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A Paul trap configuration to simulate intense non-neutral beam
propagation over large distances through a periodic focusing
quadrupole magnetic field
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This paper considers an intense non-neutral charged particle beam propagating in thez-direction
through a periodic focusing quadrupole magnetic field with transverse focusing force,2kq(s)
3@xêx2yêy#, on the beam particles. Here,s5bbct is the axial coordinate, (gb21)mbc2 is the
directed axial kinetic energy of the beam particles,qb and mb are the charge and rest mass,
respectively, of a beam particle, and the oscillatory lattice coefficient satisfieskq(s1S)5kq(s),
whereS is the axial periodicity length of the focusing field. The particle motion in the beam frame
is assumed to be nonrelativistic, and the Vlasov-Maxwell equations are employed to describe the
nonlinear evolution of the distribution functionf b(x,y,x8,y8,s) and the~normalized! self-field
potential c(x,y,s)5qbf(x,y,s)/gb

3mbbb
2c2 in the transverse laboratory-frame phase space

(x,y,x8,y8), assuming a thin beam with characteristic radiusr b!S. It is shown that collective
processes and the nonlinear transverse beam dynamics can be simulated in a compact Paul trap
configuration in which a long non-neutral plasma column (L@r p) is confined axially by applied dc
voltagesV̂5const on end cylinders atz56L, and transverse confinement in thex2y plane is
provided by segmented cylindrical electrodes~at radius r w) with applied oscillatory voltages
6V0(t) over 90° segments. Here,V0(t1T)5V0(t), whereT5const is the oscillation period, and
the oscillatory quadrupole focusing force on a particle with chargeq and massm near the cylinder
axis is 2mkq(t)@xêx2yêy#, where kq(t)[8qV0(t)/pmrw

2 . © 2000 American Institute of
Physics.@S1070-664X~00!01103-4#
s
ien
pa

e
am
t

ns
nt
or
in
n

ive
a

iv
c

ain
th
al
l

eg

o
ol
th

gh
e-

ent
mics
dea
ed
ka-
-
es
ent

n

-
al

e
ith

m
tion
p
mu-
I. INTRODUCTION

Periodic focusing accelerators and transport system1–6

have a wide range of applications ranging from basic sc
tific research, to applications such as heavy ion fusion, s
lation neutron sources, and nuclear waste treatment, to m
tion a few examples. Of particular interest, at the high be
currents and charge densities of practical interest, are
combined effects of the applied focusing field and the inte
self-fields produced by the beam space charge and curre
determining detailed equilibrium, stability, and transp
properties.1 Through analytical studies based on the nonl
ear Vlasov-Maxwell equations, and numerical simulatio
using particle-in-cell models and nonlinear perturbat
simulation techniques, considerable progress has been m
in developing an improved understanding of the collect
processes and nonlinear beam dynamics characteristi
high-intensity beam propagation7–24 in periodic focusing and
uniform focusing transport systems. Nonetheless, it rem
important to develop an improved basic understanding of
nonlinear dynamics and collective processes in periodic
focused intense charged particle beams, with the goa
identifying operating regimes for stable~quiescent! beam
propagation over large distances, including a minimum d
radation of beam quality and luminosity.

In this paper, we present in Sec. II a brief summary
the nonlinear Vlasov-Maxwell equations describing the c
lective processes and nonlinear transverse dynamics of a
1021070-664X/2000/7(3)/1020/6/$17.00
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(r b!S), intense charged particle beam propagating throu
a periodic focusing quadrupole magnetic field with axial p
riodicity lengthS5const. In Sec. III, a compact Paul trap25,26

configuration is described which simulates the equival
collective processes and nonlinear transverse beam dyna
in a periodic focusing quadrupole transport system. The i
of using a single-species trap to model periodically focus
beam propagation has previously been discussed by O
moto and Tanaka.27 The emphasis of their work is on sole
noidal confinement,27 whereas the present analysis focus
on periodic quadrupole confinement. In addition, the pres
analysis treats the case of arbitrary~but periodic! time de-
pendence of the focusing potential.

To briefly summarize, a long non-neutral plasma colum

(L@r p) is confined axially by applied dc voltagesV̂
5const on end cylinders atz56L, and transverse confine
ment in thex2y plane is provided by segmented cylindric
electrodes~at radiusr w) with applied oscillatory voltages
6V0(t) over 90° segments~Fig. 1!. Here, V0(t1T)
5V0(t), where T5const is the oscillation period, and th
oscillatory quadrupole focusing force on a particle w
chargeq and massm near the cylinder axis is2mkq(t)

3@xêx2yêy#, wherekq(t)[8qV0(t)/pmrw
2 . This configu-

ration offers the possibility of simulating intense bea
propagation over large distances in a compact configura
which is stationary in the laboratory frame. The Paul tra
analogy described in the present paper is intended to si
0 © 2000 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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late continuous beam propagation in a periodic focus
transport line~not a storage ring!. In this regard, as indicate
in Sec. III, it is important that the trapped plasma be su
ciently long (L@r p) that the characteristic bounce frequen
for axial motion in Fig. 1 be much smaller than the chara
teristic transverse oscillation frequency (v̂z!v̂q) in the ap-
plied oscillatory voltageV0(t).

II. THEORETICAL MODEL FOR INTENSE BEAM
PROPAGATION THROUGH A PERIODIC FOCUSING
QUADRUPOLE MAGNETIC FIELD

We consider a thin, intense charged particle beam w
characteristic radiusr b and average axial momentum
gbmbbbc propagating in thez-direction through a periodic
focusing quadrupole magnetic field with axial periodic
length S. Here, r b!S is assumed, (gb21)mbc2 is the di-
rected axial kinetic energy of the beam particles,gb5(1
2bb

2)21/2 is the relativistic mass factor,Vb5bbc is the av-
erage axial velocity,qb and mb are the particle charge an
rest mass, respectively, andc is the speed of lightin vacuo.
In addition, the particle motion in the beam frame is assum
to be nonrelativistic. We introduce the scaled time varia
s5bbct, and the~dimensionless! transverse velocitiesx8
5dx/ds and y85dy/ds. Then, within the context of the
assumptions summarized above, the nonlinear beam dyn
ics in the transverse, laboratory-frame phase sp
(x,y,x8,y8) is described self-consistently by the nonline
Vlasov-Maxwell equations for the distribution functio
f b(x,y,x8,y8,s) and the normalized self-field potentia

FIG. 1. ~a! Axial confinement of a long (L@r p) non-neutral plasma column

is provided by applied dc voltagesV̂5const on end cylinders atz56L; ~b!
Transverse confinement of the non-neutral plasma column is provide
cylindrical electrodes at radiusr 5r w with applied oscillatory voltages
6V0(t) over 90° segments withV0(t1T)5V0(t) and*0

TdtV0(t)50.
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c(x,y,s)5qbf(x,y,s)/gb
3mbbb

2c2, where f(x,y,s) is the
electrostatic potential. For a thin beam (r b!S), the trans-
verse focusing force on a beam particle produced by
periodic quadrupole field can be approximated over the cr
section of the beam by

Ffoc52kq~s!@xêx2yêy#, ~1!

where (x,y) is the transverse displacement of a particle fro
the beam axis, and thes-dependent focusing coefficien
kq(s1S)5kq(s) is defined by

kq~s!5
qbBq8~s!

gbmbbbc2
. ~2!

Here, the field gradientBq8(s) is defined by Bq8(s)
5(]Bx

q/]y)(0,0)5(]By
q/]x)(0,0) . Note from Eq. ~2! that

kq(s) has the dimensions of (length)22. In terms of the nor-
malized self-field potential c(x,y,s)5qbf(x,y,s)/
gb

3mbbb
2c2 and the distribution functionf b(x,y,x8,y8,s), the

nonlinear beam dynamics and collective processes in
laboratory-frame transverse phase space (x,y,x8,y8) are de-
scribed self-consistently by the Vlasov-Maxwe
equations1,23

H ]

]s
1x8

]

]x
1y8

]

]y
2S kq~s!x1

]c

]x D ]

]x8

2S 2kq~s!y1
]c

]y D ]

]y8
J f b50, ~3!

and

S ]2

]x2
1

]2

]y2D c52
4pqb

2

gb
3mbbb

2c2E dx8dy8 f b . ~4!

