COORDINATE
TRANSFORMATION

The coordinate transformations in Egs. (87)—(90)
relate the |aboratory-frame coordinates x(X, Y, X', Y', s),
y(X,Y,X',Y's), etc., directly to the dow variables
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(X,Y,X',Y"). The inverse transformations, which relate
the slow coordinates X(x,y,x’,y’,s), Y(x,y,x",y’,s),
etc., to the laboratory-frame variables (x,y,x’,y’), can
be calculated from Egs. (87)—(90) correct to order €.
In this regard, it is important to make use of the relative
sizes of the various terms in Egs. (87)—(90), which
correspond to the orderings summarized in Eq. (91).

The procedure for calculating the inverse transfor-
mation is relatively straightforward. For example,
for the case of a periodic-focusing quadrupole field

it follows from Eq.(87) that X =x/(1 — B,) —
2[ [y ds By(s)]X', which can be approximated by
X =01+ Byx — 2[[yds B,(s)]x' correct to order €,
where use has been made of Egs. (88) and (91). A similar
expression for ¥ in terms of y and y’ can be obtained
from Egs. (87), (88), and (91), and Eq. (88) can also be
solved for X’ and Y’ in terms of the laboratory-frame
variables (x,y,x’,y’). Without presenting algebraic
details, for the case of a periodic-focusing quadrupole
field, we obtain from Egs. (87), (88), and (91) the inverse
| transformation

X(x,y, 2,y s) = [1 + By(s)x — 2|;/;S ds ,Bq(s):|x/,

. (A1)
?(xnysxl’yl’s) = [1 - Bq(s)]y + Z[L dS Bq(s)}yl,
and
X'(x,y,x',y"5) = [1 = Ba(9)lx" — 1 =[ag(s) — {a)I[1 + By(s)] — ( fo X ds[84(s) — <64>])]x
e o avw oy
[ J, @sma | (x . ay), -

Y(x,y,x',y's) = [1 + By(s)y —

S 7 a
+ |:'/0 dslgq(s)_ 5()’

correct to order €.

[aq(s) - <aq>][1 - Bq(s)] - (]OS ds[aq(s) - <6q>])]y

I
dy

aw)
X— 1,
ox

Similarly, for the case of a periodic-focusing solenoidal field, we obtain from Egs. (89)—(91) the inverse

transformation

XCe,p, 2y, s) = [1 + Bs(s)x — 2|:f0 ds BX(S)}C’,

Pleoyxyos) = [1 + By — 2[ fo ds /%(s)}y',

and

X y.xys) = [1 - Bs<s>]x/—[—[as<s> — (a1 + Bu(s)] - ( fo " ds[,(s) - <as>])

Y,y x'yls) = [1 - BS(S)]y/—[—[as(S) = (a)][1 + Bs(s)] — (fos ds[8,(s) — <5s>]>

(A3)
+ st[f()sdsﬂs(s)j“x - |:fosds,8s(s)j|%<16% + Y%), (A4)
+ st[[()stBs(S)“y - [/()SdSBS(S)}%<X% + y%)

correct to order €3.

In obtaining Egs. (A1)—(A4), we have made use of the fact that the self-field contributions in Egs. (88) and (90) are
proportional to [, ds B,(s) and [ ds Bs(s), respectively, which are of order €* [see Eq. (91)]. Therefore, to leading
order, we approximate (9/9X) (Xo/0X — Ya/aY)y(X,Y,s) by (8/0x) (xd/dx — yd/dy)(x,y,s), ec., in obtaining

the inverse transformations in Egs. (A2) and (A4).
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