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This paper makes use of the nonlinear Vlasov—Poisson equations to describe the propagation of an
intense, non-neutral ion beam through a periodic focusing solenoidal field with coupling coefficient
k(S+S)=k,(S) in the thin-beam approximationr{<S). The nonlinear sF formalism is
developed for numerical simulation applications by dividing the total distribution funé&tjpimto

a zero-order part Rg) that propagates through the average focusing fieJe const, plus a
perturbation §F) which evolves nonlinearly in the zero-order and perturbed field configurations.

To illustrate the application of the technique to axisymmetric, matched-beam propagation, nonlinear
SF-simulation results are presented for the case wlﬁ%reorresponds to a thermal equilibrium
distribution, and the oscillatory component of the coupling coefficiért(s) = «,(S) — k,, turns

on adiabatically over many perio&of the focusing lattice. For adiabatic turn-on &,(s) over

20-100 lattice periods, the amplitude of the mismatch oscillation is reduced by more than one order
of magnitude compared to the case where the field oscillation is turned on suddenly. Quiescent,
matched-beam propagation at high beam intensities is demonstrated over several hundred lattice
periods. ©1999 American Institute of Physids$$1070-664X99)02401-5

I. INTRODUCTION AND THEORETICAL MODEL part (FQ) that propagates through the average focusing field
tis | inaly i tant to devel . dth k,=const, plus a perturbatiorsf,) which evolves nonlin-
't 1S Increasingly important to develop an improved the- early in the zero-order and perturbed field configurations. To
oretical understanding of the equilibrium, stability, and trans-

. . . “llustrate the application of the technique to axisymmetric,
port properties of intense non-neutral beams propagating in

C . matched-beam propagation, nonlingdf-simulation results
periodic focusing accelerators and transport systethhe propag

. ; are presented in Sec. IIl for the case whefecorresponds to
influence of space-charge effects on nonlinear beam dynam

ics, stability properties, and halo formatfor®is particularly & therrtnalfe?#|l|brlumI.d|str|but|f(f).n., a?g the Sscnlato_ry_com-
pronounced at the high beam currents and beam densities penent o e coupling coefficientdr,(s) = xx(S) ~ 7,

the next-generation accelerators envisioned for heavy ion fui[-u:tr_ls O?: ad'%bascf_‘"yt over m;ny penoSs:fZ(t)helg%clusthg
sion, tritium production, and spallation neutron sourted®  'attice. For adiabalic trm-on 1,(S) over 20— attice

Advanced numerical simulations and analytical studied periods, the amplitude of the mismatch oscillation is reduced

are playing an increasingly critical role in validating theoret- by more than one order of magnitude compared to the case

ical models for comparison with experiment and in the de_where the field oscillation is turned on suddenly. Quiescent,

sign optimization of next-generation accelerators and bearfl@iched-beam propagation at high beam intensities is dem-
transport systems. This paper develops the nonliagaior- ~ Onstrated over several hundred lattice periods. _
malism for intense beam propagation through a periodic so- 10 Summarize the theoretical model, we consider a thin,
lenoidal focusing field®~2238:37and presents simulation re- intense non-neutral ion beam with c_harf’;\cterlsn_c ra_dl,ys
sults applying theSF formalism to the case of high-intensity nd axial momentuny,mp,c propagating in the direction
matched-beam propagation over hundreds of lattice period&lrough a periodic solenoidal focusing fieldB**(x)
Nonlinear SF simulation techniques have been applied suc-=Bz(S)&,—(r/2)B;(s)&, where B,(s+S)=B,(s) is the
cessfully to model the nonlinear dynamics and stability prop-2xial field components is the axial coordinateS=const is
erties of magnetically confined fusion plasni&si®and in-  the periodicity length, the “prime” denotes derivative with
tense non-neutral beam propagation through a periodiEespect tos, andr=(x*+y?)*? s the radial distance from
quadrupole latticé®*°and through a uniform focusing sole- the beam axis. Here, we assume a thin beam wyjthS and
noidal field*! SuchsF schemes are found to be attractive in ¥=Z27€°Ny/mc?<y,, where v is Budkers parameter,
comparison with standard particle-in-cell simulations be-y,M¢” is the characteristic energy of a beam particlg,
cause they exhibit minimal noise and accuracy problems. =(1— %) *?is the relativistic mass facto¥,= B¢ is the

The theoretical model is based on the nonlinear Vlasov-axial velocity,c is the speed of lighin vacug andZ;e andm
Poisson equationd? and is described in the remainder of are the ion charge and rest mass, respectively. The quantity
Sec. I. In Sec. Il, the nonlinea¥F formalism is developed Np=/dx dy n, is the number of beam particles per unit
for intense beam propagation through a periodic focusingxial length, whereny(x,y,s) is the particle density. The
solenoidal field with coupling coefficient,(s+ S) = «,(S). thin-beam approximationr(<S) and the assumption of
The total distribution functiofr}, is divided into a zero-order small Budker's parametew y,) are consistent approxima-
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tions provided the transverse momentum components of dX/ds and Y' denotesdY/ds), and the coefficients of
beam particlep, and p,, and the characteristic axial mo- JF,/dX" anddF,/dY" correspond to the particle accelera-
mentum spreaddp,, are small in comparison with the di- tions in theX andY directions, respectively.
rected axial momentum,mg,c, which we assume to be the The Vlasov—Poisson equatiof® and(3) constitute the
case. In addition, the present analysis is carried out in thbasic dynamical equations used in the nonlinéarformal-
electrostatic approximation, where the self-electric field proism in Secs. Il and Ill. They describe, in the Larmor
duced by the beam space-charggis — V ¢°, and the elec- frame, the nonlinear evolution of the charged particle
trostatic potentialp®(x,y,s) is determined self-consistently beam as it propagates through the periodic solenoidal field
from Poisson’s equation. Furthermore, to determine the selfx,(s+ S) = k,(s). In particular, Eq(2) describes the incom-
magnetic field=V xASe, produced by the beam current, it pressible evolution of the distribution function
is assumed that the axial velocity proffg,(x,y,s)=8Bpcis  Fu(X,Y,X",Y’,s) in the four-dimensional phase space
approximately uniform over the beam cross section, and théX,Y,X’,Y’), and Eq.(3) determines self-consistently the
self-magnetic field is approximated I87= 8,V ¢°x¢,. normalized potentials(X,Y,s) in terms of the particle den-
Consistent with the assumptions described above, thsity ny(X,Y,s)=/dX" dY’ Fy. In subsequent sections, we
nonlineardF formalism, developed in Sec. Il and applied in assume that thX—Y cross section of the beam is enclosed
Sec. lll, makes use of the nonlinear Vlasov—Poisson equady a perfectly conducting wallcylindrical or rectangular
tions to describe the dynamics of the beam particles and theDenoting the location of the wall surface By,, and the unit
interaction with the field configuratio®=—-V ¢°* and B vector normal to the wall surface by, , Poisson’s equation
=B+ B,V ¢Sx&,. For present purposes, it is convenient (3) is solved subject to the boundary condition
to introduce the focusing coefficiem,(s+ S)= «,(s) and

the normalized electrostatic potentiak(x,y,s) defined [NwX V180 =0, )
by*-%? which corresponds to zero tangential electric field at the
ZeBy(s) |2 conducting wall. In concluding this section, it should also
Kz(s)z(m) be noted that the characteristics of the nonlinear Vlasov
YolllPh 1 equation(2) correspond to the single-particle equations of

7o @ motion, e.g.,X'(s)=dX(s)/ds and dX'(s)/ds= — «,(s)X

P(X,y,8)= _IWZ ?5(X,Y,S). —dyloX for the X motion, and similar equations for thé

YpMBiC motion.

It is also convenient to transform to a frame of reference S @ final point regarding the theoretical model, we em-
rotating about the beam axis at the lo¢abrmalized Lar- phasize that the nonlineatr formalism developed here is
mor frequency(),(s)=— \/K_(S): — Z,eB,(S)/2y,MB,,C> particularly well-suited for application to a periodic focusing

z I . . . —_— . .
Introducing the accumulated phase of rotatiod,(s)  Sclenoidal latticexy(s) =, + 5"25(?5' in which case the av-

. . . e _ 71 . .

— _f:o ds V,(s), the transverse orbit¥(s) andY(s), in  €rage lattice coefficient,=S fsg ds .KZ(S) is manifestly
the rotating frame are related to the transverse orkits)  nonzerosee Eqs(1) and(31)] and provides transverse con-
and y(s), in the laboratory frame byX=x cosg (s) finement of the beam particles making up the equilibrium
+y sing.(s) andY=—x sin 6,(s) +y cosé,(s). Then, as- distribu_tioan(Hl). For adiabatic turn-on ofk,(S), quies- .
suming that the beam particles have negligibly small axiacent, highly matched beam propagation at moderate-to-high
momentum spread about the average valympB,c, it can beam intensity is demonstrated for propagation of a thermal
be shown that the distribution functioR,(X,Y,X’,Y’,s)  equilibrium beam over hundreds of lattice perigdee, e.g.,
evolves according to the nonlinear Vlasov equatiéh Figs. 8 and 10 beloyv For periodic focusing quadrupole sys-

tems, however, it follows thas ! f§g+sds Kq(8)=0, and
‘9_':*’ ' @JrY’ ﬁ_(Kz(s)era_‘/' ‘9_':*,’ alternative averaging techniques are required to apply the
s X Y x| axX nonlinear 6F formalism to high-intensity matched-beam
F propagation. In this regard, one promising approach for a
— a_lp Q: periodic quadrupole lattice is to first carry out a Floquet
KZ(S)Y+ ! . (2) . 44 .
aY | oY transformatiof®** to incorporate the average effects of the

'y . . focusing field. This and other approaches are currently under
Here, (X,Y,X"Y") are phase-space variables appropriate todeveIo ment by the authors for application of the nonlinear
the Larmor frame, and the normalized potentléX,Y,s) is P y PP

. : : . SF formalism to periodic quadrupole transport systems.
determined self-consistently from Poisson’s equation P q P P Y

A P de' dy’ F 3
w2t avz)|v= N, b ® || NONLINEAR 4F FORMALISM
In Eq. (3), ny(X,Y,s)=[dX" dY' F, is the particle density, In Sec. Il A, we summarize the nonlinedF formalism

N,=/dX dY n, is the number of particles per unit axial for general periodic focusing lattice,(s+ S) = «,(s). Then,
length, andK=2N,Z2e? y2mp2c? is the self-field per- for subsequent application, examples of beam equilibrium
veance. In Eq(2), note thatX’ andY' correspond to nor- distributionng are presented in Sec. Il B for the case of
malized velocity variables in thé—Y plane(i.e., X' denotes axisymmetric beam propagation through the average focus-
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ing field x,=const. The dynamics of the root-mean-square

beam radiufRy(s) is summarized in Sec. Il C.

A. Description of model

For present purposes, the nonlinear Vlasov equg@pn
for the distribution functionF,(X,Y,X",Y’,s) is expressed
in the equivalent forrf?-3041

d gFp,  dX oF,

ds' ® s ' ds X

+ axt (Q—Fb =0, )
ds X’
wheredX/ds=X'"g+Y'g is the transverse velocity, and
d d
s X =T RdASX= =2 ¢,

(6)

d e v d
d_S - KZ(S) W ’
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dXx’ — X

== KZX_ D D
ds|, R dR

(12

day’ _ Yyt
—— =k Y= ==
ds|, R dR
With regard to the nonlinear evolution of

SFL(X,Y,X",Y’,s)=F,—Fp, we introduce the weight func-
tion w(X,Y,X",Y’,s) defined by

SFp Fo
W:F—b: —F—b. (13)

It then follows that
dw 1 dFp 1 dFj »
s Fpds (W gs a4

are the transverse acceleration components in Larmor-framgee q/dsis the total derivative following the exact particle

variables. In Eq. (6), #(X,Y,s) is determined self-
consistently from Poisson’s equati@). In Eq.(5), note that
d/ds denotes théotal derivativewith respect tcs following

motion defined according to Eqé&5) and (6), and use has
been made ofdF,/ds=0. Expressingy=y°+ 6y, and
making use ofiX'/ds=dX’/ds|o— Sk,(S)X— (9l IX) S¢p, it

the exact particle mptiorin t.he.combineq self_—fields of the readily follows from Eqs(10) and (14) that
beam and the applied periodic solenoidal field. Therefore,

the nonlinear Vlasov equatiofd) is simply a statement that
the distribution functiori, is constant following the particle
motion in the exact field configuration. In the subsequent

analysis of Egs(5) and (6), we express

K4(S) = Kyt 5Ky(S), (7

1 FD

- W=(1—W)( Ok, (S)X+ &ix 5¢) .

In Eq. (15), the perturbed potentid(X,Y,s) is determined
self-consistently in terms obn,(X,Y,s)=[dX" dY' 6F,

where 8x,(s+S) = 6x,(s) is the oscillatory component of from Poisson’s equation

k,(s), and k,=const denotes the average value

72=£ JSO+Sds k,S), (8)

So

where S is the lattice period. Apart from the requirement

k,(S)=0 [see Eq(1)], the oscillatory componenik,(s) is
allowed to have arbitrary amplitude.

As is customary in the nonlineat~ formalism, we di-
vide the distribution functior,(X,Y,X’,Y’,s) into a zero-
order part Fg) plus a perturbationdF,) according to

Fo=F2+ 6Fp. 9)

Here, F)(R,X',Y’,s) is taken to be a knowaxisymmetric

PP 27K o
Sp=——— | dX’ dY’ wF,

X2t ave Np

2K [ axr dy' —— FO (16
TN, 1w o (19

Here, use has been made 6F,=wF,=w(1—w) *F?,
which follows from Eq.(13).

Equations (15 and (16) for the weight functionw
=6F,/F, and the perturbed potentialyy, when supple-
mented by Eqs(10) and(11) for the zero-order distribution
function Fg and self-field potentia}°®, constitute the final set
of dynamical equations in the nonlinedF formalism, and

solution (9/9® =0) to the nonlinear Viasov—Poisson equa- 5re fully equivalent to the nonlinear Vlasov—Poisson equa-

tions
OFY dX oF) dX'| oF 0 10
—t | 7=
ds ds X dso&x’ ’ (10
Lo g0 27K [ v EO 11
RIRRIR- N, b (19

In Egs. (10) and (11), FY(R,X’,Y’,s) and 4°(R,s) are as-
sumed to depend oX=R cos® and Y=R sin® exclu-
sively through the radial coordinafe= (X?+ Y?)*2, and the
zero-order acceleration components in EXD) are defined

by

tions (2) and(3). No a priori assumption has been made that
6F, and 6y correspond to small-amplitude perturbations. Of
course, the requirements tHat=0 andF,=0, and the defi-
nitionw=1— FglFb , lead to the requirement that the weight
function w satisfiesw=<1. Finally, the nonlinear Vlasov
equation(2) of course conserves the number of particles per
unit axial length, i.e., dN,/ds=(d/ds)fdX’ dY dX
XdY' Fp=0. It similarly follows from Eg. (10) that
(d/ds)fdX' dY dX dY’Fg=O. Therefore, without loss of
generality, we choose to counall of the particlesin the
zero-order distribution functiofy, in which caseF? and
6F, are normalized according to
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o out presenting algebraic details, it can be shown that the
f dXdYdXdY'Fy=Ny, entire class of distribution functionso(H, ,Pg) solving
(17) Egs. (10) and (11) satisfies the global radial force balance
J dXdYdXdY' 5F,=0. conditiorf
_ K €
That is, the perturbed distribution functi@f,=wF,, when Ko™ SRZ RboZﬁ- (20)
averaged over the entire available phase space, occupies b0 b0

equal volumes wheresF,>0(0<w=1) and 6F,<O(W  Equation(20), valid for general choice dE2(H, ,Pe), rep-

<0). resents a powerful constraint condition on equilibrium beam
properties. As expected, ERO) is similar in form to the
familiar envelope equatidrf?=¢for the outer radius, of a

B. Zero-order equilibrium distribution function F uniform-density  Kapchinskij—Vladimirskij (KV) beam

The nonlinearsF formalism summarized in Sec. Il A equilibriun® in the smooth-beam approximatiorr;/ds

has wide applicability tos-dependent periodic solenoidal =0) provided we make the identificatidRy,o=r, /2. For

field configurations withie,(s+S)=«,(s). Note from Egs. Specified values ok,, K, and e, note that Eq(20) can be

(10) and(12) that we have chosen to incorporate the effectssolved for the mean-square beam radius to give

of the average focusing field,= const in the nonlinear Vla- K K2 e21u2

sov equation foF, whereas the effects dfx,(s) are incor- R§0== + e) 0

porated in Eq(15) for the weight functionw= 6F,/F;. In 4x; 4x; 4K,

this case, Eqs(10) and (11) support a broad range @fui-  As expected, note from Eq21) that RZ, increases with in-

. . . 0 _ _ . .
librium solutions @Eb/ag—O—mﬂO/aS) in which the zero-  ¢reasing beam intensity), increasing beam emittancey,
order distributionFp=Fp(H, ,Pg) depends on the phase- 5ng decreasing solenoidal field strengih)(

(21)

space variablesR,X',Y") exclusively through the single- In the remainder of Sec. Il B, we summarize briefly the
particle constants of the motiokl, andPy , defined in the  equilibrium properties for a few specific choices of distribu-
Larmor frame bg" tion function
_1 12 12 1 2 2 0
H, =3(X"?2+Y'?) + 2ic,(X°+ YY) + y°(R), - FO=FO(H,) (22)
Po=XY' —YX'

that do not depend explicitty on canonical angular
Here, the Hamiltoniafd, and canonical angular momentum momentumPg . In this case, becaude, is an even func-
Pe are exact single-particle constants of the motiontion of X’ and Y’ [see Eq.(18)], it follows that there is
(dH, /ds=0=dPg/ds) in the equilibrium field configura- no average rotation of the beam in the Larmor frame,
tion becausedx,/ds=0, and d/#®=0 is assumed in Egs. i.e., P (R)=(nd)~1fdX dY’' PgFR(H,)=0, where P
(10—(12). The fact that general distribution function =XY'—-YX'.
FO(H, ,Pe) exactly solves the nonlinear Vlasov—Poisson  For future reference, we briefly consider here three spe-
equationg10) and(12) is readily verified by direct substitu- cific examples of equilibrium distribution functiof(H , ),
tion and application of the chain rule for differentiation. ranging from thermal equilibriuniEq. (23)], to choices of
There is clearly enormous latitutfé? in specifying the  distribution function in whichg(Hl) has annverted popu-
functional form of the zero-order distributioﬁg(H 1,Pe) lation in transverse phase-space variablégs. (24) and
which serves as the background distribution for the non{25)]. Specifically, we consider the following choices of
linear F formalism summarized in Sec. Il A and the simu- F(H ).
lation studies in Sec. lll. Once the functional form of Thermal equilibrium
Fg(Hi ,Pg) is specified, a wide variety of beam equilibrium 2 2 2 o
properties can be calculated, e.g., the density profile oy \_j (meﬂbc )ex ~ MMpBiC H 29
ny(R)=SdX' dY’ F), the self-field potentialy’(R) [Eq. e ’
(11)], the average canonical angular moment&d,(R)
=(nd)~ifdX’' dY’ PgFY, the transverse temperature pro-
file, etc. In addition, we define the statistical averagk, of Ny R
a phase function y over the distribution function Fo(H, )= > S(H, =T,/ yomBic?), (24)
FO(H, ,Pg) by (x)o=N,fdX dY dX dY’ xFQ. For ex-
ample, the unnormalized beam emittaneg and mean- Gaussian inverted-population (GIP) equilibrium
square beam radiu’?, associated with the equilibrium dis-

1b

KapchinskiVladimirskij (KV) equilibrium

tribution F are defined in the usual manner’by oy v M A
Fo(H =5 NS
€6=4(X"2+Y'?)o(X2+Y?),, m
2 _/y2 2 (19) (H _-'|\- /vm 2C2)2
Ro=(X"+Y%)o. Xexp — — LbAZb B : (25)

Here,dR,,/ds=0=deg/ds by virtue of the fact thaFg and
° correspond to equilibrium solutions wi#gs=0. With- ~ where the constar is defined by
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TABLE |. Equilibrium properties for various choices Eﬁ(HL).

Stoltz, Davidson, and Lee

Distribution functionF2(H ) Density profilend(R)

Temperature profild@®, (R) Transverse emittance)

(1) Thermal equilibrium in Eq(23)

. WMBC
N, expl —
2T,
N, =const

for 0<R<r,=\2Ry;
(zero, otherwisge

(2) KV distribution in Eq.(24)

23

A
j du exp{f
A J_vpRr

s

(3) Gaussian IP distribution in E¢25) Ay

(QW+zwﬁ
b

u
v

- 8Ti|J
T, p=const
1b meZCZ Rgo
Tol1 R
1b ?g 4TLb Rgo
for 0SR<r,=2Ry0; YMB?
(zero, otherwisgp
2 NLAA exp(—VZA?) Determine

WM from Eq. (19)

VRY S R

-1

o

T, b/veMmBLC

dU exp(—U?/A?)

Here,n, and'AI'ib are positive constants with dimensions of
density and temperatur@nergy unity respectivelyH, is
the (dimensionlessHamiltonian defined in Eq18), andA is

a positive, dimensionless constant. Without loss of general

ity, we take the on-axis self-field potential to d(R=0)
=0, and identifyn,= nﬁ(RzO) with the on-axis beam den-
sity. For each choice d¥g(Hl) in Egs.(23)—(25), the nor-
malized electrostatic potentia)’(R), is determined self-
consistently in terms of the beam densitylg(R)
=[dX’ dY’ Fg(HL) from the equilibrium Poisson equation
(11) Finally, for the general class of beam equilibria

b(HL) the transverse temperature profile is defined in di-
mensional energy units BY

1
n(R)T?5(R) =5 yompBEc? f dXx’ dy’

X(X’Z—I—Y'Z)Fg(Hl),
wherend(R)=fdX’ dY’ F(H,).

(26)

T p2-2

KZBbC
=22 10 (28)

wpb/27b
Here, @j,=4wZ’e*hy/ym is the on-axis plasma

frequency-squared. Equatid@8) is simply a statement that
the magnetic focusing forc@s measured byzﬁbcz) must
exceed the net repulsive self-field foréas measured by
pb/2)/b) for existence of radially confined equilibria. For
the choice of distribution functions in Eq®3) and(25), we
note from Table | that the formal expressions for the density
profile ng(R) depend explicitly ong®(R), and the(highly
nonlineaj Poisson’s equatiofiL1) for #°(R) must be solved
numerically. As a general remark, whenever the dimension-
less parametes is suff|C|entIy small in comparison with
unity, the density proﬂlenb(R) calculated numerically from
Eqg. (11) and Table | is found to be radially very broad in
units of the thermal Debye length. For example, for the ther-
mal equilibrium distribution in Eq(23), whenevers<1 is
sufficiently small, it is found that the rms beam radRyg, is
much larger than the thermal Debye lengthp
= (y2T, nl4mn,Z%e?) Y2, with nd(R)=h,=const, in the

A detailed evaluation of beam equilibrium properties for beam interior, anmg(R) dropping rapidly to exponentially

the choice of distribution functions in EqR3)—(25) is pre-

small values over a few Debye lengths at the beam

sented elsewheré,and essential results are summarized insurface?™*? For the specific choice of thermal equilibrium

Table I. Here, for the Gaussian inverted-populati@iP)
distribution in Eq.(25) and Table I, the effective potential
V(R) is defined by
Tip
YpMpB5c’
In the limit A—0, , note thatA—1 and the Gaussian dis-
tribution in Eq. (25) reduces exactly to thésingulay KV
distribution in Eqg. (24), because of the identity
limy_o, (VmA) ™ exd —(U-V)7A%]=U~V). In general,
for each choice oiFS(HL) in Egs. (23)—(25), the mean-
square beam radil’; is related to the self-field perveance
K= 2NbZ2 2/ybmﬁbc the average focusing coefficient

x,, and the unnormalized beam emittangeby the radial
force-balance equatio®0), or equivalently, Eq(21). Fur-

—EEW—WWL

V(R)= 5

(27)

distribution Fg(Hl) in Eq. (23), typical numerical solutions
for the radial density profilad(R)=fdX’ dY’ FJ(H,) ob-
tained from the nonlinear Poisson equatidrl) are illus-
trated in Fig. 1. Here, we have introduced an equivalent lat-
tice periodS, defined bySeq 1/\k,, and Fig. 1 shows plots
of normahzed densityd(R)/Ay vs R/ S for several values
of the dimensionless parametkiS,,/€, obtained at fixed
value of beam currenfas measured bi ), and decreasing
values of beam emittaneg=[ (8T, ,/y,mB2c2)RZ,]"2 As
expected, we note from Fig. 1 that the shape of the density
profile nb(R) varies from diffuse and bell-shaped for
KSeq/€0=0.5,t0 a denS|ty profile with relatively sharp radial
boundary forK S,/ o=

From Table I, there are interesting similarities and dif-
ferences in the equilibrium properties calculated for the dis-

thermore, the necessary condition for the existence of radiribution functions in Eqs(23)—(25). For example, both Eq.

ally confined equilibrium solutions witlmg(R—mc):O can
be expressed &s*
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10 —— . : functions in Eqs(24) and (25) for reference in future non-
’ N linear sF-simulation studies.
\ KS,./ ¢
0.8+ : eq/ ~0
\.
\ — 0.5
@ 0.6 ‘ --3 ] C. Dynamics of root-mean-square beam radius  R,(5s)
~ ! . . . . .
°F 0.4t i“ -5 An important diagnostic tool in the nonlinear
li‘ S6F-simulation studies in Sec. Il will be to monitor the dy-
0.2t i\ 1 namics of the rms beam radiug,(s) defined bny,(s)
N =(X2+Y?). For axisymmetric beam propagatieis®=0),
O — anexactconsequence of the nonlinear Vlasov—Poisson equa-
0.0 0.2 0.4 06 0.8 1.0 tions (2) and (3) is that the rms beam radiuR,(s) evolves
*/Seq (107) according t4°
FIG. 1. Plot of normalized density profile)(R)/f, vs R/S, obtained nu- 2 62(5)
merically from Eq.(11) for the choice of thermal equilibrium distribution —— R(S)+]| k(S — ———|R(S) = ———. 29
FJ(H,) in Eq. (23 and several values of dimensionless beam intensity ds? () «9) 2R§(S) o(S) 4Rg(s) 9

corresponding t& Sgy/€0=0.5,3,5. HereS,~ l/\/K_Z. o

Here, k,(S)=«k,+ 8k, (S) is the sdependent focusing
coefficient, statistical averages over the distribution
function Fy(X,Y,X',Y',s) are defined by (x)
=N, 'fdX dY dX dY’ xF,, and the unnormalized beam
emittancee(s) is defined by

trast, the KV distribution in Eq(24) has a uniform density
profile, with ng(R)=ﬁb=const over the interval @ R<ry,
andng(R)=0 for r>ry,. Here, the outer beam radiusg is
determined from the conditions(r,) + (1/2)k,r2=T,/ €2(S)=A[(X"2+Y"2){X2+ Y2 —(XX'+ Y Y')?]. (30
yemBic?, where y°(R)=—(1/2)KR?/r3 in the beam inte- . . o _
rior (O<R<r,). Furthermore, from Table I, the transverse FOr the special case of a uniform focusing field with
temperature profileT® (R) is uniform (and equal toT,,  9%2(S)=0 andk,(s)=«,=const, and constant values of rms
= const) for the thermal equilibrium distribution in E@3), ~ Peam radiusy and emittances, Eq. (29) reduces to the
whereas T, (R) decreases as a function dt for the radial force balance condition in E(R0), as expected.
inverted-population distributions in Eq&4) and (25). For appllcanon in the numerical S|r_nul_at|ons in Sec._ I,
The Gaussian inverted-population distribution in Eq.We consider a _fuIIy (_jeveloped _per|c_)d|c focusing _f|eld
(25) is particularly interesting. As noted earlier, in the limit ¥2(STS)=#.(s) in which the axial field has a sinu-
A—0,, Eq. (25 reduces identically to the KV beam SOidal component withB,(s)=By[1+ (An/2)cos(2rs/S)],
equilibriun? in Eq. (24). Furthermore, from Eq(27) and v_vhere B, Am, agdz_s_are constants.  Thus(s)
Table |, becaus&/(R=0)=T,,/y,mB2c? and V(R—x) =[ZieB(s)/2ysmByC7]"= Kz + Gk(S), where
= —o, it follows thatn)(R=0)=n,, and the densityp2(R) o= ko(1+A2/8)
decreases monotonically with increasiRgwith np(R— ) 2 h0 e 31
=0. In the limit A—0, , the density profileng(R) corre- A 27
sponding to Eq(25) of course reduces to the step-function Sk,(S)=k, 1 Amz B co{ S )
profile in Table | for the KV distribution. An appealing fea- tAm

ture of the Gaussian inverted-population distribution in Eq. A2/8 2ms

(25) relative to the KV distribution in Eq24) is the fact that + ﬁ cos( . ?) ,
-1

the velocity derivative factof) ~9FY/aX’, which occurs in m

Eqg. (15) for the weight functiorw, is not a singular function  and ,,=(z;eB,/2y,mBLc2)2.

for the case of the Gaussian inverted-population distribution The nonlinear equationg) for the rms beam radius
(whenA#0), whereas it is a singular function for the case of g (s) can be integrated numericalfyfor a wide range of

a KV distribution. Nonetheless, E¢25) does enjoy some system parameters and choices of periodic lattice function
similarity in features to Eq(24), e.g., an inverted population , (s+S)=k,(s). For the special case afmall-amplitude

in phase space. By contrast, the thermal equilibrium distripscillations about the average beam radRyg defined in
bution in Eq.(23) is a monotonic decreasing function ldf, Egs. (20) and (21), we expressR,(s)=Ryo+ oR,(s), and
with 9F/dH, <0. We therefore expect the stability proper- finearize Eq.(29). Treatinge?=e2=const, and approximat-

ties of the equilibrium distribution in Eq23) to differ from  jng sx,(s)=k,A,, cos(2rgS) for small values ofA2/8<1,
the stability properties of the equilibrium distributions in thjs gives

Egs.(24) and(25), which have inverted populations i, .42

Although nonlinearsF-simulation results for high-intensity d? ) _

matched-beam propagation are presented in Sec. Il only for g2 9Ro(S) T KedRy(S) =~ kzAm RyoCOSKsS), (32)
the case of the thermal equilibrium distributi@rﬁ(Hl) in

Eq. (23), we have summarized above and in Table | equilib-wherek,=27/S, and the envelope-oscillation wave number
rium properties for the two other choices of distribution k. is defined by
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tions are readily obtained withR,(s) oscillating with the
same periods as the periodic focusing field.

From Eg.(33), we note that the envelope-oscillation wave lIl. NONLINEAR &F SIMULATION STUDIES

numberk, varies from k;‘;_=4?z for a low-intensity beam
(KlegVk,<1) to ki=2k, for a high-intensity beam
(K/eg\k,>1). Furthermore, the general solution to E8R)
is

RbO?zAm

2 [COS( kss) - COS( kes)]

Rel9= Tz
S

ke
where R, (0) andsR;,(0) are the initial values a&=0. It is

evident from Eq.(34) that §R,(s) generally has oscillatory
components at wavelength,=2=/k,, and at wavelength

+ 6Rp(0)cogkes) + — SR, (0)sin(kes), (34)

In this section, we present the equations followed in the
nonlineardF simulations, discuss initial conditions and con-
servation properties, and present numerical results for several
choices of the adiabatic turn-on parameteand dimension-
less self-field parametdkS/e,. All simulations presented
here corresponds to the case whEﬁéHl) is chosen to be
the thermal equilibrium distribution in E§23) (see also Fig.

1), although thesF formalism is readily applied to other
choices ong(Hl). The main result of this section is that
adiabatic turn-on ob«,(s) with sufficiently small value ot
leads to matched-beam solutions that can propagate quies-
cently over several hundred lattice periods. By contrast, sud-

As=2m/ks=S corresponding to the period of the applied den turn-on ofdx,(s) leads to strong beam mismatch in

focusing field. Only for the special initial conditions with

SR((0)=0,

8R(0) = A R0/ (K2~ D), 39
is the beam trulymatched with SRy(s) oscillating only at
the periodS=2#/k of the focusing field the first term on
the right-hand side of Eq34)].

In the present paper, we make use of E2f), in par-
ticular the linearized version in E¢B2), as adiagnostic tool
to infer the natural wavelength components making u
6Ry(s)=Ry(s) — Ry, and to compare with the fast Fourier
transform of SR,(s) measured in theSF simulations[see
Eqg. (41)]. The envelope oscillation wave numbler [Egs.
(33) and (34)] of course includes the effects of thee-

pressed betatron oscillations of the beam ions. Consistent

(for example with the application in Ref. 37, we take

| 8k,(s)|=0.2 in the present simulations. In this case it is

found that|SR,/R,0|<1-5x103, and the linearization
approximation in Eq(32) is fully adequate for identifying
the key wavelength components &R;(s).

In the simulations presented in Sec. Ill, we will find that

both frequency components in E@4) are generally present
in SRy (s) for the case wherék,(s) in Eq.(31) is turned on
suddenlyat s=0. As a second approach, we adoptadtia-
batic  turn-on  model in  which B,(S)=B,[1
+(1/2)A(s)cosks)], where (for example the coefficient
A(s) is defined by

S
o o]

wherew is a positive constant. Fa= 0, Eq.(36) reduces to
A=0, and fors>a 1S, A(s) asymptotes at\,,=const.
That is, using Eq(36) with sufficiently small value ofe,

A(s)=Ap, (36)

which 6R(s)=R,(s) — R,y has oscillatory components at
wavelengths\.=2m/k, andA;=27/k,=S [see Eq.(34)].

The 6F simulations follow the particle trajectories and
weights as functions &f One can derive the necessary equa-
tions using the Klimontovich representation for the distribu-
tion functiont

N

Np <& ,

Fo=rm 2, 8(X—X) (X' =X/,
Np i=1

(37

whereN, is the number of particles used in the simulations,

Pand Np=/ dX dY dX dY' Fy is the number of particles

per unit length. For this representationfgf, assuming per-

(a) s/S.4=0 ! (b) 5/S.q=5001
4F 4
= ol o
L -2} -2t
>_
__4— —4F
-4 -2 0 2 4 -4 -2 0 2 4
28 (o) $/54=0 1 2¢f (d) $/S,q=5001
1 1E '
9
2 g of
< gt 1t
-2 —2}

-4 -2 Q0 2 4
X/ Seq (1077

-4 -2 0 2 4
X/ Seq (1077

FIG. 2. Phase-space plots corresponding XoY( at (a) s=0 and(b) s

5k,(s) turns on adiabatically over many lattice periods, and=500Seq. and X,X’) at(c) s=0 and(d) s=500S,,. System parameters

achieves the constant-amplitude oscillatory form in &4)
for s>a 1S, In this case, it is found in the nonlinea@F
simulations presented in Sec. Il thatatched-beansolu-

correspond to a thermal equilibrium beam wki8,,/e,=7 propagating

through a uniform focusing field witld«,(s)=0. Other parameters for this
simulation correspond tdl,= 10,000 particles, 512 radial grid points, and
time stepAs=0.01S,.
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turbations about the thermal equilibrium distributEﬁ(Hl) —~ " T ]
in Eq. (23), the equations foX;(s) andw;(s) reduce tqsee 0o 4 3 (a) E
Egs.(6) and(15)] (@] 2 i ]
, - d d ~ E ]
Xi'= =K+ Sk (8)]Xi— ax; bo(Xi) + X, oY(X,s) |, O:g Ot ]
(38) \D —-2 y b
3 mpBac? o
W=~ (L-w)| Sk X+~ 5%, ) |- T2 o © —4f ]
(9Xi TLb 4 1 A A
(39 O 10 20 30 40 50
For the simulations presented here, we assume an axisym- S/S
metric beam(d/9®=0), and use Eqs(16), (37), and F,, €q
=wF, to write
N T~ " ) ) '
a K & © 4F (b) ]
— = (X ] ]
l?R 5¢(Rls) RNp Riz<R WI()(I vs)! (40) O 2 E_ ]
whereR?= X2+ Y2, ~ ]
From the analysis in Sec. IIC, the rms beam radius g O M
Ry(s) is expected to oscillate at two distinct frequencies. g —2F ]
Hence, we monitor the change Rﬁ(s), calculated from O:D [ ]
SRY(s) = 8(X2+Y?) S —4f , . . . R
=(X2+Y2) = (X?+Y?), 450 460 470 480 490 500
1 s/S
- f (X2+Y?)(F,—F)dX dY dX dY’ / €q
b
1 — 1.5] '
= f (X2+Y2)WF, dX dY dX dY’ S~ [ (c)
Fa)
b o _.U:) [
1 Q& 2. \2 \.o < 1.0T ]
:N—pi; W (X2+Y?). @) of 3 f |
- - _
Similarly, from Egs.(30), (37), and 6F,=wF,, we monitor E ‘-O- .
the change in emittance-squared calculated from L ~—
Se¥(s)=€(s)— €2 0.0
o TN Ny O 2 4 6 8
= (X!'24Y!2 (X241 Y2
Ng[(iﬁlw,(xl +Y, ))(iElwl(x, +Y?) KSeq

N
P
+ NpRﬁoiZl wi(X/2+Y/?)

1 2Np 2 2
+7 Npeo;l Wi (X2+Y2)

%f

o

2
1WI(XIXI’+YIYI’)) :| (42)

FIG. 3. Plots of variation in rms beam radid®,(s) vs s determined nu-
merically from Eq.(40) over the intervalga) s=0 to s=50S.,, and(b)
§=450S.4=5=500S,. (c) shows a plot of the fast-Fourier transform of
ORp(s) integrated over the interval=0 to s=500S,,. System parameters
are identical to those in Fig. 2.

=¢,92R3,, whereR?, is the equilibrium mean-square radius
defined in Eq.(21). Therefore, for\x,S=1, it follows that

Simulation results are presented in this section for thehe vacuum phase advanee =limy_ o is 0,=57.3°.

case whereB,(s) =B,o[ 1+ (1/2)A(s)cos(2rs/S)] and A(s)
is defined in Eq.(36). For =« (sudden turn-on Sk,(s)
turns on abruptly to the wave form in ER1). On the other
hand, for <1 (adiabatic turn-ojy S«,(s) turns on slowly
and achieves the wave form in E@1) for s>S/«. In this

From Eq.(21) and o= €,S/2R%,, it then follows that the
depressegbhase advancéncluding space-charge effettis
o=44.7° ando=11° for the two caseKS/e;=0.5 and
KS/ep=5, respectively. In the simulations presented in this
section, unless otherwise indicated, we takg=0.2 as sug-

section, we present simulation results for the case whergested in Ref. 37, and the simulations are carried out with

Jk,S=1, corresponding t&= S,q=1/\k,. It is also conve-
nient to define an effective phase advanee by o

Np=20 000 particles, 1024 radial grid points, and time steps
of As/S=0.001.
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FIG. 4. NonlinearsF-simulation results for sudden turn-on ék,(s) with a=« andA,=0.2, and normalized beam intensky&/e,=5. Beam propagation
is froms=0 tos=300S, and perturbations are about the thermal equilibrium distriblfil@iml) in Eq. (23). Shown are plots vs/S of (a) «,(s)/k, from
s=0 t05=50S; (b) dk,(s)/«, from s=290S to s=300S; (c) SR,(S)/Ryo from s=90S to s=100S; (d) SR,(S)/Ryo from s=290S to s=300S; (e)
S€(s)/ ey from s=90S to s=100S; and(f) de(s)/ ey from s=290S to s=300S. Also shown are fast-Fourier transform plotsa®,(s) where averages are
(g) from s=0 to s=100S, and(h) from s=0 to s=300S.
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FIG. 5. NonlinearsF-simulation results for sudden turn-on &,(s) with =« andA,,=0.2, and normalized beam intensiys/ e,=0.5. Beam propagation
is froms=0 to s=300S, and perturbations are about the thermal equilibrium distribngm-ll) in Eq. (23). Shown are plots vs/S of (a) «,(s)/«, from
s=0 t05=50S; (b) dk,(s)/«, from s=290S to s=300S; (c) SR,(S)/Ryo from s=90S to s=100S; (d) SR,(S)/Ryo from s=290S to s=300S; (e)
Se(s)/ eg from s=90Sto s=100S; and(f) de(s)/ e, from s=290S to s=300S. Also shown are fast-Fourier transform plots@R,(s) where averages are
(g) from s=0 to s=100S, and(h) from s=0 to s=300S.
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FIG. 6. NonlinearsF-simulation results for adiabatic turn-on @i ,(s) with «=0.1 andA,,=0.2, and normalized beam intensi/S/e,=5. Beam
propagation is frons=0 to s=300S, and perturbations are about the thermal equilibrium distribdﬁgn(rl—ii) in Eqg. (23). Shown are plots vs/S of (a)
Sk,(8)/ k, from s=0 t0 s=50S; (b) S«,(S)/ K, from s=290S to s=300S; (c) SR,(S)/Ryo from s=90S to s=100S; (d) SR(S)/Ryo from s=290S to
s=300S; (e) de(s)/ eg froms=90Sto s=100S; and(f) de(s)/ e, from s=290S to s=300S. Also shown are fast-Fourier transform plotsa,(s) where
averages ar€g) from s=0 to s=100S, and(h) from s=0 to s=300S.
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The initial conditions as=0 for the particle positions Q.5 T ' ALARARARAN
and momenta are chosen consistéfitiwith the thermal @
equilibrium distribution in Eq(23). Although we do not do o0.10F
so here, Parker and L&ehave suggested a method for ini- [
tializing with an arbitrary distribution, which could allow
increased resolution in particularly interesting regions of the
simulation, such as near the beam edge. The particle weights
are chosen to be zero st 0. In the 5SF scheme, the particle
weights determine how the beam properties deviate from
equilibrium. Choosing zero for the initial value of the
weights implieséR,(0)=0 and (because the thermal equi-
librium distribution function is even inX’ and Y'),
SR{(0)=0. As shown in Sec. Il C, these choices fiR,(0)
and 5R},(0) lead to a mismatched beam for sudden turn-on
of the periodic field in Eq.(31). Matching the beam by 015 b, L .
choosingsR,(0) and SR, (0) as specified in E(:35) would 0 1 2 3 4 5
require initializing the weights correctly, and it is not readily 3
apparent how to accomplish this, as many choices for the R/S (107)
initial particle weights would lead to the prescribéR,,(0)
and SR[(0). As an extreme example, one can imagine 0.15 _"(;)"'""Tm""‘“”" o o ]
choosing all initial particle weights to be zero except for one, i
which is chosen by means of E@ll) to satisfy Eq.(35). To
avoid this ambiguity, we take all initial particle weights to be
zero, and instead accomplish beam matching by the adiabatic
turn-on of Sx,(s).

Conservation of the total number of particles requires
that the sum of the particle weights be equal to zero fos,all
ie.,

I
P B

)

ized

én, (normal

P4

p

1
(w)= N, ; w;=0. (43)

5n, (normalized)

This constraint is a useful diagnostic for testing how well the 1
code is modeling the true beam dynamics. For the sample —0. 15 bt TPV VO TPV
parameters given above, we fi(m;)~0.001 over a distance 0 1 2 3 4 5
s=100S. This deviation decreases approximately linearly R/S (10—3)
with decreasing time step, so the deviation is due to integra-
tion error. In 6F simulations of tokamak plasmas, similar e
discrepancie® have been observed. For the results presented 0.15 [ () ' B ' l
in this paper, we adjust for this deviation by subtract{mg [ ]
from each particle weight at the beginning of each time step, 0.10¢ ]
thus ensuring particle number conservation. T ]
As a simple test case, we first present simulation results
for intense beam propagation through a uniform focusing
field with 6k,(s)=0 andA,,=0. Typical numerical results
are presented in Figs. 2 and 3 for the choice of self-field
parameteiK S,/ €o="7, and the corresponding envelope os-
cillation wave number determined from E@3) is given by
KeSeq= 1.43. Figure 2 shows phase space plotsXnY() and
(X,X") phase space a=0 ands=500S,,. As would be
expected, fordk,(s)=0, the (stablé thermal equilibrium —-0.10
beam propagates quiescently over large distances with neg- ﬁ ]
ligible change of the distribution in phase space. Shown in —0.15 Lanas TN ]
Fig. 3 are plots of the change in rms beam raddiy,(s) 0 1 2 3 4 5
determined numerically from Ed40) [Figs. 3a) and 3b)], R/S (10—3‘)
f’:lS well as a plot of the faSt-Fourier-tranSform mb-(s) FIG. 7. Plots of the perturbed densifn,(R,s)=/ dX' dY’ §F, vs radius
!ntegrated fr(_)mS_:O t_o S= SOOSeQ' EVIdentIY’ the(n0|_se- R obte{ined numerically at successiveb ha’If-Iattice periods cgrresponding to
induced oscillations in the rms beam radius remain ex- (g s=299s, (b) s=299.5S, and(c) s=300S. System parameters in the
tremely small, with|sR,/Ryo|=10"°, although there is simulation are identical to those in Fig. 6.

—0.00}

(normalized)

~0.05}

ony
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FIG. 8. NonlineardF-simulation results for adiabatic turn-on ol ,(s) with «=0.1 andA,,=0.2, and normalized beam intensi§S/e,=0.5. Beam
propagation is frons=0 to s=300S, and perturbations are about the thermal equilibrium distribLEgn(rl—ii) in Eqg. (23). Shown are plots vs/S of (a)
Sk,(8)/ k, from s=0 to s=50S; (b) 8k,(S)/k, from s=290S to s=300S; (c) SR,(S)/Ryo from s=90S to s=100S; (d) SR,(S)/Ryo from s=290S to
s=300S; (e) de(s)/ eg froms=90Sto s=100S; and(f) de(s)/ ey from s=290S to s=300S. Also shown are fast-Fourier transform plotsa,(s) where
averages ar€g) from s=0 to s=100S, and(h) from s=0 to s=300S.
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some increase in oscillation amplitude in the intergal
=450S,, to s=500S,q [Fig. 3(b)] relative to the intervas
=0 to s=50S,, [Fig. 3@]. Most strikingly, the envelope
oscillation wave numbdiFig. 3(c)] is in excellent agreement
with the predicted valu& in Eq. (33) for KSyq/€9=7.

Nonlinear 6F-simulation results for the periodic focus-
ing case withA ,=0.2 are presented in Figs. 4—-11, including
data sets for sudden turn-on witf=o for KS/e5="5 (Fig. 4)
and KS/ey=0.5 (Fig. 5); adiabatic turn-on withe=0.1 for
KS/ep=5 (Figs. 6 and Y and KS/eq=0.5 (Figs. 8 and &
and adiabatic turn-on witlx=0.02 for KS/e;=5 (Figs. 10
and 11. All simulations presented in Figs. 4—11 are carried
out for beam propagation from=0 to s=300S. For pur-
poses of comparison, Figs. 4, 5, 6, 8, and 10 display similar
data sets at different system parameters. Specifically,
Sk4(S)/k, is plotted versuss/S from s=0 to s=50S in
frame (a), and from S=290S to s=300S in frame (b);
ORy(8)/Ryg is plotted froms=90S to s=100S in frame
(c), and froms=290S to s=300S in frame(d); Se(s)/ e is
plotted froms=90S to s=100S in frame (e), and froms
=290S to s=300S in frame (f); and the fast-Fourier trans-
form of SRy(s) is plotted versuksS, with averages taken
from s=0 to s=100S in frame (g), and froms=0 to s
=300S in frame (h). Figures 7, 9, and 11 show plots of the
perturbed densityn,=f dX' dY’' SF, versus radiuR de-
termined numerically at the three axial locations correspond-
ing to (a) s=299S, (b) s=299.5S, and(c) s=300S, re-
spectively.

We first consider the case of sudden turn{es=) of
Sk,(S) at high and moderate beam intensities corresponding
to KS/leg=5 andKS/e;=0.5 in Figs. 4 and 5, respectively.

In this case, as evident from Figs. 4 andd&,(s) achieves
the periodic wave form in Eq31) instantaneously at=0,

and sustains this wave form froa+ 0 to s=300S. As evi-
dent from Figs. 4 and 5, the change in emittance remains
extremely small over the entire propagation interval, with
|6l €0]<10"1* in the high-intensity cas¢Figs. 4e) and
4(f)], and| 8el eg] =5% 10 2 in the low-intensity casgFigs.

5(e) and 5f)]. It is evident that there is also a very small
(negative dc offset of a few parts in 28 that develops in
Figs. 5e) and 8f). This offset is due to integration errors
that develop in computing the weighfe/;}, and can be re-
duced even further by decreasing the size of the time step
As. Most striking in Figs. 4 and 5 is the fact that sudden
turn-on of dk,(s) leads to significant beam mismatch in
which the variation in the rms beam radiu#R,(s) =R,(S)

— Ry, has strong oscillatory components at both the funda-
mental wavelength\;=2m/k,=S of the periodic focusing
field, and at the(longep envelope oscillation wavelength
Ne=2m/k,, Wherek, is defined in Eq(33) [see Figs. &)

and 4d), and Figs. &) and 8d)]. These two wavelength
components are clearly evident in the fast-Fourier transform
plots of 6R,(s) presented in Figs.(4) and 4h) for KS/ ¢
=5, and in Figs. &) and 8h) for KS/€;=0.5. As noted
earlier in this section, becaus®,(0)=0 andSR;(0)=0, it
is expected from Eq34) that R, (s) will have two distinct
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FIG. 9. Plots of the perturbed densifn,(R,s)=/ dX' dY’ &F vs radius
R obtained numerically at successive half-lattice periods corresponding to

wavelength components with moderate intensity, at waver,) s=299s, (b) s=299.5S, and(c) s=300S. System parameters in the
lengths A\ ;=27/ks=S and Ao=27/k,. As expected, the simulation are identical to those in Fig. 8.
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FIG. 10. NonlinearsF-simulation results for adiabatic turn-on @f,(s) with «=0.02 andA,,=0.2, and normalized beam intensi§S/e,=5. Beam
propagation is frons=0 to s=300S, and perturbations are about the thermal equilibrium distribdﬁgn(rl—ii) in Eqg. (23). Shown are plots vs/S of (a)
Sk,(8)/ k, from s=0 t0 s=50S; (b) 8«,(S)/k, from s=290S to s=300S; (c) SR,(S)/Ryo from s=90S to s=100S; (d) SR,(S)/Ryo from s=290S to
s=300S; (e) de(s)/ eg froms=90Sto s=100S; and(f) de(s)/ ey from s=290S to s=300S. Also shown are fast-Fourier transform plotsa,(s) where
averages ar€g) from s=0 to s=100S, and(h) from s=0 to s=300S.

