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This paper develops a clear procedure for solving the nonlinear Vlasov—Maxwell equations for a
one-component intense charged particle beam or finite-length charge bunch propagating through a
cylindrical conducting pipéradiusr =r,,= const), and confined by an applied focusing foFgg .

In particular, the nonlinear Vlasov—Maxwell equations are Lorentz transformed to the beam frame
(“primed” variables) moving with axial velocityV,= B,c= const relative to the laboratory. In the
beam frame, the particle motions are nonrelativistic for the applications of practical interest, already
a major simplification. Then, in the beam frame, the electrostatic approximafipa V' ¢’,
Ef=0=B,) is made, which fully incorporates beam space-charge effects, but neglects any fast
electromagnetic processes with transverse polarizégan, light waves The resulting Vlasov—
Maxwell equations are then Lorentz transformed back to the laboratory frame, and properties of the
self-generated fields and resulting nonlinear Vlasov—Maxwell equations in the laboratory frame are
discussed. ©€2002 American Institute of Physic§DOI: 10.1063/1.1427023

I. INTRODUCTION entz transformed to the beam frantgrimed” variables

. . ~ moving with axial velocityV,= B,c=const relative to the
Periodic focusing accelerators and transport systes laboratory?* In the beam frame, the particle motions are non-

have a wide range of applications ranging from basic scienzeativistic for the applications of practical interest, already a

tific research in high energy and nuclear physics, to applicag5ior simplification. Then, in the beam frame, we make the
tions such as coherent radiation sources, heavy ion fUSiO%Iectrostatic approximation E(=—V'¢’, E,=0=B.)
' s

tritium production, nuclear waste transmutation, and spallay, i fully inco
tion neutron sources for materials and biological resefrch.
At the high beam currents and charge densities of practic

interest, of particular importance are the effects of the imens‘équations are then Lorentz transformed back to the labora-

self-fields produced by the beam space charge and current gy frame and properties of the self-generated fields and
determining the detailed equilibrium, stability and tra”Sportresulting nonlinear Vlasov—Maxwell equations in the labora-
properties, and the nonlinear dynamics of the system.[Ory frame are discussed.

Through analytical studies based on the nonlinear Vlasov—
Maxwell equations for the distribution functiofy,(x,p,t)
and the self-generated electric and fiel#s(x,t) and
Bs(x,t), and numerical simulations using particle-in-cell
models and nonlinear perturbative simulation techniques, In the present analysis, we consider an intense charged
considerable progress has been made in developing an irparticle beam with characteristic transverse dimenséoarsd
proved understanding of the collective processes and nonlis propagating in the direction with average axial velocity
ear beam dynamics characteristic of high-intensity beanV,= B,c=const and characteristic directed kinetic energy
propagation in periodic focusing and uniform focusing trans{y,— 1)myc?. Here, ¢ is the speed of lighin vacuq 1y,
port systems~28n almost all applications of the Vlasov— =(1—2) *?is the relativistic mass factor, arg, andm,
Maxwell equations to intense beam propagation, the analysiare the charge and rest mass, respectively, of a beam patrticle.
is carried out in the laboratory frame, and various simplify-A perfectly conducting cylindrical wall is located at radius
ing approximations are made, ranging from the electrostatic+=r,,, wherer =(x?>+y?)? is the radial distance from the
magnetostatic approximatith to the Darwin-model beam axis. The particle motion in the beam fraffimed”
approximatior?’~3® which neglects fast transverse electro- coordinates is assumed to be nonrelativistic with’|<c.
magnetic perturbations. Furthermore, the beam current density and charge density are
Given the general importance of model assumptions irallowed to be arbitrarily large, subject only to the require-
affecting the detailed outcome of calculations, in this papement that the beam particles be confined by the applied fo-
we develop a clear procedure for solving the nonlinearcusing fieldsE;(X,t) and B(X,t). The specific forms of
Vlasov—Maxwell equations for a one-component intenseE(X,t) and B,(X,t) of course depend on the particular
charged particle beam or finite-length charge bunch propaocusing field configuration under consideratigmadrupole,
gating through a cylindrical conducting pigeadiusr=r,,  solenoidal, rf, etg. Finally, in the present analysis, the beam
=const), and confined by an applied focusing foFgg. In  can be continuous in the direction, or correspond to a
particular, the nonlinear Vlasov—Maxwell equations are Lor-finite-length charge bunch.

rporates beam space-charge effects, but ne-
i:ects any fast electromagnetic processes with transverse po-
9, rization(e.qg., light waves The resulting Vlasov—Maxwell

II. VLASOV-MAXWELL EQUATIONS AND
TRANSFORMATION TO THE BEAM FRAME
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Within the context of the above-mentioned assumptionsywhere ybz(l—vﬁlcz)‘l’z. Here, the particle momentum
a complete description of the collective processes and norand velocity are related byp=ymyv and p’'=y'myv’,
linear dynamics of the charged particle beam is provided byvhere y=(1+p?m2c?)¥? and y'=(1+p’?/m2c?)? are

the nonlinear Vlasov—Maxwell equatiohsyhich describe
the evolution of the distribution functiofi,(x,p,t) in the
six-dimensional laboratory-frame phase spac@), and the
corresponding self fieldsEg(x,t) and Bg(x,t), generated
self-consistently by the beam space charge and current.

laboratory-frame variables, the nonlinear Vlasov—Maxwell
evolution of

equations describing the self-consistent
fo(X,p,t), Es(X,t), andBg(x,t) can be expressed as

AL AL P S VT | AL T
2t TV ox foc €p| Es+ CVXBs ap O (1)
and

V~Esz4webf d3pfp, 2
VxB —14 fd3 f 1 9 3
XBs=4mey pvivt o = ©)
VXE = 198, 4

S EW; ()
V-B,=0. 5

Here, Fiooc=e,(Efet € VX By, is the applied focusing
force in the laboratory frame, and the velocitand momen-
tum p are related byp=ym,v, wherey=(1+p?/mic?)2
The Vlasov equatioifl) describes the incompressible evolu-
tion of the distribution functionf,(x,p,t) in the six-
dimensional phase space,|f) as the beam particles interact
with the applied focusing field&,.(X,t) andB;.(X,t), and
the average self-fieldgg(x,t) andBg(x,t), generated by the
beam particles. Note that the Vlasov equati@his highly
nonlinear becausgg(x,t) andBg(x,t) are determined self-
consistently in terms of the beam charge densify(x,t)
=e,fd%pf,(x,p,t), and current density, Jy(x,t)
=e,[d®pvf,(x,p,t), from Maxwell's equations(2)—(5).
Here, ny(x,t)=fd3pf,(x,p,t) is the number density of
beam particles.

The Vlasov—Maxwell equationd)—(5) can of course be

the kinematic mass factors. In the beam frame, the nonlinear
Vlasov equation for the distribution functiofy,(x’,p’,t")
can be expressed s

of;! of!
n v 24
ax’

at’

afy
ap’ -

0.

)

In Eq. (7), E{(X',t) and B{(x',t") are the self-generated
fields in the beam frame, and we approximaje=1
+p’2/2m3c? and p’=myv’ because the particle motion in
the beam frame is assumed to be nonrelativistic. Further-
more, Fiy.=ep(Ef.+C v/ XBY,) is the applied focusing
force on a particle in the beam frame. Here, the applied elec-

tric and magnetic fields transform accordingEt{gcz[EzéZ

+ Yo(Ex&t Eyey) + ')’bc_lvberB]foc and Bf’oc: [B.e,

+ 70(Bx&+ By&) — %€ Vp&,XEle, Which determines
Ef,c and By, directly in terms of the applied focusing fields
in the laboratory frame and the Lorentz transformation in
Eq. (6).

Maxwell’s equations in the beam frame of course are
similar in form to Eqs(2)—(5), and relate the self-generated
electric and magnetic fieldg.(x’,t") andB{(x’,t"), to the
distribution functionf/(x’,p,t"). For present purposes, it is
convenient to introduce the scalar and vector potentials,
¢'(x',t") andA’(x',t"), and express

1
Fioct €p| Es+ EV’XB;) } .

()

where E[ =—V’'¢' is the longitudinal electric fieldE;
=c 19A’/at" is the transverse electric field, and the Cou-
lomb gauge condition witlV’'- A’ =0 is assumed. From Eq.
(8), the Maxwell equationsV'-B{=0 and V’'XE
=—c '9Bl/ot’ are automatically satisfied, and Poisson’s
equation and théV’XB, Maxwell equation in the beam

analyzed directly in laboratory-frame variables. However, fofframe are readily expressed?4s

a beam consisting of a single charge compor{ém: case

considered hepe there is considerable advantage to trans-

forming to the beam frame moving with axial velocit,

= Byc relative to the laboratory. In the beam frame the par-

ticle motion is nonrelativistic |¢/'|<c) by assumption,

which results in a welcome simplification of the correspond-
ing Vlasov—Maxwell equations in the beam frame. The Lor-

entz transformatiofi>’ relating the primed variables
(x",p’,t") in the beam frame to the unprimed variables
(x,p,t) in the laboratory frame is given by

