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Nonlinear dF simulation studies of high-intensity ion beam propagation
in a periodic focusing field
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This paper makes use of the nonlinear Vlasov–Poisson equations to describe the propagation of an
intense, non-neutral ion beam through a periodic focusing solenoidal field with coupling coefficient
kz(s1S)5kz(s) in the thin-beam approximation (r b!S). The nonlineardF formalism is
developed for numerical simulation applications by dividing the total distribution functionFb into
a zero-order part (Fb

0) that propagates through the average focusing fieldk̄z5const, plus a
perturbation (dFb) which evolves nonlinearly in the zero-order and perturbed field configurations.
To illustrate the application of the technique to axisymmetric, matched-beam propagation, nonlinear
dF-simulation results are presented for the case whereFb

0 corresponds to a thermal equilibrium
distribution, and the oscillatory component of the coupling coefficient,dkz(s)5kz(s)2k̄z , turns
on adiabatically over many periodsS of the focusing lattice. For adiabatic turn-on ofdkz(s) over
20–100 lattice periods, the amplitude of the mismatch oscillation is reduced by more than one order
of magnitude compared to the case where the field oscillation is turned on suddenly. Quiescent,
matched-beam propagation at high beam intensities is demonstrated over several hundred lattice
periods. © 1999 American Institute of Physics.@S1070-664X~99!02401-5#
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I. INTRODUCTION AND THEORETICAL MODEL

It is increasingly important to develop an improved th
oretical understanding of the equilibrium, stability, and tra
port properties of intense non-neutral beams propagatin
periodic focusing accelerators and transport systems.1–4 The
influence of space-charge effects on nonlinear beam dyn
ics, stability properties, and halo formation5–30 is particularly
pronounced at the high beam currents and beam densiti
the next-generation accelerators envisioned for heavy ion
sion, tritium production, and spallation neutron sources.31–35

Advanced numerical simulations and analytical studies13–30

are playing an increasingly critical role in validating theor
ical models for comparison with experiment and in the d
sign optimization of next-generation accelerators and be
transport systems. This paper develops the nonlineardF for-
malism for intense beam propagation through a periodic
lenoidal focusing field,20–22,36,37and presents simulation re
sults applying thedF formalism to the case of high-intensit
matched-beam propagation over hundreds of lattice peri
NonlineardF simulation techniques have been applied s
cessfully to model the nonlinear dynamics and stability pr
erties of magnetically confined fusion plasmas,38–40 and in-
tense non-neutral beam propagation through a perio
quadrupole lattice,29,30 and through a uniform focusing sole
noidal field.41 SuchdF schemes are found to be attractive
comparison with standard particle-in-cell simulations b
cause they exhibit minimal noise and accuracy problems

The theoretical model is based on the nonlinear Vlaso
Poisson equations1,42 and is described in the remainder
Sec. I. In Sec. II, the nonlineardF formalism is developed
for intense beam propagation through a periodic focus
solenoidal field with coupling coefficientkz(s1S)5kz(s).
The total distribution functionFb is divided into a zero-orde
2981070-664X/99/6(1)/298/18/$15.00
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part (Fb
0) that propagates through the average focusing fi

k̄z5const, plus a perturbation (dFb) which evolves nonlin-
early in the zero-order and perturbed field configurations.
illustrate the application of the technique to axisymmetr
matched-beam propagation, nonlineardF-simulation results
are presented in Sec. III for the case whereFb

0 corresponds to
a thermal equilibrium distribution, and the oscillatory com
ponent of the coupling coefficient,dkz(s)5kz(s)2k̄z ,
turns on adiabatically over many periodsS of the focusing
lattice. For adiabatic turn-on ofdkz(s) over 20–100 lattice
periods, the amplitude of the mismatch oscillation is reduc
by more than one order of magnitude compared to the c
where the field oscillation is turned on suddenly. Quiesce
matched-beam propagation at high beam intensities is d
onstrated over several hundred lattice periods.

To summarize the theoretical model, we consider a th
intense non-neutral ion beam with characteristic radiusr b

and axial momentumgbmbbc propagating in thez direction
through a periodic solenoidal focusing field,Bsol(x)
5Bz(s)êz2(r /2)Bz8(s)êr , where Bz(s1S)5Bz(s) is the
axial field component,s is the axial coordinate,S5const is
the periodicity length, the ‘‘prime’’ denotes derivative wit
respect tos, and r 5(x21y2)1/2 is the radial distance from
the beam axis. Here, we assume a thin beam withr b!S and
n5Zi

2e2Nb /mc2!gb , where n is Budker’s parameter
gbmc2 is the characteristic energy of a beam particle,gb

5(12bb
2)21/2 is the relativistic mass factor,Vb5bbc is the

axial velocity,c is the speed of lightin vacuo, andZie andm
are the ion charge and rest mass, respectively. The qua
Nb5*dx dy nb is the number of beam particles per un
axial length, wherenb(x,y,s) is the particle density. The
thin-beam approximation (r b!S) and the assumption o
small Budker’s parameter (n!gb) are consistent approxima
© 1999 American Institute of Physics
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tions provided the transverse momentum components
beam particle,px and py , and the characteristic axial mo
mentum spread,dpz , are small in comparison with the d
rected axial momentumgbmbbc, which we assume to be th
case. In addition, the present analysis is carried out in
electrostatic approximation, where the self-electric field p
duced by the beam space-charge isEs52“fs, and the elec-
trostatic potentialfs(x,y,s) is determined self-consistentl
from Poisson’s equation. Furthermore, to determine the s
magnetic fieldBs5“3Az

sêz produced by the beam current,
is assumed that the axial velocity profileVzb(x,y,s)>bbc is
approximately uniform over the beam cross section, and
self-magnetic field is approximated byBs5bb“fs3êz .

Consistent with the assumptions described above,
nonlineardF formalism, developed in Sec. II and applied
Sec. III, makes use of the nonlinear Vlasov–Poisson eq
tions to describe the dynamics of the beam particles and t
interaction with the field configurationEs52“fs and B
5Bsol1bb“fs3êz . For present purposes, it is convenie
to introduce the focusing coefficientkz(s1S)5kz(s) and
the normalized electrostatic potentialc(x,y,s) defined
by21,22

kz~s!5S ZieBz~s!

2gbmbbc2D 2

,

~1!

c~x,y,s!5
Zie

gb
3mbb

2c2 fs~x,y,s!.

It is also convenient to transform to a frame of referen
rotating about the beam axis at the local~normalized! Lar-
mor frequencyVL(s)52Akz(s)52ZieBz(s)/2gbmbbc2.
Introducing the accumulated phase of rotation,uL(s)
52*s0

s ds Akz(s), the transverse orbits,X(s) andY(s), in

the rotating frame are related to the transverse orbits,x(s)
and y(s), in the laboratory frame byX5x cosuL(s)
1y sin uL(s) andY52x sin uL(s)1y cosuL(s). Then, as-
suming that the beam particles have negligibly small ax
momentum spread about the average valuegbmbbc, it can
be shown that the distribution functionFb(X,Y,X8,Y8,s)
evolves according to the nonlinear Vlasov equation21,22

]Fb

]s
1X8

]Fb

]X
1Y8

]Fb

]Y
2S kz~s!X1

]c

]XD ]Fb

]X8

2S kz~s!Y1
]c

]YD ]Fb

]Y8
50. ~2!

Here, (X,Y,X8Y8) are phase-space variables appropriate
the Larmor frame, and the normalized potentialc(X,Y,s) is
determined self-consistently from Poisson’s equation

S ]2

]X2 1
]2

]Y2Dc52
2pK

Nb
E dX8 dY8 Fb . ~3!

In Eq. ~3!, nb(X,Y,s)5*dX8 dY8 Fb is the particle density,
Nb5*dX dY nb is the number of particles per unit axia
length, and K52NbZi

2e2/gb
3mbb

2c2 is the self-field per-
veance. In Eq.~2!, note thatX8 and Y8 correspond to nor-
malized velocity variables in theX–Y plane~i.e.,X8 denotes
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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dX/ds and Y8 denotesdY/ds), and the coefficients of
]Fb /]X8 and ]Fb /]Y8 correspond to the particle acceler
tions in theX andY directions, respectively.

The Vlasov–Poisson equations~2! and~3! constitute the
basic dynamical equations used in the nonlineardF formal-
ism in Secs. II and III. They describe, in the Larm
frame, the nonlinear evolution of the charged partic
beam as it propagates through the periodic solenoidal fi
kz(s1S)5kz(s). In particular, Eq.~2! describes the incom
pressible evolution of the distribution functio
Fb(X,Y,X8,Y8,s) in the four-dimensional phase spac
(X,Y,X8,Y8), and Eq.~3! determines self-consistently th
normalized potentialc(X,Y,s) in terms of the particle den
sity nb(X,Y,s)5*dX8 dY8 Fb . In subsequent sections, w
assume that theX–Y cross section of the beam is enclos
by a perfectly conducting wall~cylindrical or rectangular!.
Denoting the location of the wall surface bySw , and the unit
vector normal to the wall surface bynw , Poisson’s equation
~3! is solved subject to the boundary condition

@nw3“c#sw50, ~4!

which corresponds to zero tangential electric field at
conducting wall. In concluding this section, it should al
be noted that the characteristics of the nonlinear Vla
equation~2! correspond to the single-particle equations
motion, e.g.,X8(s)5dX(s)/ds and dX8(s)/ds52kz(s)X
2]c/]X for the X motion, and similar equations for theY
motion.

As a final point regarding the theoretical model, we e
phasize that the nonlineardF formalism developed here i
particularly well-suited for application to a periodic focusin
solenoidal lattice,kz(s)5k̄z1dkz(s), in which case the av-
erage lattice coefficientk̄z5S21*s0

s01Sds kz(s) is manifestly

nonzero@see Eqs.~1! and~31!# and provides transverse con
finement of the beam particles making up the equilibriu
distributionFb

0(H'). For adiabatic turn-on ofdkz(s), quies-
cent, highly matched beam propagation at moderate-to-h
beam intensity is demonstrated for propagation of a ther
equilibrium beam over hundreds of lattice periods@see, e.g.,
Figs. 8 and 10 below#. For periodic focusing quadrupole sys
tems, however, it follows thatS21 *s0

s01Sds kq(s)50, and

alternative averaging techniques are required to apply
nonlinear dF formalism to high-intensity matched-bea
propagation. In this regard, one promising approach fo
periodic quadrupole lattice is to first carry out a Floqu
transformation43,44 to incorporate the average effects of th
focusing field. This and other approaches are currently un
development by the authors for application of the nonlin
dF formalism to periodic quadrupole transport systems.

II. NONLINEAR dF FORMALISM

In Sec. II A, we summarize the nonlineardF formalism
for general periodic focusing latticekz(s1S)5kz(s). Then,
for subsequent application, examples of beam equilibri
distributionsFb

0 are presented in Sec. II B for the case
axisymmetric beam propagation through the average foc
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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300 Phys. Plasmas, Vol. 6, No. 1, January 1999 Stoltz, Davidson, and Lee
ing field k̄z5const. The dynamics of the root-mean-squa
beam radiusRb(s) is summarized in Sec. II C.

A. Description of model

For present purposes, the nonlinear Vlasov equation~2!
for the distribution functionFb(X,Y,X8,Y8,s) is expressed
in the equivalent form29,30,41

d

ds
Fb5

]Fb

]s
1

dX

ds
–

]Fb

]X
1

dX8

ds
–

]Fb

]X8
50, ~5!

wheredX/ds5X8êx1Y8êy is the transverse velocity, and

d

ds
X852kz~s!X2

]

]X
c,

~6!
d

ds
Y852kz~s!Y2

]

]Y
c,

are the transverse acceleration components in Larmor-fr
variables. In Eq. ~6!, c(X,Y,s) is determined self-
consistently from Poisson’s equation~3!. In Eq.~5!, note that
d/ds denotes thetotal derivativewith respect tos following
the exact particle motionin the combined self-fields of the
beam and the applied periodic solenoidal field. Therefo
the nonlinear Vlasov equation~5! is simply a statement tha
the distribution functionFb is constant following the particle
motion in the exact field configuration. In the subsequ
analysis of Eqs.~5! and ~6!, we express

kz~s!5k̄z1dkz~s!, ~7!

where dkz(s1S)5dkz(s) is the oscillatory component o
kz(s), andk̄z5const denotes the average value

k̄z5
1

S E
s0

s01S

ds kz~s!, ~8!

where S is the lattice period. Apart from the requireme
kz(s)>0 @see Eq.~1!#, the oscillatory componentdkz(s) is
allowed to have arbitrary amplitude.

As is customary in the nonlineardF formalism, we di-
vide the distribution functionFb(X,Y,X8,Y8,s) into a zero-
order part (Fb

0) plus a perturbation (dFb) according to

Fb5Fb
01dFb . ~9!

Here,Fb
0(R,X8,Y8,s) is taken to be a knownaxisymmetric

solution (]/]Q50) to the nonlinear Vlasov–Poisson equ
tions

]Fb
0

]s
1

dX

ds
–

]Fb
0

]X
1

dX8

ds U
0

–

]Fb
0

]X8
50, ~10!

1

R

]

]R
R

]c0

]R
52

2pK

Nb
E dX8 dY8 Fb

0. ~11!

In Eqs. ~10! and ~11!, Fb
0(R,X8,Y8,s) and c0(R,s) are as-

sumed to depend onX5R cosQ and Y5R sinQ exclu-
sively through the radial coordinateR5(X21Y2)1/2, and the
zero-order acceleration components in Eq.~10! are defined
by
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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dX8

ds U
0

52k̄zX2
X

R

]c0

]R
,

~12!
dY8

ds U
0

52k̄zY2
Y

R

]c0

]R
.

With regard to the nonlinear evolution o
dFb(X,Y,X8,Y8,s)5Fb2Fb

0, we introduce the weight func
tion w(X,Y,X8,Y8,s) defined by

w5
dFb

Fb
512

Fb
0

Fb
. ~13!

It then follows that

dw

ds
52

1

Fb

dFb
0

ds
52~12w!

1

Fb
0

dFb
0

ds
. ~14!

Here,d/ds is the total derivative following the exact particl
motion defined according to Eqs.~5! and ~6!, and use has
been made ofdFb /ds50. Expressingc5c01dc, and
making use ofdX8/ds5dX8/dsu02dkz(s)X2(]/]X)dc, it
readily follows from Eqs.~10! and ~14! that

d

ds
w5~12w!S dkz~s!X1

]

]X
dc D – 1

Fb
0

]Fb
0

]X8
. ~15!

In Eq. ~15!, the perturbed potentialdc(X,Y,s) is determined
self-consistently in terms ofdnb(X,Y,s)5*dX8 dY8 dFb

from Poisson’s equation

S ]2

]X2 1
]2

]Y2D dc52
2pK

Nb
E dX8 dY8 wFb

52
2pK

Nb
E dX8 dY8

w

12w
Fb

0. ~16!

Here, use has been made ofdFb5wFb5w(12w)21Fb
0,

which follows from Eq.~13!.
Equations ~15! and ~16! for the weight functionw

5dFb /Fb and the perturbed potentialdc, when supple-
mented by Eqs.~10! and ~11! for the zero-order distribution
functionFb

0 and self-field potentialc0, constitute the final se
of dynamical equations in the nonlineardF formalism, and
are fully equivalent to the nonlinear Vlasov–Poisson eq
tions ~2! and~3!. No a priori assumption has been made th
dFb anddc correspond to small-amplitude perturbations.
course, the requirements thatFb

0>0 andFb>0, and the defi-
nition w512Fb

0/Fb , lead to the requirement that the weig
function w satisfies w<1. Finally, the nonlinear Vlasov
equation~2! of course conserves the number of particles
unit axial length, i.e., dNb /ds5(d/ds)*dX8 dY dX8
3dY8 Fb50. It similarly follows from Eq. ~10! that
(d/ds)*dX8 dY dX8 dY8Fb

050. Therefore, without loss o
generality, we choose to countall of the particles in the
zero-order distribution functionFb

0, in which caseFb
0 and

dFb are normalized according to
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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E dXdYdX8dY8Fb
05Nb ,

~17!E dXdYdX8dY8dFb50.

That is, the perturbed distribution functiondFb5wFb , when
averaged over the entire available phase space, occu
equal volumes wheredFb.0(0,w<1) and dFb,0(w
,0).

B. Zero-order equilibrium distribution function Fb
0

The nonlineardF formalism summarized in Sec. II A
has wide applicability tos-dependent periodic solenoida
field configurations withkz(s1S)5kz(s). Note from Eqs.
~10! and ~12! that we have chosen to incorporate the effe
of the average focusing fieldk̄z5const in the nonlinear Vla-
sov equation forFb

0, whereas the effects ofdkz(s) are incor-
porated in Eq.~15! for the weight functionw5dFb /Fb . In
this case, Eqs.~10! and ~11! support a broad range ofequi-
librium solutions (]Fb

0/]s505]c0/]s) in which the zero-
order distributionFb

05Fb
0(H' ,PQ) depends on the phase

space variables (R,X8,Y8) exclusively through the single
particle constants of the motion,H' andPQ , defined in the
Larmor frame by21,22

H'5 1
2~X821Y82!1 1

2k̄z~X21Y2!1c0~R!,
~18!

PQ5XY82YX8.

Here, the HamiltonianH' and canonical angular momentu
PQ are exact single-particle constants of the mot
(dH' /ds505dPQ /ds) in the equilibrium field configura-
tion becausedk̄z /ds50, and ]/]Q50 is assumed in Eqs
~10!–~12!. The fact that general distribution functio
Fb

0(H' ,PQ) exactly solves the nonlinear Vlasov–Poiss
equations~10! and~11! is readily verified by direct substitu
tion and application of the chain rule for differentiation.

There is clearly enormous latitude41,42 in specifying the
functional form of the zero-order distributionFb

0(H' ,PQ)
which serves as the background distribution for the n
linear dF formalism summarized in Sec. II A and the sim
lation studies in Sec. III. Once the functional form
Fb

0(H' ,PQ) is specified, a wide variety of beam equilibriu
properties can be calculated, e.g., the density pro
nb

0(R)5*dX8 dY8 Fb
0, the self-field potentialc0(R) @Eq.

~11!#, the average canonical angular momentumPQb
0 (R)

5(nb
0)21*dX8 dY8 PQFb

0, the transverse temperature pr
file, etc. In addition, we define the statistical average^x&0 of
a phase function x over the distribution function
Fb

0(H' ,PQ) by ^x&05Nb
21*dX dY dX8 dY8 xFb

0. For ex-
ample, the unnormalized beam emittancee0 and mean-
square beam radiusRb0

2 associated with the equilibrium dis
tribution Fb

0 are defined in the usual manner by22

e0
254^X821Y82&0^X

21Y2&0 ,
~19!

Rb0
2 5^X21Y2&0 .

Here,dRb0 /ds505de0 /ds by virtue of the fact thatFb
0 and

c0 correspond to equilibrium solutions with]/]s50. With-
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
ies
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out presenting algebraic details, it can be shown that
entire class of distribution functionsFb

0(H' ,PQ) solving
Eqs. ~10! and ~11! satisfies the global radial force balanc
condition22

F k̄z2
K

2Rb0
2 GRb05

e0
2

4Rb0
3 . ~20!

Equation~20!, valid for general choice ofFb
0(H' ,PQ), rep-

resents a powerful constraint condition on equilibrium be
properties. As expected, Eq.~20! is similar in form to the
familiar envelope equation1,22,36 for the outer radiusr b of a
uniform-density Kapchinskij–Vladimirskij ~KV ! beam
equilibrium5 in the smooth-beam approximation (drb /ds
50) provided we make the identificationRb05r b /A2. For
specified values ofk̄z , K, ande0

2, note that Eq.~20! can be
solved for the mean-square beam radius to give

Rb0
2 5

K

4k̄z
1F S K

4k̄z
D 2

1
e0

2

4k̄z
G1/2

. ~21!

As expected, note from Eq.~21! that Rb0
2 increases with in-

creasing beam intensity~K!, increasing beam emittance (e0),
and decreasing solenoidal field strength (k̄z).

In the remainder of Sec. II B, we summarize briefly t
equilibrium properties for a few specific choices of distrib
tion function

Fb
05Fb

0~H'! ~22!

that do not depend explicitly on canonical angu
momentumPQ . In this case, becauseH' is an even func-
tion of X8 and Y8 @see Eq.~18!#, it follows that there is
no average rotation of the beam in the Larmor fram
i.e., Pub

0 (R)5(nb
0)21*dX8 dY8 PQFb

0(H')50, where PQ

5XY82YX8.
For future reference, we briefly consider here three s

cific examples of equilibrium distribution functionsFb
0(H'),

ranging from thermal equilibrium@Eq. ~23!#, to choices of
distribution function in whichFb

0(H') has aninverted popu-
lation in transverse phase-space variables@Eqs. ~24! and
~25!#. Specifically, we consider the following choices
Fb

0(H').
Thermal equilibrium:

Fb
0~H'!5n̂bS gbmbb

2c2

2pT̂'b
D expH 2

gbmbb
2c2

T̂'b

H'J , ~23!

Kapchinskij–Vladimirskij (KV) equilibrium:

Fb
0~H'!5

n̂b

2p
d~H'2T̂'b /gbmbb

2c2!, ~24!

Gaussian inverted-population (GIP) equilibrium:

Fb
0~H'!5

n̂b

2p

A

ApD

3expH 2
~H'2T̂'b /gbmbb

2c2!2

D2 J , ~25!

where the constantA is defined by
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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TABLE I. Equilibrium properties for various choices ofFb
0(H').

Distribution functionFb
0(H') Density profilenb

0(R) Temperature profileT'b
0 (R) Transverse emittancee0

2

~1! Thermal equilibrium in Eq.~23! n̂b expH2
gbmbb

2c2

2T̂'b

@k̄zR
212c0#J T̂'b5const

8T̂'b

gbmbb
2c2 Rb0

2

~2! KV distribution in Eq.~24!
n̂b5const

for 0<R,r b[A2Rb0 ;
~zero, otherwise!

T̂'bS12
R2

rb
2 D

for 0<R,r b[A2Rb0 ;
~zero, otherwise!

4T̂'b

gbmbb
2c2 Rb0

2

~3! Gaussian IP distribution in Eq.~25! n̂b

A

ApD
E

2V~R!

`

dU expS2 U2

D2D gbmbb
2c2FV~R!1

n̂bAD

2Ap

exp~2V2/D2!

nb
0~R! G Determine

from Eq. ~19!
of
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A[F 1

ApD
E

2T̂'b /gbmbb
2c2

`

dU exp~2U2/D2!G21

.

Here, n̂b and T̂'b are positive constants with dimensions
density and temperature~energy units!, respectively,H' is
the~dimensionless! Hamiltonian defined in Eq.~18!, andD is
a positive, dimensionless constant. Without loss of gene
ity, we take the on-axis self-field potential to bec0(R50)
50, and identifyn̂b5nb

0(R50) with the on-axis beam den
sity. For each choice ofFb

0(H') in Eqs.~23!–~25!, the nor-
malized electrostatic potentialc0(R), is determined self-
consistently in terms of the beam densitynb

0(R)
5*dX8 dY8 Fb

0(H') from the equilibrium Poisson equatio
~11!. Finally, for the general class of beam equilibr
Fb

0(H'), the transverse temperature profile is defined in
mensional energy units by21

nb
0~R!T'b

0 ~R!5
1

2
gbmbb

2c2E dX8 dY8

3~X821Y82!Fb
0~H'!, ~26!

wherenb
0(R)5*dX8 dY8 Fb

0(H').
A detailed evaluation of beam equilibrium properties f

the choice of distribution functions in Eqs.~23!–~25! is pre-
sented elsewhere,21 and essential results are summarized
Table I. Here, for the Gaussian inverted-population~GIP!
distribution in Eq.~25! and Table I, the effective potentia
V(R) is defined by

V~R!5
T̂'b

gbmbb
2c22

1

2
k̄zR

22c0~R!. ~27!

In the limit D→01 , note thatA→1 and the Gaussian dis
tribution in Eq. ~25! reduces exactly to the~singular! KV
distribution in Eq. ~24!, because of the identity
limD→01

(ApD)21 exp@2(U2V)2/D2#5d(U2V). In general,

for each choice ofFb
0(H') in Eqs. ~23!–~25!, the mean-

square beam radiusRb0
2 is related to the self-field perveanc

K52NbZi
2e2/gb

3mbb
2c2, the average focusing coefficien

k̄z , and the unnormalized beam emittancee0 by the radial
force-balance equation~20!, or equivalently, Eq.~21!. Fur-
thermore, the necessary condition for the existence of r
ally confined equilibrium solutions withnb

0(R→`)50 can
be expressed as21,42
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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i-

i-

d[
k̄zbb

2c2

v̂pb
2 /2gb

2 21.0. ~28!

Here, v̂pb
2 54pZi

2e2n̂b /gbm is the on-axis plasm
frequency-squared. Equation~28! is simply a statement tha
the magnetic focusing force~as measured byk̄zbb

2c2) must
exceed the net repulsive self-field force~as measured b
v̂pb

2 /2gb
2) for existence of radially confined equilibria. F

the choice of distribution functions in Eqs.~23! and~25!, we
note from Table I that the formal expressions for the den
profile nb

0(R) depend explicitly onc0(R), and the~highly
nonlinear! Poisson’s equation~11! for c0(R) must be solved
numerically. As a general remark, whenever the dimens
less parameterd is sufficiently small in comparison wit
unity, the density profilenb

0(R) calculated numerically from
Eq. ~11! and Table I is found to be radially very broad
units of the thermal Debye length. For example, for the th
mal equilibrium distribution in Eq.~23!, wheneverd!1 is
sufficiently small, it is found that the rms beam radiusRb0 is
much larger than the thermal Debye lengthlD

5(gb
2T̂'b/4pn̂bZi

2e2)1/2, with nb
0(R).n̂b5const, in the

beam interior, andnb
0(R) dropping rapidly to exponentiall

small values over a few Debye lengths at the be
surface.21,42 For the specific choice of thermal equilibriu
distributionFb

0(H') in Eq. ~23!, typical numerical solution
for the radial density profilenb

0(R)5*dX8 dY8 Fb
0(H') ob-

tained from the nonlinear Poisson equation~11! are illus-
trated in Fig. 1. Here, we have introduced an equivalent
tice periodSeq defined bySeq51/Ak̄z, and Fig. 1 shows plot
of normalized densitynb

0(R)/n̂b vs R/Seq for several values
of the dimensionless parameterKSeq/e0 obtained at fixed
value of beam current~as measured byK!, and decreasin
values of beam emittancee05@(8T̂'b /gbmbb

2c2)Rb0
2 #1/2. As

expected, we note from Fig. 1 that the shape of the den
profile nb

0(R) varies from diffuse and bell-shaped f
KSeq/e050.5, to a density profile with relatively sharp rad
boundary forKSeq/e055.

From Table I, there are interesting similarities and
ferences in the equilibrium properties calculated for the
tribution functions in Eqs.~23!–~25!. For example, both Eq
~23! and Eq.~25! lead to bell-shaped density profiles w
maximum density (n̂b) occurring on axis (R50). By con-
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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trast, the KV distribution in Eq.~24! has a uniform density
profile, with nb

0(R)5n̂b5const over the interval 0<R,r b ,
and nb

0(R)50 for r .r b . Here, the outer beam radiusr b is
determined from the conditionc0(r b)1(1/2)k̄zr b

25T̂'b /
gbmbb

2c2, wherec0(R)52(1/2)KR2/r b
2 in the beam inte-

rior (0<R,r b). Furthermore, from Table I, the transver
temperature profileT'b

0 (R) is uniform ~and equal toT̂'b

5const) for the thermal equilibrium distribution in Eq.~23!,
whereas T'b

0 (R) decreases as a function ofR for the
inverted-population distributions in Eqs.~24! and ~25!.

The Gaussian inverted-population distribution in E
~25! is particularly interesting. As noted earlier, in the lim
D→01 , Eq. ~25! reduces identically to the KV beam
equilibrium5 in Eq. ~24!. Furthermore, from Eq.~27! and
Table I, becauseV(R50)5T̂'b /gbmbb

2c2 and V(R→`)
52`, it follows thatnb

0(R50)5n̂b , and the densitynb
0(R)

decreases monotonically with increasingR, with nb
0(R→`)

50. In the limit D→01 , the density profilenb
0(R) corre-

sponding to Eq.~25! of course reduces to the step-functio
profile in Table I for the KV distribution. An appealing fea
ture of the Gaussian inverted-population distribution in E
~25! relative to the KV distribution in Eq.~24! is the fact that

the velocity derivative factor,Fb
021

]Fb
0/]X8, which occurs in

Eq. ~15! for the weight functionw, is not a singular function
for the case of the Gaussian inverted-population distribu
~whenDÞ0!, whereas it is a singular function for the case
a KV distribution. Nonetheless, Eq.~25! does enjoy some
similarity in features to Eq.~24!, e.g., an inverted populatio
in phase space. By contrast, the thermal equilibrium dis
bution in Eq.~23! is a monotonic decreasing function ofH'

with ]Fb
0/]H'<0. We therefore expect the stability prope

ties of the equilibrium distribution in Eq.~23! to differ from
the stability properties of the equilibrium distributions
Eqs.~24! and~25!, which have inverted populations inH' .42

Although nonlineardF-simulation results for high-intensity
matched-beam propagation are presented in Sec. III only
the case of the thermal equilibrium distributionFb

0(H') in
Eq. ~23!, we have summarized above and in Table I equil
rium properties for the two other choices of distributio

FIG. 1. Plot of normalized density profilenb
0(R)/n̂b vs R/Seq obtained nu-

merically from Eq.~11! for the choice of thermal equilibrium distribution
Fb

0(H') in Eq. ~23! and several values of dimensionless beam inten
corresponding toKSeq/e050.5,3,5. Here,Seq[1/Ak̄z.
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functions in Eqs.~24! and ~25! for reference in future non-
linear dF-simulation studies.

C. Dynamics of root-mean-square beam radius Rb„s …

An important diagnostic tool in the nonlinea
dF-simulation studies in Sec. III will be to monitor the dy
namics of the rms beam radiusRb(s) defined by Rb

2(s)
5^X21Y2&. For axisymmetric beam propagation~]/]Q50!,
anexactconsequence of the nonlinear Vlasov–Poisson eq
tions ~2! and ~3! is that the rms beam radiusRb(s) evolves
according to22

d2

ds2 Rb~s!1Fkz~s!2
K

2Rb
2~s!GRb~s!5

e2~s!

4Rb
3~s!

. ~29!

Here, kz(s)5k̄z1dkz(s) is the s-dependent focusing
coefficient, statistical averages over the distributi
function Fb(X,Y,X8,Y8,s) are defined by ^x&
5Nb

21*dX dY dX8 dY8 xFb , and the unnormalized beam
emittancee(s) is defined by

e2~s!54@^X821Y82&^X21Y2&2^XX81YY8&2#. ~30!

For the special case of a uniform focusing field wi
dkz(s)50 andkz(s)5k̄z5const, and constant values of rm
beam radiusRb0 and emittancee0 , Eq. ~29! reduces to the
radial force balance condition in Eq.~20!, as expected.

For application in the numerical simulations in Sec. I
we consider a fully developed periodic focusing fie
kz(s1S)5kz(s) in which the axial field has a sinu
soidal component withBz(s)5Bz0@11(Dm/2)cos(2ps/S)#,
where Bz0 , Dm , and S are constants. Thus,kz(s)
5@ZieBz(s)/2gbmbbc2#25k̄z1dkz(s), where

k̄z5kz0~11Dm
2 /8!,

~31!

dkz~s!5k̄zF Dm

11Dm
2 /8

cosS 2ps

S D
1

Dm
2 /8

11Dm
2 /8

cosS 2•
2ps

S D G ,
andkz0[(ZieBz0/2gbmbbc2)2.

The nonlinear equation~29! for the rms beam radius
Rb(s) can be integrated numerically22 for a wide range of
system parameters and choices of periodic lattice func
kz(s1S)5kz(s). For the special case ofsmall-amplitude
oscillations about the average beam radiusRb0 defined in
Eqs. ~20! and ~21!, we expressRb(s)5Rb01dRb(s), and
linearize Eq.~29!. Treatinge2.e0

25const, and approximat
ing dkz(s)5k̄zDm cos(2ps/S) for small values ofDm

2 /8!1,
this gives

d2

ds2 dRb~s!1ke
2dRb~s!52k̄zDm Rb0cos~kss!, ~32!

whereks[2p/S, and the envelope-oscillation wave numb
ke is defined by

y

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ke
2[k̄zF11

K

2k̄zRb0
2 1

3e0
2

4k̄zRb0
4 G

54k̄z

@~KS/e0!214k̄zS
2#1/2

KS/e01@~KS/e0!214k̄zS
2#1/2. ~33!

From Eq. ~33!, we note that the envelope-oscillation wa
number ke varies from ke

254k̄z for a low-intensity beam
(K/e0Ak̄z!1) to ke

252k̄z for a high-intensity beam
(K/e0Ak̄z@1). Furthermore, the general solution to Eq.~32!
is

dRb~s!5
Rb0k̄zDm

ks
22ke

2 @cos~kss!2cos~kes!#

1dRb~0!cos~kes!1
1

ke
dRb8~0!sin~kes!, ~34!

wheredRb(0) anddRb8(0) are the initial values ats50. It is
evident from Eq.~34! that dRb(s) generally has oscillatory
components at wavelengthle52p/ke , and at wavelength
ls52p/ks5S corresponding to the period of the applie
focusing field. Only for the special initial conditions with

dRb8~0!50,
~35!

dRb~0!5k̄zDmRb0 /~ks
22ke

2!,

is the beam trulymatched, with dRb(s) oscillating only at
the periodS52p/ks of the focusing field@the first term on
the right-hand side of Eq.~34!#.

In the present paper, we make use of Eq.~29!, in par-
ticular the linearized version in Eq.~32!, as adiagnostic tool
to infer the natural wavelength components making
dRb(s)5Rb(s)2Rb0 , and to compare with the fast Fourie
transform ofdRb(s) measured in thedF simulations@see
Eq. ~41!#. The envelope oscillation wave numberke @Eqs.
~33! and ~34!# of course includes the effects of the~de-
pressed! betatron oscillations of the beam ions. Consist
~for example! with the application in Ref. 37, we tak
udkz(s)u&0.2 in the present simulations. In this case it
found that udRb /Rb0u&1 – 531023, and the linearization
approximation in Eq.~32! is fully adequate for identifying
the key wavelength components ofdRb(s).

In the simulations presented in Sec. III, we will find th
both frequency components in Eq.~34! are generally presen
in dRb(s) for the case wheredkz(s) in Eq. ~31! is turned on
suddenlyat s50. As a second approach, we adopt anadia-
batic turn-on model in which Bz(s)5Bz0@1
1(1/2)D(s)cos(kss)#, where ~for example! the coefficient
D(s) is defined by

D~s!5DmF12expS 2a
s

SD G , ~36!

wherea is a positive constant. Fors50, Eq.~36! reduces to
D50, and for s@a21S, D(s) asymptotes atDm5const.
That is, using Eq.~36! with sufficiently small value ofa,
dkz(s) turns on adiabatically over many lattice periods, a
achieves the constant-amplitude oscillatory form in Eq.~31!
for s@a21S. In this case, it is found in the nonlineardF
simulations presented in Sec. III thatmatched-beamsolu-
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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tions are readily obtained withdRb(s) oscillating with the
same periodS as the periodic focusing field.

III. NONLINEAR dF SIMULATION STUDIES

In this section, we present the equations followed in
nonlineardF simulations, discuss initial conditions and co
servation properties, and present numerical results for sev
choices of the adiabatic turn-on parametera, and dimension-
less self-field parameterKS/e0 . All simulations presented
here corresponds to the case whereFb

0(H') is chosen to be
the thermal equilibrium distribution in Eq.~23! ~see also Fig.
1!, although thedF formalism is readily applied to othe
choices ofFb

0(H'). The main result of this section is tha
adiabatic turn-on ofdkz(s) with sufficiently small value ofa
leads to matched-beam solutions that can propagate q
cently over several hundred lattice periods. By contrast, s
den turn-on ofdkz(s) leads to strong beam mismatch
which dRb(s)5Rb(s)2Rb0 has oscillatory components a
wavelengthsle52p/ke andls52p/ks5S @see Eq.~34!#.

The dF simulations follow the particle trajectories an
weights as functions ofs. One can derive the necessary equ
tions using the Klimontovich representation for the distrib
tion function1

Fb5
Nb

Np
(
i 51

Np

d~X2X i !d~X82X i8!, ~37!

whereNp is the number of particles used in the simulation
and Nb5* dX dY dX8 dY8 Fb is the number of particles
per unit length. For this representation ofFb , assuming per-

FIG. 2. Phase-space plots corresponding to (X,Y) at ~a! s50 and ~b! s
5500Seq, and (X,X8) at ~c! s50 and~d! s5500Seq. System parameters
correspond to a thermal equilibrium beam withKSeq/e057 propagating
through a uniform focusing field withdkz(s)50. Other parameters for this
simulation correspond toNp510,000 particles, 512 radial grid points, an
time stepDs50.01Seq.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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turbations about the thermal equilibrium distributionFb
0(H')

in Eq. ~23!, the equations forX i(s) andwi(s) reduce to@see
Eqs.~6! and ~15!#

X i952@ k̄z1dkz~s!#X i2S ]

]X i
c0~X i !1

]

]X i
dc~X i ,s! D ,

~38!

wi852~12wi !Fdkz~s!X i1
]

]X i
dc~X i ,s!G• gbmbb

2c2

T̂'b

X i8 .

~39!

For the simulations presented here, we assume an axis
metric beam~]/]Q50!, and use Eqs.~16!, ~37!, and dFb

5wFb to write

]

]R
dc~R,s!52

K

RNp
(

Ri,R

Np

wi~X i ,s!, ~40!

whereR25X21Y2.
From the analysis in Sec. II C, the rms beam rad

Rb(s) is expected to oscillate at two distinct frequencie
Hence, we monitor the change inRb

2(s), calculated from

dRb
2~s!5d^X21Y2&

5^X21Y2&2^X21Y2&0

5
1

Nb
E ~X21Y2!~Fb2Fb

0!dX dY dX8 dY8

5
1

Nb
E ~X21Y2!wFb dX dY dX8 dY8

5
1

Np
(
i 51

Np

wi~Xi
21Yi

2!. ~41!

Similarly, from Eqs.~30!, ~37!, anddFb5wFb , we monitor
the change in emittance-squared calculated from

de2~s!5e2~s!2e0
2

5
4

Np
2 F S (

i 51

Np

wi~Xi8
21Yi8

2!D S (
i 51

Np

wi~Xi
21Yi

2!D
1NpRb0

2 (
i 51

Np

wi~Xi8
21Yi8

2!

1
1

4
Npe0

2(
i 51

Np

wi~Xi
21Yi

2!

2S (
i 51

Np

wi~XiXi81YiYi8!D 2G . ~42!

Simulation results are presented in this section for
case whereBz(s)5Bz0@11(1/2)D(s)cos(2ps/S)# and D(s)
is defined in Eq.~36!. For a5` ~sudden turn-on!, dkz(s)
turns on abruptly to the wave form in Eq.~31!. On the other
hand, fora!1 ~adiabatic turn-on!, dkz(s) turns on slowly
and achieves the wave form in Eq.~31! for s@S/a. In this
section, we present simulation results for the case wh
Ak̄zS51, corresponding toS5Seq51/Ak̄z. It is also conve-
nient to define an effective phase advances by s
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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[e0S/2Rb0
2 , whereRb0

2 is the equilibrium mean-square radiu
defined in Eq.~21!. Therefore, forAk̄zS51, it follows that
the vacuum phase advancesv[ limK→0 s is sv557.3°.
From Eq. ~21! and s5e0S/2Rb0

2 , it then follows that the
depressedphase advance~including space-charge effects! is
s544.7° and s511° for the two casesKS/e050.5 and
KS/e055, respectively. In the simulations presented in t
section, unless otherwise indicated, we takeDm50.2 as sug-
gested in Ref. 37, and the simulations are carried out w
Np520 000 particles, 1024 radial grid points, and time ste
of Ds/S50.001.

FIG. 3. Plots of variation in rms beam radiusdRb(s) vs s determined nu-
merically from Eq.~40! over the intervals~a! s50 to s550Seq, and ~b!
s5450Seq5s5500Seq. ~c! shows a plot of the fast-Fourier transform o
dRb(s) integrated over the intervals50 to s5500Seq. System parameters
are identical to those in Fig. 2.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 4. NonlineardF-simulation results for sudden turn-on ofdkz(s) with a5` andDm50.2, and normalized beam intensityKS/e055. Beam propagation
is from s50 to s5300S, and perturbations are about the thermal equilibrium distributionFb

0(H') in Eq. ~23!. Shown are plots vss/S of ~a! dkz(s)/k̄z from
s50 to s550S; ~b! dkz(s)/k̄z from s5290S to s5300S; ~c! dRb(s)/Rb0 from s590S to s5100S; ~d! dRb(s)/Rb0 from s5290S to s5300S; ~e!
de(s)/e0 from s590S to s5100S; and~f! de(s)/e0 from s5290S to s5300S. Also shown are fast-Fourier transform plots ofdRb(s) where averages are
~g! from s50 to s5100S, and~h! from s50 to s5300S.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 5. NonlineardF-simulation results for sudden turn-on ofdkz(s) with a5` andDm50.2, and normalized beam intensityKS/e050.5. Beam propagation
is from s50 to s5300S, and perturbations are about the thermal equilibrium distributionFb

0(H') in Eq. ~23!. Shown are plots vss/S of ~a! dkz(s)/k̄z from
s50 to s550S; ~b! dkz(s)/k̄z from s5290S to s5300S; ~c! dRb(s)/Rb0 from s590S to s5100S; ~d! dRb(s)/Rb0 from s5290S to s5300S; ~e!
de(s)/e0 from s590S to s5100S; and~f! de(s)/e0 from s5290S to s5300S. Also shown are fast-Fourier transform plots ofdRb(s) where averages are
~g! from s50 to s5100S, and~h! from s50 to s5300S.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 6. NonlineardF-simulation results for adiabatic turn-on ofdkz(s) with a50.1 andDm50.2, and normalized beam intensityKS/e055. Beam
propagation is froms50 to s5300S, and perturbations are about the thermal equilibrium distributionFb

0(H') in Eq. ~23!. Shown are plots vss/S of ~a!
dkz(s)/k̄z from s50 to s550S; ~b! dkz(s)/k̄z from s5290S to s5300S; ~c! dRb(s)/Rb0 from s590S to s5100S; ~d! dRb(s)/Rb0 from s5290S to
s5300S; ~e! de(s)/e0 from s590S to s5100S; and~f! de(s)/e0 from s5290S to s5300S. Also shown are fast-Fourier transform plots ofdRb(s) where
averages are~g! from s50 to s5100S, and~h! from s50 to s5300S.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The initial conditions ats50 for the particle positions
and momenta are chosen consistently41 with the thermal
equilibrium distribution in Eq.~23!. Although we do not do
so here, Parker and Lee39 have suggested a method for in
tializing with an arbitrary distribution, which could allow
increased resolution in particularly interesting regions of
simulation, such as near the beam edge. The particle we
are chosen to be zero ats50. In thedF scheme, the particle
weights determine how the beam properties deviate fr
equilibrium. Choosing zero for the initial value of th
weights impliesdRb(0)50 and ~because the thermal equ
librium distribution function is even inX8 and Y8),
dRb8(0)50. As shown in Sec. II C, these choices fordRb(0)
anddRb8(0) lead to a mismatched beam for sudden turn
of the periodic field in Eq.~31!. Matching the beam by
choosingdRb(0) anddRb8(0) as specified in Eq.~35! would
require initializing the weights correctly, and it is not read
apparent how to accomplish this, as many choices for
initial particle weights would lead to the prescribeddRb(0)
and dRb8(0). As an extreme example, one can imagin
choosing all initial particle weights to be zero except for on
which is chosen by means of Eq.~41! to satisfy Eq.~35!. To
avoid this ambiguity, we take all initial particle weights to b
zero, and instead accomplish beam matching by the adiab
turn-on ofdkz(s).

Conservation of the total number of particles requi
that the sum of the particle weights be equal to zero for as,
i.e.,

^w&5
1

Np
(
i 51

Np

wi50. ~43!

This constraint is a useful diagnostic for testing how well t
code is modeling the true beam dynamics. For the sam
parameters given above, we find^wi&'0.001 over a distance
s5100S. This deviation decreases approximately linea
with decreasing time step, so the deviation is due to integ
tion error. In dF simulations of tokamak plasmas, simila
discrepancies45 have been observed. For the results presen
in this paper, we adjust for this deviation by subtracting^w&
from each particle weight at the beginning of each time st
thus ensuring particle number conservation.

As a simple test case, we first present simulation res
for intense beam propagation through a uniform focus
field with dkz(s)50 andDm50. Typical numerical results
are presented in Figs. 2 and 3 for the choice of self-fi
parameterKSeq/e057, and the corresponding envelope o
cillation wave number determined from Eq.~33! is given by
keSeq51.43. Figure 2 shows phase space plots in (X,Y) and
(X,X8) phase space ats50 ands5500Seq. As would be
expected, fordkz(s)50, the ~stable! thermal equilibrium
beam propagates quiescently over large distances with
ligible change of the distribution in phase space. Shown
Fig. 3 are plots of the change in rms beam radiusdRb(s)
determined numerically from Eq.~40! @Figs. 3~a! and 3~b!#,
as well as a plot of the fast-Fourier transform ofdRb(s)
integrated froms50 to s5500Seq. Evidently, the~noise-
induced! oscillations in the rms beam radius remain e
tremely small, with udRb /Rb0u&1029, although there is
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FIG. 7. Plots of the perturbed densitydnb(R,s)5* dX8 dY8 dFb vs radius
R obtained numerically at successive half-lattice periods correspondin
~a! s5299S, ~b! s5299.5S, and ~c! s5300S. System parameters in th
simulation are identical to those in Fig. 6.
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FIG. 8. NonlineardF-simulation results for adiabatic turn-on ofdkz(s) with a50.1 andDm50.2, and normalized beam intensityKS/e050.5. Beam
propagation is froms50 to s5300S, and perturbations are about the thermal equilibrium distributionFb

0(H') in Eq. ~23!. Shown are plots vss/S of ~a!
dkz(s)/k̄z from s50 to s550S; ~b! dkz(s)/k̄z from s5290S to s5300S; ~c! dRb(s)/Rb0 from s590S to s5100S; ~d! dRb(s)/Rb0 from s5290S to
s5300S; ~e! de(s)/e0 from s590S to s5100S; and~f! de(s)/e0 from s5290S to s5300S. Also shown are fast-Fourier transform plots ofdRb(s) where
averages are~g! from s50 to s5100S, and~h! from s50 to s5300S.
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some increase in oscillation amplitude in the intervals
5450Seq to s5500Seq @Fig. 3~b!# relative to the intervals
50 to s550Seq @Fig. 3~a!#. Most strikingly, the envelope
oscillation wave number@Fig. 3~c!# is in excellent agreemen
with the predicted valueke in Eq. ~33! for KSeq/e057.

NonlineardF-simulation results for the periodic focus
ing case withDm50.2 are presented in Figs. 4–11, includin
data sets for sudden turn-on witha5` for KS/e055 ~Fig. 4!
and KS/e050.5 ~Fig. 5!; adiabatic turn-on witha50.1 for
KS/e055 ~Figs. 6 and 7! and KS/e050.5 ~Figs. 8 and 9!;
and adiabatic turn-on witha50.02 for KS/e055 ~Figs. 10
and 11!. All simulations presented in Figs. 4–11 are carri
out for beam propagation froms50 to s5300S. For pur-
poses of comparison, Figs. 4, 5, 6, 8, and 10 display sim
data sets at different system parameters. Specific
dkz(s)/k̄z is plotted versuss/S from s50 to s550S in
frame ~a!, and from S5290S to s5300S in frame ~b!;
dRb(s)/Rb0 is plotted froms590S to s5100S in frame
~c!, and froms5290S to s5300S in frame~d!; de(s)/e0 is
plotted froms590S to s5100S in frame ~e!, and froms
5290S to s5300S in frame~f!; and the fast-Fourier trans
form of dRb(s) is plotted versuskS, with averages taken
from s50 to s5100S in frame ~g!, and from s50 to s
5300S in frame~h!. Figures 7, 9, and 11 show plots of th
perturbed densitydnb5* dX8 dY8 dFb versus radiusR de-
termined numerically at the three axial locations correspo
ing to ~a! s5299S, ~b! s5299.5S, and ~c! s5300S, re-
spectively.

We first consider the case of sudden turn-on~a5`! of
dkz(s) at high and moderate beam intensities correspond
to KS/e055 andKS/e050.5 in Figs. 4 and 5, respectively
In this case, as evident from Figs. 4 and 5,dkz(s) achieves
the periodic wave form in Eq.~31! instantaneously ats50,
and sustains this wave form froms50 to s5300S. As evi-
dent from Figs. 4 and 5, the change in emittance rema
extremely small over the entire propagation interval, w
ude/e0u&10214 in the high-intensity case@Figs. 4~e! and
4~f!#, andude/e0u&5310213 in the low-intensity case@Figs.
5~e! and 5~f!#. It is evident that there is also a very sma
~negative! dc offset of a few parts in 1013 that develops in
Figs. 5~e! and 5~f!. This offset is due to integration error
that develop in computing the weights$wi%, and can be re-
duced even further by decreasing the size of the time
Ds . Most striking in Figs. 4 and 5 is the fact that sudd
turn-on of dkz(s) leads to significant beam mismatch
which the variation in the rms beam radius,dRb(s)5Rb(s)
2Rb0 , has strong oscillatory components at both the fun
mental wavelengthls52p/ks5S of the periodic focusing
field, and at the~longer! envelope oscillation wavelengt
le52p/ke , whereke is defined in Eq.~33! @see Figs. 4~c!
and 4~d!, and Figs. 5~c! and 5~d!#. These two wavelength
components are clearly evident in the fast-Fourier transfo
plots of dRb(s) presented in Figs. 4~g! and 4~h! for KS/e0

55, and in Figs. 5~g! and 5~h! for KS/e050.5. As noted
earlier in this section, becausedRb(0)50 anddRb8(0)50, it
is expected from Eq.~34! thatdRb(s) will have two distinct
wavelength components with moderate intensity, at wa
lengths ls52p/ks5S and le52p/ke . As expected, the
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FIG. 9. Plots of the perturbed densitydnb(R,s)5* dX8 dY8 dFb vs radius
R obtained numerically at successive half-lattice periods correspondin
~a! s5299S, ~b! s5299.5S, and ~c! s5300S. System parameters in th
simulation are identical to those in Fig. 8.
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FIG. 10. NonlineardF-simulation results for adiabatic turn-on ofdkz(s) with a50.02 andDm50.2, and normalized beam intensityKS/e055. Beam
propagation is froms50 to s5300S, and perturbations are about the thermal equilibrium distributionFb

0(H') in Eq. ~23!. Shown are plots vss/S of ~a!
dkz(s)/k̄z from s50 to s550S; ~b! dkz(s)/k̄z from s5290S to s5300S; ~c! dRb(s)/Rb0 from s590S to s5100S; ~d! dRb(s)/Rb0 from s5290S to
s5300S; ~e! de(s)/e0 from s590S to s5100S; and~f! de(s)/e0 from s5290S to s5300S. Also shown are fast-Fourier transform plots ofdRb(s) where
averages are~g! from s50 to s5100S, and~h! from s50 to s5300S.
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FIG. 11. Plots of the perturbed densitydnb(R,s)5* dX8 dY8 dFb vs ra-
diusR obtained numerically at successive half-lattice periods correspon
to ~a! s5299S, ~b! s5299.5S, and~c! s5300S. System parameters in th
simulation are identical to those in Fig. 10.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
fast-Fourier transform peaks in Figs. 4 and 5 occur atksS
52p and at the values ofkeS calculated from Eq.~33! for
KS/e055 ~Fig. 4! andKS/e050.5 ~Fig. 5!.

We now present nonlineardF-simulation results for the
case of adiabatic turn-on ofdkz(s). Here, the normalized
field amplitudeD(s) turns on adiabatically according to Eq
~36!, with D(s) asymptoting atDm50.2 fors@S/a. Typical
numerical results are presented in Figs. 6–11 for the th
cases:a50.1 andKS/e055 ~Figs. 6 and 7!; a50.1 and
KS/e050.5 ~Figs. 8 and 9!; and a50.02 andKS/e055
~Figs. 10 and 11!. We first note from Figs. 6 and 8, fo
a50.1, that it takes about 20 lattice periods fordkz(s) to
achieve the steady wave form in Eq.~31!, whereas from Fig.
10, fora50.02, a steady wave form is achieved in about 1
lattice periods. Several features of Figs. 6, 8, and 10
qualitatively similar to Figs. 4 and 5. Most notably, th
change in emittance,de(s)/e0 , remains extremely smal
over the entire propagation distance of 300S. A striking
difference is the effect of adiabatic turn-on in assuri
matched-beampropagation in which the primary oscillator
component ofdRb(s) is at the wavelengthls52p/ks5S of
the periodic focusing fielddkz(s). For example, at moderat
beam intensity withKS/e050.5, it follows from Figs. 8~c!,
8~d!, 8~g!, and 8~h! that the beam is highly matched even f
adiabatic turn-on parametera50.1. In this case, the oscilla
tory component ofdRb(s) at wavelengthle52p/ke is neg-
ligibly small in comparison with the oscillation at wave
lengthls5S. On the other hand, at high beam intensity w
KS/e055, for a50.1, it is clear from Figs. 6~c!, 6~d!, 6~g!
and 6~h! that a moderately strong envelope oscillation
wavelengthle52p/ke still persists, although it is greatly
reduced in intensity relative to the sudden turn-on case
Fig. 4. However, forKS/e055 and even slower adiabati
turn-on corresponding toa50.02 in Fig. 10, it is clear from
Figs. 10~c!, 10~d!, 10~g!, and 10~h! that the beam is highly
matched in the high-intensity case. We conclude from
simulation results presented in Figs. 4, 5, 6, 8, and 10
adiabatic turn-on ofdkz(s) is a powerful technique for beam
matching.

Finally, Figs. 7, 9, and 11 show plots of the perturb
density dnb(R,s)5* dX8 dY8 dFb versus radiusR deter-
mined numerically at the three axial locations correspond
to ~a! s5299S, ~b! s5299.5S, and ~c! s5300S, respec-
tively. The results in Figs. 7, 9, and 11 correspond to
system parameters and nonlineardF simulations presented
in Figs. 6, 8, and 10, respectively. As expected, from Figs
9, and 11,dnb(R,s) has regions of positive and negativ
perturbed density over the radial extent of the beam. Mo
over, in the high-intensity case (KS/e055 in Figs. 7 and 11!,
where the equilibrium density profilenb

0(R) falls off rather
abruptly near the outer edge of the beam~see Fig. 1!, the
density perturbationdnb(R,S) is largely concentrated in this
outer region. By contrast, at moderate beam inten
~KS/e050.5 in Fig. 9!, the equilibrium density profilenb

0(R)
is radially more diffuse and bell-shaped~see Fig. 1!, and the
density perturbationdnb(R,s) extends throughout the beam
as expected. A striking feature of Figs. 7, 9, and 11 is t
dnb(R,s) exhibits oscillatory behavior with periodks

g

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



g

lin
io

el

th
ld
r-

e
-
ll

t,
te
io
g

lib
is

n

-
u-
a-
ar

n
ion

m
s
g

e
um

ig
of
d

e

pp
m

r a
et
e
der

ear

o-
ant
ted

cur,
the
the

for
d by
nd
-

f

l

n-

.
J,

M.
s. A

. E

I.

314 Phys. Plasmas, Vol. 6, No. 1, January 1999 Stoltz, Davidson, and Lee
52p/ks5S corresponding to that of the periodic focusin
field.

IV. CONCLUSIONS

In this paper, we have developed and applied the non
eardF formalism for intense non-neutral beam propagat
through a periodic focusing solenoidal fieldkz(s1S)
5kz(s). Following a description of the theoretical mod
~Sec. I!, thedF formalism was developed~Sec. II! by divid-
ing the total distributionFb into a zero-order part (Fb

0) that
propagates through the average focusing fieldk̄z5const,
plus a perturbation (dFb) which evolves nonlinearly in the
zero-order and perturbed field configurations, including
effects of the oscillatory component of the focusing fie
dkz(s)5kz(s)2k̄z . Assuming perturbations about a the
mal equilibrium distributionFb

0, nonlineardF-simulation re-
sults were presented~Sec. III! for a wide range of beam
intensities as measured by the dimensionless param
KS/e0 . Adiabatic turn-on ofdkz(s) over 20–100 lattice pe
riods was found to produce a highly matched, periodica
focused beam in which the rms beam radiusRb(s) oscillates
with the same periodS as the focusing field. Quiescen
matched-beam propagation at moderate-to-high beam in
sities was demonstrated over several hundred lattice per
~300S! in the present simulations. Most strikingly, followin
adiabatic turn-on, the simulations showed thatFb5Fb

0

1dFb corresponds to a periodically focused beam equi
rium that propagates quiescently over large distances. Th
a significant result because there areno known analytical
solutions for a periodically focused thermal equilibrium
beam at high beam intensities, although such a solutio
clearly accessed in the simulations.

The nonlineardF formalism developed in Sec. II is ap
plicable to a wide range of choices of equilibrium distrib
tion Fb

0(H') and perturbations with both azimuthal and r
dial variation. Future applications of the nonline
dF-simulation technique will include:~a! extension to the
case where the perturbationsdFb anddc are allowed to have
azimuthal variations~]/]QÞ0!, and~b! investigations of sta-
bility behavior for other choices of equilibrium distributio
Fb

0(H'), e.g., the Gaussian inverted-population distribut
in Eq. ~24!.

As a final point regarding the theoretical model, we e
phasize that the nonlineardF formalism developed here i
particularly well-suited for application to a periodic focusin
solenoidal lattice,kz(s)5k̄z1dkz(s), in which case the av-
erage lattice coefficientk̄z5S21 *s0

s01S ds kz(s) is mani-

festly nonzero@see Eqs.~1! and~31!# and provides transvers
confinement of the beam particles making up the equilibri
distributionFb

0(H'). For adiabatic turn-on ofdkz(s), quies-
cent, highly matched beam propagation at moderate-to-h
beam intensity has been demonstrated for propagation
thermal equilibrium beam over hundreds of lattice perio
~see, e.g., Figs. 8 and 10!. For periodic focusing quadrupol
systems, however, it follows thatS21 *s0

s01S ds kq(s)50,

and alternative averaging techniques are required to a
the nonlineardF formalism to high-intensity matched-bea
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propagation. In this regard, one promising approach fo
periodic quadrupole lattice is to first carry out a Floqu
transformation43,44 to incorporate the average effects of th
focusing field. This and other approaches are currently un
development by the authors for application of the nonlin
dF formalism to periodic quadrupole transport systems.

Finally, it should be pointed out that parametric res
nances and chaotic particle motion often play an import
role in the nonlinear dynamics of space-charge-domina
beams, particularly for the case of mismatched beams~see,
e.g., Ref. 44!. While the present nonlineardF formalism
incorporates such effects self-consistently when they oc
no evidence for parametric instabilities was observed in
matched-beam simulations presented here, at least for
case of a thermal equilibrium distributionFb

0(H') and the
range of values of phase advance (sv557.3°, ands ranging
from 11° to 44.7°! considered in the present analysis.

ACKNOWLEDGMENTS

The authors thank Mobola Campbell and Hong Qin
proofreading the manuscript. This research was supporte
the U.S. Department of Energy, and by the APT Project a
the LANSCE Division of the Los Alamos National Labora
tory.

1R. C. Davidson,Physics of Nonneutral Plasmas~Addison–Wesley, Read-
ing, MA, 1990!, Chap. 10, and references therein.

2T. P. Wangler,Principles of RF Linear Accelerators~Wiley, New York,
1998!.

3M. Reiser,Theory and Design of Charged Particle Beams~Wiley, New
York, 1994!.

4D. A. Edwards and M. J. Syphers,An Introduction to the Physics o
High-Energy Accelerators~Wiley, New York, 1993!.

5I. Kapchinskij and V. Vladimirskij, inProceedings of the Internationa
Conference on High Energy Accelerators and Instrumentation~CERN
Scientific Information Service, Geneva, 1959!, p. 274.

6R. Gluckstern, inProceedings of the 1970 Proton Linear Accelerator Co
ference, Batavia, IL, edited by M. R. Tracy~National Accelerator Labo-
ratory, Batavia, IL, 1971!.

7H. Uhm and R. Davidson, Part. Accel.11, 65 ~1980!.
8I. Hofmann, L. Laslett, L. Smith, and I. Haber, Part. Accel.13, 145~1983!.
9J. Struckmeier, J. Klabunde, and M. Reiser, Part. Accel.15, 47 ~1984!.

10E. P. Lee, Nucl. Instrum. Methods Phys. Res. A15, 576 ~1987!.
11F. Guy, P. Lapostolle, and T. Wangler, inProceedings of the 1987

Particle-Accelerator Conference, edited by E. R. Lindstrom and L. S
Taylor ~Institute of Electrical and Electronic Engineering Piscataway, N
1987!, p. 1149.

12D. Neuffer, E. Colton, D. Fitzgerald, T. Hardek, R. Hutson, R. Macek,
Plum, H. Thiessen, and T.-S. Wang, Nucl. Instrum. Methods Phys. Re
321, 1 ~1992!.

13Q. Qian, R. C. Davidson, and C. Chen, Phys. Rev. E51, 5216~1995!.
14Q. Qian, R. C. Davidson, and C. Chen, Phys. Plasmas2, 2674~1995!.
15Q. Qian and R. C. Davidson, Phys. Rev. E53, 5349~1996!.
16C. Chen, Q. Qian, and R. C. Davidson, Fusion Eng. Des.32, 159 ~1996!.
17R. L. Gluckstern, W.-H. Cheng, S. S. Kurennoy, and H. Ye, Phys. Rev

54, 6788~1996!.
18R. L. Gluckstern, Phys. Rev. Lett.73, 1247~1994!.
19N. Brown and M. Reiser, Phys. Plasmas2, 965 ~1995!.
20C. Chen, R. Pakter, and R. C. Davidson, Phys. Rev. Lett.79, 225 ~1997!.
21R. C. Davidson and C. Chen, Part. Accel.59, 175 ~1998!.
22R. C. Davidson, W. W. Lee, and P. Stoltz, Phys. Plasmas5, 279 ~1998!.
23C. Chen and R. C. Davidson, Phys. Rev. Lett.72, 2195~1994!.
24M. Reiser, C. R. Chang, D. Kehne, K. Low, T. Shea, H. Rudd, and

Haber, Phys. Rev. Lett.61, 2933~1988!.
25I. Hoffman and J. Struckmeier, Part. Accel.21, 69 ~1987!.
26J. Struckmeier and I. Hofmann, Part. Accel.39, 219 ~1992!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



on

n-
al

Io
Le

n-
,

ds

.

315Phys. Plasmas, Vol. 6, No. 1, January 1999 Stoltz, Davidson, and Lee
27I. Haber, D. A. Callahan, A. Friedman, D. P. Grote, and A. B. Langd
Fusion Eng. Des.32, 159 ~1996!.

28A. Friedman and D. P. Grote, Phys. Fluids B4, 2203~1992!.
29W. W. Lee, Q. Qian, and R. C. Davidson, Phys. Lett. A230, 347 ~1997!.
30Q. Qian, W. W. Lee, and R. C. Davidson, Phys. Plasmas4, 1915~1997!.
31E. P. Lee and J. Hovingh, Fusion Technol.15, 369 ~1989!.
32R. A. Jameson, inAdvanced Accelerator Concepts, edited by J. S. Wurtele

@AIP Conf. Proc.279, 969 ~1993!#.
33R. W. Müller, in Nuclear Fusion by Inertial Confinement: A Comprehe

sive Treatise, edited by G. Velarde, Y. Ronen, and J. M. Martinez-V
~CRC Press, Boca Raton, FL, 1993!, Chap. 17, pp. 437–453.

34See, e.g.,Proceedings of the 1995 International Symposium on Heavy
Inertial Fusion, edited by J. J. Barnard, T. J. Fessenden, and E. P.
@Fusion Eng. Des.32, 1 ~1996!#, and references therein.

35A. Friedman, R. O. Bangerter, and W. B. Hermannsfeldt, inProceedings
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
,

n
e

of the IAEA Technical Committee Meeting on Drivers for Inertial Co
finement Fusion, Paris, France, 1994~Commisariat a l’Energie Atomique
Saclay, France, 1995!, p. 243.

36E. P. Lee and R. K. Cooper, Part. Accel.7, 83 ~1976!.
37E. P. Lee and R. J. Briggs, LBNL Report No. 40774~1997!.
38A. M. Dimits and W. W. Lee, J. Comput. Phys.107, 309 ~1993!.
39S. E. Parker and W. W. Lee, Phys. Fluids B5, 77 ~1993!.
40G. Hu and J. A. Krommes, Phys. Plasmas1, 863 ~1994!.
41P. H. Stoltz, W. W. Lee, and R. C. Davidson, Nucl. Instrum. Metho

Phys. Res.415, 433 ~1998!.
42See, e.g., Ref. 1, Chaps. 4 and 9.
43S. Y. Lee and A. Riabko, Phys. Rev. E51, 1609~1995!.
44A. Riabko, M. Ellison, X. Kang, S. Y. Lee, D. Li, J. Y. Liu, X. Pei, and L

Wang, Phys. Rev. E51, 3529~1995!.
45Z. Lin ~private communication!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp


