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Phase space structure for matched intense charged-particle beams
in periodic focusing transport systems
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Test particle motion is analyzed analytically and numerically in the field configuration consisting of
the equilibrium self-electric and self-magnetic fields of a well-matched, thin, continuous, intense
charged-particle beam and an applied periodic focusing solenoidal magnetic field. The self fields are
determined self-consistently, assuming the beam to have a uniform-density, rigid-rotor Vlasov
equilibrium distribution. Using the Hamilton–Jacobi method, the betatron oscillations of test
particles in the average self fields and applied focusing field are analyzed, and the nonlinear
resonances induced by periodic modulations in the self fields and applied field are determined. The
Poincare´ surface-of-section method is used to analyze numerically the phase-space structure for test
particle motion outside the outermost envelope of the beam over a wide range of system parameters.
For vacuum phase advancesv580°, it is found that the phase-space structure is almost entirely
regular at low beam intensity~phase advances*70°, say!, whereas at moderate beam intensity
~30°&s&70°!, nonlinear resonances appear, the most pronounced of which is the third-order
primary nonlinear resonance. As the beam intensity is further increased~s&30°!, the widths of the
higher-order nonlinear resonances increase, and the chaotic region of phase space increases in size.
Furthermore, the many chaotic layers associated with the separatrices of the primary and secondary
nonlinear resonances are still divided by the remaining invariant Kolmogorov–Arnold–Moser
surfaces, even at very high beam intensities. The implications of the rich nonlinear resonance
structure and chaotic particle motion found in the present test-particle studies are discussed in the
context of halo formation. ©1999 American Institute of Physics.@S1070-664X~99!03409-6#
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I. INTRODUCTION

Halo formation and control in intense charged-parti
beams has been the subject of recent vigorous theore
computational, and experimental investigations.1–20 It is of
fundamental importance in the development of ne
generation high-intensity accelerators for basic scientific
search in high-energy and nuclear physics, as well as f
wide variety of applications ranging from heavy ion fusio
accelerator production of tritium, accelerator transmutat
of nuclear waste, spallation neutron sources, and high-po
free-electron lasers. In these high-intensity accelerat
beam halos must be controlled in order to minimize be
losses and activation of the accelerator structure.

It is well known that a space-charge-dominated be
can develop a sizable halo if there is a root-mean-squ
~rms! mismatch between the beam and the transp
system.2–4,6,10–12The mechanism for halo formation in rms
mismatched beams has been well developed in the part
core model.3,6 When there is a sizable mismatch, the halo c
contain a substantial fraction~up to 15%! of the entire beam.

Recently, it has been shown theoretically5,9,15,16 that in
periodic focusing transport systems, radial nonuniformit
in charge density in rms-matched space-charged-domin

a!Electronic mail: chenc@psfc.mit.edu
3641070-664X/99/6(9)/3647/11/$15.00
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beams can also cause halo formation. The mechanism
halo formation in rms-matched beams has been identi
with chaotic particle motion21 and nonlinear resonances o
curring in the vicinity of the boundary of phase space oc
pied by the particles in the beam core. Invaria
Kolmogorov–Arnold–Moser~KAM ! surfaces21 play an im-
portant role in confining halo particles transverse to the
rection of beam propagation.

The purpose of this paper is to analyze the dynamics
test particles in the field configuration consisting of the eq
librium self-electric and self-magnetic fields of a we
matched, thin, continuous, intense charged-particle beam
an applied periodic focusing solenoidal magnetic field. U
like previous studies of halo formation in rms-mismatch
beams and rms-matched beams with nonuniformities
charge density,1–20 this paper addresses the fundamen
question of how the phase-space structure varies with b
intensity, focusing field strength and beam rotation under
best conditions corresponding to a matched equilibri
beam. Therefore, in the present analysis, the self fields22 are
determined self-consistently, assuming the beam to hav
uniform-density rigid-rotor Vlasov equilibrium
distribution23,24 which includes the well-known
Kapchinskij–Vladirmirskij ~KV ! beam equilibrium
distribution25 as a special case. Using the Hamilton–Jac
method, the betatron oscillations of test particles in the av
7 © 1999 American Institute of Physics
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age self fields and applied field are analyzed, and the non
ear resonances induced by periodic modulations in the
fields and applied field are determined. The Poincare´ surface-
of-section method21 is used to analyze the phase-space str
ture for test particle motion outside the outermost envel
of the beam over a wide range of system parameters.
found that the phase-space structure changes significant
the canonical angular momentum (Pu), beam intensity~as
measured bySK/«T or s/sv), vacuum phase advancesv ,
or beam rotation (vb) is varied. The implications of the rich
nonlinear resonance structure and chaotic particle mo
found in the present test-particle studies are discussed in
context of halo formation. By examining the intrinsic pro
erties of phase space of test particle motion outside o
perfectly matched beam as a function of beam intensity,
cusing field strength and beam rotation, we gain valua
insights as to which operating regimes are more or less
bust against the ejection of halo particles from the be
under small beam mismatch and/or collective excitations
the beam core.

To briefly summarize, based on a comprehensive st
of the phase-space structure for test-particle motion
vacuum phase advancesv580°, we find that the phase
space structure is almost entirely regular at low beam in
sity ~phase advances*70°, say!, whereas at moderate bea
intensity ~30°&s&70°!, nonlinear resonances appear, t
most pronounced of which is the third-order primary nonl
ear resonance. As the beam intensity is further increa
~s&30°!, the widths of the higher-order nonlinear res
nances increase, and the chaotic region of phase spac
creases in size. Furthermore, the many chaotic layers as
ated with the separatrices of the primary and second
nonlinear resonances are still divided by the remaining
variant KAM surfaces, even at very high beam intensiti
Therefore, in the context of the present test-particle analy
chaotic layers donot form an extended chaotic region i
phase space. In actual beam propagation experiments,
ever, it is expected that sufficient beam mismatch or per
bations about the periodically focused beam equilibrium
cause the particles to cross the invariant surfaces and fo
halo.

The organization of this paper is as follows. After a d
cussion of the theoretical model and assumptions in Sec
the betatron oscillations and nonlinear resonances are
lyzed using the Hamilton–Jacobi method in Sec. III. T
phase-space structure of test particle motion over hund
of lattice periods is examined numerically in Sec. IV. Co
clusions are given in Sec. V.

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we consider a thin, continuo
intense charged-particle beam propagating in thez direction
with characteristic axial velocitybbc and kinematic energy
gbmc2 through the periodic focusing solenoidal magne
field

Bsol~x!5Bz~s!ez2
1
2 Bz8~s!~xex1yey!. ~1!
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Here, ex and ey are unit Cartesian vectors perpendicular
the beam propagation direction,s5z is the axial coordinate,
xex1yey is the transverse displacement from the beam a
at (x,y)5(0,0), the superscript ‘‘prime’’ denotesd/ds with
Bz8(s)5dBz(s)/ds, and the axial component of magnet
field satisfies

Bz~s1S!5Bz~s!, ~2!

whereS is the axial period of the focusing field.
To determine the self-electric and self-magnetic field22

consistently, we make the following assumptions:~a! the
Budker parametern5Nbq2/mc2 for the beam is small com
pared withgb ; ~b! the axial momentum spread of the bea
particles is small in comparison withgbmbbc; ~c! the beam
is axisymmetric~]/]u50!; and ~d! the beam is perfectly
matched into the focusing field with uniform density profi
over the beam cross section,

nb~r ,s!5H Nb /pr b
2~s!, 0<r ,r b~s!

0, r .r b~s!.
~3!

In Eq. ~3!, r 5(x21y2)1/2 is the radial coordinate,r b(s)
5r b(s1S) is the outer envelope of the beam, andNb

52p*0
`nbr dr 5const. is the number of particles per un

axial length. The periodic outer beam enveloper b(s)5r b(s
1S) corresponds to a special solution of the beam envel
equation23,24

d2r b

ds2 1ks~s!r b2
K

r b
2

«T
2

r b
3 50, ~4!

where K52q2Nb /gb
3bb

2mc2 is the normalized perveance
kz(s)5@qBz(s)/2gbbbmc2#25@Vc(s)/2bbc#2 is the focus-
ing parameter,«T5 const. is the total unnormalized emi
tance,q andm are the particle charge and rest mass, resp
tively, and c is the speed of lightin vacuo. The transverse
phase-space distribution that self-consistently generates
density profile in Eq.~3! is discussed in the Appendix.

Consistent with the thin-beam assumption (r b!S), the
scalar potential for the self-electric fieldEs52¹fs is deter-
mined from

1

r

]

]r
r

]fs

]r
524pqnb~r ,s!, ~5!

where use has been made of the approximation¹2>¹'
2 .

Integrating Eq.~5! for the density profile in Eq.~3!, and
applying the boundary conditionfs(r 5r w ,s)50 at the wall
of a perfectly conducting cylindrical tube with constant r
dius r w yields

fs~r ,s!

5H qNb~12r 2/r b
2!12qNb ln~r w /r b!, 0<r ,r b~s!

2qNb ln~r w /r !, r b~s!,r<r w .

~6!

Because the axial momentum spread is assumed to be n
gibly small, the vector potential for the self-magnetic fie
Bs5¹3(Az

sez) is given approximately by

Az
s~r ,s!5bbfs~r ,s!, ~7!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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wherebbc is the characteristic axial velocity of the beam
In the analysis of the particle motion, it is convenient

transform to the Larmor frame26 which rotates with angula
velocity duL /ds52Akz(s)52qBz(s)/2gbbbmc2 relative
to the laboratory frame, i.e.,

x̃~s!5x~s!cos@uL~s!#1y~s!sin@uL~s!#, ~8!

ỹ~s!52x~s!sin@uL~s!#1y~s!cos@uL~s!#. ~9!

In cylindrical coordinates (r̃ ,ũ) in the Larmor frame, the
equations of motion transverse to the direction of be
propagation can be derived from the normalized Hamilton

H̃'~ r̃ ,P̃r ,P̃u ,s!5
1

2 S P̃r
21

P̃u
2

r̃ 2D 1
1

2
kz~s! r̃ 21c~ r̃ ,s!, ~10!

where the normalized self-field potentialc( r̃ ,s) is defined
by

c~ r̃ ,s!5
q

gb
3mbb

2c2 fs~ r̃ ,s!

5H ~K/2!@12 r̃ 2/r b
2~s!#1K ln@r w /r b~s!#,

0< r̃ ,r b~s!

K ln@r w / r̃ #, r b~s!, r̃<r w .

~11!

From Eq.~10!, the equations of motion can expressed as

dr̃

ds
5

]

] P̃r

H̃'5 P̃r , ~12!

dũ

ds
5

]

] P̃u

H̃'5
P̃u

r̃ 2
, ~13!

dP̃r

ds
52

]

] r̃
H̃'5

P̃u
2

r̃ 3
2kz~s! r̃ 2

]

] r̃
c~ r̃ ,s!, ~14!

dP̃u

ds
52

]

]ũ
H̃'50. ~15!

It follows from Eq. ~15! that the canonical angular mome
tum is conserved, i.e.,

P̃u5 x̃P̃y2 ỹP̃x5const., ~16!

which is expected for axisymmetric beam propagation. Co
bining Eqs.~12! and ~14! yields

d2r̃

ds2 1kz~s! r̃ 2
P̃u

2

r̃ 3
1

]

] r̃
c~ r̃ ,s!50. ~17!

For a particle in the beam interior (r̃ ,r b), the equation of
motion ~17! is integrable. For a particle outside the bea
( r̃ .r b), the equation of motion is generallynonintegrable21

because of the nonlinear dependence of]c/] r̃ on the radial
coordinater̃ .
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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III. ANALYSIS OF NONLINEAR RESONANCES

In this section, we analyze the nonlinear resonance
the particle motion in the Larmor frame described by E
~17!. To simplify the notation, we omit the ‘‘tilde’’ in Lar-
mor frame variables in the remainder of this paper. F
present purposes, the Hamiltonian in Eq.~10! is expressed as

H'~r ,Pr ,Pu ,s!5H0~r ,Pr ,Pu!1H1~r ,Pr ,Pu ,s!, ~18!

where

H0~r ,Pr ,Pu!5 1
2 Pr

21V0~r ,Pu!

[
1

2
Pr

21
1

2
k̄zr

21
Pu

2

2r 2 1c~r ,s!ur b(s)5 r̄ b
, ~19!

H1~r ,Pr ,Pu ,s!5 1
2 @kz~s!2k̄z#r

21c~r ,s!

2c~r ,s!ur b(s)5 r̄ b
. ~20!

In Eqs. ~18!–~20!, c(r ,s) is defined in Eq.~11!, and the
effective mean beam radiusr̄ b is defined by

r̄ b5S «TS

s D 1/2

, ~21!

where s5«T*s
s1S ds/r b

2(s) is the space-charge-depress
phase advance for the rigid-rotor Vlasov equilibrium. T
effective mean focusing parameterk̄z occurring in Eqs.~19!
and ~20! is defined by

k̄z5
K

r̄ b
2

1
«T

2

r̄ b
4

. ~22!

Physically, the HamiltonianH0 provides a good approximat
description of the~slow! betatron oscillations, whereas th
perturbationH1 describes nonlinear resonances induced
the ~fast! oscillations inkz(s) and r b(s).

For future references, Fig. 1 shows a plot of the norm
ized beam radiusr b(s)/ r̄ b versus normalized propagatio
distances/S, obtained numerically by integrating the bea
envelope equation~4! for intense beam propagation throug
a periodic step-function lattice with

FIG. 1. Plot of the normalized beam radiusr b(s)/ r̄ b vs normalized propa-
gation distances/S for intense beam propagation through a periodic ste

function lattice. Here,r w / r̄ b55 is assumed, and the choice of system p

rameters corresponds to:h50.2, S2k̂z56.5, andSK/«T54.0.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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kz~s!5H k̂z , 0<s,hS/2

0, hS/2<s,S2hS/2

k̂z , S2hS/2<s,S.

~23!

Here, k̂z5const., kz(s1S)5kz(s), and h is the so-called
filling factor for the lattice. In Fig. 1,r w / r̄ b55 is assumed,
and the choice of system parameters corresponds to:h50.2,
S2k̂z56.5, SK/«T54.0. The vacuum and space-charg
depressed phase advances are found to besv
5«T*s

s1S ds/r b
2(s)uK50568° and s5«T*s

s1S ds/r b
2(s)

518.6°, respectively.

A. Betatron oscillation frequency

BecausePu is a constant of the motion andH0 is inde-
pendent of s, the unperturbed motion described by t
HamiltonianH0 is integrable. Figure 2 shows a plot of th
normalized effective potential (S/«T)V0(r ,Pu) versus nor-
malized radial coordinater / r̄ b for intense beam propagatio
through the periodic step-function lattice defined in Eq.~23!.
In Fig. 2, r w / r̄ b55 is assumed, and the two cases cor
spond to the following choices of system parameters:~a!

h50.2, S2k̂z56.5, SK/«T54.0, and Pu /«T50; and ~b!

h50.2, S2k̂z56.5, SK/«T54.0, andPu /«T50.7. For both
cases shown in Fig. 2, the vacuum and space-cha
depressed phase advances are given bysv

FIG. 2. Plots of the normalized effective potential (S/«T)V0(r ,Pu) @Eq.

~19!# vs normalized radial coordinater / r̄ b for intense beam propagatio

through a periodic step-function lattice. Here,r w / r̄ b55 is assumed, and the
two cases correspond to the choices of system parameters:~a! h50.2,

S2k̂z56.5, SK/«T54.0, and Pu /«T50, and ~b! h50.2, S2k̂z56.5,
SK/«T54.0, and Pu /«T50.7. For both cases, the vacuum and spa
charge-depressed phase advances aresv568° ands518.6°, respectively.
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5«T*s
s1Sds/rb

2(s)uK50568° ands5«T*s
s1S ds/r b

2(s)518.6°,
respectively. As illustrated in Fig. 2, the effective potent
V0(r ,Pu) has a minimum atr 5r 0 , wherer 0 is defined by

r 0
2

r̄ b
2

5H uPuu/«T , uPuu,«T

@K1~K214k̄zPu
2!1/2#/@K1~K214k̄z«T

2!1/2#,

uPuu.«T .
~24!

In Fig. 3, constant-H0 contours are plotted in the phase spa
(r ,Pr) for several values of (S/«T)H0 , and the same choice
of system parameters as in Fig. 2. ForPu /«T50.7 and speci-
fied value ofH0 , the particle undergoes betatron oscillatio
about r 5r 0 , corresponding to motion on constant-H0 con-
tours in the phase space (r ,Pr) as shown in Fig. 3~b!. In
general, the betatron oscillation frequency depends on
amplitude of the oscillations.

To determine the betatron oscillation frequency, we e
ploy the Hamilton–Jacobi method27 and perform a canonica
transformation from (r ,Pr) to the action-angle variable
(f,J). Let W(r ,J) be the characteristic function satisfyin
the partial differential equation

1

2 S ]W

]r D 2

1V0~r ,Pu!5H05const. ~25!

As discussed below, the dependence ofW on J is uniquely
determined because of the one-to-one correspondence
tweenH0 andJ @see Eq.~29!#. A formal expression for the
angle variablef is given by

-

FIG. 3. Plots of constant-H0 contours for several values of (S/«T)H0 as
labeled in the phase space (r ,Pr) for the same choices of system paramete
as in Figs. 2~a! and 2~b!, respectively.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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f5
]W

]J
. ~26!

The action variableJ can be expressed as

J5
1

2p R Pr dr5
1

pEr 2

r 1

$2@H02V0~r ,Pu!#%1/2dr,

~27!

where the turning pointsr 6 solve the algebraic equation

H05V0~r 6 ,Pu!, ~28!

and r 1.r 2 is assumed. Because the action variableJ in-
creases monotonically with increasingH0 , Eq. ~27! can be
inverted to yield a Hamiltonian of the form

H05H0~J,Pu!. ~29!

The betatron oscillation frequency can then be expresse

vb~J,Pu!5
]H0

]J
, ~30!

which, in general, must be evaluated numerically. Bef
presenting numerical results, we discuss two special cas

For particle motion inside the mean beam envelope w
r 1, r̄ b , it is readily shown from Eq.~27! that the action
variable can be expressed as

J5
SH0

2s
1

Pu

2
, ~31!

where use has been made of Eqs.~21! and ~22!. It follows
from Eqs. ~30! and ~31! that the betatron oscillation fre
quency is given by

vb5
]H0

]J
5

2s

S
, ~32!

which is independent of the amplitude, as expected for p
ticle motion in the beam interior. Note that the factor of 2
Eq. ~32! arises from the fact that in the present description
the betatron oscillations, the radial coordinater 5(x2

1y2)1/2 is used as a generalized coordinate, instead o
Cartesian coordinate, sayx.

As the outer oscillation amplituder 1 increases well be-
yond the mean beam envelope (r̄ b), the oscillation frequency
increases because the influence of space charge on the
tron oscillations become less pronounced. In the limit wh
r 1@ r̄ b , the betatron frequency is given by

vb5
2sv

S
, ~33!

where sv5«T*s
s1S ds/r b

2(s)uK50 is the vacuum phase ad
vance.

Figure 4 shows a plot of the betatron oscillation fr
quencyvb versus normalized betatron oscillation amplitu
(r 12r 0)/r 0 for the same choices of system parameters a
Figs. 2 and 3.

B. Nonlinear resonances

Under the influence of the perturbationH1 , a variety of
nonlinear resonances occur due to the coupling of the~slow!
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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betatron oscillations and the~fast! oscillations in the focus-
ing parameterkz(s) and associated modulation in the bea
enveloper b(s). The locations and widths of the nonlinea
resonances are analyzed in this section.

Making use of the action-angle variables (f,J) dis-
cussed in Sec. III A, we express the total HamiltonianH
formally as

H~f,J,Pu ,s!5H0~J,Pu!1H1~f,J,s!. ~34!

ExpandingH1 in a Fourier series representation inf ands,
we obtain

H15 (
n52`

`

(
l 52`

`

anl~J!exp@ i ~nf12lps/S!#, ~35!

where the Fourier coefficientsanl(J) are given by

anl~J!5
1

2pSE0

S

dsE
0

2p

dfH1~J,f,s!

3exp@2 i ~nf12lps/S!#. ~36!

A nonlinear resonance occurs when the resonance cond

n
df

ds
1

2lp

S
>nvb~J,Pu!1

2lp

S
50 ~37!

is satisfied. Of particular interest in the present analysis
the primary nonlinear resonances withl 521 that satisfy the
resonance condition

FIG. 4. Plots of the normalized betatron oscillation period 2p/vbS @Eq.

~30!# vs normalized betatron oscillation amplitude (r 12r 0)/ r̄ b for the same
choices of system parameters as in Figs. 2~a! and 2~b!, respectively.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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nvb~Jn ,Pu!5
2p

S
, ~38!

whereJn determines the location of the primary resonance
ordern in the phase space (f,J), i.e., atJ5Jn .

To estimate the width of thenth-order primary reso-
nance, we retain a single resonance term in the Fourier s
in Eq. ~20! and express the Hamiltonian approximately as

H~f,J,Pu ,s!

>H0~J,Pu!12uan,21~J!ucos~nf22ps/S1an,21!.
~39!

Here,an,21(J) is the argument of the complex Fourier c
efficient an,21 , and use has been made ofan,21

5uan,21uexp(ian,21)5a2n,1* . Expanding H0(J) about J
5Jn , the Hamiltonian in Eq.~39! can be approximated by

H~f,J,Pu ,s!>H0~Jn ,Pu!1vb~Jn ,Pu!~J2Jn!

1
1

2

]

]J
vb~J,Pu!uJ5Jn

~J2Jn!2

12uan,21~Jn!ucos~nf22ps/S

1an,21!. ~40!

Performing a canonical transformation withf22ps/nS
1an,21 /n˜f and H˜H22pJ/nS, the Hamiltonian in
Eq. ~40! becomes

H~f,J,Pu ,s!5
1

2 S ]vb

]J D
J5Jn

~dJ!2

12uan,21~Jn!ucos~nf!1const., ~41!

wheredJ5J2Jn , and use has been made of the resona
condition in Eq.~38!. It follows from Eq. ~41! that the full
width of thenth-order primary resonance is given by

DJn5F 32uan,21~Jn!u
~]vb /]J!J5Jn

G1/2

~42!

in the action variable, or equivalently by

Dr n5S ]r

]JD
Pu ,J5Jn

DJn ~43!

in the radial coordinate.
The procedure for evaluating the resonance widthDJn in

Eq. ~42! is the following. First, to determine (]vb /]J)J5Jn

and associated quantities such asJn , Eq. ~38! is solved nu-
merically in terms of outer turning pointr n5r (Jn ,f50)
>r 0 , using Newton’s method. This gives the values ofr n ,
Jn , H0(r n ,Pu), (]vb /]r ) r 5r n

, etc. Using the chain rule fo
differentiation, this procedure also allows the numeri
evaluation of (]vb /]J)J5Jn

. Second, to determine the Fou
rier coefficient an,21(Jn), the Hamiltonian perturbation
H1(Jn ,f,s) is computed numerically on a two-dimension
mesh in the variablesf ands, wheref ranges from 0 to 2p
ands ranges from 0 toS. A two-dimensional discrete Fourie
transform is then used to evaluate the Fourier coeffic
an,21(Jn), instead of the continuous representation in E
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~36!. Finally, the resonance widthDJn ~or corresponding
resonance widthDr n in radial coordinater! is obtained by
substituting the values ofan,21(Jn) and (]vb /]J)J5Jn

into
Eq. ~42!.

Figure 5 shows plots of the locations and full widths
the primary resonances of ordern53 – 6 obtained for the
choices of system parameters corresponding to:~a! h50.2,
sv580° (S2k̂z58.712), s526.2° (SK/«T53.8), vb50,
and Pu50; and ~b! h50.2, sv580° (S2k̂z58.712),
s526.2° (SK/«T53.8), vb50, andPu /«T50.7. In Fig. 5,
the solid lines correspond to the analytical estimates give
Eq. ~43!, whereas the dotted lines are obtained by integrat
Eq. ~17! numerically. For the lower-order primary nonlinea
resonances withn53, 4, and 5, the analytical estimates a
in good agreement with the numerical results. For the six
order primary nonlinear resonance, however, we cannot
tain an analytical estimate of its width because numer
noise becomes sizable in computing the Fourier amplit
a6,21 .

The nonlinear resonances for the cases presented in
5~a! and 5~b! are further illustrated with the Poincar´
surface-of-section plots21 shown in Figs. 6~a! and 6~b!, re-
spectively. Here, the Poincare´ surface-of-section plots ar
generated by plotting the successive intersections of 15
particle trajectories, obtained from numerical integration
Eq. ~17!, with the phase space (r ,Pr) at the lattice points

FIG. 5. Plots of the locations and full widths of the primary resonances
ordern53 – 6 obtained for the choices of system parameters correspon

to: ~a! h50.2,sv580° (S2k̂z58.712),s526.2° (SK/«T53.8), vb50, and

Pu50; and ~b! h50.2, sv580° (S2k̂z58.712), s526.2° (SK/«T53.8),
vb50, andPu /«T50.7. The solid lines correspond to the analytical es
mates given in Eq.~42!, whereas the dotted lines are obtained by integrat
Eq. ~17! numerically.
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s50,S,2S, . . . ,1000S. Evidently, the locations and width
of the primary nonlinear resonances shown in Fig. 6 are
agreement with those shown in Fig. 5.

IV. PHASE SPACE STRUCTURE

In this section, use is made of the Poincare´ surface-of-
section method to examine the phase-space structure
scribed by the HamiltonianH in Eq. ~18!. Of particular in-
terest are the nonlinear resonances and chaotic par
motion of test particles outside the boundary of the ph
space occupied by the interior beam particles making up
rigid-rotor Vlasov equilibrium distributionf 0 ~Refs. 23 and
24! in Eq. ~A1!. The phase-space boundary of the rigid-ro
Vlasov equilibrium is a closed surface in the thre
dimensional phase space (r ,Pr ,Pu) at any given axial dis-
tance s. A projection of such a boundary onto the pha
space (r ,Pu) can be determined from

@H'1vbPQ2 1
2 ~12vb

2!«T#PR5050, ~44!

wherePR , PQ , andH' are defined in Eqs.~A4!, ~A5!, and
~A7!, respectively. Substituting Eqs.~A2!–~A5! and ~A7!
into Eq. ~44! yields

FPur b~s!

«Tr
1vb

r

r b~s!G
2

5~12vb
2!F12

r 2

r b
2~s!G . ~45!

Figure 7 shows plots of the normalized canonical angu
momentumPu /«T versus normalized radiusr /r b described
by Eq. ~45! for the following choices of system paramete

FIG. 6. Poincare´ surface-of-section plots in the phase space (r ,Pr) for 15
test particle trajectories moving through the periodic step-function lat
from s/S50 to 1000 under the influence of the space-charge forces in a
beam equilibrium. Here, the choices of systems parameters in~a! and~b! are
the same as in Figs. 5~a! and 5~b!, respectively.
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~a! vb50 and~b! vb50.9. All of the interior beam particles
in the equilibrium distribution are enclosed by such a lo
shown in Fig. 7.

The phase-space structure for test particle motion is
lustrated by the Poincare´ surface-of-section plots shown i
Figs. 8–10 for a wide range of system parameters. The P
carésurface-of-section plots in Figs. 8–10 are generated
plotting the successive intersections of test-particle traje
ries, obtained from numerical integration of Eq.~17!, with
the phase space (r ,Pr) at the lattice pointss50.5S, 1.5S,
2.5S, etc.

Figure 8 shows Poincare´ surface-of-section plots in the
phase space (r ,Pr) for 15 test particle trajectories movin
through the periodic step-function lattice froms/S50.5 to
1000.5 under the influence of the space-charge forces
KV beam equilibrium. In Fig. 8, the choices of system p
rameters correspond to:~a! sv580°, h50.2, s511.0°
(SK/«T510), vb50, and Pu /«T50; and ~b! sv580°,
h50.2, s511.0° (SK/«T510), vb50, and Pu /«T50.45.
For both cases shown in Fig. 8, one test particle is initializ
at the phase-space boundary of the KV equilibrium distrib
tion, and the corresponding test-particle orbit is represen
in Fig. 8~a! by the inner curved arc approachingr /r b51, and
in Fig. 8~b! by the innermost contour extending fromr /r b

50.54 to 0.84. The remaining test particles are initializ
outside the beam, i.e., outside the phase-space bounda
the KV equilibrium distribution. Some of these particles u
dergo chaotic motion. By comparing Fig. 8~a! with Fig. 8~b!,
it is evident that the phase-space structure changes sig
cantly as the canonical angular momentumPu is varied. In
particular, it is interesting to observe that there are ma

e
V

FIG. 7. Plots of the normalized canonical angular momentumPu /«T vs
normalized radiusr /r b calculated from Eq.~45! for the choices of system
parameters:~a! vb50 and~b! vb50.9.
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nonlinear resonances and chaotic regions in the vicinity
the phase-space boundary of the KV equilibrium distribut
for the case shown in Fig. 8~a! (Pu50), whereas the non
linear resonances and chaotic regions are well separated,
dense set of invariant curves, i.e., KAM surfaces,21 from the
phase-space boundary of the KV equilibrium distribution
the case shown in Fig. 8~b! (Pu /«T50.45). In general, as
the canonical angular momentumPu increases in magnitude
the nonlinear resonances and chaotic regions move fur
away from the phase-space boundary of the KV equilibri
distribution. Consequently, for a KV equilibrium, particle
with Pu50 are the most likely to escape from the bea
interior to enter into chaotic regions in phase space, form
a halo.

The Poincare´ surface-of-section plots in Fig. 9 illustrat
how the phase-space structure varies as the beam inten
measured by the normalized parameterSK/«T , is increased.
The choices of system parameters in Fig. 9 correspon
sv580°, h50.2, vb50, and Pu /«T50 at the following
normalized beam intensities:~a! SK/«T50.5 ~s566.8°!, ~b!
SK/«T51.0 ~s556.3°!, ~c! SK/«T53.0 ~s531.5°!, and ~d!
SK/«T57.0 ~s515.4°!. For the low-intensity case shown i
Fig. 9~a!, the phase space is almost entirely regular. For
moderate-intensity cases shown in Figs. 9~b! and 9~c!, non-
linear resonances appear. The most pronounced among
resonances is the third-order primary nonlinear resona
As the beam intensity is further increased, the widths

FIG. 8. Poincare´ surface-of-section plots in the phase space (r ,Pr) for 15
test particle trajectories moving through the periodic step-function lat
from s/S50.5 to 1000.5 under the influence of the space-charge forces
KV beam equilibrium. Here, the choices of system parameters corres
to: ~a! sv580°, h50.2, s511.0° (SK/«T510), vb50, and Pu /«T50;
and ~b! sv580°, h50.2, s511.0° (SK/«T510), vb50, and Pu /«T

50.45.
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higher-order nonlinear resonances increase, which is evi
from Fig. 9~d!. In general, the nonlinear resonances and c
otic regions increase in size as the beam intensity is
creased.

e
a

nd

FIG. 9. Poincare´ surface-of-section plots in the phase space (r ,Pr) for 15
test particle trajectories moving through the periodic step-function lat
from s/S50.5 to 1000.5 under the influence of the space-charge forces
KV beam equilibrium at several beam intensities. Here, the choices of
tems parameters correspond tosv580°, h50.2, vb50, andPu /«T50 at
the following normalized beam intensities:~a! SK/«T50.5 ~s566.8°!, ~b!
SK/«T51.0 ~s556.3°!, ~c! SK/«T53.0 ~s531.5°!, and ~d! SK/«T57.0
~s515.4°!.
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The influence of beam rotation (vbÞ0) on the phase-
space structure is illustrated by the Poincare´ surface-of-
section plots shown in Fig. 10. The choices of syst
parameters in Fig. 10 correspond to:sv580°, h50.2,
s511.0° (SK/«T510), vb50.9, and ~a! Pu /«T50, ~b!
Pu /«T520.45, and~c! Pu /«T520.9. For all three case
shown in Fig. 10, the innermost orbit corresponds to a
particle that is initialized at the phase space boundary of
rigid-rotor Vlasov equilibrium. By comparing Fig. 10 wit
Fig. 8 for the KV distribution where the beam rotation
absent (vb50), we find that the presence of beam rotati
tends to reduce the degree of chaotic behavior in ph
space. This is evident when we compare Fig. 10~c! with Fig.
8~a!. For both cases shown in Fig. 10~c! and Fig. 8~a!, the
value ofPu is chosen such that the boundary of the equil
rium distribution extends tor 5r b @see Fig. 7 or Eq.~45!#.

FIG. 10. Poincare´ surface-of-section plots in the phase space (r ,Pr) for 15
test particle trajectories moving through the periodic step-function lat
from s/S50.5 to 1000.5 under the influence of the space-charge forces
rigid-rotor Vlasov equilibrium. Here, the choices of system parameters
respond to:sv580°, h50.2, s511.0° (SK/«T510), vb50.9, and ~a!
Pu /«T50, ~b! Pu /«T520.45, and~c! Pu /«T520.9.
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Finally, we discuss the implications of the rich nonline
resonance structure and chaotic particle motion for be
halo formation. Based on a comprehensive study of
phase-space structure for test-particle motion for vacu
phase advancesv580°, we have shown that the phase-spa
structure is almost entirely regular at low beam intens
~phase advances*70°, say!, whereas at moderate beam i
tensity~30°&s&70°!, nonlinear resonances appear, the m
pronounced of which is the third-order primary nonline
resonance. As the beam intensity is further increa
~s&30°!, the widths of the higher-order nonlinear res
nances increase, and the chaotic region of phase spac
creases in size. Furthermore, the many chaotic layers as
ated with the separatrices of the primary and second
nonlinear resonances are still divided by the remaining
variant KAM surfaces, even at very high beam intensiti
Therefore, in the context of the present test-particle analy
chaotic layers donot form an extended chaotic region i
phase space. In actual beam propagation experiments,
ever, it is expected that sufficient beam mismatch or per
bations about the periodically focused beam equilibrium c
cause the particles to cross the invariant surfaces and fo
halo.

V. CONCLUSIONS

Test particle motion has been analyzed analytically a
numerically in the field configuration consisting of the equ
librium self-electric and self-magnetic fields of a thin, co
tinuous, intense charged-particle beam and an applied p
odic focusing solenoidal magnetic field. In the prese
analysis, the self fields were determined self-consistently,
suming the beam to have a rigid-rotor Vlasov equilibriu
distribution. The canonical equations of motion for ind
vidual test particles were derived from a Hamiltonian. Usi
the Hamilton–Jacobi method, the betatron oscillations of
particles in the average self fields and applied field w
analyzed, and the nonlinear resonances induced by peri
modulations in the self fields and applied field were det
mined. Analytical estimates of the locations and widths
the primary nonlinear resonances were found to be in g
agreement with Poincare´ surface-of-section plots obtained b
integrating numerically the equations of motion.

Use was made of the Poincare´ surface-of-section method
to analyze the phase-space structure for test particle mo
outside the outermost envelope of the beam over a w
range of system parameters. It was found that the ph
space structure changes significantly as the canonical ang
momentum (Pu), beam intensity~as measured bySK/«T or
s/sv), vacuum phase advancesv , or beam rotation (vb) is
varied. For an intense beam with KV equilibrium distributio
(vb50), it was shown that the chaotic regions approach
phase-space boundary of the equilibrium distribution as
canonical angular momentumPu decreases in magnitude
Consequently, when there are perturbations about the e
librium, particles with zero canonical angular momentum a
the most likely to escape from the beam interior to enter i
the chaotic regions, forming a halo. The phase-space st
ture was also analyzed for test-particle motion under the

e
a

r-
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fluence of the self fields of an intense beam with a rigid-ro
Vlasov equilibrium distribution (vbÞ0). It was found that
the presence of beam rotation reduces the degree of ch
behavior in phase space.

For sv,80°, the test-particle analysis showed that
very high beam intensities, the chaotic layers associated
separatrices of nonlinear resonances are still divided by
remaining invariant KAM surfaces and do not overlap co
pletely to form an extended chaotic region. Although t
chaotic layers do not form an extended chaotic region in
context of present test-particle analysis, any sizable be
mismatch or perturbations about the periodically-focus
beam equilibrium may cause particles to cross the invar
surfaces, thereby resulting in a halo.
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APPENDIX: RIGID-ROTOR VLASOV EQUILIBRIUM

The transverse phase-space distribution that s
consistently generates the density profile in Eq.~3! is given
by the rigid-rotor Vlasov equilibrium distribution
function23,24

f b
0~R,PR ,PQ!5

Nb

2p2«T
dFH'1vbPQ2

1

2
~12vb

2!«TG .
~A1!

In Eq. ~A1!, vb5const. (21,vb,1) is a parameter mea
suring beam rotation relative to the Larmor frame. The n
malized canonical phase-space variables (R,Q,PR ,PQ) are
related to the Larmor-frame phase-space variab
( r̃ ,ũ,P̃r ,P̃u) by

R5
A«T

r b~s!
r̃ , ~A2!

Q5 ũ, ~A3!

PR5
1

A«T
F r b~s!

d

ds
r̃ 2 r̃

d

ds
r b~s!G , ~A4!

PQ5 P̃u , ~A5!

through the generating function

F2~ r̃ ,ũ,PR ,PQ ,s!5
A«T

r b~s!
r̃ PR1 ũPQ1

r̃ 2

r b~s!

d

ds
r b~s!.

~A6!

The effective transverse HamiltonianH' occurring in Eq.
~A1! is defined forR,A«T ~or equivalently forr̃ ,r b) by
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H'~R,PR ,PQ!5
r b

2~s!

«T
FH'~R,PR ,PQ ,s!2

K

2
2K ln

r w

r b~s!G
5

1

2 S PR
21

PQ
2

R2 1R2D , ~A7!

where H'(R,Q,PR ,PQ ,s)5H̃'( r̃ ,P̃r ,P̃u ,s)1]F2 /]s is
the Hamiltonian expressed in the canonical variab
(R,Q,PR ,PQ).

For a particle moving in the beam interior (R,A«T or
equivalentlyr̃ ,r b), it follows from the Hamilton equations
of motion, dR/ds5]H' /]PR , dQ/ds5]H' /]PQ ,
dPR /ds52]H' /]R, and dPQ /ds52]H' /]Q50, that
the effective transverse energyH' is a constant of the mo
tion, although the transverse HamiltonianH' , in general, is
not a constant of the motion. BecauseH' is independent of
Q, the canonical angular momentumPQ is also a constant o
the motion, in agreement with Eqs.~16! and~A5!. Therefore,
the equilibrium distribution functionf b

0 satisfies exactly the
steady-state nonlinear Vlasov equation

] f b
0

]s
1

]H'

]PR

] f b
0

]R
2

]H'

]R

] f b
0

]PR
50 ~A8!

with ] f b
0/]s50. Making use of *dx8 dy8•••

5@«T /r b
2(s)R#*dPRdPQ•••, it is readily shown that

nb(r ,s)5*dx8 dy8 f b
0 is indeed identical to the step-functio

density profile defined in Eq.~3!.
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