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Test particle motion is analyzed analytically and numerically in the field configuration consisting of
the equilibrium self-electric and self-magnetic fields of a well-matched, thin, continuous, intense
charged-particle beam and an applied periodic focusing solenoidal magnetic field. The self fields are
determined self-consistently, assuming the beam to have a uniform-density, rigid-rotor Vlasov
equilibrium distribution. Using the Hamilton—Jacobi method, the betatron oscillations of test
particles in the average self fields and applied focusing field are analyzed, and the nonlinear
resonances induced by periodic modulations in the self fields and applied field are determined. The
Poincaresurface-of-section method is used to analyze numerically the phase-space structure for test
particle motion outside the outermost envelope of the beam over a wide range of system parameters.
For vacuum phase advaneg =80°, it is found that the phase-space structure is almost entirely
regular at low beam intensitiphase advance=70°, say, whereas at moderate beam intensity
(30°<0=<70°), nonlinear resonances appear, the most pronounced of which is the third-order
primary nonlinear resonance. As the beam intensity is further incréase80°), the widths of the
higher-order nonlinear resonances increase, and the chaotic region of phase space increases in size.
Furthermore, the many chaotic layers associated with the separatrices of the primary and secondary
nonlinear resonances are still divided by the remaining invariant Kolmogorov—Arnold—Moser
surfaces, even at very high beam intensities. The implications of the rich nonlinear resonance
structure and chaotic particle motion found in the present test-particle studies are discussed in the
context of halo formation. ©1999 American Institute of Physids$$1070-664X99)03409-6

I. INTRODUCTION beams can also cause halo formation. The mechanism of
halo formation in rms-matched beams has been identified
Halo formation and control in intense charged-particlewith chaotic particle motioft and nonlinear resonances oc-
beams has been the subject of recent vigorous theoreticaurring in the vicinity of the boundary of phase space occu-
computational, and experimental investigation®.It is of  pied by the particles in the beam core. Invariant
fundamental importance in the development of next-Kolmogorov—Arnold—MoseKAM) surface$' play an im-
generation high-intensity accelerators for basic scientific reportant role in confining halo particles transverse to the di-
search in high-energy and nuclear physics, as well as for gection of beam propagation.
wide variety of applications ranging from heavy ion fusion,  The purpose of this paper is to analyze the dynamics of
accelerator production of tritium, accelerator transmutationest particles in the field configuration consisting of the equi-
of nuclear waste, spallation neutron sources, and high-powgibrium self-electric and self-magnetic fields of a well-
free-electron lasers. In these high-intensity acceleratorsnatched, thin, continuous, intense charged-particle beam and
beam halos must be controlled in order to minimize beanhn app“ed periodic focusing solenoidal magnetic field. Un-
losses and activation of the accelerator structure. like previous studies of halo formation in rms-mismatched
It is well known that a space-charge-dominated beamheams and rms-matched beams with nonuniformities in
can develop a sizable halo if there is a root-mean-squargharge density;?° this paper addresses the fundamental
(rms) mismatch between the beam and the transporgyestion of how the phase-space structure varies with beam
systent:~*%19~12The mechanism for halo formation in rms- intensity, focusing field strength and beam rotation under the
mismatched beams has been well developed in the partiClgyest conditions corresponding to a matched equilibrium
core modeP® When there is a sizable mismatch, the halo Carheam. Therefore, in the present analysis, the self fiére

contain a substantial fractidop to 15% of the egtli(rse beam. getermined self-consistently, assuming the beam to have a
Recently, it has been shown theoreticafly®*®that in niform-density ~ rigid-rotor ~ Vlasov equilibrium

periodic focusing transport systems, radial nonuniformitieSyistriputior?324  which  includes  the  well-known
in charge density in rms-matched space-charged—dominatqgapchinskij_wadirmirskij (KV) beam equilibrium
distributiorf® as a special case. Using the Hamilton—Jacobi
dElectronic mail: chenc@psfc.mit.edu method, the betatron oscillations of test particles in the aver-
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age self fields and applied field are analyzed, and the nonlir-lere, e, and e, are unit Cartesian vectors perpendicular to
ear resonances induced by periodic modulations in the sethe beam propagation directiossz is the axial coordinate,
fields and applied field are determined. The Poinsaréace- xe + ye, is the transverse displacement from the beam axis
of-section methott is used to analyze the phase-space strucat (x,y)=(0,0), the superscript “prime” denotes/ds with

ture for test particle motion outside the outermost envelop®,(s)=dB,(s)/ds, and the axial component of magnetic
of the beam over a wide range of system parameters. It ifeld satisfies

found that the phase-space structure changes significantly as

the canonical angular momentur® ), beam intensity(as BA(s+S)=B4(s), )
measured bySK/et or /o), vacuum phase advanes, , whereSis the axial period of the focusing field.
or beam rotation &, is varied. The implications of the rich To determine the self-electric and self-magnetic figlds

