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This paper considers an intense non-neutral charged particle beam propagating-thirdwtion
through a periodic focusing quadrupole magnetic field with transverse focusing fereg/s)
x[xéx—yéy], on the beam particles. Hers= B, ct is the axial coordinate,y,—1)m,c? is the
directed axial kinetic energy of the beam particlgg, and m, are the charge and rest mass,
respectively, of a beam particle, and the oscillatory lattice coefficient satigfi@s S) = «4(s),
whereSis the axial periodicity length of the focusing field. The particle motion in the beam frame

is assumed to be nonrelativistic, and the Vlasov-Maxwell equations are employed to describe the
nonlinear evolution of the distribution functiofy(x,y,x’,y’,s) and the(normalized self-field
potential #(X,y,s)=0q,¢(X,Y,s)/ yﬁmbﬁﬁcz in the transverse laboratory-frame phase space
(x,y,x",y"), assuming a thin beam with characteristic radiyxS. It is shown that collective
processes and the nonlinear transverse beam dynamics can be simulated in a compact Paul trap
configuration in which a long non-neutral plasma colurhg~{ ;) is confined axially by applied dc

voltagesV =const on end cylinders at=+L, and transverse confinement in tke y plane is
provided by segmented cylindrical electrodes radiusr,) with applied oscillatory voltages
+Vy(t) over 90° segments. Her®y(t+T) =V,(t), whereT=const is the oscillation period, and
the oscillatory quadrupole focusing force on a particle with chargad massn near the cylinder
axis is —mxq(t)[xe—ye], where kq(t)=8qVy(t)/mmrs. © 2000 American Institute of
Physics[S1070-664X00)01103-4

I. INTRODUCTION (rp<<9), intense charged particle beam propagating through
a periodic focusing quadrupole magnetic field with axial pe-
Periodic focusing accelerators and transport systes riodicity lengthS=const. In Sec. Ill, a compact Paul tFag°

have a wide range of applications ranging from basic scienconfiguration is described which simulates the equivalent
tific research, to applications such as heavy ion fusion, spakgllective processes and nonlinear transverse beam dynamics
lation neutron sources, and nuclear waste treatment, to Mefy 4 periodic focusing quadrupole transport system. The idea
tion a few examples. Of particular interest, at the high beamy using a single-species trap to model periodically focused
currents and charge densities of practical interest, are thgo,m propagation has previously been discussed by Oka-
combined effects of the applied focusing field and the intense, ;:o and Tanak¥ The emphasis of their work is on sole-
self-fields produced by the beam space charge and current @pyiqa| confinemer?” whereas the present analysis focuses

determl_nmg detailed equ!llbrlum, .Stab'“ty’ and tranqurton periodic quadrupole confinement. In addition, the present
properties: Through analytical studies based on the nonl|n-analysis treats the case of arbitratyt periodi¢ time de-
ear Vlasov-Maxwell equations, and numerical simulations

. o . . pendence of the focusing potential.

using particle-in-cell models and nonlinear perturbative To bri . i

; . . : 0 briefly summarize, a long non-neutral plasma column
simulation techniques, considerable progress has been made . , ; ) -
in developing an improved understanding of the collectivell>"p) is confined axially by applied dc voltage¥
processes and nonlinear beam dynamics characteristic 6fcOnst on end cylinders at=*L, and transverse confine-
high-intensity beam propagatibi#in periodic focusing and Mentin thex—y plane is provided by segmented cylindrical
uniform focusing transport systems. Nonetheless, it remaingléctrodes(at radiusr,) with applied oscillatory voltages
important to develop an improved basic understanding of the" Vo(t) over 90° segments(Fig. 1). Here, Vo(t+T)
nonlinear dynamics and collective processes in periodically=Vo(t), where T=const is the oscillation period, and the
focused intense charged particle beams, with the goal gescillatory quadrupole focusing force on a particle with
identifying operating regimes for stablguiescent beam chargeq and massm near the cylinder axis is-muq(t)
propagation over large distances, including a minimum deg>[xe,—ye,], WhereKq(t)ESqVO(t)/wmrfv. This configu-
radation of beam quality and luminosity. ration offers the possibility of simulating intense beam

In this paper, we present in Sec. Il a brief summary ofpropagation over large distances in a compact configuration

the nonlinear Vlasov-Maxwell equations describing the col-which is stationaryin the laboratory frame. The Paul trap
lective processes and nonlinear transverse dynamics of a thanalogy described in the present paper is intended to simu-
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P(X,Y,5) =dpb(X.Y,S)/ yompBic®, where ¢(x,y,s) is the
electrostatic potential. For a thin beam,€&S), the trans-
verse focusing force on a beam particle produced by the
periodic quadrupole field can be approximated over the cross
section of the beam by

Froc= — kq(S)[x&—y8&,], 1)

where ,y) is the transverse displacement of a particle from
the beam axis, and the-dependent focusing coefficient
Kq(S+S) = kqy(s) is defined by

dbBg(S)
YoMy BrC?

Here, the field gradientB(s) is defined by Bg(s)

= (9B 3y) (0,0=(IBy/X)(00). Note from Eg. (2) that
Kq(8) has the dimensions of (lengt. In terms of the nor-
malized self-field potential #(X,y,S)=0q,¢(X,y,S)/
yim,B2c? and the distribution functiof,(x,y,x’,y’,s), the
nonlinear beam dynamics and collective processes in the
laboratory-frame transverse phase spacg,k’,y’) are de-
scribed  self-consistently by the  Vlasov-Maxwell

, _ equation$?®
FIG. 1. (a) Axial confinement of a longl{>r,) non-neutral plasma column

Kq(S)= 2

is provided by applied dc voltag&=const on end cylinders at=+L; (b) J 9 oY
Transverse confinement of the non-neutral plasma column is provided by _— 4 y/ +y ——| ko(S)X+ — | —
cylindrical electrodes at radius=r,, with applied oscillatory voltages Js Ix ay 4 X/ gx’
+V(t) over 90° segments with/o(t+T)=Vy(t) andfgdtvo(t)=0.
ay\ 9

- —Kq(s)y+w — =0, €
late continuous beam propagation in a periodic focusing ay
transport ling(not a storage ring In this regard, as indicated and
in Sec. lll, it is important that the trapped plasma be suffi-
ciently long L>r,) that the characteristic bounce frequency 2 g2 47qu
for axial motion in Fig. 1 be much smaller than the charac- —t == 3—22f dx'dy’fy. 4
teristic transverse oscillation frequency (< &)q) in the ap- Xt oy YoMoB5C
plied oscillatory voltage/o(t). Here, ny(x,y,s)=fdx'dy’f, is the number density of the

beam particles. Moreover, the laboratory-frame Hamiltonian

Il. THEORETICAL MODEL FOR INTENSE BEAM H, (x,y,x",y’,s) for transverse single-particle motion con-
PROPAGATION THROUGH A PERIODIC FOCUSING sistent with Eqs(3) and(4) is given(in dimensionless unijs

QUADRUPOLE MAGNETIC FIELD by

We consider a thin, intense charged particle beam with . a1 s 2
characteristic radiusr, and average axial momentum Hoxyxy',8)= 2 (X" "4y ) + 2 kq(S) (X" = y?)

v,MpBpC propagating in ther-direction through a periodic +4(X,Y,S). (5)
focusing quadrupole magnetic field with axial periodicity Y
length S Here,r,<S is assumed, §,— 1)m,c? is the di- The nonlinear Vlasov-Maxwell equatioi3) and(4) are

rected axial kinetic energy of the beam particleg=(1 rich in physics content and are widely used to describe the
—,6’%)‘1’2 is the relativistic mass factok/,= 8,c is the av-  stability and transport properties of an intense non-neutral
erage axial velocityg, andm, are the particle charge and beam propagating through a periodic focusing quadrupole
rest mass, respectively, aeds the speed of lighin vacua  field «q(s+S)=«4(s). While considerable progress has
In addition, the particle motion in the beam frame is assumedeen made in analytical and numerical studies of Egp.

to be nonrelativistic. We introduce the scaled time variableand (4),’~2* detailed calculations of the equilibrium and sta-
s=Byct, and the(dimensionless transverse velocities’ bility behavior are generally complex because the quadru-
=dx/ds and y’=dy/ds. Then, within the context of the pole focusing coefficienk(s) is boths-dependent and os-
assumptions summarized above, the nonlinear beam dynaroilatory, with fgdSKq(s)=O for a periodic focusing lattice.
ics in the transverse, laboratory-frame phase spackdeed, only recently has a canonical transformation been
(x,y,x',y") is described self-consistently by the nonlineardevelopeé&®?*that utilizes an expanded generating function
Vlasov-Maxwell equations for the distribution function that transforms away the rapidly oscillating terms in Ej,
fp(X,y,x",y’,s) and the normalized self-field potential leading to a Hamiltonian in the transformed variables,
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H(g(,yf,,~,,S):(1/2)(§(Iz+§,2)+(1/2)Kfq(§(2+§2) for 0$ésr$ andd'IOﬁ 0<2. INear thed cylinder axis r(
+¥(X,Y,s), wherex,= const(independent o). <rw), Eq.(7) readily gives to lowest order,
qalX,y,) = FMiqg(t)(x*—y?), ®

I1l. COMPACT PAUL TRAP CONFIGURATION TO
MODEL PERIODICALLY FOCUSED INTENSE where the oscillatory quadrupole focusing coefficieg(t)
BEAM PROPAGATION OVER LARGE DISTANCES is defined by

In practical accelerator applications, if the spacing be- 8qVy(t)
tween quadrupole magnets correspofigs example to S Kq(t)= > - 9
=2m, and the transverse nonlinear beam dynamics de- Ml

scribed by Eqs(3)—(5) is to be followed in detail for 500 Erom Egs. (6) and (9), note that kq(t+T)=x4(t) and
lattice periods, then the length of the transport system that iﬂdtxq(t)=0. Moreover k4(t) has dimensions atime) 2.
required is 1 km. The obvious question arises as to whethayjost importantly, from Eq(7), the leading-order correction
or not it is possible tanodelthe nonlinear transverse beam g Eq.(8) is of order (1/3)¢/r,,)*. Therefore, for example, if
dynamics described by Eq&)—(5) in a compactaboratory  the characteristic radial dimensiog of the plasma column
configuration. The answer igs and the key is to recognize in Fig. 1 satisfiesr,/r,,<0.1, then the corrections to the
that the particle motion in the frame of the beam is nonrelasimp|e quadrupole potential in E¢7) are smaller than one
tivistic, and that the oscillatory quadrupole focusing terms inpart in 1¢ over the transverse region occupied by the plasma
Egs.(5) can be simulated in the laboratory frame by applyingparticles. That is, for sufficiently smail,/r,,, Eq. (8) is a
OSCi”atory Voltages to Cylindrical electrodes in a modified h|gh|y accurate representation of the app“ed quadrupo'e fo-
Paul trap>*°as illustrated in Fig. 1. A Paul trdp* utilizes  cusing potentiath,(x,y,t). Use of 60° electrodes instead of
oscillatory voltages applied to external electrodes to provideo° electrodes could in principle be used to minimize the
transverse confinement of the non-neutral plasma inxthe potential contribution proportional ta {r.,)°.

—Y plane, whereas transverse confinement in a Malmberg- \we now construct the Hamiltonian for the transverse
Penning tra®**is provided by an applied axial magnetic particle motion, neglecting axial variations/gz=0). De-

field Boe, . noting the (dimensional transverse particle velocities by

A. Trap configuration =dx/dt andy=dy/dt, and the self-field electrostatic poten-

. . . tial due to the plasma space charge Y1), it readil
To model an axially continuous charged particle beamI 3 P P gedyx.y.0), i 'y

(or a very long charge bunghwe consider a long non- foIIow’s'that the (dimensiona) Hamiltoqian.HL(.x,y,x,y,t)
neutral plasma columfFig. 1(a)] with length 2 and char- describing the transverse particle motion is given by
acteristic radius ,<L, confined axially by applied dc volt-
ages\7=const on end cylinders at==*L. The particles
making up the(nonrelativistid non-neutral plasma in Fig. +aos(X,y,1), (10
1(a) have chargeg and massm With regard to transverse where use has been made of E8). The striking feature of

conf!nemerln of the pa'lrnclles n the_ﬁy plane, there is no the transverse Hamiltonian in EQ.0) is that it is identical in
applied axial magnetic fieldBo=Boe,=0). Rather, seg- fynctional form to the transverse Hamiltonian defined in Eq.
mented cylindrical electroddst radiusr,,) have applied os- (5) provided we make the replacements

cillatory voltages+ V(t) over 90° segments with the polar-

ity illustrated in Fig. 1b). Here, the applied voltagé,(t) is t—s,
oscillatory with

Vo(t+T)=V(1),

H, (%Y, Xy, 0= 3m(x2+y?) + Fmug(t) (x2—y?)

(X,y)—(x"y"),

©® a B
detVO(t):O, m¢S(X1y1t) lib(xayvs)1 (11)
0

whereT=const is the period, anty=1/T is the oscillation Kq(DEQ. (9)]=rq(S)[EQ. (2)],
frequency. While different electrode shapes will resultinan 1 o R
oscillatory quadrupole potential near the cylinder axis, the EHL(X,y,X,y,t)—>HL(X,y,X',Y',S),
configuration shown in Fig. (b) is particularly simple and
amenable to direct calculation. Neglecting end effectsn Eq.(10). Therefore, the collective processes and nonlinear
(d/9z=0), and representing the applied electric fieldly transverse dynamics described by EXQ) and the configu-
==V, ¢a(x,y,t), whereV, -E;=0 andV, XE,=0, it is  ration in Fig. 1 are fully equivalent to the collective pro-
readily shown that the solution 2 ¢,(x,y,t)=0 that sat- cesses and nonlinear transverse dynamics described by Eq.
isfies the appropriate boundary conditionsratr,, in Fig.  (5) for an intense non-neutral beam propagating through a
1(b) is given by periodic focusing quadrupole magnetic field, provided we
AV . sinl /2 ol make the replacements in E¢l1l). For example, intense
ba(x,y )= o(t) 2 sin(l @ )(L) cog216) (7) b_eam p_ropaggtlon through 5(_)0 guadrupole magnet Iattl_ce pe-
T (=1 | r riods Sis equivalent to studying the transverse dynamics of

w
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the compact non-neutral plasma configuration in Fig. 1 1.5 ' (A ‘ l "(a)
(which is axially stationaryin the laboratory framefor 500 Rl
oscillation periodsT of the voltageVy(t).

For completeness, consistent with E¢0) and Fig. 1,
we summarize here the nonlinear Vlasov-Poisson equations
describing the self-consistent evolution of the distribution %" 0.0 : ' : :

function f(x,y,x,y,t) and self-field electrostatic potential
d<(x,y,t) in the transverse phase space,y(x,y). Of

course, the characteristics of the nonlinear Vlasov equation ) R
correspond to the single-particle orbit equations calculated ' | | |
from Eq. (10), with dx, /dt=m~%oH, /ax, and dx, /dt o o5 10 s Lo
=—-m~19H, /ox, . It readily follows that the nonlinear t/T
Vlasov-Poisson equations fdir(x,y,x,y,t) and ¢4(x,y,t)
consistent with the Hamiltonian in E¢LO) can be expressed
as 1.5 T T ! T I T (b)
I 50 o 39,9 i | n/z-=of e
at P ax gy TRl o ok P
q d d
- —Kq(t)yJFE@% ey fp=0, (12 k() 0.0 , N T R R R
and
G bo=—4 fd'd'f (13) T
—+— | ps=—4m xdyf,
ax2  ay?) " ° a Y -15 A T S
. . ) 0.0 0.5 1.0 1.5 2.0
wheren(x,y,t) = fdxdyf is the particle number density. As t/T

expected, the collective processes and transverse plasma dy-

namics described by the nonlinear Vlasov-Poisson equatiorfé?- 2. lllustrative oscillatory waveform; for the quat_jrupo_le focusing coef-
(12) and(13) for the non-neutral plasma configuration in Fig. "ont <a(t) =(8a/mm)Vo(t) corresponding tea) the sinusoidal waveform

1 areidentical to those described by Eq) and (4) for an et =¥aSin(@m/T), where «,=const, and(b) a periodic step-function

. . S . ith waveform with maximum amplitude, and filling factor ».

intense beam propagating through a periodic focusing quaow a

rupole magnetic field, provided we make the replacements in

Eq. (11).

As noted earlier, the Paul trap analogy described in thiso-moderate density, the peridq, and characteristic plasma
section is intended to simulate the transverse dynamics of eadiusr , are related approximately B, ~2r ,/vy,. There-
continuousbeam propagating in a periodic focusing transportfore, in an approximate sense, the transverse and axial oscil-
line. Furthermore, the Hamiltonian in EQLO) and the non-  |ation frequencies and periods stand in the ra&ig/foq
linear Vlasov-Poisson equatiois2) and(13) describe only =Ty/T,~r,/2L<1 (by assumption On a time scalet
the transverse dynamics of the long non-neutral plasma col- T, the(finite-length effects of the axial bounce motion of
umn (L>rp) in Fig. 1, andzvariations and axial particle particles in the Paul trap configuration illustrated in Fig. 1
motions are not included in the description. While such acan pecome important, and limit the validity of the Paul trap
model is expected to provide a good description of the transanalogy with the propagation of a continuous beam through a
verse dynamics of the plasma column fopr,,, there are  periodic quadrupole lattice. For sufficiently large>r,,
important limitations on the range of applicability of the Paul however, the axial bounce peridt, can be very long. As
trap analogy for simulating the propagation of a continuousjjystrative parameters, consider the case wheye 1 cm,

beam through a periodic focusing lattice. Most importantly,2| =200 cm, and the frequendy=1/T of the applied os-

the non-neutral plasma column illustrated in Fig. 1 is con-Cillatory voltage Vy(t) is wa0~4&)q_ In this case,T,

fined axially, and the particles execute axial bounce motion_ 200T,~800T, whereT is the oscillation period o¥(t).

between the ends of the plasma colufahz==*L). If we | - . A .
n this case, a typical particle in Fig. 1 experiences the ef-
denote the characteristic thermal speed of a particlefy ypica. p g P

df be similar in th ¢ cts of 800 oscillation periods of the quadrupole focusing
(assume or pre_sent purposes to be simifar in the axia an§otential (800 equivalent lattice perigdsefore it executes
transverse directions then the characteristic bounce fre-

by one axial bounce in the trap.
quency for the axial motion of a particle i8,=27/T,, )
whereT,~4L/v+y, is the period. We denote the characteris-B- Operating range
tic oscillation frequency for transverse particle motion in the  Typical oscillatory waveforms for the quadrupole focus-
oscillatory quadrupole potential b;?;q=277/Tq (see Sec. ing coefficientx,(t) =(8a/mm)Vy(t) defined in Eq.(9) are
lIB), whereT is the period for transverse motion. At low- illustrated in Fig. 2. Here, Fig. () corresponds to a sinu-
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soidal waveform with x4(t)= k4 Sin(2at/T), where x, INg Vo=100V andr,=10cm, Eg. (15 gives n<2.8
= const andT = 1/f, is the oscillation period, and Fig(ty ~ *<10°cm™2, andf, should be in the MHz range in order to
corresponds to a periodic step-function lattice with maxi-Satisfy the right-most inequality in E415). _
mum amplitude:}q and filling factor 7. In concludmg this _sect|on, we reiterate that the main
The oscillatory applied potentialn2) x,(t) (x2—y?), purpose of th|s. paper is tp show the analogy between the
in Eq. (10) [or, equivalently, (1/2;)rq(s)(x2—y02) in Eq. (5] transverse particle _dyna_rmcs in a long non-neutral plasma
typically results in a non-neutral plasma colurfor intense ~ c0lumn L>ry,) confined in a Paul trafEgs. (10), (12), and
charged particle beanthat has a pulsating elliptical cross (131 and the transverse particle dynamics in a continuous
section in thex—y plane?®2®In this regard, it is convenient charged particle beam propagating through a periodic focus-

to denote the on-axisr 0) plasma density by and the ing quadrupole fieldEgs.(3)~(5)]. While it is not the pur-
corresponding plasma frequency by,= (4mhqZ/m)Y2 pose of this paper to present an experimental design, it
p= .

o should be noted that many of the experimental techniques
From Eq.(10), we further denote the characteristamgulay [see, for example, Refs. 31-Br plasma formation, den-

oscillation frequencyy for the transverse motion of a single sjty diagnostics, transverse temperature diagnostics, etc., de-
particle in the (maximun) focusing field by qu|Kq|l/2 veloped by the non-neutral plasma trap community over the
=18qVy/mmr2| Y2 whereV,=|Vo(t)|max is the maximum years are expected to be applicable. For example, a pure
applied voltage. Transverse confinenféwff the non-neutral ~ electron plasma column many thermal Debye lengths in di-
plasma by the field requires, /2< a,. On the other hand, ameter can be formed using a spiral tungsten filarflerit.
applicability of Hamiltonian averaging techniqd@& typi- The e_Iect_rons would flow into the trap region from the left
cally requires that the oscillation frequentyof the applied (&Y in Fig. 1, and then be trapped axially by applying dc
voltage Vy(t) be sufficiently large and that the maximum €nd voltages.
voltageV, be sufficiently small that Zf, exceedswy by a
sufficiently large amount. Combining these inequa?ities givegv' CONCLUSIONS
In summary, in this paper we presented in Sec. Il a brief
1. . description of the nonlinear Vlasov-Maxwell equations de-
E wp=0q=<2mfo, (14 scribing the collective processes and nonlinear transverse dy-
namics of a thin {,<<S), intense charged particle beam
or equivalently, propagating through a periodic focusing quadrupole mag-
. 1 netic field with axial periodicity lengtls=const. In Sec. I,
1 [4mng® 1 a compact Paul trap configuration was described, which fully
\/§2w( m ) “2x simulates the equivalent collective processes and nonlinear
transverse beam dynamics in a periodic focusing transport
The inequalities in Eq(15) are expected to assure robust system. This configuratiofFig. 1) offers the possibility of
confinement of the plasma particles by the oscillatory volt-simulating intense beam propagation over large distances in
age in Fig. 1. With regard to the right-most inequalities ina compact configuration which &ationaryin the laboratory
Egs. (14) and (15), to assure applicability of Hamiltonian frame.
averaging techniques;®* and also to avoid the important
envelope instability associated with an overly strong focus- ACKNOWLEDGMENTS
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