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Nonlinear df simulation studies of intense charged particle beams
with large temperature anisotropy
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In this paper, a 3D nonlinear perturbative particle simulation code~BEST! @H. Qin, R. C. Davidson,
and W. W. Lee, Phys. Rev. ST Accel. Beams3, 084401~2000!# is used to systematically study the
stability properties of intense non-neutral charged particle beams with large temperature anisotropy
(T'b@Tib). The most unstable modes are identified, and their eigenfrequencies, radial mode
structure, and nonlinear dynamics are determined for axisymmetric perturbations with
]/]u50. © 2002 American Institute of Physics.@DOI: 10.1063/1.1484390#
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I. INTRODUCTION

Periodic focusing accelerators, transport systems,
storage rings1–5 have a wide range of applications rangin
from basic scientific research in high energy and nucl
physics, to applications such as heavy ion fusion, spalla
neutron sources, tritium production, and nuclear waste tra
mutation, to mention a few examples. Of particular imp
tance at the high beam currents and charge densities of p
tical interest, are the effects of the intense self-fie
produced by the beam space charge and current on dete
ing the detailed equilibrium, stability, and transport prop
ties. While considerable progress has been made in un
standing the self-consistent evolution of the be
distribution function, f b(x,p,t), and self-generated electri
and magnetic fields,Es(x,t) andBs(x,t), in kinetic analyses
based on the nonlinear Vlasov–Maxwell equations,1,6–10 in
numerical simulation studies of intense beam pro
agation,11–19and in macroscopic warm-fluid models,20–23the
effects of finite geometry and space-charge effects o
make predictions of detailed stability behavior difficult. It
therefore important to develop an improved understandin
fundamental collective stability properties, including the ca
where a large temperature anisotropy (T'b@Tib) can drive a
Harris-type instability,24,25 familiar in the study of electri-
cally neutral plasmas.

It is well known that in neutral plasmas with strong
anisotropic distributions (Tib /T'b!1) a collective instabil-
ity may develop if there is sufficient coupling between t
transverse and longitudinal degrees of freedom.24,25 Such
anisotropies develop naturally in accelerators, where the
gitudinal temperature of the accelerated beam of char
particles with chargeq accelerated by a voltageV is reduced
according toTib f5Tibi

2 /2qV ~for a nonrelativistic beam!. At
the same time, the transverse temperature may increase
to nonlinearities in the applied and self-field forces, nons
tionary beam profiles, and beam mismatch. These proce
provide the free energy to drive collective instabilities a
may lead to a detoriation of beam quality.18,26,27Historically,
this instability was first studied analytically by Wang an
Smith8 for beams with a Kapchinkij–Vladimirskij~KV ! dis-
tribution. Friedmanet al.28–30 reported a rapid ‘‘equilibra-
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tion’’ process observed in 3D particle simulations of K
beams with large temperature anisotropy using the WA
code. They conjectured that the initial rapid heating in t
longitudinal direction may be the result of an anisotrop
driven instability reminiscent of a Harris mode, but wi
transverse betatron motion instead of cyclotron motion. R
alizing the fact that the highly inverted KV distribution ma
introduce numerous unstable modes, Lundet al.31,32 used a
semi-Gaussian distribution to carry out particle-in-cell sim
lations of the instability. However, unlike the KV distribu
tion, the semi-Gaussian distribution is not a rigorous equi
rium solution of the Vlasov–Maxwell equations. Th
departure from a self-consistent equilibrium inevitably lea
to mode excitations which can be confused with those
the anisotropy-driven instability. The bi-Maxwellian distribu
tion considered in the present study is a rigorous steady-s
equilibrium of the Vlasov–Maxwell equations, and it do
not support the spurious modes of the KV distribution.
addition, the bi-Maxwellian distribution is known to be
stable equilibrium with respect to transverse perturbation9

and therefore is an ideal candidate for studying instabilit
driven by temperature anisotropy. A simple theory of t
instability for a bi-Maxwellian distribution is presented i
this paper, which appears to capture its main features an
a relatively straightforward generalization of the analysis
the Harris instability to the case of an intense particle bea
In this paper, we present the instability thresholds obtaine
the simulations, as well as detailed simulations of the n
linear development and saturation of the instability. We ide
tify the main saturation mechanism as quasilinear stabil
tion due to resonant wave–particle interaction~Landau
damping!. A 3D nonlinear perturbative particle simulatio
code,14–16called the Beam Equilibrium, Stability, and Tran
port ~BEST! code, is used to systematically study the ele
trostatic stability properties of intense nonneutral charg
particle beams with large temperature anisotropy (T'b

@Tib). The most unstable modes are identified, and th
eigenfrequencies, radial mode structure, and nonlinear
namics are determined for axisymmetric perturbations w
]/]u50. Since a well-behaved bi-Maxwellian distribution
used in the simulations, the mode structures observed
8 © 2002 American Institute of Physics
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different from those of the KV distribution previously re
ported.

The organization of this paper is the following: In Se
II, we present a simple kinetic model of the instability bas
on a matrix dispersion equation derived from the lineariz
Vlasov–Poisson equations. The nonlineard f simulation
method is briefly described in Sec. III, and in Sec. IV w
present detailed simulation results for a wide range of sys
parameters.

II. LINEAR STABILITY THEORY

A. Kinetic description

Wang and Smith8 investigated the kinetic stability prop
erties of an intense particle beam assuming a Kapchin
Vladimirskij ~KV ! beam distribution6 in the limit of large
energy anisotropy (Tib /T'b→0) by expanding the solution
of the linearized Vlasov–Poisson equations in a series
Gluckstern eigenfunctionsdwn(r )5(1/2)@Pn21(122r 2/r b

2)
1Pn(122r 2/r b

2)#, wherePn(x) is the nth-order Legendre
polynomial.7 The expansion yields a dispersion relation, e
pressible in terms of an infinite matrix determinant. For lon
wavelength axial perturbations withkz

2r b
2!1, one-half of the

modes8 are identified as transverse (Tn) Gluckstern modes
with eigenfunctiondw}dwn . The other half8 consists of
modes corresponding in the limit of large tune depress
(n→0) to an ordinary cold-beam longitudinal mode (L1)
with eigenfunctiondw}J0(kzr ) inside the beam and dispe
sion relation (v2kzVb)25(v̂pb

2 /2)(kzr b)2 ln(rw /rb), plus a
less-known class of ‘‘coupling’’ modes (Ln) with dw}dwn

and (v2kzVb)25@v̂pb
2 /8n(n11)#(kzr b)2*0

2p(dx/2p)
3Pn(cosx). The latter modes are the result of the interact
between transversely oscillating particles and the longitu
nal perturbed potential. Here,v is the mode oscillation fre-
quency,kz is the axial wavenumber of the perturbation,Vb

5bc is the axial beam velocity, andJ0(x) is the ordinary
Bessel function of the first kind of the order zero. Furth
more, n5n0(12sb)1/2 is the depressed tune, wheresb

5v̂pb
2 /2gb

2v f
2 is the normalized beam intensity,v̂pb

2

54pn̂beb
2/gbmb is the relativistic plasma frequency

squared,n05v f is the transverse betatron frequency asso
ated with the applied focusing field,r b is the beam edge
radius,r w is the radius of the perfectly conducting wall,gb

5(12bb
2)21/2 is the relativistic mass factor,eb and mb are

the particle charge and rest mass, respectively, andn̂b is the
number density of the beam particles.

As a general rule, for a KV distribution, instability arise
in the regions of parameter space where two or more mo
interact resonantly. The transverse modes (Tn) are not sig-
nificantly affected by longitudinal perturbations, and the
fore the instability due to their interaction is a conseque
of the fact that the KV distribution has a highly inverte
population in phase space.1,6–8 The most dangerousTn–Lk

instabilities are due toT2–L1 interactions8 in the region
where n/n0.0.44 with maximum growth rate Imv/n0

.0.03, and due toT2–L2 interactions in the region 0.2
<n/n0<0.32, with maximum growth rate Imv/n0.0.15.
The latter mode has a much higher growth rate due to
Downloaded 15 Oct 2002 to 192.55.106.78. Redistribution subject to AI
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similar transverse structure of theL2 and T2 modes. The
growth rate obtained by Wang and Smith8 is a maximum for
kz

2r b
2*1 in both cases.
It is important to extend theoretical studies of the kine

stability properties of anisotropic beams to distribution fun
tions other than the KV distribution. This is because the K
distribution has an~unphysical! inverted population in trans
verse phase-space variables, which provides the free en
to drive collective instabilities at high beam intensities th
are intrinsic to this inverted population.7,8 This, of course,
can mask the effects of anisotropy-driven instabilities.
this end, we briefly outline here a simple derivation of t
Harris-type instability24,25 in intense particle beams for elec
trostatic perturbations about the thermal equilibrium distrib
tion with temperature anisotropy (T'b.Tib) described in the
beam frame by the self-consistent axisymmetric Vlas
equilibrium,1,10

f b
0~r ,p!5

n̂b

~2pmbT'b!
expS 2

H'

T'b
D 1

~2pmbTib!1/2

3expS 2
pz

2

2mbTib
D . ~1!

Here, H'5p'
2 /2mb1(1/2)mbv f

2(x21y2)1ebf0(r ) is the
single-particle Hamiltonian,p'5(px

21py
2)1/2 is the trans-

verse particle momentum,r 5(x21y2)1/2 is the radial dis-
tance from the beam axis,v f5const. is the transverse fre
quency associated with the applied focusing field, andf0(r )
is the equilibrium space-charge potential determined s
consistently from Poisson’s equation,r 21(]/]r )(r ]f0/]r )
524pebnb

0 , wherenb
0(r )5*d3p fb

0(r ,p) is the equilibrium
number density of beam particles. For simplicity, the analy
is carried out in the beam frame~Vb50 andgb51!. Further-
more, settingf0(r 50)50, the constantn̂b occurring in Eq.
~1! can be identified with the on-axis densitynb

0(r 50), and
the constantsT'b and Tib can be identified with the trans
verse and longitudinal temperatures~energy units!, respec-
tively.

For present purposes, we consider small-amplitude,
symmetric (]/]u50) electrostatic perturbations of the form

df~x,t !5df̂~r !exp~ ikzz2 ivt !, ~2!

wheredf(x,t) is the perturbed electrostatic potential,kz is
the axial wave number, andv is the complex oscillation
frequency, with Imv.0 corresponding to instability~tempo-
ral growth!. Without presenting algebraic details, using t
method of characteristics, the linearized Poisson equa
can be expressed as

1

r

]

]r
r

]

]r
df̂~r !2kz

2df̂~r !524pebE d3pd f b̂~r ,p!,

~3!

where
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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d f b̂~r ,p!52
eb

T'b
df̂ f b

02
eb

T'b
Fv2kzvzS 12

T'b

Tib
D G f b

0

3 i E
2`

t

dt8df̂@r 8~ t8!#exp@ i ~kzvz2v!~ t82t !#

~4!

for perturbations about the choice of the anisotropic ther
equilibrium distribution function in Eq.~1!. In the orbit inte-
gral in Eq. ~4!, Im v.0 is assumed, andr 8(t8)5@x82(t8)
1y82(t8)#1/2 is the radial orbit in the equilibrium field con
figuration such that@x'8 (t8),p'8 (t8)# passes through the pha
espace point (x' ,p') at time t85t. We express the pertur

bation amplitude asdf̂(r )5(nanfn(r ), where $an% are
constants, and the complete set of vacuum eigenfunct
$fn(r )% is defined byfn(r )5AnJ0(lnr /r w). Here,ln is the
nth zero ofJ0(ln)50, andAn5&/@r wJ1(ln)# is a normal-
ization constant such that*0

r wdrrfn(r )fn8(r )5dn,n8 . We

substitutedf̂(r )5(nanfn(r ) into Poisson’s equation~3!
and operate with*0

r wdrrfn8(r ) . . . . This gives the matrix
dispersion equation

(
n

anDn,n8~v!50, ~5!

where

Dn,n8~v!5~ln
21kz

2r w
2 !dn,n81xn,n8~v!, ~6!

and the beam-induced susceptibilityxn,n8(v) is defined by

xn,n8~v!524pebr w
2 E

0

r w
drrfn8~r !E d3pd f b

n̂~r ,p!.

~7!

Here, d f b
n̂(r ,p) is defined in Eq.~4! with df̂→fn . The

condition for a nontrivial solution to Eq.~5! is

det$Dn,n8~v!%50, ~8!

which plays the role of a matrix dispersion relation that d
termines the complex oscillation frequencyv.

We defer a detailed analysis of Eqs.~5!–~8! to a separate
paper, and summarize here somequalitativeproperties of the
Harris-type instability that ensues in the limit of an anis
tropic beam distribution that iscold in the longitudinal direc-
tion, i.e.,

Tib

T'b
→0. ~9!

In this regard, it is convenient to introduce the effectivede-
pressedbetatron frequencyvb' . It can be shown1 that for
the equilibrium distribution in Eq.~1!, the mean-square beam
radiusr b

2 defined by

r b
25^r 2&5

*drr 3nb
0~r !

*drrnb
0~r !

, ~10!
Downloaded 15 Oct 2002 to 192.55.106.78. Redistribution subject to AI
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is related exactly to the line densityNb52p*drrnb
0(r ), and

transverse beam temperatureT'b by the equilibrium radial
force balance equation,1

v f
2r b

25
Nbeb

2

mb
1

2T'b

mb
. ~11!

Equation~11! can be rewritten as

S v f
22

1

2
v̄pb

2 D r b
25

2T'b

mb
, ~12!

where we have introduced the effectiveaverage beam
plasma frequencyv̄pb defined by

r b
2v̄pb

2 [E
0

r w
drrvpb

2 ~r !5
2eb

2Nb

mb
. ~13!

Then, Eq.~12! can be used to introduce the effectivede-
pressedbetatron frequencyvb' defined by

vb'
2 [S v f

22
1

2
v̄pb

2 D5
2T'b

mbr b
2 . ~14!

If, for example, the beam density were uniform over t
beam cross section, then Eq.~14! corresponds to the usua
definition of the depressed betatron frequency for a K
beam, and it’s readily shown that the radial orbitr 8(t8) oc-
curring in Eqs.~4! and ~7! can be expressed as1

r 82~ t8!5r 2 cos2~vb't!1
p'

2

mb
2vb'

2 sin2~vb't!

1
rp'

mbvb'

cos~f2u!sin~2vb't!. ~15!

Here t5t82t is the displaced time variable, and w
have expressed (x,y)5(r cosu,r sinu) and (px ,py)
5(p' cosf,p' sinf) in cylindrical polar coordinates. Note
from Eq. ~15! that r 8(t85t)5r and @dr82/dt8# t5t852(xpx

1ypy)/mb , as expected. Due to the nontrivial dependen
of the perturbed potential in Eq.~4! on radiusr , the trans-
verse betatron motion@Eq. ~15!# will drive density perturba-
tions resonantly at frequencies that are multiples of 2vb' .
Instability occurs when one of these frequencies is close
the beam plasma frequencyvpb .

In general, for the choice of equilibrium distributio
function in Eq.~1!, there will be a spread in transverse d
pressed betatron frequenciesvb'(H'), and the particle tra-
jectories will not be described by the simple trigonomet
function in Eq.~15!. For present purposes, however, we co
sider a simplemodel in which the radial orbitr 8(t8) occur-
ring in Eq. ~4! and the definition ofxn,n8(v) in Eq. ~7! is
approximated by Eq.~15! with the constant valuevb' de-
fined in Eq. ~14! and theapproximateequilibrium density
profile defined bynb

0(r )5n̂b exp(2mbvb'
2 r2/2T'b). For a

nonuniform beam,vb'
21 is the characteristic time for a par

ticle with thermal speedv th'5(2T'b /mb)1/2 to cross the rms
radiusr b of the beam. In this case,xn,n8(v) can be evaluated
in closed analytical form provided the conducting wall
sufficiently far removed from the beam (r w /r b*3, say!. In
this case, the matrix elements decrease exponentially a
from the diagonal, with
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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UDn,n1k

Dn,n
U;expS 2

p2k2

4

r b
2

r w
2 D , ~16!

where k is an integer, and we have used the approxim
relation ln'p(4n21)/4. Therefore, forr w /r b*3, we can
approximate$Dn,n8(v)% by a tridiagonal matrix. In this
case, for the lowest-order radial modes~n51 andn52!, the
matrix dispersion relation~8! can be approximated by
na
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D1,1~v!D2,2~v!2@D1,2~v!#250, ~17!

where use has been made ofD1,2(v)5D2,1(v).
We introduce the effective perpendicular thermal spe

squared of a beam particle defined byv th'
2 52T'b /mb .

Then, for Tib /T'b→0 and r w /r b*3, the approximate dis-
persion relation~17! describing the coupling of the lowes
ordern51 mode with then52 radial mode, within the con-
text of the present simplified model, can be expressed a
H l1
21kz

2r w
2 1

2 exp~2 k1
2/2!~v̂p

2/vb'
2 !

J1
2~l1!

F I 0S k1
2

2 D 2S 11
kz

2v th'
2

2v2 D I 0
2S k1

2

4 D 2S v

v22vb'

1
kz

2v th'
2

2~v22vb'!2D I 1
2S k1

2

4 D G J
3H l2

21kz
2r w

2 1
2 exp~2 k2

2/2!~v̂p
2/vb'

2 !

J1
2~l2!

F I 0S k2
2

2 D 2S 11
kz

2v th'
2

2v2 D I 0
2S k2

2

4 D 2S v

v22vb'

1
kz

2v th'
2

2~v22vb'!2D I 1
2S k2

2

4 D G J
5

~2v̂p
2/vb'

2 !2

J1
2~l1!J1

2~l2!
expS 2

~k1
21k2

2!

2 D H I 0S k1k2

2 D2S 11
kz

2v th'
2

2v2 D I 0
2S k1k2

4 D2S v

v22vb'

1
kz

2v th'
2

2~v22vb'!2D I 1
2S k1k2

4 D J 2

, ~18!
te
e
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e
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where we have retained only the leading-order nonreso
terms and one resonant term at~positive! frequency v
'2vb' . In the dispersion relation~18!, l1.2.405 andl2

.5.52 are determined from the zeros ofJ0(ln)50, v th'

5(2T'b /mb)1/2 is the transverse thermal speed,k1 and k2

are defined byk15l1r b /r w and k25l2r b /r w , and vb'

5v f(12 s̄b)1/2 is the effective depressed betatron frequen
@Eq. ~14!#, where s̄b5v̄pb

2 /2v f
2 is the effective normalized

beam intensity defined in terms ofv̄pb .
The dispersion relation~18! can be used to investigat

detailed electrostatic stability properties for strong anis
ropy (Tib /T'b→0) for a wide range of normalized axia
wave numbers (kzr w) and effective normalized beam inten
sity s̄b5v̄pb

2 /2v f
2 , or equivalently, normalized tune depre

sion n̄/n0 defined by

n̄

n0
[

vb'

v f
5~12 s̄b!1/2. ~19!

For sufficiently largekzr w , the large temperature anisotrop
(Tib /T'b→0) in Eq. ~18! provides the free energy to driv
the classical Harris-type instability,24,25 generalized here to
include finite transverse geometry and beam space-ch
effects. The influence of the finite longitudinal temperatu
can be taken into account if one assumesTibÞ0 in Eq. ~1!.
This results in the~collisionless! Landau damping of the un
stable mode due to resonant wave–particle interactions1 as-
sociated with the axial momentum spread of the beam
ticles.

To compare with the simulation results in Sec. IV, w
introduce the normalized beam intensitysb defined in terms
of the on-axis (r 50) beam density n̂b . Here, sb

[v̂pb
2 /2v f

2 , wherev̂pb5(4peb
2n̂b /mb)1/2. Using Eqs.~11!–

~14!, the normalized beam intensitys̄b5v̄pb
2 /2v f

2 introduced
in Eq. ~19! is related tosb by the equation
nt

y

t-

ge
e

r-

sb5 s̄bn̂bS E
0

r w
drr 3nb

0~r ! D Y S E
0

r w
drrnb

0~r ! D 2

. ~20!

The allowed range of the normalized intensity parametersb

is 0<sb,1, where the limitsb→1 corresponds to infinitely
depressed tune~space-charge-dominated limit!.

Typical numerical results obtained from the approxima
dispersion relation~18! are presented in Figs. 1–5 for th
case wherer w53r b . Figure 1 shows the normalized growt
rate (Imv)/vf plotted vs normalized wave numberkzr w for
several values of normalized on-axis beam intensitysb . Note
from Fig. 1 that the critical value ofkzr w for the onset of
instability increases assb is decreased, and that the max
mum normalized growth rate (Imv)max/vf is achieved for
sb50.96 ~Fig. 2!. In the limit wherekzr w→`, the growth
rate is zero forsb,0.75. FiniteTib effects introduce a finite
bandwidth inkzr w for instability, since the modes with larg
values ofkzr w are stabilized by Landau damping. Therefo
the stability results in Figs. 2 and 4,5 are plotted for mod
ate value of normalized wave number corresponding
kzr w58.

FIG. 1. Plot of (Imv)/vf vs kzr w obtained from Eq.~18! for r w53r b and
several values of normalized beam intensitysb defined in Eq.~20!.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Figure 3 shows the normalized real oscillation frequen
(Rev)/vf plotted vs normalized wave numberkzr w for sb

50.96. The high-frequency branches correspond to tra
verse modes that are present whenkzr w50. The low-
frequency branches correspond to longitudinal modes
are absent whenkzr w50. Forkzr w greater than some thresh
old value, the intermediate high-frequency longitudinal mo
and the low-frequency transverse mode coalesce and
the same value of real oscillation frequency, (Rev)/vf

'0.8, with growth rate (Imv)/vf given by thesb50.96
curve in Fig. 1.

The corresponding behavior of the normalized real os
lation frequency (Rev)/vf as a function ofsb for fixed
kzr w58 is plotted in Fig. 4. Forsb greater than some thresh
old value, the two branches coalesce. The real oscilla
frequency of the resulting branch is a weak function ofsb .
The existence of instability thresholds, both forkzr w andsb ,
is a reflection of the resonant nature of the instability. Inde
referring to Eq.~18!, the beam must be sufficiently intens
for the beam plasma frequency to be close to the sec
harmonic of the effective depressed betatron frequencyvb'

~Fig. 4!. Also, since the longitudinal mode frequency is pr
portional to the normalized wave numberkzr w ~for kzr w

<5! ~Fig. 3!, the resonant condition is achieved only f
sufficiently large values ofkzr w .

The normalized eigenfunction plots of Redf̂(r) and
Im df̂(r ) vs r /r w corresponding tosb50.96 andkzr w58
are plotted vsr /r w in Fig. 5. The real part of the eigenfunc

FIG. 3. Plot of (Rev)/vf vs kzr w obtained from Eq.~18! for r w53r b and
sb50.96.

FIG. 2. Plot of (Imv)/vf vs normalized beam intensitysb obtained from
Eq. ~18! for r w53r b andkzr w58.
Downloaded 15 Oct 2002 to 192.55.106.78. Redistribution subject to AI
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tion has no zeros, and has a structure similar to the fam
longitudinal mode (L1) in Ref. 8.

B. Macroscopic warm-fluid description

To remedy the problem arising from an unphysical K
distribution, Strasburg and Davidson21,22 employed a warm-
fluid model20 to investigate the stability properties of inten
charged beams with large pressure anisotropy. A water
equilibrium and negligible heat-flow were assumed. Forkz

50, the model recovers stable high-frequency (vn.&n0)
modes, which are similar to the stable high-frequencyTn

modes of a KV beam, whereas the low-frequency unsta
Tn modes are absent. For sufficiently large values ofkz

2r b
2 ,

the anisotropy leads to instability provided the intensity
the beam is sufficiently below the space-charge limit,n/n0

>0.5. The maximum growth rate Imv/n0.0.33 is achieved
for kz

2r b
2.1 and 0.6<n/n0<0.9.

The assumption in the warm-fluid description is that t
frequencies of the interest are much larger than the reso
frequencies characteristic of the transverse particle mot
so that the contribution from the resonant particles can
neglected. The same assumption allows one to neglect
heat-flow term in the equation for the pressure tensor. He
the low-frequency modes (v'n0) are not correctly de-
scribed by such a warm-fluid model. In the warm-flu
treatment,21,22 the instability arises as a resonant interacti
of the smallest-frequency transverse fluid mode, and the
dinary longitudinal mode at frequencyv'n0 . At this fre-

FIG. 4. Plot of (Rev)/vf vs normalized beam intensitysb obtained from
Eq. ~18! for r w53r b andkzr w58.

FIG. 5. Radial mode structure of the unstable eigenfunction forr w53r b ,
kzr w58, andsb50.96.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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quency one cannot neglect the resonant interaction with
transverse particle motion, and one must normally emplo
kinetic description.

III. DESCRIPTION OF THE NONLINEAR df
SIMULATION CODE

The theoretical model described in Sec. II uses sim
fied assumptions for the background distribution function.
practical applications, the transverse distribution funct
may be close to thermal equilibrium with temperatureT'b ,
and the longitudinal distribution can be described by a dr
ing Maxwellian distribution with temperatureTib!T'b .
This distribution is stable with respect to transver
perturbations.1,9 For an arbitrary equilibrium distribution on
cannot solve the stability problem analytically and must e
ploy numerical simulation techniques. To investigate sta
ity properties numerically, we use the nonlineard f method33

described below, as implemented in the Beam Equilibriu
Stability, and Transport~BEST! code.14–16

In the smooth-focusing approximation, the transverse
cusing force is modeled byFfoc52gbmbv f

2x' , wherev f is
the constant focusing frequency associated with applied
cusing field,mb is the particle rest mass,gb5(12bb

2)21/2 is
the relativistic mass factor,bbc5const is the average axia
beam velocity, andc is the speed of lightin vacuo. The
solutions to the nonlinear Vlasov–Maxwell equations are
pressed asf b5 f b

01d f b , f5f01df and Az5Az
01dAz ,

where (f b
0 ,f0,Az

0) are known equilibrium solutions. The pe
turbed potentials satisfy the equations,14

¹2df524pebE d3pd f b , ~21!

¹2dAz52
4p

c
ebE d3pvzd f b , ~22!

whereeb is the particle charge, andd f b(x,p,t) is given by
the weighted Klimontovich representation,

d f b5
Nb

Nsb
(
i 51

Nsb

wbid~x2xbi!d~p2pbi!. ~23!

Here,Nsb is total number of beam simulation particles,Nb is
total number of actual beam particles, and the weight fu
tion is defined bywb[d f b / f b .

The nonlinear particle simulations are carried out by
eratively advancing the particle motion, including th
weights they carry, according to14

dxbi

dt
5~gbmb!21pbi , ~24!

dpbi

dt
52gbmbv f

2x'bi
2ebS ¹f2

vzbi

c
¹'AzD , ~25!

dwbi

dt
52~12wbi!

1

f b0

] f b0

]p
•dS dpbi

dt D , ~26!

dS dpbi

dt D52ebS ¹df2
vzbi

c
¹'dAzD , ~27!
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and updating the fields by solving the perturbed Maxwe
equations with appropriate boundary conditions at the cy
drical, perfectly conducting wall at radiusr w .

The d f approach is fully equivalent to the original non
linear Vlasov–Maxwell equations, but the noise associa
with representation of the background distributionf b

0 in con-
ventional particle-in-cell~PIC! simulations is removed. In
the d f approach, the simulation particles are used to rep
sent only a small part of the entire distributiond f b5 f b

2 f b
0 , and therefore the statistical error in the simulation

proportional toed f;d f b /ANsb, whereas the error in PIC
simulations is proportional toepic; f b /ANsb. Therefore, the
typical gain in accuracy ind f simulations compared to PIC
simulations with the same number of particles ised f /epic

5w̄bi .
14 This fact allows much more accurate simulations

the nonlinear dynamics and instability thresholds wh
uw̄biu!1. When the perturbationd f b becomes comparable i
magnitude with the background distribution functionf b

0 ,
then thed f method becomes less accurate than a full P
simulation. In the present paper, a hybrid combination of
d f and PIC simulation methods is used, where the num
density is calculated according todnb5@12u(w̄bi)#dnd f

1u(w̄bi)(npic2n0), whereu(w) is a monotonic function of
its argument such thatu(w→0)→0 andu(w→1)→1. Here,
dnd f5*d3pd f b andnpic5*d3p fb .

In addition, thed f method can be used to study line
stability properties, provided all nonlinear terms in the d

FIG. 6. Time history of the density perturbationdnmax/n̂b for normalized
beam intensitysb50.7 at fixedz and r 50.2r b .

FIG. 7. Normalized eigenfrequency Rev/vf plotted vskzr w for sb50.7 and
r w53r b , and initialTib /T'b50.04.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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namical equations~25!–~27! are neglected.14–16 This corre-
sponds to replacing the term 12wbi with 1 in Eq. ~26! for
the weights, and moving particles along the trajectories
culated in the unperturbed potentials (f0,Az

0).
The d f method described above has been implemen

in the three-dimensional electromagnetostatic particle-in-
code ~BEST! in cylindrical geometry with a perfectly con
ducting cylindrical boundary at radiusr w . Maxwell’s equa-
tions ~21! and ~22! are solved using fast Fourier transfor
techniques~FFT! in the longitudinal and azimuthal direc
tions. The particle positions@Eqs.~24! and~25!# and weights
@Eq. ~26!# are advanced using a second-order predict
corrector algorithm. The code is parallelized using Mess
Passing Interface~MPI! with domain decomposition in the
direction of beam propagation. The NetCDF data forma
used for large-scale diagnostic and visualization. Typi
runs consist of 106 simulation particles and are performed o
the IBM SP/RS 6000 at NERSC.

IV. SIMULATION RESULTS

Here we present the simulation results for an axia
continuous, anisotropic beam in a constant focusing fi
For simplicity we perform the simulations in the bea
frame. It is assumed that the equilibrium distribution fun
tion is bi-Maxwellian and given by Eq.~1!, wheren̂b is the
on-axis (r 50) beam density, andT'b andTib are the trans-
verse and longitudinal temperatures of the beam partic
The equilibrium self-field potentials (f0, Az

0) are determined

FIG. 8. Normalized growth rate Imv/vf plotted vskzr w for sb50.7 and
r w53r b , and initialTib /T'b50.04.

FIG. 9. Plot of (Imv)max/vf vs normalized beam intensitysb for r w

53r b , and initialTib /T'b50.04.
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numerically from Maxwell’s equations.14–16 It is also as-
sumed that the beam is located inside a grounded, cylin
cal, perfectly conducting wall at radiusr w53r b , wherer b

5@^r 2&#1/2 is the rms beam radius. Random initial perturb
tions are introduced to the particle weights, and the beam
propagated fromt50 to t5800v f

21 .
The simulations are performed using the nonlineard f

simulation method described in Sec. III for a wide range
normalized beam intensities ranging fromsb50.1 to sb

50.95, and detailed stability properties have been de
mined for the range of intensity parameters satisfyingsb

>0.5 assuming axisymmetric perturbations with]/]u50.
Shown in Fig. 6 is the time history of the density perturb
tion dnb5*d3pd f b for normalized beam intensitysb50.7.
The initial temperature ratio is taken to beTib /T'b50.04.
After the initial exponential growth phase, the instabili
saturates at a moderately large level withudnb

max/n̂bu.0.05.
Figures 7 and 8 show plots of the real and imagina

parts of the complex oscillation frequencyv vs normalized
axial wave numberkzr w . The instability has a finite band
width with maximum growth rate Imv/vf.0.02 at kzr w

57.5. For long wavelengths withkz
2r w

2 !1, the dispersion
relation is linear with Rev proportional tokzr w . For short
wavelengths withkz

2r w
2 @1, the transverse beam size is unim

portant and Rev.1.03v f . The dependence of the maximu
growth rate (Imv)max/vf on beam intensitysb is shown in
Fig. 9. The maximum growth rate (Imv)max/vf.0.038 oc-

FIG. 10. Plot of (Rev)/vf vs normalized beam intensitysb for kzr w57.5
and r w53r b , and initialTib /T'b50.04.

FIG. 11. Radial mode structure of the unstable eigenfunction forkzr w

57.5, sb50.7, andr w53r b , and initialTib /T'b50.04.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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curs forsb.0.8, with no instability in the regionsb<0.5.
Figure 10 shows a plot of the real oscillation frequen

Rev/vf vs normalized beam intensitysb for the unstable
mode. The radial structure of the unstable mode is show
Fig. 11 forkzr w57.5. Only the real part of the eigenfunctio
is shown, since Imdf̂'const•Redf̂ for the weakly unstable
mode. The simulation results presented in Figs. 6–11 ar
good qualitative agreement with the theoretical model p
sented in Sec. II in terms of the mode structure and r
oscillation frequencies~see Figs. 1–5!. The difference in the
absolute value of the growth rate (Imv)max/vf in Fig. 2 and
Fig. 9, and the existence of the instability cutoff for lar
values of the normalized wavenumber in Fig. 8, are att
uted to the Landau damping associated with the nonz
value of longitudinal temperatureTib in the simulations.

The net change in the longitudinal momentum distrib
tion dFb(pz)/F̂0b at v f t5800 in the simulation is shown in
Fig. 12. Here, dFb(pz)5*d2p'd3xd f b and F̂0b

5n̂b /(2pmbTib)
1/2. The formation of tails in the axial mo

mentum distribution in Fig. 12 and the consequent satura
of the instability are attributed to quasilinear stabilizati
due to resonant wave–particle interactions in the tails of
distribution function.

Simulations have also been carried out for different v
ues of temperature anisotropyTib /T'b . Plotted in Fig. 13 is
the ratio (Tib

th )1/2kz /mb
1/2v f vs normalized beam intensitysb ,

FIG. 12. Perturbed axial momentum distributiondFb(pz)/F̂0b at time t
5800v f

21 , for normalized beam intensitysb50.7 andr w53r b , and initial
Tib /T'b50.04.

FIG. 13. Ratio (Tib
th )1/2kz /mb

1/2v f plotted vs normalized beam intensitysb

for r w53r b .
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whereTib
th is the threshold value of longitudinal beam tem

perature for the onset of instability andkz is the axial wave
number.

The saturation mechanism due to resonant wave–par
interactions suggests that the instability is absent if the L
dau damping rate due to nonzero thermal spread in the a
direction is greater than the instability growth rate forTib

50. This implies that (Tib
th )1/2kz /mb

1/2v f'g(Tib50)/v f ,
whereg(Tib50) is the instability growth rate forTib50. In
the present simulations, the instability is found to be absen
the ratio of initial axial and transverse temperatures is gre
than the threshold value (Tib /T'b) th50.07.

Finally, we present simulation results for parameters
the stable regime forsb50.8 andkzr w53. The temperature
ratio is taken to beTib /T'b50.0025. Figure 14 shows th
frequency spectrum, and Fig. 15 shows the real part of
eigenfunctions for the lowest frequency longitudinal mod
The frequency spectrum in Fig. 14 agrees reasonably w
with the theoretical results in Fig. 4. Note from Fig. 14 th
the spread in depressed betatron frequencyvb'(H') results
in a finite bandwidth to the frequency curves.

V. CONCLUSIONS

To summarize, in Sec. II we generalized the classi
Harris-type instability to the case of an intense charged p
ticle beam with anisotropic temperature (Tib /T'b,1) in-
cluding the important effects of finite transverse geome

FIG. 14. Frequency spectrum of stable oscillations forkzr w53, sb50.8,
and r w53r b .

FIG. 15. Radial mode structure of the stable eigenfunction forkzr w53, sb

50.8, andr w53r b .
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and beam space-charge. Using the simplified assumptio
negligible spread in depressed betatron frequency, we
rived a simple dispersion equation for the lowest-ord
eigenmodes for the case of extreme temperature anisot
(Tib /T'b→0). For sufficiently large values ofkz

2r b
2*1,

wherer b is the rms beam radius, the analysis of the disp
sion equation leads to a strong anisotropy-driven instab
provided the normalized beam intensitysb5v̂pb

2 /2v f
2 is suf-

ficiently large. In Sec. IV, the BEST code,14 which imple-
ments the nonlineard f scheme described in Sec. III, wa
used to investigate the detailed stability properties of inte
charged particle beams with large temperature anisotr
(Tib /T'b!1) assuming axisymmetric perturbations wi
]/]u50. The simulation results clearly show that moderat
intense beams withsb*0.5 are linearly unstable to sho
wavelength perturbations withkz

2r b
2*1, provided the ratio of

longitudinal and transverse temperatures is smaller t
some threshold value. The mode structure, growth rate
conditions for the onset of the instability are qualitative
similar to what is predicted by the simple theoretical mo
presented in Sec. II. The main saturation mechanism for
instability is the resonant wave–particle interactions that
cur during the formation of tails in the axial momentum d
tribution. In the nonlinear saturation stage, the total distri
tion function is still far from equipartitioned, and free ener
is available to drive an instability of the
hydrodynamic-type.21,22
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