nonlinear resonance structure and chaotic particle motiononsistently, we make the following assumptiorar the
found in the present test-particle studies are discussed in tfeudker parameter=Nyq%mc? for the beam is small com-
context of halo formation. By examining the intrinsic prop- pared withy,; (b) the axial momentum spread of the beam
erties of phase space of test particle motion outside of @articles is small in comparison witi,mB,c; (c) the beam
perfectly matched beam as a function of beam intensity, fois axisymmetric(d/d6=0); and (d) the beam is perfectly
cusing field strength and beam rotation, we gain valuablenatched into the focusing field with uniform density profile
insights as to which operating regimes are more or less rosver the beam cross section,
bust against the ejection of halo particles from the beam N, /7r2(s) 0<r<ry(s)
under small beam mismatch and/or collective excitations in np(r,S)= bl B - b 3)
the beam core. 0, r>ry(s).

To briefly summarize, based on a comp_rehensiv_e studyn Eq. 3), r=(x2+y?)2 is the radial coordinater(s)
of the phase-space structure for test-particle motion for:rb(s+8) is the outer envelope of the beam, aht

vacuum phase advanae,=80°, we find that the phase- =2m[gnpr dr=const. is the number of particles per unit
space structure is almost entirely regular at low beam inten;

; N axial length. The periodic outer beam envelogés) =r,(s
sity (phase advance=70°, say, whereas at moderate beam +S) corresponds to a special solution of the beam envelope

intensity (30°<0=<70°), nonlinear resonances appear, the . 23,24
o . . "“equationr
most pronounced of which is the third-order primary nonlin-
ear resonance. As the beam intensity is further increased d?ry, K &2
(0=30°), the widths of the higher-order nonlinear reso- a2 +Ks(5)rb_a_r_§:0' (4)

nances increase, and the chaotic region of phase space in-
creases in size. Furthermore, the many chaotic layers asso#fhere K=2q°Ny/y58mc” is the normalized perveance,
ated with the separatrices of the primary and secondary=(S)=[AB.()/2ypB,mc1*=[Qc(s)/2B,c] is the focus-
nonlinear resonances are still divided by the remaining iniNg parametersr= const. is the total unnormalized emit-
variant KAM surfaces, even at very high beam intensitiestance.q andm are the particle charge and rest mass, respec-
Therefore, in the context of the present test-particle analysidively, andc is the speed of lighin vacua The transverse
chaotic layers daot form an extended chaotic region in phase-space distribution that self-consistently generates the
phase space. In actual beam propagation experiments, hofensity profile in Eq(3) is discussed in the Appendix.
ever, it is expected that sufficient beam mismatch or pertur- ~ Consistent with the thin-beam assumptiop<S), the
bations about the periodically focused beam equilibrium carscalar potential for the self-electric fieltf= —V ¢° is deter-
cause the particles to cross the invariant surfaces and formained from
halo. 14 a¢s

The organization of this paper is as follows. After a dis-  ——r——=—4mqny(r,s), (5)
cussion of the theoretical model and assumptions in Sec. Il,
the betatron oscillations and nonlinear resonances are anahere use has been made of the approximaWde:V? .
lyzed using the Hamilton—Jacobi method in Sec. lll. Thelntegrating Eq.(5) for the density profile in Eq(3), and
phase-space structure of test particle motion over hundredspplying the boundary conditio#(r =r,,,s) =0 at the walll
of lattice periods is examined numerically in Sec. IV. Con-of a perfectly conducting cylindrical tube with constant ra-
clusions are given in Sec. V. diusr,, yields

¢S(r,s)

Il. THEORETICAL MODEL AND ASSUMPTIONS [ aNy(1=rZr§)+2aNyIn(ry, /ry),  O<r<ry(s)

2Ny In(ry /1), rp(s)<r<r,,.
In the present analysis, we consider a thin, continuous, Ao In(ru /) b(S) v

intense charged-particle beam propagating inzllrection (6)

with characteristic axial velocitg,c and kinematic energy Because the axial momentum spread is assumed to be negli-
ypmc® through the periodic focusing solenoidal magneticgibly small, the vector potential for the self-magnetic field
field BS=V X (Aje,) is given approximately by

B¥(x)=B,(s)e,— 3BL(S)(xe+Ye,). (1) AY(r,s)=Bpd*(r,9), )
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where B,c is the characteristic axial velocity of the beam.
In the analysis of the particle motion, it is convenient to

transform to the Larmor frardwhich rotates with angular

velocity d6, /ds=— Jk,(S)=—qB,(s)/2y,B,mCc relative

to the laboratory frame, i.e.,

8
©)

In cylindrical coordinatest(§) in the Larmor frame, the

X(s)=x(s)cog 6, (s)]+y(s)sin 6.(s)],

Y(s)=—x(s)sin 6, (s)]+y(s)cog 6, (s)].

equations of motion transverse to the direction of beam
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propagation can be derived from the normalized Hamiltoniargg_ 1. piot of the normalized beam raditgs)/r, vs normalized propa-
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where the normalized self-field potentig(r,s) is defined
by

$°(r,s)

.

