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Warm-fluid stability properties of intense non-neutral charged particle
beams with pressure anisotropy
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The macroscopic warm-fluid model developed by Lund and Davidson@Phys. Plasmas5, 3028
~1998!# is used in the smooth-focusing approximation to investigate detailed electrostatic stability
properties of an intense charged particle beam with pressure anisotropy. The macroscopic
fluid-Maxwell equations are linearized for small-amplitude perturbations, and an eigenvalue
equation is derived for the perturbed electrostatic potentialdf(x,t), allowing for arbitrary
anisotropy in the perpendicular and parallel pressures,P'

0 (r ) and Pi
0(r ). Detailed stability

properties are calculated numerically for the case of extreme anisotropy withPi
0(r )50 and

P'
0 (r )Þ0, assuming axisymmetric wave perturbations (]/]u50) of the form df(x,t)

5df̂(r )exp(ikzz2ivt), wherekz is the axial wavenumber, andImv.0 corresponds to instability
~temporal growth!. For kz50, the analysis of the eigenvalue equation leads to a discrete spectrum
$vn% of stable oscillations withImvn50, wheren is the radial mode number. On the other hand,
for sufficiently large values ofkzr b , where r b is the beam radius, the analysis leads to an
anisotropy-driven instability (Imv.0) provided the normalized Debye length (GD5lD' /r b) is
sufficiently large and the normalized beam intensity (sb5v̂pb

2 /2gb
2vb'

2 ) is sufficiently below the
space-charge limit. Depending on system parameters, the growth rate can be a substantial fraction
of the focusing frequencyvb' of the applied field. ©2000 American Institute of Physics.
@S1070-664X~00!02506-4#
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I. INTRODUCTION

There is increasing interest in the equilibrium and sta
ity properties of intense charged particle beams,1–5 with po-
tential applications6–10 including heavy ion fusion, transmu
tation of radioactive waste, accelerator-based production
tritium, and spallation neutron sources. At the beam inte
ties of practical interest, it is particularly important to d
velop an improved theoretical understanding of the influe
of space-charge effects and collective processes on det
stability and transport properties.11–39 In general, a complete
description of collective processes in intense non-neu
beams requires a knowledge of the beam distribution fu
tion f (x,p,t) in the six-dimensional phase space (x,p), in
order to carry out numerical simulations using the distrib
tion function as an initial condition, or to carry out analytic
studies of kinetic equilibrium and stability behavior. Whi
considerable progress has been made in analytical inves
tions based on the Vlasov–Maxwell equations,11–31,40 such
kinetic analyses are often complex, even under idealized
sumptions. It is therefore important to develop and test
robustness of alternative theoretical models, such as ma
scopic models41–51based on the fluid-Maxwell equations, fo
investigating beam equilibrium and stability properties. Su
macroscopic fluid descriptions have met with recent succ
in describing the propagation of space-charge-domina
~low-emittance! beams in periodic-focusing transpo
systems,48,51 and in describing high-frequency collective o
cillations in high-intensity beams.50 In the present paper, w
make use of the macroscopic warm-fluid model develo
2651070-664X/2000/7(6)/2657/14/$17.00

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
-

of
i-

e
led

al
c-

-

a-

s-
e
ro-

h
ss
d

d

by Lund and Davidson50 in the smooth-focusing approxima
tion to investigate the linear stability properties of an inten
charged particle beam, allowing for equilibrium pressure
isotropy (P'

0 ÞPi
0). A particular focus in the present analys

is application of the warm-fluid model to investigate th
anisotropy-driven (P'

0 .Pi
0) instability observed by Lund

et al.37–39 in particle-in-cell simulations and studied analy
cally using the Vlasov–Maxwell equations. Such anisot
pies are well known to develop naturally in accelerators. F
example, for a beam of charged particles of massm and
chargeq that is accelerated through a voltageV, a simple
estimate shows that the final and initial longitudinal tempe
tures~in energy units! are related4 in the nonrelativistic case
by Ti f5Ti i

2 /2qV. In the relativistic case, this relation i
modified to becomeTi f5Ti i

2 g i
3/b f

2g f
3mc2, where g is the

relativistic mass factor andb is the relativistic velocity. As
an example, for an electron beam with initial energy 10 k
and temperatureTi i50.5 eV accelerated to 1 MeV, the fina
longitudinal temperature isTi f52.131028 eV, a decrease
by seven orders-of-magnitude. In addition, the beam’s eff
tive transverse temperatureT' and emittance are subject t
increase due to nonlinearities in applied and self-field forc
nonstationary beam profiles, and mismatches, which m
produce negligible changes in the parallel temperature. T
simultaneous cooling in the parallel direction and heating
the transverse direction can provide the free energy to d
collective instabilities and cause a further deterioration
beam quality through the instability mechanism described
this paper.

To briefly summarize the assumptions and macrosco
7 © 2000 American Institute of Physics
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warm-fluid model, the present analysis considers an inte
non-neutral beam consisting of charged particles with cha
q and rest massm propagating in thez-direction with average
axial velocityVb5const., and characteristic directed kine
energy (gb21)mc2 in the laboratory frame. Here,gb5(1
2Vb

2/c2)21/2 is the relativistic mass factor,c is the speed of
light in vacuo, and a perfectly conducting cylindrical wall i
located at radiusr 5r w , wherer 5(x21y2)1/2 is the radial
distance from the beam axis. The characteristic beam ra
is denoted byr b , and it is assumed that the particle motio
in the beam frame is nonrelativistic. Transverse confinem
of the beam particles is provided by applied magnetic
electric focusing fields, and in thesmooth-focusingapproxi-
mation we model the applied transverse focusing force o

beam particle byFfoc52gbmvb'
2 (xêx1yêy), where vb'

5const. is the effective betatron frequency for the transve
oscillations, and (x,y) is the transverse displacement fro
the beam axis. Following Lund and Davidson,50 by taking
appropriate momentum moments of the nonlinear Vla
equation for the beam distribution functionf (x,p,t) in the
six-dimensional phase space (x,p), we obtain an intercon-
nected chain of macroscopic fluid equations advancing
particle densityn(x,t), the average flow velocityV(x,t)
5Vz(x,t)êz1V'(x,t), the pressure tensorP(x,t), the heat-
flow tensorQ(x,t), etc. In the present analysis, we adop
model41 in which the heat-flow contribution, proportional t
(]/]x)•Q(x,t), is neglected in the dynamical equation a
vancing the pressure tensorP(x,t), thereby leading to a
closed system of macroscopic fluid-Maxwell equations
scribing beam equilibrium and stability properties. In ad
tion, the pressure tensorP(x,t) is assumed to be isotropic i
the plane perpendicular to the beam propagation direc
~the z-direction!, i.e., P(x,t)5P'(x,t)(êxêx1êyêy)
1Pi(x,t)êzêz , whereP'(x,t) and Pi(x,t) are scalar pres
sures. Finally, under axisymmetric equilibrium conditio
with ]/]u50, ]/]t50, and]/]50, the warm fluid-Maxwell
equations support a broad class of solutions for the equ
rium density and pressure profilesn0(r ), P'

0 (r ), andPi
0(r ).

In the present anaysis, we limit the detailed investigations
stability behavior for small-amplitude perturbations to t
class of so-calledwaterbagequilibria24,27,50in which P'

0 (r )
5const.@n0(r )#2 and Pi

0(r )5const.@n0(r )#. The stability
analysis allows for general pressure anisotropy, permittin
detailed investigation of anisotropy-driven instabilities37–39

whenP'
0 .Pi

0 .
This paper is organized as follows. Following a discu

sion of the macroscopic warm-fluid model and the waterb
equilibrium in Sec. II, we linearize the macroscopic flu
equations for small-amplitude perturbations in Sec. III, a
derive a single eigenvalue equation for the perturbed elec
static potentialdf(x,t), allowing for arbitrary anisotropy in
the perpendicular and parallel pressures,P'

0 (r ) and Pi
0(r ).

Detailed stability properties are calculated numerically
Sec. IV for the case of extreme anisotropy withPi

0(r )50
and P'

0 (r )Þ0, assuming axisymmetric wave perturbatio

(]/]u50) of the form df(x,t)5df̂(r )exp(ikzz2ivt),
wherekz is the axial wavenumber, andImv.0 corresponds
to instability ~temporal growth!. For kz50, the analysis of
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the eigenvalue equation leads to a discrete spectrum$vn% of
stable oscillations withImvn50, wheren is the radial mode
number~Sec. IV B!. On the other hand, for sufficiently larg
values ofkzr b , wherer b is the beam radius, the analysis
the eigenvalue equation leads to an anisotropy-driven in
bility ( Imv.0) provided the normalized Debye leng
(GD5lD' /r b) is sufficiently large and the normalized bea
intensity (sb5v̂pb

2 /2gb
2vb'

2 ) is sufficiently below the space
charge limit ~Sec. IV C!. Depending on system paramete
the growth rate can be a substantial fraction of the focus
frequencyvb' of the applied field.

II. ASSUMPTIONS AND THEORETICAL MODEL

In this section, we summarize the assumptions and m
roscopic warm-fluid model used in the present equilibriu
and stability analysis~Sec. II A!, and describe properties o
the warm-fluid waterbag equilibrium~Sec. II B!. The electro-
static eigenvalue equation describing stability behavior
small-amplitude perturbations about equilibrium is then d
rived in Sec. III, and detailed stability properties are calc
lated in Sec. IV.

A. Assumptions and macroscopic warm-fluid model

The present analysis considers an intense non-ne
beam consisting of charged particles with chargeq and rest
massm propagating in thez-direction with average axial ve
locity Vb5const., and characteristic directed kinetic ener
(gb21)mc2 in the laboratory frame. Here,gb5(1
2Vb

2/c2)21/2 is the relativistic mass factor,c is the speed of
light in vacuo, and a perfectly conducting cylindrical wall i
located at radiusr 5r w , wherer 5(x21y2)1/2 is the radial
distance from the beam axis. The characteristic beam ra
is denoted byr b . It is assumed thatnB /gb!1, wherenB

5Nbq2/mc2 is Budker’s parameter,Nb5*dxdyn is the
number of beam particles per unit axial length, a
n(x,y,z,t) is the particle number density. It is also assum
that the particle motion in the beam frame is nonrelativis
Transverse confinement of the beam particles is provided
applied magnetic or electric focusing fields, and in t
smooth-focusingapproximation we model the applied tran
verse focusing force on a beam particle by

Ffoc52gbmvb'
2 ~xêx1yêy!, ~1!

wherevb'5const. is the effective betatron frequency for t
transverse oscillations, and (x,y) is the transverse displace
ment from the beam axis. The transverse focusing force
Eq. ~1! is equivalent to the electric force produced by a~hy-
pothetical! uniformly distributed, fixed charge backgroun
with charge densityr052gbmvb'

2 /2pq5const., and is of-
ten used to model theaverage focusing properties of an
alternating-gradient lattice of magnetic or electric quad
poles.

The present analysis is carried out in the electrost
approximation, where the self-electric fieldEs(x,t) produced
by the beam space charge is

Es52¹f, ~2!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



e

e

e

ia
ec
se

en

n

by

tic
el

b
se
b
o
th

of
y

o

d-

e

e,
s
ell
is-
or

n
he
nd

o-

d
r-
a

y
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and the electrostatic potentialf(x,t) is determined self-
consistently from Poisson’s equation,¹2f524pqn(x,t),
wheren(x,t) is the particle number density. In addition, th
axial beam current,qn(x,t)Vz(x,t), whereVz(x,t) is the av-
erage axial velocity, produces a transverse self-magn
field, Bs(x,t), where

Bs5¹Az3êz . ~3!

Here,Az(x,t) is determined self-consistently in the magn
tostatic approximation from Maxwell’s equation,¹2Az

52(4p/c)qnVz . In circumstances where the average ax
velocity is approximately uniform over the beam cross s
tion with Vz.Vb5const., which we assume to be the ca
the self-field potentials,f(x,t) and Az(x,t), are related by
the familiar expression,Az5(Vb /c)f, and Eq.~3! reduces to

Bs5
1

c
Vb¹f3êz . ~4!

Denoting the average flow velocity of a beam fluid elem
by V(x,t)5Vz(x,t)êz1V'(x,t), whereV'(x,t)5Vx(x,t)êx

1Vy(x,t)êy , and making use of Eqs.~3! and~4!, the Lorentz
force on a beam fluid element due to the self-electric a
self-magnetic fields can be expressed as

FLorentz
s 5nqS Es1

1

c
V3BsD

52nqS 12
VbVz

c2 D¹'f

2nqS ]f

]z
2

Vb

c2 V'•¹'f D êz , ~5!

where ¹'5êx]/]x1êy]/]y. Approximating Vz.Vb and
making use ofuV�u!c ~nonrelativistic transverse motion!,
Eq. ~5! reduces to the simple expression

FLorentz
s 52nqS 1

gb
2 ¹'f1êz

]

]z
f D , ~6!

where gb
22512Vb

2/c2. Equation ~6! shows ~as expected!
that the net effect of the self-magnetic fieldBs produced by
the directed axial motion~generally relativistic! of the beam
particles is toreducethe perpendicular electrostastic force
the factor 1/gb

2 .
To describe the dynamics of the intense charged par

beam interacting with the applied focusing field and the s
generated electric and magnetic fields,Es andBs, we make
use of the macroscopic warm-fluid model developed
Lund and Davidson,50 appropriately generalized to the ca
where the directed axial motion of the beam is allowed to
relativistic. To briefly summarize, by taking appropriate m
mentum moments of the nonlinear Vlasov equation for
beam distribution functionf (x,p,t) in the six-dimensional
phase space (x,p), we obtain an interconnected chain
macroscopic fluid equations41 advancing the particle densit
n(x,t), the average flow velocity V(x,t)5Vz(x,t)êz

1V'(x,t), the pressure tensorP(x,t), the heat flow tensor
Q(x,t), etc. Following Lund and Davidson,50 we adopt a
model41 in which the heat-flow contribution, proportional t
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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(]/]x)•Q(x,t), is neglected in the dynamical equation a
vancing the pressure tensorP(x,t). In addition, we adopt a
model50 in which P(x,t) is assumed to be isotropic in th
plane perpendicular to the beam propagation direction~the
z-direction!, i.e.,

P~x,t !5P'~x,t !~ êxêx1êyêy!1Pi~x,t !êzêz , ~7!

whereP'(x,t) andPi(x,t) are scalar pressures. In this cas
making use of Eqs.~1!, ~6!, and ~7!, and the assumption
enumerated earlier in this section, the warm fluid-Maxw
equations50 appropriately generalized to the case of relativ
tic axial motion are given by the continuity equation f
n(x,t),

S ]

]t
1Vz

]

]z
1V'•

]

]x'
Dn1nS ]Vz

]z
1

]

]x'

•V'D520,

~8!

the perpendicular force balance equation forV'(x,t),

gbmnS ]

]t
1Vz

]

]z
1V'•

]

]x'
DV'1

]

]x'

P'

52nq
1

gb
2 ¹'f2gbmnvb'

2 x' , ~9!

the parallel force balance equation forVz(x,t),

gbmnS ]

]t
1Vz

]

]z
1V'•

]

]x'
DVz1

]

]z
Pi52nq

]f

]z
,

~10!

the equation of state for the perpendicular pressureP'(x,t),

S ]

]t
1Vz

]

]z
1V'•

]

]x'
D S P'

n2 D 2
P'

n2

]Vz

]z
50, ~11!

the equation of state for the parallel pressurePi(x,t),

S ]

]t
1Vz

]

]z
1V'•

]

]x'
D S Pi

n D1
2Pi

n

]Vz

]z
50, ~12!

and Poisson’s equation for the electrostatic potentialf(x,t),

¹'
2 f1

]2

]z2 f524pqn. ~13!

Equations~8!–~13! provide a closed macroscopic descriptio
of the nonlinear evolution of the beam interacting with t
applied focusing field and the self-generated electric a
magnetic fields,Es52¹f andBs5(Vb /c)¹f3êz . In ob-
taining Eqs.~8!–~13!, it has been assumed that the fluid m
tions in the beam frame are nonrelativistic, i.e.,

V'
2 /c2, ~Vz2Vb!2/c2, P' /gbnmc2, Pi /gbnmc2!1.

~14!

Equations~8!–~13! can be used to investigate detaile
macroscopic equilibrium and stability properties for pertu
bations about a wide range of beam equilibria ranging from
warm-fluid thermal equilibrium with diffuse radial densit
profile, to a warm-fluid Kapchinskij–Vladimirskij~KV !
equilibrium with step-function density profile,50 to a warm-
fluid waterbag equilibrium.50 For example, assuming]/]z
50, Lund and Davidson have investigated50 stable electro-
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2660 Phys. Plasmas, Vol. 7, No. 6, June 2000 R. C. Davidson and S. Strasburg
static oscillations for perturbations about a warm-fluid K
equilibrium. In the present analysis, allowing for a press
anisotropy withP'ÞPi and perturbations with]/]zÞ0, in
Secs. III and IV we examine detailed stability properties
perturbations about a warm-fluid waterbag equil
rium.24,27,50 We conclude Sec. II with a brief summary o
equilibrium properties for a warm-fluid waterbag equilibriu
in which the equilibrium perpendicular pressure is assum
to have the double adiabatic formP'

0 (r )5const.@n0(r )#2.

B. Warm-fluid waterbag equilibrium

Under steady-state~equilibrium! conditions with ]/]t
50, we assume a matched, axisymmetric beam in which
equilibrium profiles~denoted with a superscript zero!, n0(x),
f0(x), V'

0 (x), Vz
0(x), P'

0 (x) andPi
0(x), satisfy

]

]u
505

]

]z
, ~15!

and depend only on the radial distancer 5(x21y2)1/2 from
the beam axis. In equilibrium, it is further assumed that th
is no perpendicular motion of the beam and that the a
flow velocity is uniform over the beam cross section, i.e.

V'
0 50, Vz

05Vb5const. ~16!

For a warm-fluid waterbag equilibrium,24,27,50 we assume
that the perpendicular and parallel pressures are of the f

P'
0 ~r !5

T̂'

n̂
@n0~r !#2, Pi

0~r !5T̂in
0~r !, ~17!

wheren0(r ) is the equilibrium density profile. In Eq.~17!,
n̂5n0(r 50)5const. is the on-axis density, and the co
stantsT̂' and T̂i are the perpendicular temperature and p
allel temperature, respectively, atr 50, expressed in energ
units. From Eq.~17!, we note that the effective temperatu
profiles,T'

0 (r )5P'
0 (r )/n0(r ) and Ti

0(r )5Pi
0(r )/n0(r ), are

given byT'
0 (r )5T̂'n0(r )/n̂ andTi

0(r )5T̂i5const. That is,
T'

0 (r ) has the same radial shape as the density profilen0(r ),
whereasTi

0(r ) is uniform ~isothermal! over the beam cros
section.

Making use of]/]t50 and Eqs.~15!–~17!, it is readily
shown that Eqs.~8!, ~10!, ~11!, and ~12! are automatically
satisfied, and that Eqs.~9! and ~13! reduce exactly to

2T̂'

n̂
n0

]

]r
n052n0S q

gb
2

]f0

]r
1gbmvb'

2 r D , ~18!

1

r

]

]r
r

]

]r
f0524pqn0, ~19!

wheren0(r ) andf0(r ) are the equilibrium density and po
tential profiles. Equations~18! and ~19! can be solved ex-
actly for the equilibrium density profilen0(r ). We introduce
the effective perpendicular Debye lengthlD' and self-field
intensity parametersb defined by

lD'
2 5

2T̂'gb
2

4pq2n̂
, sb5

v̂pb
2

2gb
2vb'

2
, ~20!
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where v̂pb
2 54pn̂q2/gbm is the on-axis plasma frequency

squared. Without presenting algebraic details, the exact
lution to Eqs.~18! and ~19! is given by

n0~r !5H n̂
I 0~r b /lD'!2I 0~r /lD'!

I 0~r b /lD'!21
, 0<r ,r b ,

0, r b,r<r w ,

~21!

wherer b is the outer radius of the beam, andr w is the con-
ducting wall radius. In terms oflD' andsb5v̂pb

2 /2gb
2vb'

2 ,
the beam radiusr b in Eq. ~21! is determined self-consistentl
from

I 0~r b /ld'!5
1

12v̂pb
2 /2gb

2vb'
2

. ~22!

In Eqs.~21! and ~22!, I 0(x) is the modified Bessel function
of the first kind of order zero.

For the equilibrium density profilen0(r ) specified by
Eq. ~21!, we note that the profiles forP'

0 (r ), Pi
0(r ), and

f0(r ) are fully determined from Eqs.~17! and ~19!. In ad-
dition, from Eq.~21!, the density profile decreases monoton
cally from the on-axis valuen0(r 50)5n̂ at r 50, to n0(r
5r b)50 at the beam edge (r 5r b). At low beam intensities
with sb5v̂pb

2 /2gb
2vb'

2 !1, it follows from Eq. ~22! that r b

,lD' , corresponding to an emittance-dominated beam w
near-parabolic density profile,n0(r )5n̂(12r 2/r b

2), over the
beam cross section. On the other hand, forsb

5v̂pb
2 /2gb

2vb'
2 →12e, with e→01 , it follows from Eq.

~21! that r b@lD' and that n0(r ) approaches the step
function density profile characteristic of space-charg
dominated beams with very low transverse emittance. Th
properties are illustrated in Figs. 1 and 2. In Fig. 1, the n
malized density profilen0(r )/n̂ calculated from Eq.~21! is
plotted versusr /r b for several values of the dimensionle

FIG. 1. Plot of the normalized densityn0(r )/n̂ verusr /r b calculated from
Eqs. ~21! and ~22! for several values of the normalized beam intensitysb

5v̂pb
2 /2gb

2vb'
2 .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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intensity parametersb5v̂pb
2 /2gb

2vb'
2 over the interval 0

,sb,1. On the other hand, Fig. 2 shows a universal plot
the normalized Debye lengthlD' /r b versus sb

5v̂pb
2 /2gb

2vb'
2 for values of the beam intensity parameter

the interval 0,sb,1.

III. EIGENVALUE EQUATION FOR SMALL-
AMPLITUDE PERTURBATIONS

In this section, we linearize the macroscopic fluid equ
tions ~8!–~13! for small-amplitude perturbations about th
warm-fluid waterbag equilibrium described by Eqs.~15!–
~22! ~Sec. III A!. The resulting linearized equations are th
expressed as a single eigenvalue equation for the pertu
electrostatic potentialdf(x,t), allowing for arbitrary anisot-
ropy in the perpendicular and parallel pressures,P'

0 (r ) and
Pi

0(r ) ~Sec. III B!.

A. Linearized warm-fluid-Maxwell equations

We now express

n~x,t !5n0~r !1dn~x,t !, V'~x,t !5dV'~x,t !,

Vz~x,t !5Vb1dVz~x,t !, P'~x,t !5P'
0 ~r !1dP'~x,t !,

~23!

Pi~x,t !5Pi
0~r !1dPi~x,t !, f~x,t !5f0~r !1df~x,t !,

and linearize Eqs.~8!–~13! for small-amplitude perturbation
about the warm-fluid waterbag equilibrium described by E
~15!–~22!. Because

2dnS q

gb
2 ¹'f01gbmvb'

2 x'D 5dn
1

n0

]

]x'

P'
0 ,

~24!

dV'•

]

]x'
S P'

0

n02D 50, dV'•

]

]x'
S Pi

0

n0 D 50,

follow directly from Eqs.~17! and~18!, the linearized equa
tions for dn, dV' , dVz , dP' , dPi anddf obtained from
Eqs. ~8!–~13! are readily simplified. We obtain after som
straightforward algebra

S ]

]t
1Vb

]

]zD dn1
]

]x'

•~n0dV'!1n0
]

]z
dVz50, ~25!

gbmn0S ]

]t
1Vb

]

]zD dV'52S ]

]x'

dP'2
dn

n0

]

]x'

P'
0

1
n0q

gb
2

]

]x'

df D , ~26!

gbmn0S ]

]t
1Vb

]

]zD dVz52S ]

]z
dPi1n0q

]

]z
df D , ~27!

wheredP' , dPi , anddf evolve according to

S ]

]t
1Vb

]

]zD S dP'2
2dn

n0 P'
0 D2P'

0 ]

]z
dVz50, ~28!

S ]

]t
1Vb

]

]zD S dPi2
dn

n0 Pi
0D12Pi

0 ]

]z
dVz50, ~29!
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¹'
2 df1

]2

]z2 df524pqdn. ~30!

Here, the equilibrium profiles forn0(r ), P'
0 (r ), and Pi

0(r )
are specified by Eqs.~17! and~21!. Equations~25!–~30! can
be further simplified by operating on Eqs.~25!, ~28!, and
~29! with (]/]t1Vb]/]z), and making use of Eqs.~26! and
~27! to eliminate (]/]t1Vb]/]z)(n0dV') and (]/]t
1Vb]/]z)(n0dVz). This gives

S ]

]t
1Vb

]

]zD
2

~4pqdn!2
4pq

gbm

]2

]z2 ~dPi1n0qdf!

2
4pq

gbm

]

]x'

•S ]

]x'

dP'2
dn

n0

]

]x'

P'
0 1

n0q

gb
2

]

]x'

df D
50, ~31!

S ]

]t
1Vb

]

]zD
2S dP'2

2dn

n0 P'
0 D1

P'
0

gbmn0

]2

]z2 ~dPi

1n0qdf!50, ~32!

F S ]

]t
1Vb

]

]zD
2

2
2Pi

0

gbmn0

]2

]z2G ~dPi1n0qdf!

2S ]

]t
1Vb

]

]zD
2S dn

n0 Pi
01n0qdf D50. ~33!

We now make use ofP'
0 (r )5(T̂' /n̂)@n0(r )#2 and

Pi
0(r )5n0(r )T̂i , where T̂' and T̂i are positive constants

@Eq. ~17!#, and introduce the definitions@see also Eq.~20!#

vpb
2 ~r !5

4pn0~r !q2

gbm
, vTZ

2 5
2T̂i

gbm
, lD'

2 5
2T̂'gb

2

4pn̂q2
. ~34!

Here, vpb
2 (r ) is the local relativistic plasma frequency

squared, and the constantsvTZ and lD' are the effective

FIG. 2. Plot of the normalized Debye lengthlD' /r b versus sb

5v̂pb
2 /2gb

2vb'
2 calculated numerically from Eq.~22! for values of the nor-

malized beam intensity in the interval 0,sb,1.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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axial thermal speedandperpendicular Debye length, respec-
tively. Making use of Eqs.~17! and~34!, it is readily shown
that

2Pi
0~r !

gbmn0~r !
5vTZ

2 ,
P'

0 ~r !

gbmn0~r !
5

1

2gb
2 lD'

2 vpb
2 ~r !,

1

gbmn0~r !

]

]x'

P'
0 ~r !5

1

gb
2 lD'

2 ]

]x'

vpb
2 ~r !. ~35!

Making use of Eqs.~34! and ~35!, it is straightforward to
show that Eqs.~31!–~33! can be expressed in the equivale
form

S ]

]t
1Vb

]

]zD
2

~4pqdn!2
]2

]z2 F S 4pq

gbm
dPi D1vpb

2 ~r !dfG
2

]

]x'

•F ]

]x'
S 4pq

gbm
dP'D2~4pqdn!

lD'
2

gb
2

]

]x'

vpb
2 ~r !

1
1

gb
2 vpb

2 ~r !
]

]x'

dfG50, ~36!

S ]

]t
1Vb

]

]zD
2F S 4pq

gbm
dP'D2~4pqdn!

lD'
2

gb
2

vpb
2 ~r !G

1
1

2

lD'
2

gb
2

vpb
2 ~r !

]2

]z2 F S 4pq

gbm
dPi D1vpb

2 ~r !dfG50,

~37!

F S ]

]t
1Vb

]

]zD
2

2vTZ
2 ]2

]z2GF S 4pq

gbm
dPi D1vpb

2 ~r !dfG
2S ]

]t
1Vb

]

]zD
2F1

2
~4pqdn!vTZ

2 1vpb
2 ~r !dfG50. ~38!

Keeping in mind thatdn(x,t) and df(x,t) are related by
Poisson’s equation, 4pqdn52(¹'df1]2df/]z2) @Eq.
~30!#, it is clear that Eqs.~36!–~38! represent three couple
equations describing the evolution ofdf(x,t), dPi(x,t),
and dP'(x,t) in the linearization approximation. Furthe
more, becauselD'

2 }T̂' andvTZ
2 }T̂i , it is also evident that

Eqs.~36!–~38! incorporate the effects of an equilibrium pre
sure anisotropy on stability behavior. Equations~36!–~38!
can be simplified in various limiting regimes. For example
the beam is cold in the axial direction withT̂i50 (Pi

050),
it follows directly from Eq. ~38! that (]/]t
1Vb]/]z)2dPi(x,t)50. Therefore, ifdPi is equal to zero
initially, then dPi remains equal to zero at subsequent tim
in the linearization approximation.

B. Eigenvalue equation

Equations~30!, ~36!, ~37!, and~38! are readily combined
into a single eigenvalue equation for the perturbed elec
static potentialdf and the complex oscillation frequencyv.
Using a normal-mode approach, we express all pertur
quantitiesdf(x,t), dP'(x,t), dPi(x,t), anddn(x,t) as

dc~x,t !5dĉ~x'!exp~ ikzz2 ivt !. ~39!
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Here, dĉ(x') is the perturbation amplitude,kz is the axial
wavenumber of the perturbation, andv is the complex os-
cillation frequency, withImv.0 corresponding to instabil
ity ~temporal growth!. We further introduced the Doppler
shifted oscillation frequencyV defined by

V5v2kzVb . ~40!

Substituting Eq.~39! into Eq. ~38! and making use of Pois
son’s equation,

¹'
2 df̂~x'!2kz

2df̂~x'!524pqdn̂~x'!, ~41!

we readily obtain ford P̂i(x'),

4pq

gbm
d P̂i1vpb

2 ~r !df̂

5
V2

V22kz
2vTZ

2 F2
1

2
vTZ

2 ~¹'
2 df̂2kz

2df̂!1vpb
2 ~r !df̂ G .

~42!

Similarly, making use of Eq.~37! and ~42!, gives for
d P̂'(x'),

4pq

gbm
d P̂'52lD'

2
vpb

2 ~r !

gb
2 ~¹'

2 df̂2kz
2df̂!

2
1

2
kz

2lD'
2

vpb
2 ~r !/gb

2

V22kz
2vTZ

2 F2
1

2
vTZ

2 ~¹'
2 df̂

2kz
2df̂!1vpb

2 ~r !df̂G . ~43!

Equations~42! and~43! constitute closed expressions for th
pressure perturbations,d P̂i(x') and d P̂'(x), directly in
terms of the potential amplitudedf̂(x), the equilibrium den-
sity profilevpb

2 (r ), the Doppler-shifted oscillation frequenc
V5v2kzVb , and the constant parameterslD'

2 andvTZ
2 . As

noted earlier, for the special case whereT̂i50, Eq.~42! gives

d P̂i50, for vTZ
2 50. ~44!

We now make use of Eqs.~39! and ~40! and substitute
Eqs. ~41!–~43! into Eq. ~36!. This results in a single eigen
value equation for the potential eigenfunctiondf̂(x') and
the complex oscillation frequencyV5v2kzVb . After some
algebraic manipulation and rearrangement of terms, we
tain

]

]x'

•H FV22
vpb

2 ~r !

gb
2 ~11kz

2lD'
2 !2

1
2kz

2vTZ
2 V2

V22kz
2vTZ

2 G ]

]x'

df̂

1lD'
2

vpb
2 ~r !

gb
2

]

]x'

¹'
2 df̂1

1

2
kz

2lD'
2 ]

]x'
F vpb

2 ~r !/gb
2

V22kz
2vTZ

2

3S Fvpb
2 ~r !1

1

2
kz

2vTZ
2 Gdf̂2

1

2
vTZ

2 ¹'
2 df̂ D G J
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2kz
2H V22

vpb
2 ~r !V2

V22kz
2vTZ

2
2

1
2kz

2vTZ
2 V2

V22kz
2vTZ

2 J df̂50. ~45!

Equation~45! is the final eigenvalue equation for the pote
tial eigenfunctiondf̂(x') and the eigenfrequencyV5v
2kzVb . Equation~45! has been derived from Eqs.~25!–~30!
for small-amplitude perturbations about the warm-flu
waterbag equilibrium described by Eqs.~17! and ~21!, and
can be used to investigate detailed stability properties ov
wide range of values of the normalized beam intensitysb

5v̂pb
2 /2gb

2vb'
2 , and temperature anisotropyT̂'2T̂i .

Anisotropy-driven instabilities are expected to be the str
gest in the case of strong temperature anisotropyT̂'@T̂i . In
circumstances where the beam ions are cold in the prop
tion direction, the eigenvalue equation~45! simplifies con-
siderably. SettingT̂i50 (vTZ

2 50) in Eq. ~45!, we obtain

]

]x'

•H FV22
vpb

2 ~r !

gb
2 ~11kz

2lD'
2 !G ]

]x'

df̂

1lD'
2

vpb
2 ~r !

gb
2

]

]x'

¹'
2 df̂

1
1

2
kz

2lD'
2 ]

]x'
S vpb

4 ~r !/gb
2

V2
df̂ D J

2kz
2@V22vpb

2 ~r !#df̂50. ~46!

Introducing cylindrical polar coordinates (r ,u), where x

5r cosu and y5r sinu, we representdf̂(x')5df̂(r ,u).
The eigenvalue equations~45! or ~46! are to be solved for
df̂(r ,u) andV subject to the requirements thatdf̂(r ,u) be
regular at the origin (r 50), and that

df̂~r 5r w ,u!50. ~47!

The boundary condition in Eq.~47! of course assure
that the perturbed tangential electric field compone
vanish at the perfectly conducting wall, i.e.,@dÊu# r 5r w

52@r 21]df̂/]u# r 5r w
50 and @dÊz# r 5r w

52 ikz@df̂# r 5r w

50.

IV. STABILITY ANALYSIS

A. Eigenvalue equation for T̂ iÄ0 and „Õu…df̂Ä0

As noted earlier, for equilibrium density profilen0(r )
specified by Eq.~21!, the eigenvalue equation~45! can be
used to investigate detailed stability behavior over a w
range of values of normalized beam intensitysb

5v̂pb
2 /2gb

2vb'
2 , and temperature anisotropyT̂'2T̂i . Since

this is the first theoretical study of macroscopic stabil
properties for perturbations about a warm-fluid waterb
equilibrium, the present analysis is restricted to the cas
extreme temperature anisotropy withT̂i50, assuming azi-
muthally symmetric perturbations with (]/]u)df̂(r ,u)50.
That is, we consider the eigenvalue equation~46! for pertur-
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bations of the formdf̂(x')5df̂(r ), wherer is the radial
distance from the beam axis. We further introduce the~di-
mensionless! scaled variables defined by

R5
r

r b
, Kz5kzr b , GD5

lD'

r b
,

~48!

Vp
2~R!5

vpb
2 ~r !

v̂pb
2

, V̂25
~v2kzVb!2

v̂pb
2

,

where vpb
2 (r )54pn0(r )q2/gbm is the relativistic plasma

frequency-squared. Note from Eq.~48! that lengths are
scaled to the beam radiusr b , wherer b /lD' is determined
self-consistently in terms ofsb5v̂pb

2 /2gb
2vb'

2 from Eq.~22!,
and that frequencies are scaled to the on-axis (r 50) plasma
frequencyv̂pb5(4pn̂q2/gbm)1/2. From Eqs.~21! and ~48!,
the normalized profile forVpb

2 (R) is given by

Vp
2~R!5H I 0~GD

21!2I 0~R/GD!

I 0~GD
21!21

, 0<R,1,

0, 1,R,r w /r b .

~49!

Here, GD[lD' /r b , and the outer edge of the beamr
5r b) corresponds toR5r /r b51. Note from Eq.~49! that
Vp

2(R) decreases monotonically from unity at the beam a
(R50), to zero at the beam edge (R51). Moreover, for a
low-intensity, moderate-emittance beam equilibrium w
GD.1 andsb!1, Eq.~49! gives, to good approximation, th
parabolic profileVp

2(R)512R2, for 0<R,1. On the other
hand, for a high-intensity, low-emittance beam withGD!1,
and sb→1, Eq. ~49! gives ~approximately! the unit step-
function profile,Vp

2(R)51, for 0<R,1.
We now make use of Eq.~48! and the assumption

(]/]u)df̂(x')50 to simplify theT̂i50 eigenvalue equation
~46!. Substituting “'¹'

2 df̂(r )5êr@r 21(]/]r )(r ]/]r )
21/r 2#(]/]r )df̂(r ), where êr5êx cosu1êy sinu is a unit
vector in the radial direction, some straightforward algeb
shows that Eq.~46! can be expressed as

1

R

]

]R
RH F V̂22

Vpb
2 ~R!

gb
2 ~11Kz

2GD
2 !G ]

]R
df̂~R!

1GD
2

Vpb
2 ~R!

gb
2 S 1

R

]

]R
R

]

]R
2

1

R2D ]

]R
df̂~R!

1
1

2
Kz

2GD
2 ]

]R S Vpb
4 ~R!/gb

2

V̂2
df̂~R!D J

2Kz
2@V̂22Vpb

2 ~R!#df̂~R!50. ~50!

For Kz50 andGDÞ0, it is found that Eq.~50! gives purely
stable oscillations withImV̂50 ~Sec. IV B!. On the other
hand, asKz5kzr b is increased to sufficiently large value
the temperature anisotropy (T̂'}GD

2 Þ0, and T̂i50) pro-
vides the free energy to drive an instability at moderate v
ues of beam intensity~Sec. IV C!.
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B. Stable oscillations for K zÄ0 and GDÅ0

Setting Kz50, which corresponds to zero axial wav
number (kz50), the eigenvalue equation~50! reduces to

1

R

]

]R
RH F V̂22

Vp
2~R!

gb
2 G ]

]R
df̂~R!

1GD
2

Vpb
2 ~R!

gb
2 S 1

R

]

]R
R

]

]R
2

1

R2D ]

]R
df̂~R!J 50 ~51!

over the interval 0<R<Rw[r w /r b . We define dÊr(R)
52(]/]R)df̂(R), and denote the interior region of th
beam (0<R,1) whereVpb

2 (R)Þ0 by Region I, and the
vacuum region exterior to the beam (1,R<r w /r b) where
Vpb

2 (R)50 by Region II. The eigenvalue equation~51! is
readily integrated once with respect toR to give

H F V̂22
Vpb

2 ~R!

gb
2 G1GD

2
Vpb

2 ~R!

gb
2 S 1

R

]

]R
R

]

]R
2

1

R2D J
3dÊr

I ~R!50, 0<R,1, ~52!

and

dÊr
II~R!50, 1,R<r w /r b . ~53!

That is, the perturbed radial electric field is equal to ze
outside the beam, withdÊr

II(R)50, whereas the perturbe
radial electric field inside the beam,dÊr

I (R), satisfies Eq.
~52!. The solution to Eq.~52! in Region I is required to be
regular at the origin (R50) and continuous with the solutio
in Region II at the beam edge (R51). Therefore, the eigen
value equation~52! is to be solved subject to the bounda
conditions

dÊr
I ~R50!505dÊr

I ~R51!. ~54!

Equation ~52! has been solved for the eigenfunctio
dÊr

I (R) and eigenfrequency-squaredV̂2 subject to the
boundary conditions in Eq.~52! using two approaches:~a!
direct numerical integration of Eq.~52! using a shooting
method to determine both the eigenfunctions and eigenva
that are consistent with Eqs.~52! and~54!, and~b! a matrix-
dispersion-equation technique that expands Eq.~52! in a
complete set of basis functions that satisfya priori the
boundary conditions in Eq.~54!. The results using both ap
proaches are in excellent agreement.

We illustrate here the matrix dispersion technique
solving Eq.~52!. The boundary conditions in Eq.~54! and
the occurrence of the Bessel-function opera
GD

2 @R21(]/]R)(R]/]R)21/R2# in Eq. ~52!, are strongly
suggestive of expanding Eq.~52! in the complete set of basi
functions$an(R)% where

an~R!5AnJ1~lnR/GD!. ~55!

Here,J1(x) is the Bessel function of the first kind of orde
unity, R/GD5r /lD' in dimensional variables, An

5A2/J2(lnr b /lD') is a normalization constant, andln is
the nth zero of@J1(lnR/GD)#R5150, i.e.,
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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J1~lnr b /lD'!50. ~56!

Note that$an(R)% form a complete set of basis functions o
the interval 0<R<1 ~or equivalently, 0<r<r b), with

an~R50!505an~R51!,
~57!E

0

1

dRRan~R!an8~R!5dn,n8 ,

wheredn,n851 for n5n8, anddn,n850 for nÞn8. We rep-
resent the perturbed radial electric fielddÊr

I (R) in the beam
interior (0<R,1) by

dÊr
I ~R!5 (

n51

`

cnan~R!, ~58!

where $cn% are constant expansion coefficients, the eig
function an(R) solves

GD
2 S 1

R

]

]R
R

]

]R
2

1

R2Dan~R!52ln
2an~R!, ~59!

andln is thenth zero of Eq.~56!. Substituting Eqs.~58! and
~59! into the eigenvalue equation~52! gives

(
n51

`

@V̂22~11ln
2!Vpb

2 ~R!/gb
2#cnan~R!50 ~60!

for 0<R,1.
Equation~60! is fully equivalent to the eigenvalue equa

tion ~52! in the beam interior, and automatically incorporat
the boundary conditions in Eq.~54! by virtue of Eq. ~57!.
Operating on Eq.~60! with *0

1dRRam(R)..., weobtain

(
n51

`

Dn,m~V̂2!cn50, ~61!

where the matrix elementsDn,m(V̂2) are defined by

Dn,m~V̂2!5gb
2V̂2dn,m2~11ln

2!Cn,m , ~62!

and the constantsCn,m are defined by

Cn,m5E
0

1

dRRVpb
2 ~R!an~R!am~R!. ~63!

The requirement that Eq.~61! has a nontrivial solution (cn

Þ0 for somen) gives the matrix dispersion relation

det$Dn,m~V̂2!%50. ~64!

Equation ~64! determines the normalized oscillation fre
quencyV̂5V/v̂pb as a function of the system paramete
sb5v̂pb

2 /2gb
2vb'

2 andlD' /r b , which are related by Eq.~22!
~see Fig. 2!. Furthermore, the normalized profile forVpb

2 (R)
occurring in the definition ofCn,m in Eq. ~63! is defined in
terms ofGD5lD' /r b andR5r /r b in Eq. ~49!.

The matrix dispersion relation~64!, valid for zero axial
wavenumber (kz50), can be used to calculate the norm
mode oscillation frequencies for perturbations about a wa
fluid waterbag equilibrium withT̂i50. The solutions to Eq.
~64! are a discrete set of stable modes$Vn /v̂pb%, n
51,2,3,..., withImVn50, and the dimensionN of the matrix
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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required to solve Eq.~64! numerically for$Vn /v̂pb% to good
accuracy depends on the order of the mode of interest.
example, to determineVn /v̂pb for radial mode numbern to
an accuracy of one part in 103 in a tenuous beam, it is ad
equate to consider a 3n33n approximation to the matrix
dispersion relation@Eq. ~64!# with N53n. Greater accura-
cies can be achieved with much smaller matrices for m
intense beams, since the matrix is closer to diagonal. In
regard, at very high beam intensities whensb

5v̂pb
2 /2gb

2vb'
2 →1, it is important to note from Eqs.~21!,

~22!, and ~49! ~see also Figs. 1 and 2! that Vpb
2 (R) ap-

proaches the constant unit step function on the interva
<R,1. In this case, forv̂pb

2 /2gb
2vb'

2 →1, it follows from
Eqs. ~57! and ~63! that Cn,m→dn,m , and the matrix

$Dn,m(V̂2)% becomes diagonal to good approximation. It
also clear from Eqs.~62! and ~64! that the values of$ln%
play an important role in determining the normal-mode
cillation frequencies$Vn /v̂pb%. Here,ln is thenth zero of
J1(lnr b /lD')50 @Eq. ~56!#. We define

ln5
lD'

r b
Gn , ~65!

where$Gn% are the~tabulated! solutions toJ1(Gn)50, and
lD' /r b is determined self-consistently in terms of the no
malized beam intensitysb5v̂pb

2 /2gb
2vb'

2 by Eq. ~22! ~Fig.
2!. Since $Gn% have constant numerical values, it follow
from Eqs.~22! and~65! that the values of$ln% depend on the
normalized beam intensitysb5v̂pb

2 /2gb
2vb'

2 . Shown in Fig.
3 are plots ofln versusv̂pb

2 /2gb
2vb'

2 for mode numbersn
51,2,...,4, obtained numerically from Eqs.~22! and~55!. As
expected, the curves in Fig. 3 are similar in shape to
curve in Fig. 2, scaled by the constant factorGn , for n
51,2,...,4.

We now present numerical solutions to the matrix d
persion equation~64! ~Fig. 4! for mode numbersn

FIG. 3. Plots ofln versusv̂pb
2 /2gb

2vb'
2 obtained from Eqs.~22! and~65! for

mode numbersn51,2,...,4. Here,ln5GnlD' /r b , whereJ1(Gn)50.
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51,2,...,4. In this regard, it is convenient to introduce t
characteristic measures of the depressed and undepre
single-particle transverse oscillation frequencies,n and n0,
defined by

n2[vb'
2 2v̂pb

2 /2gb
2 , n0

2[vb'
2 , ~66!

and the effective tune depression,n/n0 , where

n2

n0
2 512

v̂pb
2

2gb
2vb'

2
512sb . ~67!

Using a 103 10 matrix representation, the numerical sol
tions to Eq.~64! are presented in Fig. 4 for mode numbe
n51,2,...,4. Here, the solutions forVn5vn are purely real
(Imvn50), andRevn /n0 is plotted versusn/n0 in Fig. 4
for effective tune depressions ranging fromn/n050 (sb

51) to n/n051 (sb50). For each value ofn, note that the
n/n050 (v̂pb

2 /2gb
2vb'

2 51) intercept in Fig. 4 correspond
to the single frequencyRevn5A2n05A2vb'5v̂pb /gb in
the limit of high beam intensity. On the other hand,
n/n05(12sb)1/2 is increased~decreasing beam intensitysb

5v̂pb
2 /2gb

2vb'
2 ), it is evident from Fig. 4 that there is

discrete spectrum of stable oscillations with frequenc
$vn% that increase asn/n0 andn are increased. The gener
features of the solutions for$vn% presented in Fig. 4 forkz

50 perturbations about a warm-fluid waterbag equilibriu
are qualitatively similar to those for a warm-flui
Kapchinskij–Vladimirskij ~KV ! equilibrium,50 although the
precise values of$vn% differ asn/n0 is increased. For com
pleteness, shown in Fig. 5 are plots of the eigenfunct
dÊr

I (r ) versusr /r b for radial mode numbersn51,2,3 ob-
tained numerically from Eqs.~58!, ~60!, and ~64! for sb

50.36 andn/n050.8. Note from Fig. 5 that the number o
radial oscillations ofdÊr

I (r ) increase as the mode numbern
is increased. Moreover, for specified mode numbern, the
number of ‘‘zeros’’ of dÊr

I (r ) in the interval 0<r<r b is
equal ton11. Finally, for the numerical results presented
Figs. 4 and 5, we have used a 103 10 representation of the
matrix equations in Eqs.~58!, ~60!, and~64!.

FIG. 4. Plots ofRevn /n0 versusn/n0 for mode numbersn51,2,...,4 ob-
tained numerically from the matrix dispersion equation~64!. Here, n0

[vb' , andn/n05(12v̂pb
2 /2gb

2vb'
2 )1/2 is a measure of the depressed tun
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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C. Stability properties for K zÅ0 and GDÅ0

We now examine theT̂i50 eigenvalue equation~50! for
the general case where the normalized axial wavenum
Kz5kzr b is nonzero (kzÞ0). In this case, the eigenvalu
equation is more complicated than Eq.~51! and must gener-
ally be solved using numerical shooting techniques. In R
gion I ~the beam interior!, whereVpb

2 (R)Þ0, Eq.~50! can be
expressed as

1

R

]

]R
RH F V̂22

Vpb
2 ~R!

gb
2 ~11Kz

2GD
2 !G ]

]R
df̂ I~R!

1GD
2

Vpb
2 ~R!

gb
2 S 1

R

]

]R
R

]

]R
2

1

R2D ]

]R
df̂ I~R!

1
1

2
Kz

2GD
2 ]

]R S Vpb
4 ~R!/gb

2

V̂2
df̂ I~R!D J

2Kz
2@V̂22Vpb

2 ~R!#df̂ I~R!50, 0<R,1, ~68!

where V̂2[V2/v̂pb
2 , GD[lD' /r b , R[r /r b , Kz[kzr b ,

and Vpb
2 (R) is defined in Eq.~49!. On the other hand, in

Region II ~the vacuum region outside the beam!, where
Vpb

2 (R)50, Eq. ~50! becomes

1

R

]

]R
R

]

]R
df̂ II~R!2Kz

2df̂ II~R!50, 1,R<Rw , ~69!

where Rw[r w /r b . Equation ~69! is a modified Bessel’s
equation of order zero, and the solution that satis
df̂ II(R5Rw)50 and is continuous with the solutiondf̂ I(R)
at the beam edge (R51) is given by

df̂ II~R!5df̂ I~R51!

3
I 0~KzR!K0~KzRw!2K0~KzR!I 0~KzRw!

I 0~Kz!K0~KzRw!2K0~Kz!I 0~KzRw!
,

1,R<Rw , ~70!

whereI 0(x) andK0(x) are modified Bessel functions of th
first and second kinds, respectively, of order zero. In

FIG. 5. Plots of the eigenfunctiondÊr
I (r ) versusr /r b for radial mode num-

bers n51,2,3 obtained numerically from Eqs.~58!, ~60!, and ~64! for sb

50.36 andn/n050.8, using a 10310 representation of the matrix equa
tions.
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~70!, df̂ I(R51)[ lime→01
@df̂ I(R)#R512e , where df̂ I(R)

is the solution to Eq.~68! in the beam interior (0<R,1).
The remaining boundary condition at the beam edge is
tained by integrating the eigenvalue equation~68! across the
beam surface atR51. In this regard, we make use of the fa
that the profile forVpb

2 (R) approaches zero continuously a
R5r /r b approaches unity~from below!, except in the singu-
lar limit wheresb5v̂pb

2 /2gb
2vb'

2 51 andlD'50. Operating
on Eq.~68! with *12e

11edRR..., taking the limite→01 , and
making use of@Vpb

2 (R512e)#e→01
50 and the continuity

of df̂(R) at R51, we obtain

lim
e→01

F ]

]R
df̂ I~R!G

R512e

5 lim
e→01

F ]

]R
df̂ II~R!G

R511e

.

~71!

Equation~71! corresponds to continuity of the perturbed r
dial electric field at the beam surface, i.e., there is no surfa
charge perturbation atR51 for the warm-fluid waterbag
equilibrium profile forVpb

2 (R) in Eq. ~49!. Substituting the
solution fordf̂ II(R) in Eq. ~70! into Eq. ~71! gives

F ]

]R
df̂ I~R!G

R51

5Kzdf̂ I~R51!
K0~KzRw!I 08~Kz!2K08~Kz!I 0~KzRw!

K0~KzRw!I 0~Kz!2K0~Kz!I 0~KzRw!
,

~72!

whereI 08(x)5(d/dx)I 0(x), etc.,Rw5r w /r b andKz5kzr b .
In Eq. ~72!, the solution to Eq.~68! for df̂ I(R) in the

interval 0<R,1 depends on both the radial coordinateR

5r /r b and the normalized frequencyV̂5(v2kzVb)/v̂pb ,
as well as the normalized axial wavenumberKz5kzr b and
other system parameters such aslD' /r b and v̂pb

2 /2gb
2vb'

2 .
Therefore, once the solution fordf̂ I(R) is determined nu-
merically from Eq.~68!, the boundary condition atR51 in
Eq. ~72! effectively plays the role of adispersion relation
that determines the complex oscillation frequencyv
2kzVb)/v̂pb as a function ofkzr b and other system param
eters. We introduce the geometric factorg0 defined by

1

g0
5kzr b

K0~kzr w!I 08~kzr b!2K08~kzr b!I 0~kzr w!

K0~kzr w!I 0~kzr b!2K0~kzr b!I 0~kzr w!
, ~73!

wherekzr b5Kz andkzr w5KzRw . Equation~72! can then be
expressed as

D~V/v̂pb![F ]

]R
df̂ I~R!G

R51

2
1

g0
df̂ I~R51!50. ~74!

Equation~68! is a linear equation fordf̂ I(R), which can be
scaled by a constant amplitude factor. Therefore, as no
earlier,D(V/v̂pb)50, plays the role of a dispersion relatio
which determines the complex oscillation frequencyV/v̂pb

5(v2kzVb)/v̂pb . For future reference, the geometric fact
g0 defined by Eq.~73! can be approximated by
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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g05H 2 lnS r w

r b
D , for kz

2r w
2 !1,

2
1

kzr b
, for kz

2r b
2@1,

~75!

in the limits of long and short axial wavelengths. Shown
Fig. 6 is a plot ofg0 versuskzr b obtained from Eq.~73! for
the three cases,r b /r w51/2, r b /r w51/3, andr b /r w51/8.

D. Numerical solution for K zÅ0 and GDÅ0

The eigenvalue equation~68! is a linear fourth-order or-
dinary differential equation. AtR50, several of the coeffi-
cients are singular. AtR51, the beam edge, the coefficie
multiplying the highest-derivative term vanishes, causin
boundary layer. Since standard numerical integration te
niques are not applicable, we instead expand the solu
nearR50 in a Froebenius series. Using this analytical e
pansion near the origin where it is sufficiently accurate,
begin by numerically integrating from very nearR50 out to
the beam edge atR51, and also from nearR50, back to the
origin.

In stable regimes, the eigenfrequencies are real, an
the imaginary part of the eigenfunction, if chosen to be z
at the origin, is zero everywhere. For unstable modes,
complex eigenfrequency links the evolution of the real a
imaginary parts of the eigenfunction in Eq.~50!. Exterior to
the beam (1,R<Rw), the eigenfunctiondf̂ II(R) takes the
form in Eq. ~70!, which has constant complex phase out
the wall.

The linearity of Eq.~68! implies that the solution for
df̂ I(R) is arbitrary up to a constant, multiplicative, comple
factor. This freedom can be used in the unstable case to m
the matching of real and imaginary parts at the beam e
simpler. For present purposes, we choose the initial am
tude and phase atR50 such thatRe@df̂ I(R50)#51 and
Im@df̂ I(R50)#50. In the unstable case, integrating aw
from R50, the eigenfunction generally develops an ima
nary component withIm@df̂ I(R)#Þ0. Of course at the beam
edge (R51), there are four conditions to satisfy, corr
sponding to continuity ofdf̂(R),

FIG. 6. Plots of the geometric factorg0 defined in Eq.~73! versuskzr b for
r b /r w51/2, r b /r w51/3, andr b /r w51/8.
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Re@df̂ I~R51!#5Re@df̂ II~R51!#,
~76!

Im@df̂ I~R51!#5Im@df̂ II~R51!#,

and continuity of (]/]R)df̂(R) @see also Eq.~71!#,

ReF ]

]R
df̂ I~R!G

R51

5ReF ]

]R
df̂ II~R!G

R51

,

~77!

ImF ]

]R
df̂ I~R!G

R51

5ImF ]

]R
df̂ II~R!G

R51

.

We can automatically satisfy the matching conditions in E
~76! by appropriate choice of complex phase factor for t
solution fordf̂ II(R) in Eq. ~70!. In general, however, neithe
of the matching conditions on]df̂/]R at R51 in Eq. ~77!
will be satisfied unless the complex eigenfrequencyV5V r

1 iV i occurring in Eq.~68! is correctly chosen, which cor
responds to the dispersion relation in Eq.~74!. Therefore, in
the present shooting method, Eq.~68! is repeatedly inte-
grated, and the value ofV r1 iV i adjusted until the matching
conditions in Eq.~77! are satisfied, thereby determine th
desired eigenfrequency.

Using this method, Eqs.~68! and~70! have been solved
numerically subject to the boundary conditions in Eqs.~76!
and~77!, and the complex eigenfrequencyV5V r1 iV i and
eigenfunctiondf̂(R) have been determined self-consisten
over a wide range of system parameters correspondin
normalized beam intensity,sb5v̂pb

2 /2gb
2vb'

2 , tune depres-
sion, n/n05(12sb)1/2, transverse Debye length,GD

5lD' /r b , and axial wavenumber,Kz5kzr b . Here, keep in
mind thatsb andGD are related by Eq.~22!, so that very high
beam intensity (sb→1) corresponds toGD!1, and low
beam intensity (sb!1) corresponds toGD@1 ~see Fig. 2!.
BecauseT̂i50 is assumed in the present analysis, the te
proportional toKz

2GD
2 Þ0 in Eq. ~68! provides the free en-

ergy to drive instability associated with temperature anis
ropy (T̂'.T̂i). Typical numerical results obtained from Eq
~68!, ~70!, ~76!, and ~77! are illustrated in Figs. 7–13 for a
mildly relativistic beam withgb51.02 andr w /r b52. As a
general remark, beams which are cold in the transverse
rection oscillate stably at all values of axial waveleng
Beams with intermediate transverse temperatures are

FIG. 7. Plots ofRe(v2kzVb)/n0 versuskzr b obtained numerically from
Eqs.~68!, ~70!, ~76! and ~77! for GD50.360 (sb50.755).
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stable forall wavenumberskzr b larger than a critical value
Finally, beams which are sufficiently hot in the transve
direction have afinite instability bandwidth inkzr b : shorter
wavelengths and long wavelengths are stable, while wa
lengths in a range aboutkzr bGD;1 are unstable. That is, th
growth rate of sufficiently temperature-dominated bea
turns over and approaches zero at large values ofkzr b .
~From the analysis in Sec. IV B, keep in mind that the syst
is stable forkz50.! For the choice of waterbag equilibrium
considered here withT̂i50, the onset of instability occur
for

GD.GD* 50.364, sb,sb* 50.750,
n

n0
.

n*

n0
50.500. ~78!

The inequalities in Eq.~78! are equivalent conditions@see
Eqs. ~22!, ~67!, and Fig. 2#. For increasing values ofGD

relative toGD* , the instability bandwidth first increases, e
compassing both higher and lower axial wavenumbers.
even warmer beams, however, high values ofkzr b become
stabilized, while the region of instability continues to shift
smaller axial wavenumbers.

Figures 7 and 8 show typical numerical results for t
choice of system parametersGD50.360 (sb50.755), corre-
sponding tostableoscillations withImV5Imv50. Plotted
in Fig. 7 isRe(v2kzVb)/n0 versuskzr b for then51 eigen-
mode, whereas Fig. 8 shows the corresponding eigenfunc

FIG. 8. Plots of eigenfunctiondf̂(r ) versusr /r b for several values ofkzr b

for the choice of system parameters in Fig. 7.

FIG. 9. Plots ofRe(v2kzVb)/n0 andImv/n0 versuskzr b obtained numeri-
cally from Eqs.~68!, ~70!, ~76! and~77! for the choice of system paramete
GD50.509 (sb50.55).
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df̂(r ) ~assumed real! plotted versusr /r b for several values
of kzr b . The high-frequency~upper! branch in Fig. 7 corre-
sponds to the familiar plasma oscillation branch conside
in Sec. IV B forkz50, extended to nonzero values ofkzr b .
The lower ~slow-wave! branch in Fig. 7 starts at zero fre
quency forkz50, andRe(v2kzVb) increases linearly with
kzr b for kzr b,1, and then asymptotes atRe(v2kzVb)
.1.03n0 for kzr b@1, for the choice of system parameters
Fig. 7. On the other hand, the upper~high-frequency! branch
in Fig. 7 asymptotes atRe(v2kzVb).1.3n0 for kzr b@1.
From Fig. 8, as expected, forkz50 then51 eigenfunction
df̂(r ) has a node precisely at the beam edge (r 5r b). On the
other hand, askzr b is increased, the eigenfunctiondf̂(r )
extends radially well into the vacuum region, withdf̂(r
5r w)50.

For GD.GD* , the two branches in Fig. 7 coalesce askzr b

is increased beyond some critical valuekz* (GD)r b . Typical
numerical results in this case are illustrated in Figs. 9–11
the choice of system parametersGD50.509 (sb50.55).
From Fig. 9, for 0<kzr b,kz* r b50.968, the eigenvalue
equation supports two real oscillatory solutions withImv
50. For kbr b.kz* r b50.968, however, the two modes co
lesce and have the same value ofRe(v2kzVb), and com-
plex conjugate values ofImv ~one mode is damped, and th
other is growing!. The normalized growth rateImv/n0 of
the unstable branch is plotted versuskzr b in Fig. 9, and in-
creases from Imv50 at kzr b5kz* r b50.968, to Imv
.0.4n0 for kzr b@1. Consistent with Fig. 9, the correspon
ing eigenfunction plots ofRe@df̂(r )# and Im@df̂(r )# ver-
susr /r b are presented in Figs. 10 and 11 for several val
of kzr b corresponding to instability. For moderately low va
ues ofkzr b , the eigenfunction for the unstable mode has
distinctive n51 mode structure illustrated in Fig. 10 fo
kzr b54. As kzr b is increased, however, the real part of t
eigenfunction,Re@df̂(r )#, changes continuously from ann
51 to ann52 mode structure as shown by the progress
in Fig. 11. For very largekzr b.10, the boundary layer atr
5r b becomes very sharp, with large changes inRe@df̂(r )#
over a very short radial scale. The radial mode number, h
ever, does not appear to change fromn52. Of course, per-
turbations with such large values ofkzr b are of limited prac-
tical interest because the modes would be stabilized (Imv

50) at short axial wavelengths by finiteT̂iÞ0 effects in an

FIG. 10. Plots ofRe@df̂(r )# and Im@df̂(r )# versusr /r b for kzr b54 and
the choice of system parameters in Fig. 9.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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analysis of the more complete eigenvalue equation~45!.
For completeness, shown in Fig. 12 are plots of the n

malized growth rateImv/n0 versuskzr b obtained numeri-
cally from Eqs.~68!, ~70!, ~76!, and ~77! for several values
of GD.GD* andsb,sb* . Note from Fig. 12 that critical value
of kzr b for onset of instability increases asGD is increased
(sb is decreased!, and that the maximum normalized grow
rate (Imv)max/n0 increases asGD is increased (sb is de-
creased!. For sufficiently large values ofGD ~large enough
transverse emittance!, we also note from Fig. 12 that th
instability has a finite bandwidth inkzr b , whereas for
smaller values ofGD , the maximum growth rate occurs fo
kzr b@1. For T̂iÞ0 ~but T̂i,T̂'), it is expected that the
more complete eigenvalue equation~45! will always give a
finite instability bandwidth inkzr b . Finally, a corresponding
plot of the maximum normalized growth rate (Imv)max/n0

versus depressed tunen/n05(12sb)1/2 is shown in Fig. 13.
Note from Fig. 13 that the onset of instability occurs f
n/n0.n* /n050.5 for the choice of system parameters he
@see Eq.~78!#.

V. CONCLUSIONS

To briefly summarize, following a discussion of th
macroscopic warm-fluid model and the waterbag equilibri
in Sec. II, we linearized the macroscopic fluid equations
small-amplitude perturbations in Sec. III, and derived
single eigenvalue equation for the perturbed electrostatic
tential df(x,t), allowing for arbitrary anisotropy in the per

FIG. 11. Plots ofRe@df̂(r )# versusr /r b for several values ofkzr b and the
choice of system parameters in Fig. 9.

FIG. 12. Plots ofImv/n0 versuskzr b obtained numerically from Eqs.~68!,
~70!, ~76! and ~77! for several values ofGD.GD* andsb,sb* .
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pendicular and parallel pressures,P'
0 (r ) andPi

0(r ). Detailed
stability properties were calculated numerically in Sec.
for the case of extreme anisotropy withPi

0(r )50 and
P'

0 (r )Þ0, assuming axisymmetric wave perturbatio
(]/]u50) of the form df(x,t)5df̂(r )exp(ikzz2ivt),
wherekz is the axial wavenumber, andImv.0 corresponds
to instability ~temporal growth!. For kz50, the analysis of
the eigenvalue equation led to a discrete spectrum$vn% of
stable oscillations withImvn50, wheren is the radial mode
number~Sec. IV B!. On the other hand, for sufficiently larg
values ofkzr b , wherer b is the beam radius, the analysis
the eigenvalue equation led to an anisotropy-driven insta
ity ( Imv.0) provided the normalized Debye length (GD

5lD' /r b) is sufficiently large and the normalized beam i
tensity (sb5v̂pb

2 /2gb
2/2gb

2vbb
2 ) is sufficiently below the

space-charge limit~Sec. IV C!. Depending on system param
eters, it is found that the growth rate can be a substan
fraction of the applied focusing frequencyvb' .

In conclusion, application of a warm-fluid model to d
scribe the equilibrium and stability properties of inten
charged particle beams appears to be a remarkably ro
and simple approach, both for the case of stable hi
frequency oscillations considered by Lund and Davidson50

as well as the unstable case considered here, where th
stability is driven by gross macroscopic properties of t
beam equilibrium~pressure anisotropy!.
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