Here, nb(x,y,s)5*dx8dy8 f b is the number density of the
beam particles. Moreover, the laboratory-frame Hamilton
Ĥ'(x,y,x8,y8,s) for transverse single-particle motion con
sistent with Eqs.~3! and~4! is given~in dimensionless units!
by

Ĥ'~x,y,x8,y8,s!5 1
2 ~x821y82!1 1

2 kq~s!~x22y2!

1c~x,y,s!. ~5!

The nonlinear Vlasov-Maxwell equations~3! and~4! are
rich in physics content and are widely used to describe
stability and transport properties of an intense non-neu
beam propagating through a periodic focusing quadrup
field kq(s1S)5kq(s). While considerable progress ha
been made in analytical and numerical studies of Eqs.~3!
and ~4!,7–24 detailed calculations of the equilibrium and st
bility behavior are generally complex because the quad
pole focusing coefficientkq(s) is both s-dependent and os
cillatory, with *0

Sdskq(s)50 for a periodic focusing lattice
Indeed, only recently has a canonical transformation b
developed23,24 that utilizes an expanded generating functi
that transforms away the rapidly oscillating terms in Eq.~5!,
leading to a Hamiltonian in the transformed variable

by
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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H(X̃,Ỹ,X̃8,Ỹ8,s)5(1/2)(X̃821Ỹ82)1(1/2)k f q(X̃21Ỹ2)
1c(X̃,Ỹ,s), wherek f q5const~independent ofs).

III. COMPACT PAUL TRAP CONFIGURATION TO
MODEL PERIODICALLY FOCUSED INTENSE
BEAM PROPAGATION OVER LARGE DISTANCES

In practical accelerator applications, if the spacing b
tween quadrupole magnets corresponds~for example! to S
52m, and the transverse nonlinear beam dynamics
scribed by Eqs.~3!–~5! is to be followed in detail for 500
lattice periods, then the length of the transport system tha
required is 1 km. The obvious question arises as to whe
or not it is possible tomodelthe nonlinear transverse bea
dynamics described by Eqs.~3!–~5! in a compactlaboratory
configuration. The answer isyes, and the key is to recogniz
that the particle motion in the frame of the beam is nonre
tivistic, and that the oscillatory quadrupole focusing terms
Eqs.~5! can be simulated in the laboratory frame by applyi
oscillatory voltages to cylindrical electrodes in a modifi
Paul trap,25,26 as illustrated in Fig. 1. A Paul trap28,29 utilizes
oscillatory voltages applied to external electrodes to prov
transverse confinement of the non-neutral plasma in thx
2y plane, whereas transverse confinement in a Malmb
Penning trap30–35 is provided by an applied axial magnet
field B0êz .

A. Trap configuration

To model an axially continuous charged particle be
~or a very long charge bunch!, we consider a long non
neutral plasma column@Fig. 1~a!# with length 2L and char-
acteristic radiusr p!L, confined axially by applied dc volt
ages V̂5const on end cylinders atz56L. The particles
making up the~nonrelativistic! non-neutral plasma in Fig
1~a! have chargeq and massm. With regard to transverse
confinement of the particles in thex2y plane, there is no
applied axial magnetic field (B05B0êz50). Rather, seg-
mented cylindrical electrodes~at radiusr w) have applied os-
cillatory voltages6V0(t) over 90° segments with the pola
ity illustrated in Fig. 1~b!. Here, the applied voltageV0(t) is
oscillatory with

V0~ t1T!5V0~ t !,
~6!E

0

T

dtV0~ t !50,

whereT5const is the period, andf 051/T is the oscillation
frequency. While different electrode shapes will result in
oscillatory quadrupole potential near the cylinder axis,
configuration shown in Fig. 1~b! is particularly simple and
amenable to direct calculation. Neglecting end effe
(]/]z50), and representing the applied electric field byEa

52¹'fa(x,y,t), where ¹'•Eq50 and ¹'3Eq.0, it is
readily shown that the solution to¹'

2 fa(x,y,t)50 that sat-
isfies the appropriate boundary conditions atr 5r w in Fig.
1~b! is given by

fa~x,y,t !5
4V0~ t !

p (
l 51

`
sin~ lp/2!

l S r

r w
D 2l

cos~2lu! ~7!
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for 0<r<r w and 0<u<2p. Near the cylinder axis (r
!r w), Eq. ~7! readily gives to lowest order,

qfa~x,y,t !5 1
2 mkq~ t !~x22y2!, ~8!

where the oscillatory quadrupole focusing coefficientkq(t)
is defined by

kq~ t ![
8qV0~ t !

mpr w
2

. ~9!