X'=X, y'=y, Z'=y(z=Vpb),

t'= ‘yb(t_VbZ/Cz),

! ! ! 6
Py = Px, py: py o P= 7b( P~ ymbvb)! ( )
Y= p(y= VP, /Myc?),
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where use has been made %f-A’=0. In Egs.(9) and
(10), note that the electrostatic potenti@l (x',t") is deter-
mined self-consistently in terms of the beam charge
density pp (X' ) =epni (X' ,t")=epfd3p’ f1(X",p’ 1)
from Eq. (9), and A’ (x’,t") is determined in terms of the
beam current density J;(x',t")=epnj(X’,t")Vp(x',t")
=e,[d3p'V/f (x',p’,t") from Eq.(10). Here,n/(x',t") is

the local number density and/(x’,t") is the local average
flow velocity of particles in the beam frame, and
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=p’/my is the (nonrelativistig particle velocity. Note that d=yp(d' +VpALlc),
Poisson’s equatio®) can be viewed as an initial condition ) .
to Eq.(10), which if true att’=0 remains true at all subse- A=A A=Ay, (13
quentt’. This follows upon taking the divergence _of Ed0) A,= yp(AL+ Vo' [c),
and making use of the Coulomb gauge condit@h-A’
=0. This readily gives where the arguments(,t’) are related toX,t) by Eq. (6).
19 1
_ —V’2¢’ — _47Tebvl'(nt,)vt,)) I1l. IMPLICATIONS OF ELECTROSTATIC
Cat’ ¢ APPROXIMATION IN THE BEAM FRAME
1 9 The introduction of the Coulomb gauge condition
s T[V'Zsb' +4meyny|=0, (1)  (V’-A’=0) and the resulting forms of Maxwell’'s equations
J (9) and(10) also make ancillary approximations more trans-
where use has been madedof/dt’ +V'-(n.V;)=0. It fol-  parent in the beam frame. In the following analysis, we con-

lows trivially from Eq. (11) that if Poisson’s equatiof®) is  sider such a case corresponding to the electrostatic approxi-
satisfied initially att’ =0, then it remains true at all subse- mation in the beam frame. In particular, it is assumed that the
quent timegt’. electromagnetic field components wittansversepolariza-

For the boundary conditions at the perfectly conductingtion, Ef=—c 19A’/dt’ and B,=V’'XA’, are negligibly
cylindrical wall at radiug =r’=r,,, we impose the require- small in comparison with théongitudinal electric field,E{
ments that the tangential electric field and the normal mag=—V'¢’. In this case, we approximate
netic field vanish. That is[E,],—; =[Egl=¢ =[Bli=r A'=0
=0, whereE,, E,, andB, denote field components in cy- ’ (14)
lindrical polar coordinatesr(#,z) in the laboratory frame. In Er=0=Bg,

the beam frame, the corresponding field components arg.q the nonlinear Viasov equatid) in the beam frame
given by E;=E,, B{=1vp(B,+V,E,/c), and Ey=y,(E,

; _becomes
+V,B,/c). Therefore, the corresponding boundary condi-
tions at the conducting wall’=r,, in the beam frame are oty | afg , L, b
also given by[E}], —r =[Ejl;— =[B/lr=;,=0. Ex- PrRA '§+[Ffoc—ebv & ].a_p’_o' (15

pressed in terms of the scalar and vector potentials, L .
&' (x',t') andA’(x',t"), these boundary conditions can be Of course the scalar potentiah’ (x’,t") occurring in Eq.

expressed as (15) is determined self-consistently in terms of the charge
, density e, fd3p’f/(x",p’,t’) from Poisson’s equatior9).
¢'(r'=ry, 0,2 t")=A(r"=r,,0",2"t') By virtue of Eq. (14), we have neglected any fast electro-

magnetic processes in the beam frame with transverse polar-
ization (e.g., light wavel and it is assumed that the current
where (’,0',z") are cylindrical polar coordinates in the carried by the particles in the beam frame is sufficiently
beam frame, withx’=r’cos#’ andy’'=r’'sin¢'. small that the self-generated transverse field comporignts
The nonlinear Vlasov—Maxwell equatiori®), (9), and andB, can be neglected. Equatio®) and (15) of course
(10) in the beam frame, subject to the boundary conditions irinclude the full influence of space-charge effects in the beam
Eqg. (12), are fully equivalent to the Vlasov—Maxwell equa- frame through the longitudinal electric fielf = —V'¢'.
tions(1)—(5) in the laboratory frame, and provide a complete ~ The nonlinear Vlasov-Poisson equatio(® and (15)
description of the collective processes and nonlinear dynanconstitute a closed description of the collective processes and
ics of intense beam propagation. Equati¢ns (9), and(10) nonlinear dynamics of the distribution functidg(x’,p’,t")
can be used to investigate detailed equilibrium and stabilityand space-charge potentidl’ (x’,t’) in the beam frame,
properties in the beam frame for a wide range of systenvalid in the electrostatic approximation. As such E@.and
parameters and choices of applied field configurations(15) can be used to investigate detailed equilibrium and elec-
Moreover, as noted earlier, because the particle motion in thigostatic stability properties for a wide range of system pa-
beam frame is nonrelativistic, a detailed investigation of Eqsrameters and choices of focusing field configurations. The
(7), (9), and(10) is more tractable analytically and numeri- purpose of this paper is not to solve E¢8) and (15) in
cally than the corresponding Vlasov—Maxwell equationsdetail. Rather, let us assume that the solutions to &yand
(1)—(5) in the laboratory frame. Furthermore, once the solu{15) have been obtained in the beam fraftleese could be
tions for f(x',p’,t"), ¢'(x',t"), and A’(x’,t") are ob- analytical or numerical solutionsand pose the question:
tained in the beam frame, the corresponding solutions aré/hat are the properties of the corresponding solutions in the
readily obtained in the laboratory frame. For example, thdaboratory frame? The variablex’(p’,t") and (,p,t) of
variables &',p’,t") are related to X,p,t) by the Lorentz course transform according to E¢). Furthermore, once
transformation in Eq(6). Furthermore, the scalar and vector ¢'(x’,t’) is determined in the beam frame, field quantities
potentials¢(x,t) andA(x,t) in the laboratory frame are re- in the laboratory frame are readily obtained by making use of
lated to the potentialg’ (x’,t’) andA’(x’,t") in the beam Egs.(13) and(14). SubstitutingA’ =0 into Eq.(13) readily
frame by the transformatiéf® gives

=A)(r'=r,,0',2' t')=const, (12

Downloaded 01 Jul 2002 to 198.35.4.106. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 9, No. 1, January 2002

o=y,
A=0=A,, (16)

A= YoBrd' = Bo o,

where B,=Vy/c. In Eg. (16), the argumentsx(,t’) and
(x,t) are related by Eq6), so Eq.(16) gives directly

qS(X,y,Z,t) = 7b¢’[xvy1 ‘}/b(z_vbt)v ’Yb(t_VbZ/Cz)]v(:L?)

as well asA,=A,=0, and

AZ(X,y,Z,t):Bbd)(x,y,Z,t)- (18)

Note from Egs.(16) and (17) that the &',y’) and ,y)
dependencies ap’ and ¢ are identical, whereas the'(t’)
and (z,t) dependences transform according to Eg). In
terms of Fourier—Laplace variablek,(») and K, ,0’),
Eq. (17) leads directly to the familiar relatioffs®”

Vb,
kZ:’yb kz‘f’gzw y

P 19
w="7yy(w'+k,Vy). (19

That is, if the potentialp’ (x',t") has axial wave numbeéx,

and frequency’ in the beam frame, then the corresponding
axial wave numbek, and frequencyw in the laboratory
frame are given by Eq.19). Of course the inverse transfor-

mation to Eq.(19) is obtained by interchangind{, ) and
(k; ,®"), and making the replaceme¥it— —V,,.
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beam frame, and then Eg&), (16), (20), and(21) can be
used to determine the corresponding distribution function
and self-generated fields in the laboratory frame.

While Egs.(9) and (15) provide a complete description
of the system in the electrostatic approximation in the beam
frame, it is nonetheless interesting to examine the implica-
tions of the electrostatic approximation in the beam frame for
the corresponding Vlasov—Maxwell equations in the labora-
tory frame. First, making use of Eq20) and(21), it follows
that the force on a beam patrticle in the laboratory frame due
to the self-generated field§=e,(E.+c v X By), can be

expressed ab=F, +F,e,, where

1 .
Fi=e, =V, ¢+ E[VX (VAzer)]L)

= _ebvl( b— %UZAZ) (22

denotes the perpendicular force in they plane, and

- 0 LA 1
| Tz Tt o e
= 2 ! A +1 <9+ VIA 23
=€ | P g Tl VY AL (23

is the axial force. HereV |, =e,d/dx+ €,/ dy is the perpen-
dicular spatial gradient, anl,= B, ¢ follows from Eq.(18).

Equations (16)—(18) allow us to determine the self- Equations (22) and (23) can be substituted into the

generated fieldsEs=—V¢—c 19A/dt and Bg=VXA, in

laboratory-frame Vlasov equatidd). One important simpli-

the laboratory frame, consistent with the electrostatic apfication occurs in this regard. The characteristics of the Vla-

proximation,E;=E=—-V'¢’, in the beam frame. It fol-

lows directly thatBS=V><AzéZ has components

A, dd
Bx= ay _BbW’
A, ad
By=——x = " Poo (20
B,=0.

Furthermore, the self-generated electric fietld=—V ¢
—c Y(9A,/dt)e, can be expressed as
P P

Ex= ax’ Ey:_ay’

dz c dt 0z

sov equation(l) are the single-particle orbits in the self-
generated fields. For example, the coefficienvbf/dp, is
dp,/dt=F,. From Eq.(23), introducing the axial canonical
momenturd® P,=p,+(e,/c)A,, and making use of
(d/dt)A,=(d/dt+v-V)A,, it follows that dP,/dt
=—eu(dldz)(¢p—v,A,Ic). Therefore, if we change vari-
ables from &,y,z,py.py.p;,t) to (X,y,Z,Py,Py,P,,1),
where P,=p, and P,=p, (becauseA,=0=A,) and P,
=p,+(ep/c)A,, it follows from Egs.(1), (22), and(23) that
the nonlinear Vlasov equation for the distribution function
fp(x,P,t) in the laboratory frame can be expressed in the
compact form

of i
_b+v._b+

M 6. (o4
ot ax op 0 (29

Uy
Ffoc_ €p 1- Fﬁb V¢

In obtaining Eq.(24), use has been made &= B,¢ to
express V(¢—v,A,/c)=(1-Bpv,/c)V¢p. Furthermore,
Erom Egs.(2) and(21), Poisson’s equation can be expressed

As would be expected, even though there is no magneti
field in the beam frameR,=0) by assumption, in the labo- as

ratory frame the beam carries an axial current, and there is a glap 1 e

transverse magnetic field generated with componeBis, Vf¢+ E(E+ E'Bbﬁ):_‘lwebj d3PfL(x,P,t),
=dA,/dy andBy=—dA,/dx, whereA,= B¢ according to (25)

Eq. (18). Furthermore, in addition to the longitudinal electric

field E.=—V ¢, it follows from Eq. (21) that there is an whereV? = ?%/9x?+ 4%/ dy?. The Vlasov—Poisson equations
inductive electric fieldEt,= —c 19A,/at in the laboratory  (24) and(25), valid in the laboratory frame, are fully equiva-
frame, whereA,=pB,¢. As noted earlier, the nonlinear lent to the Vlasov—Poisson equatiof® and (15) obtained
Vlasov—Poisson equatiort8) and(15) can be solved in the in the beam frame in the electrostatic approximation. Of
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course when the two frames coincid@,&0, y,=1, ¢ netic processes with transverse polarizatiGng., light

=¢' and A,=A,=0), Egs.(24) and (25 are identical in waves. The resulting Vlasov—Maxwell equations were then

form to Egs.(9) and(15), as expected. Lorentz transformed back to the laboratory frame, and prop-
As noted earlier, because the particle motion is nonrelaerties of the self-generated fields and resulting nonlinear

tivistic in the beam frame, it is often advantageous to solvé/lasov—Maxwell equations in the laboratory frame were dis-

Egs. (9) and (15) directly, rather than Eqs24) and (25). cussed.

Nonetheless, with some ancillary approximations, the
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