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Nonlinear &f simulation studies of intense charged particle beams
with large temperature anisotropy
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In this paper, a 3D nonlinear perturbative particle simulation ¢8ST) [H. Qin, R. C. Davidson,

and W. W. Lee, Phys. Rev. ST Accel. BeaB)984401(2000] is used to systematically study the
stability properties of intense non-neutral charged particle beams with large temperature anisotropy
(T, p>Typ). The most unstable modes are identified, and their eigenfrequencies, radial mode
structure, and nonlinear dynamics are determined for axisymmetric perturbations with
dld6=0. © 2002 American Institute of Physic§DOI: 10.1063/1.1484390

I. INTRODUCTION tion” process observed in 3D particle simulations of KV
o ) beams with large temperature anisotropy using the WARP
Periodic focusing accelerators, transport systems, ang

ings™ h i ¢ licati . ode. They conjectured that the initial rapid heating in the
storage fings "~ have a wide range ol app ications ranging longitudinal direction may be the result of an anisotropy-
from basic scientific research in high energy and nuclea

. - . . > riven instability reminiscent of a Harris mode, but with
physics, to applications such as heavy ion fusion, SpalI"’motflransverse betatron motion instead of cyclotron motion. Re-

nmeuligggnsizrfﬁ:h;gﬁlugq f%:,?,d;;:r?qn]:Sndonfucﬁzimgrﬁﬁntri?sélizmg the fact that the highly inverted KV distribution may
P pies. LT p "ar IMPOr™ - 5duce numerous unstable modes, Lutdl®-32used a

tance at the high beam currents and charge densities of prac- . . R S .

semi-Gaussian distribution to carry out particle-in-cell simu-

tical ‘interest, are the effects of the intense Self_ﬂe'dslations of the instability. However, unlike the KV distribu-
produced by the beam space charge and current on determip- . . ST . S
: . L i tion, the semi-Gaussian distribution is not a rigorous equilib-
ing the detailed equilibrium, stability, and transport proper—r.um solution of the Viasov—Maxwell equations. The
ties. While considerable progress has been made in undecljj- rture from If-consist nt_ libri m?n vit bI. lead
standing the self-consistent evolution of the beamt epa ollj € O‘t t‘?‘ s€ 'Cr? Ese bequ fu q e‘thathy e% S
distribution function,f,(x,p,t), and self-generated electric tﬁ mode texu adlc_ms W I(t: bﬁ?n TE ctc;_n'\;ljse VI\III d_otsgb ue
and magnetic field€3(x,t) andB3%(x,t), in kinetic analyses € anisotropy-driven instability. The bi-viaxwellian distribu-

based on the nonlinear Vlasov—Maxwell equatibfsi®in tion considered in the present study is a rigorous steady-state
numerical simulation studies of intense beam' IorOIO_equilibrium of the Vlasov—Maxwell equations, and it does

agation'"*and in macroscopic warm-fluid modéfs;3the not support the spurious modes of the KV distribution. In
’ ; (eAddition, the bi-Maxwellian distribution is known to be a

effects of finite geometry and space-charge effects of =k ) 8
make predictions of detailed stability behavior difficult. It is StaPle equilibrium with respect to transverse perturbations,

therefore important to develop an improved understanding 0@m_d therefore is an ideal C_andidate for _studying instabilities
fundamental collective stability properties, including the caséllven by temperature anisotropy. A simple theory of the
where a large temperature anisotrofly ¢>T,;) can drive a  instability for a bi-Maxwellian distribution is presented in
Harris-type instabilit$*2 familiar in the study of electri- this paper, which appears to capture its main features and is

cally neutral plasmas. a relatively straightforward generalization of the analysis of
It is well known that in neutral plasmas with strongly the Harris instability to the case of an intense particle beam.
anisotropic distributions T,/ T, ,<1) a collective instabil- N this paper, we present the instability thresholds obtained in