From Eqs. ~6! and ~9!, note that kq(t1T)5kq(t) and
*0

Tdtkq(t)50. Moreover,kq(t) has dimensions of~time!22.
Most importantly, from Eq.~7!, the leading-order correction
to Eq.~8! is of order (1/3)(r /r w)4. Therefore, for example, if
the characteristic radial dimensionr p of the plasma column
in Fig. 1 satisfiesr p /r w&0.1, then the corrections to th
simple quadrupole potential in Eq.~7! are smaller than one
part in 104 over the transverse region occupied by the plas
particles. That is, for sufficiently smallr p /r w , Eq. ~8! is a
highly accurate representation of the applied quadrupole
cusing potentialfa(x,y,t). Use of 60° electrodes instead o
90° electrodes could in principle be used to minimize t
potential contribution proportional to (r /r w)6.

We now construct the Hamiltonian for the transver
particle motion, neglecting axial variations (]/]z50). De-
noting the~dimensional! transverse particle velocities byẋ
5dx/dt andẏ5dy/dt, and the self-field electrostatic poten
tial due to the plasma space charge byfs(x,y,t), it readily
follows that the~dimensional! Hamiltonian H'(x,y,ẋ,ẏ,t)
describing the transverse particle motion is given by

H'~x,y,ẋ,ẏ,t !5 1
2 m~ ẋ21 ẏ2!1 1

2 mkq~ t !~x22y2!

1qfs~x,y,t !, ~10!

where use has been made of Eq.~8!. The striking feature of
the transverse Hamiltonian in Eq.~10! is that it is identical in
functional form to the transverse Hamiltonian defined in E
~5! provided we make the replacements

t→s,

~ ẋ,ẏ!→~x8,y8!,

q

m
fs~x,y,t !→c~x,y,s!, ~11!

kq~ t !@Eq. ~9!#→kq~s!@Eq. ~2!#,

1

m
H'~x,y,ẋ,ẏ,t !→Ĥ'~x,y,x8,y8,s!,

in Eq. ~10!. Therefore, the collective processes and nonlin
transverse dynamics described by Eq.~10! and the configu-
ration in Fig. 1 are fully equivalent to the collective pro
cesses and nonlinear transverse dynamics described by
~5! for an intense non-neutral beam propagating throug
periodic focusing quadrupole magnetic field, provided
make the replacements in Eq.~11!. For example, intense
beam propagation through 500 quadrupole magnet lattice
riods S is equivalent to studying the transverse dynamics
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the compact non-neutral plasma configuration in Fig.
~which is axiallystationaryin the laboratory frame! for 500
oscillation periodsT of the voltageV0(t).

For completeness, consistent with Eq.~10! and Fig. 1,
we summarize here the nonlinear Vlasov-Poisson equat
describing the self-consistent evolution of the distributi
function f (x,y,ẋ,ẏ,t) and self-field electrostatic potentia
fs(x,y,t) in the transverse phase space (x,y,ẋ,ẏ). Of
course, the characteristics of the nonlinear Vlasov equa
correspond to the single-particle orbit equations calcula
from Eq. ~10!, with dx' /dt5m21]H' /] ẋ' and dẋ' /dt
52m21]H' /]x' . It readily follows that the nonlinea
Vlasov-Poisson equations forf (x,y,ẋ,ẏ,t) and fs(x,y,t)
consistent with the Hamiltonian in Eq.~10! can be expresse
as

H ]

]t
1 ẋ

]

]x
1 ẏ

]

]y
2S kq~ t !x1

q

m

]

]x
fsD ]

] ẋ

2S 2kq~ t !y1
q

m

]

]y
fsD ]

] ẏJ f b50, ~12!

and

S ]2

]x2
1

]2

]y2D fs524pqE dẋdẏf , ~13!

wheren(x,y,t)5*dẋdẏf is the particle number density. A
expected, the collective processes and transverse plasm
namics described by the nonlinear Vlasov-Poisson equat
~12! and~13! for the non-neutral plasma configuration in Fi
1 areidentical to those described by Eqs.~3! and ~4! for an
intense beam propagating through a periodic focusing qu
rupole magnetic field, provided we make the replacement
Eq. ~11!.