372
YoMByC

(K/2)[1-T2r3(s)]+KIn[r,/ry(s)],

¥(r,s)=

0<r<ry(s)

KIn[r,/r],

11
rp(S)<r=ry,.

From Eq.(10), the equations of motion can expressed as

dar o - .
d_S:ng =P, (12
r

doe o . P,

_S:aTPgHL:?_Z’ (13

Gl S (14
=— = re S)r——=uyl(r,s),

ds gt ar

dP, -

E——%HL:O. (15)

It follows from Eq. (15) that the canonical angular momen-
tum is conserved, i.e.,

P,=xP,—yP,=const,, (16)

which is expected for axisymmetric beam propagation. Com-

bining Eqgs.(12) and(14) yields

d’r - P2 g
@+K2(s)r—?—3+§¢(r,s)=0. (17

For a particle in the beam interior €r,), the equation of

motion (17) is integrable. For a particle outside the beam.

(r>ry), the equation of motion is generalfypnintegrablé!
because of the nonlinear dependenc@fsr on the radial
coordinater .

gation distances/S for intense beam propagation through a periodic step-
function lattice. Herer,,/r,=5 is assumed, and the choice of system pa-
rameters corresponds tg=0.2, Szf<2= 6.5, andSK/e=4.0.

Ill. ANALYSIS OF NONLINEAR RESONANCES

In this section, we analyze the nonlinear resonances in
the particle motion in the Larmor frame described by Eq.
(17). To simplify the notation, we omit the “tilde” in Lar-
mor frame variables in the remainder of this paper. For
present purposes, the Hamiltonian in EX) is expressed as

H,(r,P,,Py,5)=Hq(r,P, ,Py)+Hy(r,P,,Py,s), (18

where

Ho(r,P; ,Py)= 3P2+V(r,Py)
2

1 ) Py B
EKZI’ +?+(ﬂ(r,$)|rb(s):rb, (19

2

P2+

Ha(r, P, ,Py,S)= 3[Kk(S)— kr2+y(r,s)

- l//(ras)|rb(s):r_b- (20)

In Egs. (18)-(20), (r,s) is defined in Eq.(11), and the
effective mean beam radiug is defined by

<8TS

g
where o=e1[3*5ds/ri(s) is the space-charge-depressed
phase advance for the rigid-rotor Vlasov equilibrium. The
effective mean focusing parametey occurring in Eqs(19)
and(20) is defined by

112
: (21)

M=

(22)

Physically, the Hamiltoniai, provides a good approximate
description of the(slow) betatron oscillations, whereas the
perturbationH,; describes nonlinear resonances induced by
the (fast oscillations ink,(s) andr,(s).

For future references, Fig. 1 shows a plot of the normal-
ized beam radius(s)/r, versus normalized propagation
distances/S, obtained numerically by integrating the beam
envelope equatiof) for intense beam propagation through
a periodic step-function lattice with
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FIG. 2. Plots of the normalized effective potenti&®/{+)Vo(r.P,) [Eq. FIG. 3. Plots of constaritty contours for several values oSfe)H, as

(19)] vs normalized radial coordinater,, for intense beam propagation labeled in the phase spaagR;) for the same choices of system parameters

through a periodic step-function lattice. Her@,/r_b=5 is assumed, and the as in Figs. %a) and 2b), respectively.

two cases correspond to the choices of system paraméd®rs;=0.2,

$?k,=6.5, SKle;=4.0, and P,/e7=0, and (b) %=0.2, S?k,=6.5,

fhgrnge-o?ég}ezzgdpgésze gg&aﬁ?é;sgegfsaisd’atis?l;’(,:urgqueirtf/elsﬁace =eqf ?Sdg r§(5)|K:o:68° ando=erf 2+Sd5/ rﬁ(s) =18.6°,
respectively. As illustrated in Fig. 2, the effective potential
Vo(r,Py) has a minimum at=rg,, wherer is defined by

k,, 0=s<7S/2
[Poller, |Pgl<er

k(s)=4 0, 7S/2<s<S—7S/2 (23) r2 - -
~ — =1 [K+ (K2 +4k,P)Y2)/[K+(K2+4k,65)M2),
Ky, S—nS/2ss<S. 2 (K k2P VUK ( o) ]
~ . |PH|>8T'
Here, k,=const., k,(s+S) = k,(s), and » is the so-called (24

filling factor for the lattice. In Fig. 1r,,/r,=>5 is assumed,
and the choice of system parameters corresponds=6.2,
$?k,=6.5, SKle;=4.0. The vacuum and space-charge-
depressed phase advances are found to &g
=e1/3"5ds/rd(s)|k=0=68° and o=e1fS dg/ri(s)
=18.6°, respectively.

In Fig. 3, constanH  contours are plotted in the phase space
(r,P,) for several values of¥e1)H,, and the same choices

of system parameters as in Fig. 2. Ry/e1+=0.7 and speci-
fied value ofH,, the particle undergoes betatron oscillations
aboutr=rg, corresponding to motion on constat con-
tours in the phase space,P,) as shown in Fig. ®). In

o general, the betatron oscillation frequency depends on the
A. Betatron oscillation frequency amplitude of the oscillations.

BecauseP, is a constant of the motion arid, is inde- To determine the betatron oscillation frequency, we em-
pendent ofs, the unperturbed motion described by the ploy the Hamilton—Jacobi meth&and perform a canonical
HamiltonianH, is integrable. Figure 2 shows a plot of the transformation from i(,P,) to the action-angle variables
normalized effective potentialS(e1)Vo(r,Py) versus nor- (¢.J). Let W(r,J) be the characteristic function satisfying
malized radial coordinate/r,, for intense beam propagation the partial differential equation
through the periodic step-function lattice defined in E2f).
In Fig. 2, r,/rp,=>5 is assumed, and the two cases corre- 5l
spond to the following choices of system parametéas:
7=0.2, S°k,=6.5, SK/e1=4.0, andP,/e1=0; and (b)  As discussed below, the dependencéAdbn J is uniquely
7=0.2, $’k,=6.5, SKle;=4.0, andP,/s1=0.7. For both  determined because of the one-to-one correspondence be-
cases shown in Fig. 2, the vacuum and space-chargéweenH, andJ [see Eq.29)]. A formal expression for the
depressed phase advances are given by, angle variablep is given by

2
+Vq(r,P,)=Hy=const. (25
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IW 12.0
¢:ﬁ' (26) (@) Pg=0
The action variable) can be expressed as » 80
o
1 1(r+ » 8
J=5— ¢ Prdr=—| {2[Ho—Vo(r,Py ]} dr, B
2m ™I N 40
(27)
where the turning points.. solve the algebraic equation
0.0
Ho=Vo(r = ,Py), (28) 0.0 AR 3.0
r.-r))/r
andr . >r_ is assumed. Because the action variable- oo
creases monotonically with increasihty,, Eq. (27) can be 12.0
inverted to yield a Hamiltonian of the form (b) Pg=0.7¢r
Ho=Ho(J,Py). (29 “ 80
The betatron oscillation frequency can then be expressed as g
IHo &
_ 4.0
which, in general, must be evaluated numerically. Before
presenting numerical results, we discuss two special cases. 0‘%,0 1.0 2.0 3.0
For particle motion inside the mean beam envelope with (ro-rp/7,
r.<ry, it is readily shown from Eq(27) that the action
variable can be expressed as FIG. 4. Plots of the normalized betatron oscillation perioal/ @S [Eq.
(30)] vs normalized betatron oscillation amplitude. 1)/, for the same
SH0 Po choices of system parameters as in Figs) 2nd 2b), respectively.
=%t &1

where use has been made of E@&l) and (22). It follows
from Egs. (30) and (31) that the betatron oscillation fre- betatron oscillations and thigast oscillations in the focus-
quency is given by ing parameter,(s) and associated modulation in the beam
envelopery(s). The locations and widths of the nonlinear
= ﬂ _ 2_‘7 (37  resonances are analyzed in this section.
B 9d S’ Making use of the action-angle variableg,() dis-

which is independent of the amplitude, as expected for par(—:uSSEEOI in Sec. llA, we express the total Hamiltonidn

ticle motion in the beam interior. Note that the factor of 2 in formally as
Eq. (32) arises from the fact that in the present description of H(,d,Py,5)=Hq(Jd,Py)+Hi(,d,5). (34)
the betatron oscillations, the radial coordinate= (x? e A
+y?%)¥2 is used as a generalized coordinate, instead of &xpandingH, in a Fourier series representationdnands,
Cartesian coordinate, say we obtain

As the outer oscillation amplitude, increases well be-

yond the mean beam envelop—eg,)(, the oscillation frequency B - - .
increases because the influence of space charge on the beta- Hl_n;w l;w an(Jd)exgi(ng+2lms/S)], (39
tron oscillations become less pronounced. In the limit where
r.>r,, the betatron frequency is given by where the Fourier coefficients, (J) are given by
_ 20y 33 1 s 27
ws="g" an(9)= 5] ds| "doHL0.0.5)
y;;gg oy=e7J3"%ds/r3(s)|k=o is the vacuum phase ad- ex —i(np+ 21 7si9)]. (36)