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 6, No. 1, January 1999

0.15[ 7T ! 1 LA
(a)

0.10}

L]
P Y

0.05}
—0.00}

—-0.05¢}

6n, (normalized)

-0.10}

—0.15ben, N o o o '
0 1 2 3 4 5

0.15 [T e e .

0.10}

0.05}

—-0.00}

8n, (normalized)

~0.05}F ]

-0.10F 1

—-0.15 L faaeiss [TVPTTUIN TOTTURIINN PRSI
0 1 2 3 4 )

0.05F .

sn, (normalized)

| | |
©c o 9
- o o
o & O

015 et

0 1 2 3 4 5

R/S (107%)

FIG. 11. Plots of the perturbed densifp,(R,s)=[ dX' dY' 6F, vs ra-
dius R obtained numerically at successive half-lattice periods correspondin

Stoltz, Davidson, and Lee 313

fast-Fourier transform peaks in Figs. 4 and 5 occuk&
=2 and at the values df.S calculated from Eq(33) for
KS/ep=5 (Fig. 4 andKS/ey=0.5 (Fig. 5.

We now present nonlineatF-simulation results for the
case of adiabatic turn-on aof«,(s). Here, the normalized
field amplitudeA(s) turns on adiabatically according to Eq.
(36), with A(s) asymptoting at\ ,,=0.2 fors>S/a. Typical
numerical results are presented in Figs. 6—11 for the three
cases:a=0.1 andKS/e¢;=5 (Figs. 6 and ¥, «=0.1 and
KS/eg=0.5 (Figs. 8 and § and «=0.02 andKS/e¢;=5
(Figs. 10 and 11 We first note from Figs. 6 and 8, for
a=0.1, that it takes about 20 lattice periods #%,(s) to
achieve the steady wave form in E§1), whereas from Fig.
10, for =0.02, a steady wave form is achieved in about 100
lattice periods. Several features of Figs. 6, 8, and 10 are
qualitatively similar to Figs. 4 and 5. Most notably, the
change in emittancegde(s)/ ey, remains extremely small
over the entire propagation distance of 380A striking
difference is the effect of adiabatic turn-on in assuring
matched-beanpropagation in which the primary oscillatory
component ofSR,(s) is at the wavelength ;=2#/k;=S of
the periodic focusing field«,(s). For example, at moderate
beam intensity wittKS/e;=0.5, it follows from Figs. &),
8(d), 8(g), and &h) that the beam is highly matched even for
adiabatic turn-on parameter=0.1. In this case, the oscilla-
tory component oBR,(s) at wavelength\.=2m/k, is neg-
ligibly small in comparison with the oscillation at wave-
lengthAs=S. On the other hand, at high beam intensity with
KS/ey=5, for =0.1, it is clear from Figs. @), 6(d), 6(g)
and @&h) that a moderately strong envelope oscillation at
wavelength\ .=27/k, still persists, although it is greatly
reduced in intensity relative to the sudden turn-on case in
Fig. 4. However, forKS/ep=5 and even slower adiabatic
turn-on corresponding te=0.02 in Fig. 10, it is clear from
Figs. 1Qc), 10(d), 10(g), and 1@h) that the beam is highly
matched in the high-intensity case. We conclude from the
simulation results presented in Figs. 4, 5, 6, 8, and 10 that
adiabatic turn-on ob«k,(s) is a powerful technique for beam
matching.

Finally, Figs. 7, 9, and 11 show plots of the perturbed
density 6ny(R,s)=J dX' dY’' 8F, versus radiusR deter-
mined numerically at the three axial locations corresponding
to (@) s=299S, (b) s=299.5S, and(c) s=300S, respec-
tively. The results in Figs. 7, 9, and 11 correspond to the
system parameters and nonline#¥ simulations presented
in Figs. 6, 8, and 10, respectively. As expected, from Figs. 7,
9, and 11,6n,(R,s) has regions of positive and negative
perturbed density over the radial extent of the beam. More-
over, in the high-intensity cas&&/e,=5 in Figs. 7 and 1},
where the equilibrium density profilag(R) falls off rather
abruptly near the outer edge of the be@ae Fig. 1, the
density perturbatio®n,(R,S) is largely concentrated in this
outer region. By contrast, at moderate beam intensity
(KS/'ep=0.5 in Fig. 9, the equilibrium density profileg(R)
is radially more diffuse and bell-shap¢ske Fig. ], and the

éjensity perturbatiodn,(R,s) extends throughout the beam,

to (a) 5=2995S, (b) s=299.5S, and(c) s=300S. System parameters inthe s €xpected. A striking feature of Figs. 7, 9, and 11 is that

simulation are identical to those in Fig. 10.

onp(R,s) exhibits oscillatory behavior with periodkg
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=2nlks=S corresponding to that of the periodic focusing propagation. In this regard, one promising approach for a

field. periodic quadrupole lattice is to first carry out a Floquet
transformatiof®** to incorporate the average effects of the
focusing field. This and other approaches are currently under

IV. CONCLUSIONS development by the authors for application of the nonlinear

In this paper, we have developed and applied the nonlindF formalism to periodic quadrupole transport systems.
ear 5F formalism for intense non-neutral beam propagation ~ Finally, it should be pointed out that parametric reso-
through a periodic focusing solenoidal fielg,(s+S) nances and cha_ot|c particle motion often play an important
= k,(s). Following a description of the theoretical model role in the nonlmear dynamics of space—charge—domlnated
(Sec. ), the SF formalism was develope(Sec. 1) by divid- beams, partlcularly for the case of mlgmatched beéﬁfae,
ing the total distributiorFy, into a zero-order partR?) that ~ €-9- Ref. 44 While the present nonlineasF formalism
propagates through the average focusing fielg=const, Incorporates such effects_se_lf-con_s_lgtently when they occur,
plus a perturbation §F,) which evolves nonlinearly in the MO evidence for paramgtrlc instabilities was observed in the
zero-order and perturbed field configurations, including thénatched-beam simulations presented here, at least for the
effects of the oscillatory component of the focusing field,case of a thermal equilibrium distributidh,(H,) and the
Sk,(S) = k,(S)— k,. Assuming perturbations about a ther- Fange of values of phase advanes, €57.3°, ands ranging
mal equilibrium distributiorF?, nonlinearsF-simulation re- ~ from 11° to 44.75 considered in the present analysis.
sults were presente@Bec. Ill) for a wide range of beam
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