ity may develop if there is sufficient coupling between thethe simulations, as well as detailed simulations of the non-
transverse and longitudinal degrees of freed8/i. Such linear development and saturation of the instability. We iden-
anisotropies develop naturally in accelerators, where the loriify the main saturation mechanism as quasilinear stabiliza-
gitudinal temperature of the accelerated beam of chargetion due to resonant wave—particle interactidbandau
particles with charge accelerated by a voltageis reduced ~damping. A 3D nonlinear perturbative particle simulation
according toT ;= T2,/2qV (for a nonrelativistic beajn At  code;* *°called the Beam Equilibrium, Stability, and Trans-
the same time, the transverse temperature may increase dpert (BEST) code, is used to systematically study the elec-
to nonlinearities in the applied and self-field forces, nonstatrostatic stability properties of intense nonneutral charged
tionary beam profiles, and beam mismatch. These processparticle beams with large temperature anisotroply, ,(
provide the free energy to drive collective instabilities and>T,,). The most unstable modes are identified, and their
may lead to a detoriation of beam quafifi#®?"Historically, ~ eigenfrequencies, radial mode structure, and nonlinear dy-
this instability was first studied analytically by Wang and namics are determined for axisymmetric perturbations with
SmitH for beams with a Kapchinkij—VladimirskijKV) dis-  9/96=0. Since a well-behaved bi-Maxwellian distribution is
tribution. Friedmanet al?®~3° reported a rapid “equilibra- used in the simulations, the mode structures observed are
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different from those of the KV distribution previously re- similar transverse structure of tHe, and T, modes. The
ported. growth rate obtained by Wang and Snfita a maximum for
The organization of this paper is the following: In Sec. k?r3=1 in both cases.
II, we present a simple kinetic model of the instability based It is important to extend theoretical studies of the kinetic
on a matrix dispersion equation derived from the linearizedstability properties of anisotropic beams to distribution func-
Vlasov—Poisson equations. The nonlinedf simulation tions other than the KV distribution. This is because the KV
method is briefly described in Sec. lll, and in Sec. IV wedistribution has arfunphysical inverted population in trans-
present detailed simulation results for a wide range of systemerse phase-space variables, which provides the free energy
parameters. to drive collective instabilities at high beam intensities that
are intrinsic to this inverted populatidif. This, of course,
can mask the effects of anisotropy-driven instabilities. To
II. LINEAR STABILITY THEORY this end, we briefly outline here a simple derivation of the
Harris-type instabilitf*2°in intense particle beams for elec-
trostatic perturbations about the thermal equilibrium distribu-
Wang and Smithinvestigated the kinetic stability prop- tion with temperature anisotrop§f (p>T,p) described in the
erties of an intense particle beam assuming a Kapchinkijbeam frame by the self-consistent axisymmetric Vlasov

A. Kinetic description

Vladimirskij (KV) beam distributiof in the limit of large  equilibrium°

energy anisotropyT,,/T, ,—0) by expanding the solution

of the linearized Vlasov—Poisson equations in a series of A, H 1
Gluckstern elgenfunct|on§<pn(r)_= (1/2)[ Pp_q(1—2r?/r3) f2(r,p)= —ex;{ _ _i) —_—
+P,(1-2r2/r2)], whereP,(x) is the nth-order Legendre (27mMy T, p) Tip) (2rmpTyp)
polynomial’ The expansion yields a dispersion relation, ex- p?

pressible in terms of an infinite matrix determinant. For long- Xex;{ - 2msz”b) . (D)

wavelength axial perturbations wifr2<1, one-half of the
mode$§ are identified as transvers@{) Gluckstern modes
with eigenfunction ¢ S¢,. The other haff consists of Here, H, =p?/2m,+ (1/2)myw?(x>+y?) +e,¢°(r) is the
modes corresponding in the limit of large tune depressiorsingle-particle Hamiltonianpiz(p§+ p2)¥? is the trans-
(v—0) to an ordinary cold-beam longitudinal mode,J verse particle momentunt,= (x?>+y?)'? is the radial dis-
with eigenfunctiondpx=Jy(k,r) inside the beam and disper- tance from the beam axig;=const. is the transverse fre-
sion relation (—k,Vp)?=(5y/2)(K,r,)?In(r,/rp), plus a  quency associated with the applied focusing field, #ft)
less-known class of “coupling” moded_() with d¢ d¢, is the equilibrium space-charge potential determined self-
and (@—k,Vp)2=[@5y/8n(n+1)](K,r,)2f57(dx/2w)  consistently from Poisson’s equation; *(a/ar)(rd¢°% dr)
X P,(cosx). The latter modes are the result of the interaction= —4me,n, wherend(r)=fd3pfa(r,p) is the equilibrium
between transversely oscillating particles and the longitudinumber density of beam particles. For simplicity, the analysis
nal perturbed potential. Herey is the mode oscillation fre- is carried out in the beam franf¥,,=0 andy,=1). Further-
quency,k, is the axial wavenumber of the perturbatiafy, ~ more, settingp’(r =0)=0, the constanb, occurring in Eq.
=fBc is the axial beam velocity, andy(x) is the ordinary (1) can be identified with the on-axis denshﬁ(rzO), and
Bessel function of the first kind of the order zero. Further-the constant§, , and T;, can be identified with the trans-
more, v=wvg(1—sy)? is the depressed tune, whesg verse and longitudinal temperaturésnergy unity respec-
=a5y/2ypw; is the normalized beam intensityws, tively.
=4mhyey/ypmy is the relativistic plasma frequency- For present purposes, we consider small-amplitude, axi-
squaredy,= w; is the transverse betatron frequency associsymmetric ¢/d0=0) electrostatic perturbations of the form,
ated with the applied focusing field,, is the beam edge
radius,r,, is the radius of the perfectly conducting wajl,
=(1-B2) s the relativistic mass factoe, andm; are
the particle charge and rest mass, respectively,fgnd the
number density of the beam particles. where 6¢(x,t) is the perturbed electrostatic potentik),is

As a general rule, for a KV distribution, instability arises the axial wave number, ané is the complex oscillation
in the regions of parameter space where two or more modefsequency, with Imw>0 corresponding to instabilititempo-
interact resonantly. The transverse modeég) (are not sig-  ral growth. Without presenting algebraic details, using the
nificantly affected by longitudinal perturbations, and there-method of characteristics, the linearized Poisson equation
fore the instability due to their interaction is a consequencean be expressed as
of the fact that the KV distribution has a highly inverted
population in phase spat¢& 8 The most dangerous,—L

Sh(x,1)=o¢(r)explik,z—iwt), )

instabilities are due tdl,—L, interactiond in the region Eiri/&\b(r)—kﬁ%(r):—dmebf d®pafo(r,p),
where v/vy=0.44 with maximum growth rate I@a/v, ror or
=0.03, and due tol,—L, interactions in the region 0.2 S

<v/vy=<0.32, with maximum growth rate I@/vy=0.15.
The latter mode has a much higher growth rate due to thevhere
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— ey —~ €p Tip 0

Stu(r,p)=——8pfo— —| w—kp (1— —| |f
Tp 7P Tip o Tip/ | ®

Xi Ji dt’gq\ﬁ[r'(t’)]exqi(kzvz_ o) (t'—1)]
4

for perturbations about the choice of the anisotropic thermal

equilibrium distribution function in Eg1). In the orbit inte-
gral in Eqg. (4), Imw>0 is assumed, and’(t')=[x'?(t")
+y'?(t")]¥? is the radial orbit in the equilibrium field con-
figuration such thgtx| (t),p] (t")] passes through the phas-
espace pointxX, ,p,) at timet’'=t. We express the pertur-

bation amplitude asdé(r)=2>,andn(r), where{a,} are

constants, and the complete set of vacuum eigenfunctions

{pn(r)} is defined by, (r)=A,Jo(Anr/ry). Here,\, is the

nth zero ofJo(\,) =0, andA,=v2/[r,J1(\y)] is a normal-
ization constant such thajtgwdrr¢n(r)¢n,(r)=5n'n,. We

substitute%(r)=2nan¢n(r) into Poisson’s equatiori3)

and operate witrf[)wdrrqsn/(r) ... . This gives the matrix
dispersion equation

; @Dy (@)=0, (5)
where
D (@)= (Na+KEr3) 8y + X (@), (6)

and the beam-induced susceptibiljy /() is defined by

Xn,n,(w)=—4webrfvfrwdrr¢n,(r)f d3pafl(r,p).
0
(7)

Here, gﬁ}(r,p) is defined in Eq.(4) with 5;5%%. The
condition for a nontrivial solution to Ed5) is

defD,, ,(w)}=0, (8)

which plays the role of a matrix dispersion relation that de-

termines the complex oscillation frequeney

We defer a detailed analysis of Eq4S)—(8) to a separate
paper, and summarize here soqualitativeproperties of the
Harris-type instability that ensues in the limit of an aniso-
tropic beam distribution that isold in the longitudinal direc-
tion, i.e.,

9

In this regard, it is convenient to introduce the effectile
pressedbetatron frequency, . It can be showhthat for
the equilibrium distribution in Eq(1), the mean-square beam
radiusri defined by

Jdrrénd(r)

2__ _
ro=(r*)= Jdrrnp(r)

(10

Startsev, Davidson, and Qin

is related exactly to the line densiwb=27rfdrrng(r), and
transverse beam temperature, by the equilibrium radial
force balance equatioh,

Nye2 2T
bb+ 1b

2.2_
Equation(11) can be rewritten as
1 2T
2 — 2 Lb
wf— zwi|re= , (12
T2 @) b=

where we have introduced the effectivverage beam
plasma frequency ,, defined by

2e2N,,
my

rW
rowap= Jl) drrwdy(r)= (13)

Then, Eq.(12) can be used to introduce the effectide-
pressecbetatron frequencw,, defined by

1.\ 2T,
myre

whu=| ot 332, 14

If, for example, the beam density were uniform over the
beam cross section, then Ed.4) corresponds to the usual
definition of the depressed betatron frequency for a KV
beam, and it's readily shown that the radial onbift’) oc-
curring in Egs.(4) and(7) can be expressed’as
p2
r'2(t')=r?cof(wg, 1)+ —5—5—SiM(wg, 7)
Mywg,
rp.

Myw g,

+

cog p— 0)sin(2wg, 7). (15
Here r=t'—t is the displaced time variable, and we
have expressed x(y)=(rcosérsind) and (p,py)
=(p, cosg¢,p, sing) in cylindrical polar coordinates. Note
from Eq. (15) thatr'(t’=t)=r and[dr'?/dt’'J,_, =2 (Xpy
+ypy)/my, as expected. Due to the nontrivial dependence
of the perturbed potential in E@4) on radiusr, the trans-
verse betatron motiofEq. (15)] will drive density perturba-
tions resonantly at frequencies that are multiples @f;2.
Instability occurs when one of these frequencies is close to
he beam plasma frequenay,y, .

In general, for the choice of equilibrium distribution
function in Eq.(1), there will be a spread in transverse de-
pressed betatron frequencieg, (H,), and the particle tra-
jectories will not be described by the simple trigonometric
function in Eq.(15). For present purposes, however, we con-
sider a simplemodelin which the radial orbitr’(t") occur-
ring in Eq. (4) and the definition ofy, n/(w) in EQ. (7) is
approximated by Eq(15) with the constant valuag, de-
fined in Eq.(14) and theapproximateequilibrium density
profile defined bynp(r)=fy exp(—myw}, r%2T, ). For a
nonuniform beamw,gll is the characteristic time for a par-
ticle with thermal speedy,, = (2T, ,/my)Y?to cross the rms
radiusry, of the beam. In this casgy, ,'(w) can be evaluated
in closed analytical form provided the conducting wall is
sufficiently far removed from the beam,(/r,=3, say. In
this case, the matrix elements decrease exponentially away
from the diagonal, with
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’ Dn,n+k
Dn,n

m2K? r2 D; @)Dy Aw)—[DiAw)]?=0, 1
exp(—T":_b), s 14(@)Dz4) ~[Dy4w)] a7

where use has been made®f (w)=D, (w).

We introduce the effective perpendicular thermal speed-
wherek is an integer, and we have used the approximatesquared of a beam particle defined bﬁ1L 2T, p/my.
relation A ,~w(4n—1)/4. Therefore, for,,/r,=3, we can Then, forT,,/T,,—0 andr,,/r,=3, the approximate dis-
approximate{D, ,(w)} by a tridiagonal matrix. In this  persion relation(17) describing the coupling of the lowest
case, for the lowest-order radial modes=1 andn=2), the  ordern=1 mode with then=2 radial mode, within the con-
matrix dispersion relatio8) can be approximated by text of the present simplified model, can be expressed as

|
2 exp( — ki/2) (@3 w5,) | (k) (1 kzvtm>|2<k2> ( o kZvd,
J5(\y) 02 202 4 w—2ws 20— zw,ﬂ)

2exg—k§/2)(a§/w;)l k2 ) k%tml k3 w K2vd,
o0 2) T\ 202 )0\ 2) T =20, " 2(0—2w,)?
K,

I )”

(20} 03)? p( (K2+K3) ( k§v$m> o Kikz ( ® K2z, )

- '0( 2 )‘ SR P '0( 4 )‘ 0—2a5 | 20—2wp )2 ( ) (18
[

T 2
where we have retained only the leading-order nonresonant . W4 T o 2
terms and one resonant term @iositive frequency w Sb:Sbnb( fo drr nb(”)/(fo d””b“)) . (20
~2wg, . In the dispersion relatiol8), A ;=2.405 and\,
=5.52 are determined from the zeros &f(\,)=0, v, The allowed range of the normalized intensity paramsger
=(2T,,/m,)*? is the transverse thermal spedd,andk, is 0<s,<1, where the limits,— 1 corresponds to infinitely
are defined byk;=\;r,/r,, and k,=\,ry/r,,, and wg, ~ depressed tunespace-charge-dominated limit
=wi(1—5,)? is the effective depressed betatron frequency  Typical numerical results obtained from the approximate
[Eq. (14)], wheres,=w pb/2wf is the effective normalized dispersion relation18) are presented in Figs. 1-5 for the
beam intensity defined in terms afy,. case where,,=3r,. Figure 1 shows the normalized growth
The dispersion relatiof18) can be used to investigate rate (Imw)/w; plotted vs normalized wave numblkyr,, for
detailed electrostatic stability properties for strong anisot-several values of normalized on-axis beam intengjtyNote
ropy (T,,/T, ,—0) for a wide range of normalized axial from Fig. 1 that the critical value ok,r,, for the onset of
wave numbersl(zrw) and effective normalized beam inten- instability increases as, is decreased, and that the maxi-
sity S,= w5/20f , or equivalently, normalized tune depres mum normalized growth rate (lm)m,/w; is achieved for
sion v/ vy defined by =0.96 (Fig. 2. In the limit wherek,r,,—«, the growth
rate is zero fors,<<0.75. FiniteT,,, effects mtroduce a finite
— bandwidth ink,r, for instability, since the modes with large
L % _ (1-5)Y2 (19  values ofk,r,, are stabilized by Landau damping. Therefore,
Vo W% the stability results in Figs. 2 and 4,5 are plotted for moder-
ate value of normalized wave number corresponding to
For sufficiently largek,r,,, the large temperature anisotropy Kfw=8
(Typ/T,p—0) in Eq.(18) provides the free energy to drive
the classical Harris-type instabilif;?® generalized here to

[)\i+ K2r2+

XN+ K22+

X 'bll\)l\:

include finite transverse geometry and beam space-charge 0.2
effects. The influence of the finite longitudinal temperature
can be taken into account if one assuriigs#0 in Eq. (1). 0.15
This results in thecollisionles$ Landau damping of the un-
L ) Im o

stable mode due to resonant wave—particle interactiass T, 0.1
sociated with the axial momentum spread of the beam par- f
ticles. 0.05

To compare with the simulation results in Sec. IV, we 0.0
introduce the normalized beam intens#y defined in terms B
of the on-axis (=0) beam densityfh,. Here, s, K. r
=®5207 , wheredy,= (4mejh, /mp) Y2 Using Eqs(11)— z'w
(14) the normalized beam intensity = wpblz“’f introduced  FiG. 1. Plot of (Imw)/e; vs k,r,, obtained from Eq(18) for r,,=3r, and
in Eq. (19) is related tos, by the equation several values of normalized beam intensiydefined in Eq(20).
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FIG. 4. Plot of (Rew)/w; vs normalized beam intensity, obtained from

FIG. 2. Plot of (Imw)/w; vs normalized beam intensity, obtained from Eq. (18) for r,,=3r, andk,r,=8.

Eq. (18) for r,,=3ry, andk,r,=8.

Figure 3 shows the normalized real oscillation frequencytion has no zeros, and has a structure similar to the familiar
(Rew)/w; plotted vs normalized wave numbkr,, for s,  longitudinal mode [ ,) in Ref. 8.
=0.96. The high-frequency branches correspond to transg Macroscopic warm-fluid description
verse modes that are present whkyr,=0. The low-
frequency branches correspond to longitudinal modes that To remedy the problem arising from an unphysical KV
are absent whek,r,,= 0. Fork,r,, greater than some thresh- distribution, Strasburg and Davidsgri” employed a warm-
old value, the intermediate high-frequency longitudinal modéluid modef? to investigate the stability properties of intense
and the low-frequency transverse mode coalesce and ha¢@arged beams with large pressure anisotropy. A waterbag
the same value of real oscillation frequency, @&  €quilibrium and negligible heat-flow were assumed. kpr
~0.8, with growth rate (Inw)/e; given by thes,=0.96 =0, the model recovers stable high-frequeney,tv2wvo)
curve in Fig. 1. modes, which are similar to the stable high-frequefigy

The corresponding behavior of the normalized real oscil’nodes of a KV beam, whereas the low-frequency unstable
lation frequency (Re)lw; as a function ofs, for fixed ~ Tn modes are absent. For sufficiently large valuescnf,
k,r,,=8 is plotted in Fig. 4. Fos, greater than some thresh- the anisotropy leads to instability provided the intensity of
old value, the two branches coalesce. The real oscillatiothe beam is sufficiently below the space-charge limity,
frequency of the resulting branch is a weak functiorsgf ~ =0-5. The maximum growth rate Inv1,=0.33 is achieved
The existence of instability thresholds, both for,, ands,, ~ for Kzrg>1 and 0.6<1/1p=<0.9.
is a reflection of the resonant nature of the instability. Indeed, ~ The assumption in the warm-fluid description is that the
referring to Eq.(18), the beam must be sufficiently intense frequencies of the interest are much larger than the resonant
for the beam plasma frequency to be close to the seconiequencies characteristic of the transverse particle motion,
harmonic of the effective depressed betatron freque%y SO that the Contribution from the resonant particles can be
(Fig. 4). Also, since the longitudinal mode frequency is pro-Neglected. The same assumption allows one to neglect the
portiona' to the normalized wave numbk{rw (for erW heat-flow term in the equation for the pressure tensor. Hence,
<5) (Fig. 3, the resonant condition is achieved only for the low-frequency modes«(~w,) are not correctly de-
sufficiently large values ok,r, . scribed by such a warm-fluid model. In the warm-fluid
treatment>?? the instability arises as a resonant interaction
of the smallest-frequency transverse fluid mode, and the or-
dinary longitudinal mode at frequenay~vr,. At this fre-

The normalized eigenfunction plots of Ia%(r) and
Im 5&5(r) vs r/r,, corresponding tcs,=0.96 andk,r,=8
are plotted vg/r,, in Fig. 5. The real part of the eigenfunc-

1.0
1.4 R .
102_/ . A
0.6 Re 40
1.0
Rew 0.8 ~ 0.4
o = 0.2
f 0.6 <z%
0.4 0.0
0.2 -0.2 Im 3¢
0 5 10 15 20 0 0.2 0.4 0.6 0.8 1
Ky, r/rw

FIG. 3. Plot of (Rew)/w; vs k,r, obtained from Eq(18) for r,,=3r, and FIG. 5. Radial mode structure of the unstable eigenfunctiorr fgt3r,,,
Sp=0.96. k,rn=8, ands,=0.96.
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guency one cannot neglect the resonant interaction with the of
transverse particle motion, and one must normally employ a [
kinetic description.

IIl. DESCRIPTION OF THE NONLINEAR &f
SIMULATION CODE

L0g10|6nb/ﬁb|

The theoretical model described in Sec. Il uses simpli-
fied assumptions for the background distribution function. In
practical applications, the transverse distribution function
may be close to thermal equilibrium with temperatirg, ,
and the longitudinal distribution can be described by a drift-rig. 6. Time history of the density perturbatidima,/f, for normalized
ing Maxwellian distribution with temperaturd@ ,<T, . beam intensitys,=0.7 at fixedz andr=0.2r, .

This distribution is stable with respect to transverse

perturbations:® For an arbitrary equilibrium distribution one

cannot solve the stability problem analytically and must em-and updating the fields by solving the perturbed Maxwell’'s
ploy numerical simulation techniques. To investigate stabil-equations with appropriate boundary conditions at the cylin-
ity properties numerically, we use the nonlinegtirmethod®  drical, perfectly conducting wall at radius, .

described below, as implemented in the Beam Equilibrium,  The §f approach is fully equivalent to the original non-
Stability, and TransporBEST) codel4~16 linear Vlasov—Maxwell equations, but the noise associated

In the smooth-focusing approximation, the transverse fowith representation of the background distributf(ﬁrin con-
cusing force is modeled b= — ybmbwfzxi, wherews is  ventional particle-in-cell(PIC) simulations is removed. In
the constant focusing frequency associated with applied fothe 6f approach, the simulation particles are used to repre-
cusing field,m, is the particle rest mass/b:(l—ﬂﬁ)*l’2 is  sent only a small part of the entire distributia¥f,=f,
the relativistic mass factoB,c=const is the average axial —f2, and therefore the statistical error in the simulation is
beam velocity, anct is the speed of lighin vacuo The  proportional toegs~ f,/\/Ng, Whereas the error in PIC
solutions to the nonlinear Vlasov—Maxwell equations are exsimulations is proportional t@pic~fb/JN_Sb_ Therefore, the
pressed ad,=fp+6f,, ¢=¢+6¢ and A,=AJ+SA,,  typical gain in accuracy if simulations compared to PIC
where (9, ¢° A% are known equilibrium solutions. The per- simulations with the same number of particleseig / €

0 200 400 600 800
wet

turbed potentials satisfy the equatidfis, =Wy, .** This fact allows much more accurate simulations of
the nonlinear dynamics and instability thresholds when
V26p= —47-rebf d3péf,, (21 |Wpi| <1. When the perturbatiosf,, becomes comparable in

magnitude with the background distribution functidiﬁ,
5 A7 5 then thesf method becomes less accurate than a full PIC
VeoA,=— ?ebf d*pv,ofy, (22 simulation. In the present paper, a hybrid combination of the
of and PIC simulation methods is used, where the number

wheree, is the particle charge, andif,(x,p,t) is given by  gensity is calculated according tn,=[1— 8(Wy;)]N

the weighted Klimontovich representation, + 0(Wp;) (Npic—No), Whered(w) is a monotonic function of
N, Nsp its argument such tha(w—0)—0 andd(w—1)—1. Here,
5fb:N—b,21 Wi 8(X— Xpi) O(P— Ppi)- (23 dng=Jdpsf, andny=[d3pfy,.
shi=

In addition, theéf method can be used to study linear
Here,Ngy, is total number of beam simulation particlé, is ~ Stability properties, provided all nonlinear terms in the dy-
total number of actual beam particles, and the weight func-

tion is defined byw,= 6f,/f,.

The nonlinear particle simulations are carried out by it- 1.2
eratively advancing the particle motion, including the 1.0k ]
weights they carry, accordingtb ]
q 3‘44 0.8 1
Xpi - ]
d_tl =(YoMp)  'Ppi, (24) } 0.6F .
3 ]
& 04 .
dpp U zbi
gt = YMewix,, eb( Vo-——ViA (29 ook ]
. . 0.0 ) ) ) ) ]
%:_(1_%0%@_ (%), 26 o 3 6 9 12 15
t bo 9P t kzrw
dpyi Uzbi FIG. 7. Normalized ei =
- _ _4u 7. genfrequency Réw; plotted vsk,r,, for s,=0.7 and
( dt €| VOop——~ V1A, @7 r,=3ry, and initial T, /T, ,=0.04.
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FIG. 8. Normalized growth rate Im/w; plotted vsk,r,, for s,=0.7 and

o FIG. 10. Plot of (Rew)/w; vs normalized beam intensity, for k,r,=7.5
ro=3r,, and initial T,, /T, ,=0.04.

andr,,=3ry, and initial T;, /T, ,=0.04.

namical equation$25)—(27) are neglected*~* This corre-
sponds to replacing the term-lw,; with 1 in Eq. (26) for

the weights, and moving particles along the trajectories Caléal, perfectly conducting wall at radius,=3r,,, wherer,,

. . 0 O
culated in the unperturbed potentials™(A;). =[(r?)]"2is the rms beam radius. Random initial perturba-

. thThtiéf rggthod .desf”tl)edt above hfs tbf.en 'th'f”?e”tel ons are introduced to the particle weights, and the beam is
in the three-dimensional electromagnetostatic particle-in-ce ropagated from=0 to t=800w; *.

COdEf‘(BES-.D in. cylindrical geome”Y with a perf(?ctly con- The simulations are performed using the nonlinéar
QUctlng cylindrical boundary at r?‘d'“%- Maxw_ells €aua-  gsimulation method described in Sec. 1l for a wide range of
tions (21) and (22? are SOIVe(.j using fast Fom_mer trans_form normalized beam intensities ranging frosy=0.1 to s,
techniques(FFT) in the longitudinal and azimuthal direc- =0.95, and detailed stability properties have been deter-

tions. The particle position€gs.(24) and(25)] and weights ined for th f intensit i tisfvi
[Eqg. (26)] are advanced using a second-order predictor—rnlne or the range of intensity parameters satisfyig

. : . : =0.5 assuming axisymmetric perturbations with)9=0.
corrector algorithm. The code is parallelized using Messag g y P

. . . 2 Shown in Fig. 6 is the time history of the density perturba-
Passing InterfacéMPIl) with domain decomposition in the tion 5nb=fd3p5fb for normalized beam intensitg,=0.7.

direction of beam propagation. The NetCDF data format isl'he initial temperature ratio is taken to B, /T, ,=0.04.
used for large-scale diagnostic and visualization. Typical

runs consist of 1Dsimulation particles and are performed on After the initial exponential growth phase, the instability
s maxya |
the IBM SP/RS 6000 at NERSC. saturates at a moderately large level wiéim;'®/f,|=0.05.

Figures 7 and 8 show plots of the real and imaginary
parts of the complex oscillation frequenayvs normalized
axial wave numbek,r,,. The instability has a finite band-

Here we present the simulation results for an axiallyV!dth with maximum growth rate Im/w=0.02 atkar.,
k;ri, <1, the dispersion

continuous, anisotropic beam in a constant focusing field— /- For long wavelengths wit

For simplicity we perform the simulations in the beam r€lation is linear with Re proportional tok,r,. For short
frame. It is assumed that the equilibrium distribution func-Wavelengths wittk;r,>1, the transverse beam size is unim-

tion is bi-Maxwellian and given by Eq1), wheref, is the ~Portantand Re=1.03u. The dependence of the maximum
on-axis ¢ =0) beam density, andl, , andT,, are the trans- 9roWth rate (IMw)ya, /ey on beam intensitys, is shown in
verse and longitudinal temperatures of the beam particle!9- 9- The maximum growth rate (I@)may/w;=0.038 oc-
The equilibrium self-field potentials®, A) are determined

numerically from Maxwell's equation¥ ¢ It is also as-
sumed that the beam is located inside a grounded, cylindri-

IV. SIMULATION RESULTS

)
0.040F N ]
e
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FIG. 11. Radial mode structure of the unstable eigenfunctionkfoy,
=7.5,s,=0.7, andr,,=3ry, and initial T, /T, ,=0.04.

FIG. 9. Plot of (ImMw)ya/ws VS normalized beam intensity, for r,
=3ry, and initial T\, /T, ,=0.04.
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FIG. 12. Perturbed axial momentum distributidi,(p,)/Fop at timet i _ _
=800wf711 for normalized beam intensity,=0.7 andr,,=3r, , and initial FIG. 14. Frequency spectrum of stable oscillations Kgr,=3, s,=0.8,
Tin/T.p=0.04. andr,,=3ry.

. ) o ] WhereTﬁT) is the threshold value of longitudinal beam tem-

curs fors,=0.8, with no instability in the regios,=<0.5. perature for the onset of instability ard is the axial wave

Figure 10 shows a plot of the real oscillation frequency, mper.
Rew/w; vs normalized beam intensity, for the unstable  1he saturation mechanism due to resonant wave—particle
mode. The radial structure of the unstable mode is shown ifhieractions suggests that the instability is absent if the Lan-
Fig. 11 fork,r,,=7.5. Only the real part of the eigenfunction g5, damping rate due to nonzero thermal spread in the axial
is shown, since Indp~constRed¢ for the weakly unstable direction is greater than the instability growth rate oy,
mode. The simulation results presented in Figs. 6—11 are ie=0. This implies that Tﬁg)ﬂzkz/mélzwf“V(Tub=0)/wf,
good qualitative agreement with the theoretical model prewherey(T,,=0) is the instability growth rate fof ;,=0. In
sented in Sec. Il in terms of the mode structure and reajhe present simulations, the instability is found to be absent if
oscillation frequencietsee Figs. 1-b The difference in the the ratio of initial axial and transverse temperatures is greater
absolute value of the growth rate (),/ws in Fig. 2 and  than the threshold vaIueT(b/Tib)th:0.0I
Fig. 9, and the existence of the instability cutoff for large  Finally, we present simulation results for parameters in
values of the normalized wavenumber in Fig. 8, are attribthe stable regime fos,=0.8 andk,r,=3. The temperature
uted to the Landau damping associated with the nonzergatio is taken to bel,,/T,,=0.0025. Figure 14 shows the
value of longitudinal temperatur®, in the simulations. frequency spectrum, and Fig. 15 shows the real part of the

The net change in the longitudinal momentum distribu-eigenfunctions for the lowest frequency longitudinal modes.
tion 6Fy(p,)/Fop at wst=800 in the simulation is shown in The frequency spectrum in Fig. 14 agrees reasonably well
Fig. 12. Here, 6Fy(p,)=/d?p, d*xsf, and |‘:0b with the theoretical results in Fig. 4. Note from Fig. 14 that

=fy/(27myT)p)*2 The formation of tails in the axial mo- the spread in depressed betatron frequangy(H, ) results

mentum distribution in Fig. 12 and the consequent saturatio & finite bandwidth to the frequency curves.

of the instability are attributed to quasilinear stabilization

due to resonant wave—particle interactions in the tails of th&/ cONCLUSIONS

distribution function. . . ) )
Simulations have also been carried out for different val- 10 Summarize, in Sec. Il we generalized the classical

ues of temperature anisotropy, /T, ,,. Plotted in Fig. 13 is Harris-type instability to the case of an intense charged par-

the ratio (T %, /m¥?w vs normalized beam intensisy, ticle. beam vyith anisotropic temp.er_aturé’H,g/Tib< 1) in-
cluding the important effects of finite transverse geometry

—
o

©
ol

Re[d¢,(r)(normalized)

0.0
<
0.0 ; s - -0.5 . ; . .
0.60 0.70 0.80 0.90 1.00 0.0 0.2 0.4 0.8 0.8 1.0
Sb r/rw
FIG. 13. Ratio (I'ﬁ'g)l’zkzlm%’zwf plotted vs normalized beam intensiy FIG. 15. Radial mode structure of the stable eigenfunctiorkfof=3, s,
for r,=3ry. =0.8, andr,,=3ry,.
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