Figure 4 shows a plot of the betatron oscillation fre- A nonlinear resonance occurs when the resonance condition
quencywg versus normalized betatron oscillation amplitude

(r,—rg)/rq for the same choices of system parameters as in d¢ 2w _ 2lm
Figs. 2 and 3. s T 5 =NwsJ,Pp+ —5-=0 (37)

B. Nonlinear resonances . - . . . .
is satisfied. Of particular interest in the present analysis are
Under the influence of the perturbatiéhy, a variety of  the primary nonlinear resonances with — 1 that satisfy the

nonlinear resonances occur due to the coupling of sfmw) resonance condition
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2 8
an(JnyPQ):?y (38) (@) Py=0
6}» - 4
whereJ,, determines the location of the primary resonance of el
ordern in the phase spacep(J), i.e., atJ=J,. et
To estimate the width of theth-order primary reso- n4
nance, we retain a single resonance term in the Fourier series
in Eq. (20) and express the Hamiltonian approximately as 2
H(¢$,J,Py,s) 0
1.00 1.25 1.50 1.75 2.00
=Ho(J,Py) +2|a, —1(J)|cogn¢—2ms/S+ay, _1). r. /7,
(39
Here, a,, —1(J) is the argument of the complex Fourier co- 8 ®) P.=07¢
efficient a,_,, and use has been made af, _; em T
=|an _i|expla,-1)=a*,;. Expanding Ho(J) about J o[ =
=J,,, the Hamiltonian in Eq(39) can be approximated by i
n 4 foumenr
H(d’!‘JiPGvS)EHO(Jnvpﬁ)+wﬁ(‘]n1p6)(‘]_‘]n) J—
19 ) 2f
+ 5 2539063, Po)la=3, (3= Jn)
+2lap, —1(Jy)|cogn¢—27s/S {00 125 1.50 175 2.00
r./n,

+an -1). (40)

FIG. 5. Plots of the locations and full widths of the primary resonances of
ordern=3-6 obtained for the choices of system parameters corresponding
to: (a) #=0.2,0,=80° (S?k,=8.712),0=26.2° (SK/e7=3.8), w,=0, and

Performing a canonical transformation with—2mws/nS
+an,_1/n—=¢ and H—=H—-27J/nS, the Hamiltonian in

Eq. (40) becomes P,=0; and(b) 7=0.2, o, =80° (S2k,=8.712), 0=26.2° (SK/e;=3.8),
1/ 0w wp,=0, andP4/er=0.7. The solid lines correspond to the analytical esti-
H(¢,J,Py,8)== ( _ﬁ) (5‘])2 mates given in Eq42), whereas the dotted lines are obtained by integrating
2\ 3 I=3 Eq. (17) numerically.

+2lan, —1(Jy)|cogng) +const., (41)

where 6J=J—J,, and use has been made of the resonance3e). Finally, the resonance widthJ, (or corresponding
condition in Eq.(38). It follows from Eq.(41) that the full  resonance widthr, in radial coordinate’) is obtained by

width of thenth-order primary resonance is given by substituting the values af,, _1(J,) and @wg/dJ);-;_into
32, 1(3n)| |2 Eq. (42). . |
AJ,= W} (42 Figure 5 shows plots of the locations and full widths of
B I=J; the primary resonances of ordar=3-6 obtained for the
in the action variable, or equivalently by choices of system parameters corresponding&p=0.2,
. 0,=80° (S*k,=8.712), 0=26.2° (SK/e7r=3.8), wp=0,
Ary=|—= A, (43 and P,=0; and (b) 7=0.2, 0,=80° (S*k,=8.712),
Wp =3, 0=26.2° (SK/e1=3.8), w,=0, andP,/e;=0.7. In Fig. 5,

the solid lines correspond to the analytical estimates given in
The procedure for evaluating the resonance wiihy in Eq' (13)’ wheregs Itlhelgotttehd I|Ines aregbtamed by mtelgratmg
Eq. (42) is the following. First, to determinedz/dJ) ;- a. (17 numenca_y. or fhe lower-order primary noniinear

) - i n resonances witin=3, 4, and 5, the analytical estimates are
and associated quantities suchJas Eq. (38) is solved nu- iy 4504 agreement with the numerical results. For the sixth-
merically in terms of outer turning point,=r(J,,$=0)  order primary nonlinear resonance, however, we cannot ob-
=Ty, using Newton's method. This gives the values'pf  (5in an analytical estimate of its width because numerical
JIns Ho(rn,Pg), (dwpldr) . , etc. Using the chain rule for nise pecomes sizable in computing the Fourier amplitude
differentiation, this procedure also allows the numericalaeﬁl_
evaluation of fwgz/dJ),—; . Second, to determine the Fou-  The nonlinear resonances for the cases presented in Figs.
rier coefficient a, —1(J,), the Hamiltonian perturbation 5(a) and 8b) are further illustrated with the Poincare
H.(J,,¢,s) is computed numerically on a two-dimensional surface-of-section plots shown in Figs. ) and &b), re-
mesh in the variableg ands, where¢ ranges from 0 to 2  spectively. Here, the Poincamurface-of-section plots are
andsranges from 0 t& A two-dimensional discrete Fourier generated by plotting the successive intersections of 15 test-
transform is then used to evaluate the Fourier coefficienparticle trajectories, obtained from numerical integration of
an —1(Jy), instead of the continuous representation in Eq.Eq. (17), with the phase space ,P,) at the lattice points

in the radial coordinate.
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FIG. 6. Poincaresurface-of-section plots in the phase spacé() for 15

test particle trajectories moving through the periodic step-function lattice
from s/S=0 to 1000 under the influence of the space-charge forces in a K\/p

beam equilibrium. Here, the choices of systems parametéas and(b) are
the same as in Figs(& and §b), respectively.
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0.8 —
@ w,=0

0.0 0.4 0.8 12

®) ,=09
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FIG. 7. Plots of the normalized canonical angular momen®Ryre vs
normalized radius/r,, calculated from Eq(45) for the choices of system
arameters{a) w,=0 and(b) w,=0.9.

(@ wp=0 and(b) w,=0.9. All of the interior beam particles
in the equilibrium distribution are enclosed by such a loop

s=0S,2S, ...,100®. Evidently, the locations and widths shown in Fig. 7.

of the primary nonlinear resonances shown in Fig. 6 are in

agreement with those shown in Fig. 5.

IV. PHASE SPACE STRUCTURE

In this section, use is made of the Poincateface-of-

section method to examine the phase-space structure d

scribed by the Hamiltoniai in Eq. (18). Of particular in-

terest are the nonlinear resonances and chaotic partic
motion of test particles outside the boundary of the phase
space occupied by the interior beam particles making up th
rigid-rotor Vlasov equilibrium distributiorf, (Refs. 23 and

24) in Eq. (Al). The phase-space boundary of the rigid-rotor
Vlasov equilibrium is a closed surface in the three-
dimensional phase space,P,,P,) at any given axial dis-

tances. A projection of such a boundary onto the phase

space (,P,) can be determined from

[H.+wpPe— (1~ wp)erlp,—0=0, (44)

wherePg, Py, andH, are defined in EqgA4), (A5), and
(A7), respectively. Substituting Eq$A2)—(A5) and (A7)
into Eq. (44) yields
2

=(1- p)

Pyrp(s r 2
9b()+

w
eqf bro(s)

r
1-— (45

ris))

The phase-space structure for test particle motion is il-
lustrated by the Poincarsurface-of-section plots shown in
Figs. 8—10 for a wide range of system parameters. The Poin-
caresurface-of-section plots in Figs. 8—10 are generated by
plotting the successive intersections of test-particle trajecto-
ries, obtained from numerical integration of E4.7), with

the phase space ,P,) at the lattice points=0.5S5, 1.55,
?658, etc.

Figure 8 shows Poincarsurface-of-section plots in the
hase spacer(P,) for 15 test particle trajectories moving
through the periodic step-function lattice frosh\S=0.5 to
1000.5 under the influence of the space-charge forces in a
KV beam equilibrium. In Fig. 8, the choices of system pa-
rameters correspond tof@) o,=80°, %=0.2, 0=11.0°
(SK/e1=10), w,=0, and Py/e;=0; and (b) o,=80°,
7=0.2, 0=11.0° (SK/e1=10), wp=0, andP,/e;=0.45.

For both cases shown in Fig. 8, one test particle is initialized
at the phase-space boundary of the KV equilibrium distribu-
tion, and the corresponding test-particle orbit is represented
in Fig. 8(@) by the inner curved arc approachiny,=1, and

in Fig. 8b) by the innermost contour extending fromr,,
=0.54 to 0.84. The remaining test particles are initialized
outside the beam, i.e., outside the phase-space boundary of
the KV equilibrium distribution. Some of these particles un-
dergo chaotic motion. By comparing Figa8with Fig. 8b),

Figure 7 shows plots of the normalized canonical angulait is evident that the phase-space structure changes signifi-

momentumP ,/e+ versus normalized radiugr,, described

cantly as the canonical angular momente@mis varied. In

by Eq. (45) for the following choices of system parameters: particular, it is interesting to observe that there are many
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(@) SKfe, = 0.5

12
(S P,

r/rb

(b) SKfep= 1.0

r

(Sep P
j=1
D

-1.0f
-2.0
0.0 0.5 1.0 1.5
r/r, r/r,
FIG. 8. Poincaresurface-of-section plots in the phase spacéy) for 15 20 () SKfep=3.0

test particle trajectories moving through the periodic step-function lattice
from s/S=0.5 to 1000.5 under the influence of the space-charge forces in a
KV beam equilibrium. Here, the choices of system parameters correspond
to: (@ 0,=80°, 7=0.2, 0=11.0° (SK/e7=10), wp,=0, andP,/et=0;

and (b) 0,=80°, =0.2, 0=11.0° (SK/e;=10), w,=0, and P,/et
=0.45.

e P,

nonlinear resonances and chaotic regions in the vicinity of
the phase-space boundary of the KV equilibrium distribution 205 0.5 1.0 15
for the case shown in Fig.(8 (P,=0), whereas the non- r/r,
linear resonances and chaotic regions are well separated, by a
dense set of invariant curves, i.e., KAM surfaéefrom the
phase-space boundary of the KV equilibrium distribution for
the case shown in Fig.(B) (P,/e7=0.45). In general, as
the canonical angular momentupy increases in magnitude,
the nonlinear resonances and chaotic regions move further
away from the phase-space boundary of the KV equilibrium
distribution. Consequently, for a KV equilibrium, particles
with P,=0 are the most likely to escape from the beam
interior to enter into chaotic regions in phase space, forming
a halo. . %0 05 10 15

The Poincaresurface-of-section plots in Fig. 9 illustrate r/r,
how the phase-space structure varies as the beam intensity, )
measured by the normalized paramedét e, is increased. FIG. 9. Poincaresurface-of-section plots in the phase spacé() for 15

test particle trajectories moving through the periodic step-function lattice

The choices of system parameters in Fig. 9 correspond tﬁ’om s/S=0.5 to 1000.5 under the influence of the space-charge forces in a

o,=80° 7=0.2, wvp=0, and P,/er=0 at the following kv beam equilibrium at several beam intensities. Here, the choices of sys-
normalized beam intensitie&) SK/e1=0.5(0=66.89, (b) tems parameters corresponddg==80°, 7=0.2, w,=0, andP,/s;=0 at
SK/gr=1.0 (0=56.39, (c) SK/et=3.0 (6=31.59, and(d) the following normalized beam intensitie® SK/e1=0.5 (0=66.89, (b)
SK/e;=7.0 (0=15.49. For the low-intensity case shown in SK&1=10 (¢=56.39, (©) SK#r=3.0 (¢=31.59, and (d) SKzr=7.0

. ) ) (0=15.49.
Fig. 9a), the phase space is almost entirely regular. For the
moderate-intensity cases shown in Fig&)%nd 9c), non-  higher-order nonlinear resonances increase, which is evident
linear resonances appear. The most pronounced among thedsem Fig. 9d). In general, the nonlinear resonances and cha-
resonances is the third-order primary nonlinear resonancetic regions increase in size as the beam intensity is in-

As the beam intensity is further increased, the widths ofcreased.
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Finally, we discuss the implications of the rich nonlinear
resonance structure and chaotic particle motion for beam
halo formation. Based on a comprehensive study of the
phase-space structure for test-particle motion for vacuum
phase advance, =80°, we have shown that the phase-space
structure is almost entirely regular at low beam intensity
(phase advance=70°, say, whereas at moderate beam in-
tensity (30°<0=<70°), nonlinear resonances appear, the most
pronounced of which is the third-order primary nonlinear
resonance. As the beam intensity is further increased
(0=30°), the widths of the higher-order nonlinear reso-
nances increase, and the chaotic region of phase space in-
creases in size. Furthermore, the many chaotic layers associ-
ated with the separatrices of the primary and secondary
nonlinear resonances are still divided by the remaining in-
variant KAM surfaces, even at very high beam intensities.
Therefore, in the context of the present test-particle analysis,
chaotic layers dmot form an extended chaotic region in
phase space. In actual beam propagation experiments, how-

(e P,
S
i~

Lo ever, it is expected that sufficient beam mismatch or pertur-
bations about the periodically focused beam equilibrium can
200 0.5 10 15 cause the particles to cross the invariant surfaces and form a
r/r, halo.
2.0

V. CONCLUSIONS

Test particle motion has been analyzed analytically and
numerically in the field configuration consisting of the equi-
librium self-electric and self-magnetic fields of a thin, con-
tinuous, intense charged-particle beam and an applied peri-
odic focusing solenoidal magnetic field. In the present
analysis, the self fields were determined self-consistently, as-
suming the beam to have a rigid-rotor Vlasov equilibrium
205 0.5 10 15 distribution. The canonical equations of motion for indi-
vidual test particles were derived from a Hamiltonian. Using
the Hamilton—Jacobi method, the betatron oscillations of test
FIG. 10. Poincareurface-of-section plots in the phase spac®() for 15 particles in the average self fields and applied field were
test particle trajectories moving through the periodic step-function latticeanalyzed, and the nonlinear resonances induced by periodic
from s/S=0.5 to 1000.5 under the influence of the space-charge forces in gnodulations in the self fields and applied field were deter-
:E’S'Eggéortg{isg\ggf"u'l']irgfgj':f;el’.gzeg&?fjfgfyzzezmogfrzngggs Cor'mined_. Analytica_l estimates of the locations and Wio_lths of
P,/s1=0, (b) P,/sx=—0.45, and(c) P,/s7=—0.9. the primary nonlmear,resonances were found to be in good

agreement with Poincamairface-of-section plots obtained by
integrating numerically the equations of motion.

The influence of beam rotationo(,# 0) on the phase- Use was made of the Poincaserface-of-section method
space structure is illustrated by the Poincaaface-of- to analyze the phase-space structure for test particle motion
section plots shown in Fig. 10. The choices of systemoutside the outermost envelope of the beam over a wide
parameters in Fig. 10 correspond te;,=80°, »=0.2, range of system parameters. It was found that the phase-
0=11.0° (SK/et=10), w,=0.9, and(a) P,/e;=0, (b)  space structure changes significantly as the canonical angular
P,/et=—0.45, and(c) P,/et=—0.9. For all three cases momentum P,), beam intensitfas measured bgK/ e or
shown in Fig. 10, the innermost orbit corresponds to a testr/o,), vacuum phase advaneg , or beam rotationdy,) is
particle that is initialized at the phase space boundary of thearied. For an intense beam with KV equilibrium distribution
rigid-rotor Vlasov equilibrium. By comparing Fig. 10 with (w,=0), it was shown that the chaotic regions approach the
Fig. 8 for the KV distribution where the beam rotation is phase-space boundary of the equilibrium distribution as the
absent ,=0), we find that the presence of beam rotationcanonical angular momenturR, decreases in magnitude.
tends to reduce the degree of chaotic behavior in phas€onsequently, when there are perturbations about the equi-
space. This is evident when we compare Figcl®ith Fig.  librium, particles with zero canonical angular momentum are
8(a). For both cases shown in Fig. @D and Fig. &a), the  the most likely to escape from the beam interior to enter into
value of P, is chosen such that the boundary of the equilib-the chaotic regions, forming a halo. The phase-space struc-
rium distribution extends to=r, [see Fig. 7 or Eq(45)]. ture was also analyzed for test-particle motion under the in-

r/rb
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fluence of the self fields of an intense beam with a rigid-rotor r3(s) K M
Vlasov equilibrium distribution ,#0). It was found that . (R,Pr,Pe)=——|H.(R,Pr,Pe,5)= 5 —K Inr(_s)
the presence of beam rotation reduces the degree of chaotic T b
behavior in phase space. 1, P2 ,

For 0,,<80°, the test-particle analysis showed that at =5|PrT gz TR, (A7)

very high beam intensities, the chaotic layers associated the o
separatrices of nonlinear resonances are still divided by thehere H, (R,0,Pr,Pg,8)=H, (r,P,,Py,8)+dF,/ds is
remaining invariant KAM surfaces and do not overlap com-the Hamiltonian expressed in the canonical variables
pletely to form an extended chaotic region. Although the(R,0®,Pg,Pg).
chaotic layers do not form an extended chaotic region in the  For a particle moving in the beam interioR{ Jer or
context of present test-particle analysis, any sizable beamquivalentlyr<r), it follows from the Hamilton equations
mismatch or perturbations about the periodically-focusecf motion, dR/ds=dH, /dPg, dO/ds=dH, /JPg),
beam equilibrium may cause particles to cross the invariandiPg/ds=—¢H, /R, and dPg/ds=—dH, /90 =0, that
surfaces, thereby resulting in a halo. the effective transverse ener@y, is a constant of the mo-
tion, although the transverse Hamiltonidin , in general, is
not a constant of the motion. Becaude is independent of
ACKNOWLEDGMENTS 0, the c_anonical angular mpmentum) is also a constant of
the motion, in agreement with Eq4d.6) and(A5). Therefore,
This research was supported by Department of Energshe equilibrium distribution functioriy satisfies exactly the
under Grant No. DE-FG02-95ER-40919 and Contract Nosteady-state nonlinear Vlasov equation
DE-AC02-76-CHO0-3073, and by Air Force Office of Scien- afg oH, afg oH, afﬁ

tific Research under Grant No. F49620-97-1-0325. There- 24~ _2__~ - 2 _9 A8
: PR /R JR dP (A8)
search by R.P. was also supported by CAPES, Brazil. Js  dPr d IR IPg
with  9fY9s=0. Making use of [dx'dy’---
=[e1/r3(s)R]fdPrdPg---, it is readily shown that
APPENDIX: RIGID-ROTOR VLASOV EQUILIBRIUM np(r,s)=fdx’ dy,fg is indeed identical to the step-function

density profile defined in Ed3).
The transverse phase-space distribution that self-
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