As noted earlier, the Paul trap analogy described in
section is intended to simulate the transverse dynamics
continuousbeam propagating in a periodic focusing transp
line. Furthermore, the Hamiltonian in Eq.~10! and the non-
linear Vlasov-Poisson equations~12! and ~13! describe only
the transverse dynamics of the long non-neutral plasma
umn (L@r p) in Fig. 1, andz-variations and axial particle
motions are not included in the description. While such
model is expected to provide a good description of the tra
verse dynamics of the plasma column forL@r p , there are
important limitations on the range of applicability of the Pa
trap analogy for simulating the propagation of a continuo
beam through a periodic focusing lattice. Most importan
the non-neutral plasma column illustrated in Fig. 1 is co
fined axially, and the particles execute axial bounce mot
between the ends of the plasma column~at z56L!. If we
denote the characteristic thermal speed of a particle byvTh

~assumed for present purposes to be similar in the axial
transverse directions!, then the characteristic bounce fr
quency for the axial motion of a particle isv̂z52p/Tz ,
whereTz;4L/vTh is the period. We denote the character
tic oscillation frequency for transverse particle motion in t
oscillatory quadrupole potential byv̂q52p/Tq ~see Sec.
III B !, whereTq is the period for transverse motion. At low
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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to-moderate density, the periodTq and characteristic plasm
radiusr p are related approximately byTq;2r p /vTh . There-
fore, in an approximate sense, the transverse and axial o
lation frequencies and periods stand in the ratiov̂z /v̂q

5Tq /Tz;r p/2L!1 ~by assumption!. On a time scalet
;Tz , the~finite-length! effects of the axial bounce motion o
particles in the Paul trap configuration illustrated in Fig.
can become important, and limit the validity of the Paul tr
analogy with the propagation of a continuous beam throug
periodic quadrupole lattice. For sufficiently largeL@r p ,
however, the axial bounce periodTz can be very long. As
illustrative parameters, consider the case wherer p51 cm,
2L5200 cm, and the frequencyf 051/T of the applied os-
cillatory voltage V0(t) is 2p f 0;4v̂q . In this case,Tz

;200Tq;800T, whereT is the oscillation period ofV0(t).
In this case, a typical particle in Fig. 1 experiences the
fects of 800 oscillation periods of the quadrupole focus
potential (800 equivalent lattice periods! before it executes
one axial bounce in the trap.

B. Operating range

Typical oscillatory waveforms for the quadrupole focu
ing coefficientkq(t)5(8q/pm)V0(t) defined in Eq.~9! are
illustrated in Fig. 2. Here, Fig. 2~a! corresponds to a sinu

FIG. 2. Illustrative oscillatory waveforms for the quadrupole focusing co
ficient kq(t)5(8q/pm)V0(t) corresponding to~a! the sinusoidal waveform

kq(t)5k̂q sin(2pt/T), where k̂q5const, and~b! a periodic step-function

with waveform with maximum amplitudek̂q and filling factorh.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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soidal waveform with kq(t)5k̂q sin(2pt/T), where k̂q

5const andT51/f 0 is the oscillation period, and Fig. 2~b!
corresponds to a periodic step-function lattice with ma
mum amplitudek̂q and filling factorh.

The oscillatory applied potential, (m/2)kq(t)(x22y2),
in Eq. ~10! @or, equivalently, (1/2)kq(s)(x22y2) in Eq. ~5!#
typically results in a non-neutral plasma column~or intense
charged particle beam! that has a pulsating elliptical cros
section in thex2y plane.23,26 In this regard, it is convenien
to denote the on-axis (r 50) plasma density byn̂ and the
corresponding plasma frequency byv̂p[(4pn̂q2/m)1/2.
From Eq.~10!, we further denote the characteristic~angular!
oscillation frequencyv̂q for the transverse motion of a sing
particle in the ~maximum! focusing field by v̂q[uk̂qu1/2

5u8qV̂0 /pmrw
2 u1/2, where V̂05uV0(t)umax is the maximum

applied voltage. Transverse confinement23 of the non-neutral
plasma by the field requiresv̂p /A2,v̂q . On the other hand
applicability of Hamiltonian averaging techniques23,24 typi-
cally requires that the oscillation frequencyf 0 of the applied
voltage V0(t) be sufficiently large and that the maximu
voltageV̂0 be sufficiently small that 2p f 0 exceedsv̂q by a
sufficiently large amount. Combining these inequalities giv

1

A2
v̂p,v̂q!2p f 0 , ~14!

or equivalently,

1

A22p
S 4pn̂q2

m
D 1/2

,
1

2p U 8qV̂0

pmrw
2U1/2

! f 0 . ~15!

The inequalities in Eq.~15! are expected to assure robu
confinement of the plasma particles by the oscillatory vo
age in Fig. 1. With regard to the right-most inequalities
Eqs. ~14! and ~15!, to assure applicability of Hamiltonian
averaging techniques,23,24 and also to avoid the importan
envelope instability4 associated with an overly strong focu
ing field, the oscillation frequencyf 0 of the applied voltage
V0(t) should be several times larger thanv̂q/2p.

Equation~15! applies to either a single-species pure i
plasma or to a pure electron plasma. For a non-neutral e
tron plasma (q52e andm5me), which is relatively simple
to create and confine in a practical sense,31–35 Eq. ~15! be-
comes

6.353103~ n̂!1/2,1.073107
~V̂0!1/2

r w
! f 0 , ~16!

where n̂, V̂0 , r w , and f 0 are expressed in units of cm23,
volts, cm, and s21, respectively. As illustrative design pa
rameters for a pure electron plasma, we takeV̂05100 V and
r w510 cm. Equation~16! then gives the requirements th
n̂,2.83106 cm23 and thatf 0 exceed several tens of MHz
which are both tractable requirements from a practi
standpoint.31–35 For a pure ion plasma, the requirements
the oscillation frequencyf 0 are less stringent. For exampl
for protons (m5mp , q51e, andme /mp51/1836), assum-
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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ing V05100 V and r w510 cm, Eq. ~15! gives n̂,2.8
3106 cm23, and f 0 should be in the MHz range in order t
satisfy the right-most inequality in Eq.~15!.

In concluding this section, we reiterate that the ma
purpose of this paper is to show the analogy between
transverse particle dynamics in a long non-neutral plas
column (L@r p) confined in a Paul trap@Eqs.~10!, ~12!, and
~13!# and the transverse particle dynamics in a continu
charged particle beam propagating through a periodic foc
ing quadrupole field@Eqs. ~3!–~5!#. While it is not the pur-
pose of this paper to present an experimental design
should be noted that many of the experimental techniq
@see, for example, Refs. 31–35# for plasma formation, den-
sity diagnostics, transverse temperature diagnostics, etc.
veloped by the non-neutral plasma trap community over
years are expected to be applicable. For example, a
electron plasma column many thermal Debye lengths in
ameter can be formed using a spiral tungsten filament.31–35

The electrons would flow into the trap region from the le
~say! in Fig. 1, and then be trapped axially by applying
end voltages.

IV. CONCLUSIONS

In summary, in this paper we presented in Sec. II a b
description of the nonlinear Vlasov-Maxwell equations d
scribing the collective processes and nonlinear transverse
namics of a thin (r b!S), intense charged particle bea
propagating through a periodic focusing quadrupole m
netic field with axial periodicity lengthS5const. In Sec. III,
a compact Paul trap configuration was described, which fu
simulates the equivalent collective processes and nonlin
transverse beam dynamics in a periodic focusing trans
system. This configuration~Fig. 1! offers the possibility of
simulating intense beam propagation over large distance
a compact configuration which isstationaryin the laboratory
frame.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval R
search and the Department of Energy. The authors wis
thank Dr. H. Okamoto and Dr. H. Tanaka for providing the
with a preprint of their paper27 on this subject before it was
published. One of the authors~G.S.! also acknowledges the
benefit of useful discussions with Dr. A. Ogata on the an
ogy between the Paul trap and periodic quadrupole focus

1R. C. Davidson,Physics of Nonneutral Plasmas~Addison-Wesley, Read-
ing, MA, 1990!, and references therein.

2A. W. Chao, Physics of Collective Beam Instabilities in High Energ
Accelerators~Wiley, New York, 1993!.

3D. A. Edwards and M. J. Syphers,An Introduction to the Physics o
High-Energy Accelerators~Wiley, New York, 1993!.

4M. Reiser,Theory and Design of Charged Particle Beams~Wiley, New
York, 1994!.

5T. P. Wangler,Principles of RF Linear Accelerators~Wiley, New York,
1998!.

6J. D. Lawson,The Physics of Charged-Particle Beams~Oxford Science,
New York, 1988!.

7I. Kapchinskij and V. Vladimirskij, inProceedings of the Internationa
Conference on High Energy Accelerators and Instrumentation~CERN
Scientific Information Service, Geneva, 1959!, p. 274.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



or

um

pic

ics

ics

s.

.

1025Phys. Plasmas, Vol. 7, No. 3, March 2000 A Paul trap configuration to simulate intense . . .
8R. L. Gluckstern, inProceedings of the 1970 Proton Linear Accelerat
Conference, Batavia, IL, edited by M. R. Tracy~National Accelerator
Laboratory, Batavia, IL, 1971!, p. 811.

9T.-S. Wang and L. Smith, Part. Accel.12, 247 ~1982!.
10I. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part. Accel.13, 145

~1983!.
11I. Hofmann and J. Struckmeier, Part. Accel.21, 69 ~1987!.
12J. Struckmeier and I. Hofmann, Part. Accel.39, 219 ~1992!.
13N. Brown and M. Reiser, Phys. Plasmas2, 969 ~1995!.
14R. C. Davidson and C. Chen, Part. Accel.59, 175 ~1998!.
15R. C. Davidson, W. W. Lee, and P. H. Stoltz, Phys. Plasmas5, 279~1998!.
16R. C. Davidson, Phys. Rev. Lett.81, 991 ~1998!.
17R. C. Davidson, Phys. Plasmas5, 3459~1998!.
18P. H. Stoltz, R. C. Davidson, and W. W. Lee, Phys. Plasmas6, 298~1999!.
19W. W. Lee, Q. Qian, and R. C. Davidson, Phys. Lett. A230, 347 ~1997!.
20Q. Qian, W. W. Lee, and R. C. Davidson, Phys. Plasmas4, 1915~1997!.
21A. Friedman and D. P. Grote, Phys. Fluids B4, 2203~1992!.
22A. Friedman, J. J. Barnard, D. P. Grote, and I. Haber, Nucl. Instr

Methods Phys. Res. A415, 455 ~1998!.
23R. C. Davidson, H. Qin, and P. J. Channell, Phys. Rev. Special To

Accel. Beams.2, 074401~1999!.
24P. J. Channell, Phys. Plasmas6, 982 ~1999!.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
.

s

25R. C. Davidson, H. Qin, and G. Shvets, American Institute of Phys
Conference Proceedings496, 295 ~1999! ~American Institute of Physics,
Melville, New York, 1999!.

26R. C. Davidson, H. Qin, and G. Shvets, American Institute of Phys
Conference Proceedings496, 309 ~1999! ~American Institute of Physics,
Melville, New York, 1999!.

27H. Okamoto and H. Tanaka, Nucl. Instrum. Methods Phys. Res. A437,
178 ~1999!.

28W. Paul and H. Steinwedel, Z. Naturforsch. A8, 448 ~1953!.
29D. J. Wineland, W. M. Itano, and R. S. Vandyck, Jr., Adv. At. Mol. Phy

19, 135 ~1983!.
30T. M. O’Neil and D. H. E. Dubin, Phys. Plasmas5, 2163~1998!.
31E. H. Chao, R. C. Davidson, and S. F. Paul, J. Vac. Sci. Technol. A17,

2050 ~1999!.
32E. H. Chao, S. F. Paul, and R. C. Davidson, J. Vac. Sci. Technol. A17,

2034 ~1999!.
33D. H. E. Dubin and T. M. O’Neil, Rev. Mod. Phys.71, 87 ~1999!.
34A. W. Hyatt, C. F. Driscoll, and J. H. Malmberg, Phys. Rev. Lett.59, 2975

~1987!.
35D. L. Eggleston, C. F. Driscoll, B. R. Beck, A. W. Hyatt, and J. H

Malmberg, Phys. Fluids B4, 3432~1992!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp


