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In this paper we examine theoretically the influence of density profile shape on the diocotron
instability in a cylindrical, low-density (vpe

2 !vce
2 ) non-neutral electron plasma column confined

radially by a uniform axial magnetic fieldB0êz . The analysis assumes electrostatic flute
perturbations (]/]z50) about an axisymmetric equilibrium density profilene

0(r ), wherer 5(x2

1y2)1/2 is the radial distance from the column axis. Two classes of density profiles with inverted
population in radiusr are considered. These are the following:~a! a step-functiondensity profile
with uniform densityn̂e•D in the column interior 0<r ,r b

2 , and uniform densityn̂e in an outer
annular regionr b

2,r ,r b
1 ; and ~b! a continuously-varyingdensity profile of the formne

0(r )
5n̂e(D1r 2/r b

2)(12r 2/r b
2)2 over the interval 0<r ,r b . Here, n̂e , r b

2 , r b
1 and r b are positive

constants, and the dimensionless parameterD measures the degree of ‘‘hollowness’’ of the
equilibrium density profilene

0(r ). Detailed linear stability properties are calculated for a wide range
of system parameters, including values of the ‘‘filling factor’’D, radial locationr w of the cylindrical
conducting wall, azimuthal mode numberl , etc. As a general remark, in both cases, it is found that
small increases inD from the valueD50 ~corresponding to the strongest diocotron instability! can
have a large effect on the growth rate and detailed properties of the instability. In addition, for the
step-function density profile, the instability tends to be algebraic in nature and have a large growth
rate in the unstable region of parameter space, whereas for the continuously-varying density profile,
the instability is typically much weaker and involves a narrow class of resonant particles at radius
r 5r s satisfying the resonance conditionv r2 lvE(r s)50. Here,v r5Re v is the real oscillation
frequency, andvE(r )52cEr

0(r )/rB0 is the equilibriumE03B0êz rotation velocity of the plasma
column. © 1998 American Institute of Physics.@S1070-664X~98!00810-6#
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I. INTRODUCTION

The diocotron instability,1 first examined theoretically
by MacFarlane and Hay,2 and Levyet al.,3–5 and observed in
early experiments by Kyhl and Webster,6,7 and Kapetanakos
et al.,8 is perhaps the most ubiquitous instability in a low
density (vpe

2 !vce
2 ) non-neutral electron plasma column co

fined radially by a uniform axial magnetic fieldB0êz . To
briefly summarize, the diocotron instability is driven by
sufficiently strong shear in the angularE03B0êz rotation ve-
locity, vE(r )52cEr

0(r )/rB0 , of the plasma column. Here
r 5(x21y2)1/2 is the radial distance from the column axi
andEr

0(r ) is the equilibrium radial electric field determine
self-consistently from Poisson’s equation in terms of
equilibrium density profilene

0(r ) ~assumed axisymmetric!.
Whenever the density profile has an inverted population
function of the radial coordinater ~an off-axis density maxi-
mum!, the sign of

]

]r

1

r

]

]r
@r 2vE~r !#,

changes over the radial extent of the plasma column, and
shear in the angular flow velocity can provide the free ene
to drive the Kelvin–Helmholtz-like instability known as th
diocotron instability. Indeed, it can be shown that asufficient
condition for stability1,9–12 for small-amplitude electrostati
3491070-664X/98/5(10)/3497/15/$15.00
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flute perturbations (]/]z50) is thatne
0(r ), or equivalently,

r 21(]/]r )@r 2vE(r )#, be a monotonically decreasing func
tion of radiusr . While detailed electrostatic stability prope
ties have been calculated theoretically for a few sim
choices of density profilene

0(r ), such as a hollow step
function annulus,1,3 or weak resonant versions1,9 of the dio-
cotron instability, there has not been a systematic analysi
properties of the diocotron instability as a function of t
shape of the density profilene

0(r ). Nonetheless, over the pa
decade, experimental studies13–18of the diocotron instability,
and related investigations of diocotron-like modes and vor
formation and merging have become increasingly soph
cated. Therefore, in the present analysis, we present a
tematic analysis of the electrostatic eigenvalue equation1 to
determine the detailed influence of profile shape on the d
cotron instability, at least for two classes of equilibrium de
sity profilesne

0(r ) with an inverted population in radiusr .
The organization of this paper is the following. The a

sumptions and theoretical model are discussed in Sec. II,
detailed stability properties are calculated in Sec. III for tw
choices of equilibrium density profilene

0(r ). These are the
following: ~a! a step-functiondensity profile@Eq. ~7!# with

uniform density n̂e•D5const in the column interior 0<r

,r b
2 , and uniform densityn̂e5const. in an outer annulu

region r b
2,r ,r b

1 ; and ~b! a continuously-varyingdensity
7 © 1998 American Institute of Physics
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profile @Eq. ~9!# of the form ne
0(r )5n̂e(D1r 2/r b

2)(1
2r 2/r b

2)2 over the interval 0<r ,r b . Here,n̂e , r b
2 , r b

1 and
r b are positive constants, a perfectly conducting wall is
cated at radiusr 5r w and the dimensionless parameterD
measures the degree of ‘‘hollowness’’ of the equilibriu
density profilene

0(r ). Detailed linear stability properties ar
calculated in Sec. III for a wide range of system paramet
including values of the ‘‘filling factor’’D, radial locationr w

of the cylindrical conducting wall, azimuthal mode numb
l , etc. As a general remark, in both cases, it is found t
small increases inD from the valueD50 ~corresponding to
the strongest diocotron instability! can have a large effect o
the growth rate and detailed properties of the instability.
addition, for the step-function density profile in Eq.~7!, the
instability tends to be algebraic in nature and have a la
growth rate in the unstable region of parameter spa
whereas for the continuously-varying density profile in E
~9!, the instability is typically much weaker and involves
narrow class ofresonantparticles at radiusr 5r s satisfying
the resonance conditionv r2 lvE(r s)50 in Eq. ~42!. Here,
v r5Re v is the real oscillation frequency.

As a final point, although the present analysis is
stricted to the diocotron instability for low-density non
neutral plasma withvpe

2 (r )!vce
2 , it should be emphasize

that detailed stability behavior and mode oscillation prop
ties also exhibit a sensitive dependence on density pro
shape at conditions approaching Brillouin flo
(vpe

2 /vce
2 →1) in magnetically-insulated diode geometry.19,20

In this case, as shown by Kaup and Thomas,20 the frequency
characteristics of the magnetron mode are modified sig
cantly when the density profile differs from a simple ste
function profile.

II. ASSUMPTIONS AND THEORETICAL MODEL

We consider here a cylindrical low-density (vpe
2 !vce

2 )
non-neutral electron plasma confined radially by a unifo
axial magnetic fieldB0 êz. Equilibrium properties are as
sumed to be azimuthally symmetric (]/]u50) about the col-
umn axis and have negligible spatial variation in the ax
direction (]/]z50). For low-frequency electrostatic flut
perturbations of the formdF(r ,u,t)5( ldF l(r )exp(ilu
2ivt), the eigenvalue equation can be expressed as1,3

1

r

]

]r
r

]

]r
dF l2

l 2

r 2 dF l52
l

rvce

]vpe
2

]r

dF l

@v2 lvE~r !#
. ~1!

Here, l is the azimuthal mode number,v is the complex
oscillation frequency,vce5eB0 /mec is the electron cyclo-
tron frequency andvpe

2 (r )54pne
0(r )e2/me is the electron

plasma frequency-squared, wherene
0(r ) is the equilibrium

electron density profile, andr 5(x21y2)1/2 is the radial dis-
tance from the axis of symmetry. In Eq.~1! and related defi-
nitions,2e, me andc are the electron charge, electron ma
and speed of lightin vacuo, respectively, andvE(r )5

2cEr
0(r )/rB0 is the equilibriumE03B0êz angular rotation

velocity determined self-consistently in terms ofne
0(r ) from

the equilibrium Poisson equation,
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@r 2vE~r !#5

vpe
2 ~r !

vce
. ~2!

Over the years, Eq.~1! has been extensively analyzed f
the case of the diocotron instability in an annular electr
layer,1,3,5 surface oscillations on a uniform density plasm
column,1 stablel 51 oscillation in a non-neutral plasma co
umn with general density profilene

0(r ),1,4 and the resonan
diocotron instability1,9,11driven by weak shear in the angula
velocity profile and gentle gradient]vpe

2 /]r in the density
profile. Indeed, even a sufficient condition for stability1,9–11

has been derived for general density profilene
0(r ) that de-

creases~or increases! monotonically as a function of radiu
r . Nonetheless, with the few exceptions noted above, the
a paucity of detailed stability results that have been obtai
from Eq. ~1! that illustrate the sensitivity of stability proper
ties to the detailed shape of the equilibrium profiles forne

0(r )
andvE(r ).

In the present analysis, we examine the eigenvalue eq
tion ~1! for the class of density profilesne

0(r ) which have an
inverted population as a function of radiusr ~i.e., profiles
with an off-axis density maximum!. Depending on the ‘‘hol-
lowness’’ of the density profile, the corresponding shear
the angular velocity profilevE(r ) @Eq. ~2!# can provide the
free energy to drive the well-known diocotron instability.
this regard, it is important to recognize that density profi
ne

0(r ) which are monotonically decreasing functions of r
dius r , will not give rise to instability withg5Im(v).0.
This readily follows from Eq.~1! upon multiplying byrdF l*
and integrating fromr 50 to r 5r w . Here, it is assumed tha
a perfectly conducting cylindrical wall is located at radi
r 5r w , in which case the perturbed potential amplitu
dF l(r ) satisfies the boundary condition

dF l~r 5r w!50. ~3!

Expressingv5v r1 ig, and integrating the first term in Eq
~1! by parts with respect tor , we obtain1

05D~v r1 ig!5E
0

r w
drr H U ]

]r
dF lU2

1
l 2

r 2 udF l u2

2
l

rvce

1

v r2 lvE~r !1 ig

]vpe
2

]r
udF l u2J .

~4!

The factorsu(]/]r )dF l u2 and udF l u2 in Eq. ~4! are mani-
festly real. Therefore, setting real and imaginary parts of
~4! separately equal to zero gives

05E
0

r w
drr H U ]

]r
dF lU2

1
l 2

r 2 udF l u2

2
l

rvce

@v r2 lvE~r !#

@v r2 lvE~r !#21g2

]vpe
2

]r
udF l u2J , ~5!

and

05g
1

vce
E

0

r w
dr

1

@v r2 lvE~r !#21g2

]vpe
2

]r
udF l u2. ~6!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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In circumstances where]vpe
2 /]r does not change sign ove

the interval 0<r<r w , the only solution to Eq.~6! corre-
sponds to a zero growth rate withg5Im v50. By the same
token, it follows from Eq.~6! that anecessary condition fo
instability ~solutions with g5Im v.0! is that ]vpe

2 /]r
change sign over the interval 0<r<r w .1

The present stability analysis of Eq.~1! ~Sec. III! focuses
on two classes of equilibrium profiles with inverted popu
tion. The first is thestep-functiondensity profile specified by
~Fig. 1!

ne
0~r !5H D•n̂e5const, 0<r ,r b

2 ,

n̂e5const, r b
2,r ,r b

1 ,

0, rb
1,r<rw .

~7!

Here, the~positive! dimensionless parameterD is a measure
of the electron density depression inside the annulusr b

2,r
,r b

1 , with D51 corresponding to a flat density profile e
tending from r 50 to r 5r b

1 , and D50 corresponding to
zero electron density in the region 0<r ,r b

2 . An important
physical quantity is the number of electrons per unit ax
length of the plasma column defined byNe

52p*0
r wdr rne

0(r ). For the equilibrium density profile in
Eq. ~7! it is readily shown that

Ne5pr b
12n̂eF12~12D!S r b

2

r b
1D 2G . ~8!

In Sec. III, it will be useful to eliminaten̂e in favor of Ne ,
and examine stability properties for a fixed amount of plas
(Ne) but variable profile shape parametersD,r b

2/r b
1 and

r b
1/r w .

The second class of equilibrium profiles considered
Sec. III has continuous density variation over the radial
tent of the plasma column. In particular, we consider
continuously-varyingdensity profilene

0(r ) specified by~Fig.
2!

ne
0~r !5H n̂eS D1

r 2

r b
2D S 12

r 2

r b
2D 2

, 0<r ,r b ,

0, rb,r<rw .

~9!

Here, n̂eD is the density on-axis (r 50). For D>1/2, it is
readily shown from Eq.~9! that ne

0(r ) decreases monoton

FIG. 1. Density profilene
0(r ) plotted versus radiusr for the step-function

profile in Eq.~7!.
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cally over the entire interval fromr 50 to r 5r b . On the
other hand, for 0<D,1/2 ~the case of interest here!, the
density profile in Eq.~9! increases monotonically from th
value n̂eD at r 50, to the maximum value nmax

5(4/27)n̂e(11D)3 at radiusr 5r max[@(122D)/3#1/2r b , and
then decreases monotonically to zero~at r 5r b! over the in-
terval r max<r<rb . The density profile in Eq.~9! is illustrated
in Fig. 2 for the case whereD50. Finally, making use of
Ne52p*0

r wdrrne
0(r ), it is readily shown from Eq.~9! that

Ne5pr b
2n̂eS D

3
1

1

12D , ~10!

which can be used to expressn̂e in terms ofNe , D and r b .
Finally, for future reference, it will be useful in th

analysis of the eigenvalue equation~1! to measure the~com-
plex! eigenfrequencyv in units of the~real! frequencyv1

for the l 51 diocotron mode which is independent of th
detailed profile shape forne

0(r ). Indeed, as first demonstrate
by Levy,4 for azimuthal mode numberl 51 andgeneral den-
sity profile ne

0(r ), Eq. ~1! supports a stable oscillatory solu
tion (Im v50) with an eigenfunction given exactly b
dF l 515const3r@v2vE(r)# over the interval 0<r<r w . En-
forcing the boundary conditiondF l 51(r 5r w)50 then gives
v5vE(r 5r w)[v1 , where

v15
2ec

B0r w
2 Ne . ~11!

Note from Eq.~11! that v1 is independent of the detaile
profile shape, and depends only on the total amount
plasma (Ne), the magnetic field strength (B0) and the con-
ducting wall radius (r w).

III. ANALYSIS OF EIGENVALUE EQUATION

We now make use of the eigenvalue equation~1! to in-
vestigate detailed electrostatic stability properties for
equilibrium density profilesne

0(r ) in Eqs.~7! and~9!, both of
which have inverted profiles and are expected to exhibit
stability (Im v.0), at least for modest values of the ‘‘fill
ing factor’’ D ~see Figs. 1 and 2!.

FIG. 2. Density profilene
0(r ) plotted versus radiusr for the continuously-

varying profile in Eq.~9!. Here,D50 is assumed.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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A. Step-function density profile

For the step-function density profile in Fig. 1 and E
~7!, we first evaluate the angular velocity profilevE(r ). Sub-
stituting Eq.~7! into Eq. ~2! readily gives

vE~r !5H Dv̂d , 0<r ,r b
2 ,

v̂dF12~12D!S r b
2

r D 2G , r b
2,r ,r b

1 ,
~12!

over the radial extent (0<r ,r b
1) of the plasma column

Here,v̂d is an effectivediocotron frequencydefined in terms
of n̂e by

v̂d[
v̂pe

2

2vce
5

2pn̂eec

B0
. ~13!

Eliminating n̂e in favor of Ne andv1 by means of Eqs.~8!

and ~11!, note thatv̂d can be expressed directly in terms
v1 according to

v̂d5v1

~r w /r b
1!2

@12~12D!~r b
2/r b

1!2#
. ~14!

In the special case whereD51 ~uniform density plasma col
umn!, it is clear from Eq.~12! thatvE(r )5v̂d5const across
the entire radial extent of the plasma column (0<r ,r b

1).
On the other hand, for 0,D,1, there can be a strong radi
shear invE(r ), particularly whenD is sufficiently small,
which leads to unstable solutions to Eq.~1! with Im v.0.

Substituting the step-function density profile~7! into the
eigenvalue equation~1! gives

1

r

]

]r
r

]

]r
dF l2

l 2

r 2 dF l

52
2l

r b
2 v̂d~12D!

dF l~r b
2!

v2 lvE~r b
2!

d~r 2r b
2!

1
2l

r b
1 v̂d

dF l~r b
1!

v2 lvE~r b
1!

d~r 2r b
1!. ~15!

Here, v̂d is defined in Eq.~13!, and use has been made
Eq. ~7! to express]ne

0(r )/]r 5n̂e(12D)d(r 2r b
2)2n̂ed(r

2r b
1). For the step-function density profile in Eq.~7!, we

note from the right-hand side of Poisson’s equation~15! that
the perturbed charge density2ednl(r ) is equal to zero ex-
cept at the surfaces located atr 5r b

2 and r 5r b
1 , where

]ne
0(r )/]r is singular. Equation~15! is readily solved in the

three regions: 0<r ,r b
2 ~Region I!; r b

2,r ,r b
1 ~Region II!;

and r b
1,r<r w ~Region III!. Denoting dF2[dF l(r 5r b

2)
anddF1[dF l(r 5r b

1), and enforcing regularity ofdF l(r )
at r 50, continuity ofdF l(r ) over the interval 0<r<r w and
dF l(r 5r w)50 at the conducting wall, we readily obtain th
solution to Eq.~15! in the three regions. We find
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
.

dF l~r !55
dF l

I~r !5dF2S r

r b
2D l

, 0<r ,r b
2 ,

dF l
II~r !5Brl1

C

r l , r b
2,r ,r b

1 ,

dF l
III ~r !5dF1

@~r b
1/r ! l2~r b

1/r w! l~r /r w! l #

@12~r b
1/r w!2l #

,

r b
1,r<r w . ~16!

Here, to assure the continuity ofdF l(r ) at r 5r b
2 and r

5r b
1 , the constantsB and C are related to the constan

dF2[dF l(r 5r b
2) and dF1[dF l(r 5r b

1) by the condi-
tions

B5
1

~r b
1!2l2~r b

2!2l @~r b
1! ldF12~r b

2! ldF2#, ~17!

C5
~r b

2! l~r b
1! l

~r b
1!2l2~r b

2!2l @2~r b
2! ldF11~r b

1! ldF2#. ~18!

The remaining boundary conditions at the surfacesr 5r b
2

and r 5r b
1 can be derived by operating on the eigenva

equation~15! with * r b(12e)
r b(11e)

drr¯ and *
r
b
1(12e)

r b
1(11e)

drr¯ , re-

spectively, in the limite→01 . This gives

F ]

]r
dF l

IIG
r
b
2~11e!

2F ]

]r
dF l

IG
r
b
2~12e!

52
2l v̂d~12D!

r b
2

dF l~r b
2!

v2 lvE~r b
2!

, ~19!

F ]

]r
dF l

III G
r
b
1~11e!

2F ]

]r
dF l

IIG
r
b
1~12e!

5
2l v̂d

r b
1

dF l~r b
1!

v2 lvE~r b
1!

, ~20!

where e→01 , and dF l
I(r ), dF l

II(r ) and dF l
III (r ) are de-

fined in Eq.~16!. Equations~19! and ~20! relate the discon-
tinuity in perturbed radial electric field at the surfacesr
5r b

2 and r 5r b
1 to the perturbed charge density at tho

surfaces.
Substituting Eq.~16! into Eqs.~19! and~20!, and elimi-

nating the constantsB and C in favor of the constants
dF25dF l(r 5r b

2) anddF15dF l(r 5r b
1), we obtain

F ~12D!v̂d

v2 lDv̂d

2
1

12~r b
2/r b

1!2l GdF21
~r b

2/r b
1! l

12~r b
2/r b

1!2l dF150,

~21!

2~r b
2/r b

1! l

12~r b
2/r b

1!2l dF22F 2v̂d

v2 l v̂d@12~12D!~r b
2/r b

1!2#

1
11~r b

1/r w!2l

12~r b
1/r w!2l 1

11~r b
2/r b

1!2l

12~r b
2/r b

1!2l GdF150. ~22!

Here, use has been made of Eq.~12! to express
vE(r b

2)5Dv̂d and vE(r b
1)5v̂d@12(12D)(r b

2/r b
1)2#.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Equations~21! and ~22! are of the formadF21bdF150
and cdF21ddF150, wherea, b, c and d are constant
coefficients that depend onv. The condition for a nontrivial
solution with dF2Þ0 and dF1Þ0 is given by ad2bc
50, which plays the role of a dispersion relation that det
mines the complex oscillation frequencyv5v r1 ig as a
function of v̂d , D, r b

2/r b
1 , etc.

A simple limit in which to check Eqs.~21! and ~22! is
the special case whereD51, which corresponds to a uniform
density profile with densityn̂e extending from r 50 to
r 5r b

1 . Equation ~21! gives dF25(r b
2/r b

1) ldF1 for
D51, and substitution into Eq.~22! then gives the simple
result

v2~ l 21!v̂d5v̂d~r b
1/r w!2l , for D51. ~23!

Equation~23! is the expected result1 for the case of a uni-
form step-function density profile extending fromr 50 to
r 5r b

1 . Note from Eq.~23! thatv is purely real, correspond
ing to a stable oscillation. Moreover, forl 51 andD51, Eq.
~23! reduces tov5v̂d(r b

1/r w)25v1 , as expected@see Eq.
~14!#.4

We now return to Eqs.~21! and ~22! for general values
of D, r b

2/r b
1 , etc. Setting the two-by-two determinant of th

coefficients ofdF2 anddF1 in Eqs.~21! and~22! equal to
zero, and rearranging terms, it is readily shown that

S r b
2

r b
1D 2l

1F ~12D!v̂d@12~r b
2/r b

1!2l #

v2 l v̂d

21G
3F v̂d@12~r b

2/r b
1!2l #

v2 l v̂d@12~12D!~r b
2/r b

1!2#
1

12~r b
2/r w!2l

12~r b
1/r w!2lG50.

~24!

Equation~24! can be cast into the form of a quadratic equ
tion for v/v̂d . Some straightforward algebraic manipulatio
gives

~v/v̂d!222b̂~v/v̂d!1 ĉ50, ~25!

where the constantsb̂ and ĉ are defined by

2b̂5 l @11D2~12D!~r b
2/r b

1!2#2$@12~r b
1/r w!2l #

2~12D!@12~r b
2/r w!2l%, ~26!

ĉ5 l 2@12~12D!~r b
2/r b

1!2#D2$ l @12~r b
1/r w!2l #D

2 l @12~r b
2/r w!2l #~12D!@12~12D!~r b

2/r b
1!2#

1~12D!@12~r b
2/r b

1!2l #@12~r b
1/r w!2l #%. ~27!

The solutions to Eq.~25! are given by

v

v̂d

5b̂6~ b̂22 ĉ!1/2. ~28!

Evidently, the necessary and sufficient condition for insta
ity is

ĉ.b̂2. ~29!

Whenever the inequality in Eq.~29! is satisfied, the solutions
to Eq. ~28! occur in conjugate pairs, and the growth rate
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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the unstable branch isIm v51( ĉ2b̂2)1/2v̂d.0, and the
real frequency isRe v5b̂v̂d . Of course,Im v and Re v
can be expressed in units of thel 51 frequencyv1 by means
of Eq. ~14!. For azimuthal mode numberl 51, and general
values ofD, r b

2/r b
1 and r b

1/r w , it is readily shown that the
two solutions in Eq.~28! reduce to stable oscillations wit
frequencyv5v1(r w /r b

1)2 ~upper sign! and v5v1 ~lower
sign!, wherevd has been eliminated in favor ofv1 by means
of Eq. ~14!.1,4

Typical numerical results for the unstable~upper! branch
in Eq. ~28! are illustrated in Figs. 3–5. Here,Re v/v1 and
Im v/v1 are plotted versusr b

2/r b
1 for fixed values of the

conducting wall location (r b
1/r w50.5) and values of filling

FIG. 3. Plots of~a! normalized real frequencyRe v/v1 and~b! normalized
growth rateIm v/v1 versusr b

2/r b
1 for the unstable~upper! branch in Eq.

~28!. Numerical results are presented for azimuthal mode numbel
51,2,...,10, assuming a fixed conducting wall radius withr b

1/r w50.5, and
filling factor D50 @see Eq.~7!#.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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factorD corresponding toD50 ~Fig. 3!, D50.1 ~Fig. 4! and
D50.5 ~Fig. 5!. The results in Figs. 3–5 are presented
azimuthal mode numbersl 51,2,...,10. For D50, as ex-
pected from previous analyses,1,3 it is evident from Fig. 3~b!
that as the layer thickness is decreased~increasing values o
r b

2/r b
1!, the l 52 mode is the first to go unstable, then thel

53 mode, thenl 54, etc. Furthermore, the maximum grow
rate is larger for largerl values, and occurs in the limit of
very thin annulus (r b

2/r b
1→1).

Introducing even asmall population of electrons in the
interior region 0<r ,r b

2 can have a significant influence o
stability properties. This is evident from Fig. 4, whe
Re v/v1 andIm v/v1 are plotted versusr b

2/r b
1 for the case

FIG. 4. Plots of~a! normalized real frequencyRe v/v1 and~b! normalized
growth rateIm v/v1 versusr b

2/r b
1 for the unstable~upper! branch in Eq.

~28!. Numerical results are presented for azimuthal mode numbel
51,2,...,10, assuming a fixed conducting wall radius withr b

1/r w50.5, and
filling factor D50.1 @see Eq.~7!#.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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whereD50.1. Comparing Figs. 4~b! and 3~b!, several points
are noteworthy. First, forD50.1, thel 52 mode isnot un-
stable. Second, the maximum growth rates are reduce
Fig. 4~b! relative to Fig. 3~b!. Finally, the bandwidth struc-
ture in Fig. 4~b! differs from that in Fig. 3~b!, with each
mode stabilizing (Im v50) for r b

2/r b
1 exceeding a certain

critical value less than unity. For example, thel 53 mode in
Fig. 4~b! is unstable only in the range 0.47,r b

2/r b
1,0.88,

and no longer extends to values ofr b
2/r b

1 approaching unity
as in Fig. 3~b!. The stabilizing influence of introducing
plasma in the interior region 0<r ,r b

2 is even more strongly
evident in Fig. 5, whereRe v/v1 and Im v/v1 are plotted
versusr b

2/r b
1 for the case whereD50.5.

Detailed stability properties are readily calculated fro

FIG. 5. Plots of~a! normalized real frequencyRe v/v1 and~b! normalized
growth rateIm v/v1 versusr b

2/r b
1 for the unstable~upper! branch in Eq.

~28!. Numerical results are presented for azimuthal mode numbel
51,2,...,10, assuming fixed conducting wall radius withr b

1/r w50.5, and
filling factor D50.5 @see Eq.~7!#.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Eq. ~28! as a function of the filling factorD for fixed values
of the geometric factorsr b

2/r b
1 and r b

1/r w . Typical numeri-
cal results are presented in Figs. 6 and 7, whereRe v/v1

andIm v/v1 are plotted versusD for azimuthal mode num-
bersl 51,2,...,10, andfixed value ofr b

2/r b
150.5. The only

difference between the two cases is the location of the c
ducting wall, withr b

1/r w50.5 in Fig. 6, andr b
1/r w50.7, in

Fig. 7. The strong dependence of detailed stability beha
on D is evident from Figs. 6 and 7. First, at fixed values
r b

2/r b
1 and r b

1/r w , but varying D, the modes areisolated
from one another, except for a modest overlap of thel 52
and l 53 modes over a relatively narrow range ofD. For
example, in Fig. 6~b!, whenD50.5, only thel 54 mode is
unstable, etc. Second, it is clear from Fig. 6~b! that the maxi-

FIG. 6. Plots of~a! normalized real frequencyRe v/v1 and~b! normalized
growth rateIm v/v1 versus filling factorD for the unstable~upper! branch
in Eq. ~28!. Numerical results are presented for azimuthal mode numbel
51,2,...,10, and fixed geometric factorsr b

2/r b
150.5 andr b

1/r w50.5 @see
Eq. ~7!#.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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mum growth rate is a rapidly decreasing function ofl for
azimuthal mode numbersl>3. Third, comparing Figs. 6~b!
and 7~b!, it is clear for each value ofl that the maximum
growth rate is reduced as the conducting wall is brought i
closer proximity to the outer surfacer b

1 of the plasma. Here
keep in mind thatr b

1/r w50.5 in Fig. 6, whereasr b
1/r w

50.7 in Fig. 7.
Comparing the relative magnitudes of thel 52 and l

53 growth rates in Figs. 6~b! and 7~b!, it is evident that the
l 52 mode exhibits a special sensitivity to the location of t
conducting wall. Indeed, careful examination of Eqs.~26!–
~28! shows that as the conducting wall is removed to infin
(r b

1/r w→0), the growth rate of thel 52 mode reducesex-
actly to Im v50 for arbitrary values ofD and r b

2/r b
1 . On

the other hand, at fixed values ofD and r b
2/r b

1 , the higher

FIG. 7. Plots of~a! normalized real frequencyRe v/v1 and~b! normalized
growth rateIm v/v1 versus filling factorD for the unstable~upper! branch
in Eq. ~28!. Numerical results are presented for azimuthal mode numbel
51,2,...,10, and fixed geometric factorsr b

2/r b
150.5 andr b

1/r w50.7 @see
Eq. ~7!#.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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mode numbersl>3 continue to exhibit instability as the con
ducting wall is removed to infinity withr b

1/r w→0, at least in
certain very narrow regions of the parameter sp
(D,r b

2/r b
1).

It is evident from Figs. 3–7 that detailed stability beha
ior exhibits a sensitive dependence on the dimensionless
rametersD, r b

2/r b
1 andr b

1/r w for the choice of step-function
density profile in Eq.~7!. Moreover, the inequalityĉ.b̂2 in
Eq. ~29! is a necessary and sufficient condition for instab
ity. Indeed the inequalityĉ5b̂2 can be used to generate co
tour plots in two-dimensional subspaces of the param
space (r b

2/r w ,r b
1/r w ,D) that separate regions of instabilit

~ĉ.b̂2 and Im v.0! from regions of stable oscillation
~b̂2. ĉ and Im v50!. Typical numerical results are illus
trated in Figs. 8–10, where stability–instability contou
are plotted in the parameter space (r b

2/r w ,r b
1/r w). Be-

causer b
1>r b

2 , only the regions above the 45-degree lin
in Figs. 8–10 are physically allowed. Figure 8 correspon
to the caseD50 first considered by Levy,3 and the contours
are plotted for azimuthal mode numbersl 52, 3 and 4. Figure
8 is, of course, consistent with the stability behavior p
sented in Fig. 3. For example, at fixed value ofr b

1/r w , as
r b

2/r b
15(r b

2/r w)(r w /r b
1) is increased, it follows from Fig. 8

that thel 52 mode is the first to go unstable, then thel 53
mode, thenl 54, etc., which should be compared with th
results in Fig. 3~b!. As is evident from Figs. 9 and 10, and a
would be expected from the quantitative stability results p
sented in Figs. 4–7, the stability–instability contours u
dergo a dramatic change in topology asD is increased from
the D50 case shown in Fig. 8. This is illustrated for az
muthal mode numberl 52 in Fig. 9 and forl 53 in Fig. 10,
for several values of the filling factorD50.1, 0.2, 0.3 and
0.6. Comparing thel 52 contours in Figs. 8 and 9, it is clea
that thel 52 contour detaches from the 45-degree line (r b

1

FIG. 8. Stability–instability contour plots ofb̂25 ĉ obtained from Eqs.~26!
and ~27! in the parameter space~r b

2/r w , r b
1/r w! for azimuthal mode num-

bersl 52,3,4, and filling factorD50.
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5rb
2) when DÞ0, leading to regions of stability (Im v

50) at both smaller and larger values ofr b
2/r b

1 . ~It is the
regionsinside the elongated loops in Fig. 9 that correspo
to instability with Im v.0.! Furthermore, from Fig. 9, the
area of (r b

2/r w ,r b
1/r w) parameter space corresponding to

stability (Im v.0) becomes smaller and smaller asD is
increased, and shifts to larger values ofr b

1/r w . For azi-
muthal mode numberl 53, it is evident from Fig. 10 that the
stability–instability contour also detaches from the 4
degree line whenDÞ0, although the shape and orientation
the unstable region is more complex than for thel 52 case
shown in Fig. 9.

In concluding Sec. III A, we summarize briefly prope
ties of the~complex! eigenfunction solution fordF l(r ) in
Eq. ~16!. Here, the amplitude factorsdF2[dF l(r 5r b

2) and
dF1[dF l(r 5r b

1) are related by Eqs.~21! and~22!, where
the complex oscillation frequencyv5v r1 ig is determined
self-consistently from the dispersion relation in Eq.~24!, or
equivalently, Eq.~25!. Because of ther 6 l dependences, we
note from Eq.~16! thatdF l(r ) is generally peaked~strongly
so for largel -values! at the inner and outer surfaces of th
step-function density profile atr 5r b

2 and r 5r b
1 , respec-

tively. Typical numerical results are illustrated in Fig. 1
whereRe dF l(r ) andIm dF l(r ) are plotted versus radiusr
for azimuthal mode numberl 53, filling factor D50.1 and
geometric factorsr b

2/r b
150.7 andr b

1/r w50.5. This corre-
sponds~approximately! to the maximum-growth-rate param
eters for the unstablel 53 mode in Fig. 4. Without loss o
generality, we pick the phase of the eigenfunctiondF l(r ) for
mode numberl 53 so thatdF2 is purely real, and plot
Re dF l(r ) and Im dF l(r ), normalized in units ofdF2 ,
versus radiusr in Fig. 11. Becausev[v r1 ig56.7v1

1 i1.4v1 has nonzero real and imaginary parts determin
from Eq. ~25!, it follows from Eqs.~21! and ~22! that dF1

5(2.571 i0.074)dF2 is also complex. As expected from

FIG. 9. Stability–instability contour plots ofb̂25 ĉ obtained from Eqs.~26!
and~27! in the parameter space~r b

2/r w , r b
1/r w! for azimuthal mode number

l 52, and filling factorsD50.1, 0.2, 0.3 and 0.6.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 10. Stability–instability contour plots of b̂25 ĉ obtained from Eqs. ~26! and ~27! in the parameter space
~r b

2/r w , r b
1/r w! for azimuthal mode numberl 53, and filling factors~a! D50.1, ~b! D50.2, ~c! D50.3 and~d! D50.6.
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Eq. ~16!, the eigenfunctiondF l(r ), plotted versus radiusr in
Fig. 11, develops both real and imaginary components in
interval r b

2,r<r w .
As a final point, the right-hand side of Eq.~15! is equal

to 4pednl(r ), wherednl(r ) is the perturbed density of elec
trons. For the step-function equilibrium density profile in E
~7!, it is clear from Eq.~15! that the perturbed charge densi
is equal to zero everywhere except at the surfacesr 5r b

2 and
r 5r b

1 , where there are large~singular! perturbations in sur-

face charge density,s2(r b
2)[(2pr b

2)21(2e)*
r
b
2(12e)

r b
2(11e)

dr

3rdnl(r ) ands1(r b
1)[(2pr b

1)21(2e)*
r
b
1(12e)

r b
1(11e)

drrdnl(r ),

where e→01 . Without present algebraic details, whic
make use of Eqs.~21!, ~22! and ~24!, it can be shown tha
Re@r b

2s2(r b
2)#1Re@r b

1s1(r b
1)#50 and Im @r b

2s2(r b
2)#
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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1Im @rb
2s2(rb

2)#1Im@rb
1s1(rb

1)#50, which correspond to
zero net perturbed charge density, i.e.,e*0

r wdrrdnl(r )50, as
expected.

B. Continuously-varying density profile

As a second example, we consider the continuous
varying density profile in Eq.~9! and Fig. 2. Here,ne

0(r )
varies smoothly over the interval 0<r ,r b , and has an in-
verted population for sufficiently small values ofD,1/2.
Substituting Eq.~9! into Eq. ~2! and integrating with respec
to r gives the angular velocity profile

vE~r !5v̂dFD1S 1

2
2D D r 2

r b
2 2

1

3
~22D!

r 4

r b
4 1

1

4

r 6

r b
6G ,

0<r ,r b , ~30!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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wherev̂d[v̂pe
2 /2vce52pn̂eec/B0 . Here,v̂d can be elimi-

nated in favor ofNe and thel 51 diocotron frequencyv1 by
means of Eqs.~10! and ~11!. This gives

v̂d5
r w

2 /r b
2

~D/311/12!
v1 . ~31!

Plots of the normalized profiles forpr b
2ne

0(r )/Ne and
vE(r )/v1 versusr /r b calculated from Eqs.~9! and ~30!, re-
spectively, are shown in Fig. 12 for several values of
dimensionless parameterD to illustrate the sensitive depen
dence of profile shape onD. Here, use has been made of Eq
~10! and~31! to eliminaten̂e andv̂d in favor of Ne andv1 .

For ne
0(r ) specified by Eq.~9! and sufficiently smallD,

the shear in the angular velocity profilevE(r ) defined in Eq.
~30! is sufficiently large to drive the diocotron instability
For the equilibrium profiles in Eqs.~9! and ~30!, exact ana-

FIG. 11. A plot of the complex eigenfunctiondF l(r ) versus radiusr ob-
tained from Eq.~16! for azimuthal mode numberl 53, filling factor D
50.1 and geometric factorsr b

2/r b
150.7 andr b

1/r w50.5. Here, we have
takendF2 to be real, and made use of Eqs.~21!, ~22! and~25! to determine
the real and imaginary components ofdF1 .
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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lytical solutions to the eigenvalue equation~1! are not trac-
table as was the case for the step-function density pro
treated in Sec. III A. In the subsequent analysis of Eq.~1!,
we make use of the numerical code developed by White21 for
solving eigenvalue equations in planar geometry. In this
gard, it is convenient to introduce the stretched radial va
ableX defined by

X5 lnS r

r b
D , or

r

r b
5exp~X!, ~32!

so thatr 50 corresponds toX52`, r 5r b corresponds to
X50 and r 5r w corresponds toX5Xw[ ln(rw /rb). Some
straightforward algebra that makes use of Eqs.~1!, ~32! and
r ]/]r 5]/]X gives the transformed eigenvalue equation

FIG. 12. Plots versusr /r b of the normalized profiles for~a! pr b
2ne

0(r )/Ne

and ~b! vE(r )/v1 calculated from Eqs.~9!, ~10!, ~30! and ~31! for r b /r w

50.5 and several values of the dimensionless parameterD corresponding to
D50, 0.03, 0.08 and 0.2.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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F ]2

]X2 1Fl~X,v!GdF l~X!50. ~33!

Here,Fl(X,v) is defined by

Fl~X,v!52 l 21
l

v2 lvE~X!

]

]X

vpe
2 ~X!

vce
, ~34!

wherevpe
2 (X) and vE(X) are defined in Eqs.~9! and ~30!

with r /r b5exp(X). The transformed eigenvalue equatio
~33! is solved in the two regions corresponding to the f
lowing: the plasma interior~Region I, where 0<r ,r b , or
equivalently,2`<X,0), and the vacuum region@Region
II, where r b,r<r w , or equivalently 0,X<Xw

[ ln(rw /rb)]. Requiring thatdF l be regular at the origin and
vanish at the conducting wall gives the boundary conditio

dF l
I~X→2`!50,

~35!F ]

]X
dF l

IG
X→2`

50,

and

dF l
II~X5Xw!50. ~36!

In addition, for the continuously-varying density profile
Eq. ~9!, it is readily shown from Eqs.~33! and~34! that both
dF l(X) and ]dF l /]X are continuous across the surface
the plasma column atX50 ~corresponding tor 5r b!, i.e.,

dF l
I~X50!5dF l

II~X50!,
~37!F ]

]X
dF l

IG
X50

5F ]

]X
dF l

IIG
X50

.

In the vacuum region, wherevpe
2 (X)50, Eq. ~33! re-

duces to

F ]2

]X2 2 l 2GdF II~X!50, 0,X<Xw , ~38!

where Xw[ ln(rw /rb). Integrating Eq.~38!, and enforcing
dF l

II(X5Xw)50 gives the solution

dF l
II~X!5dFb

exp@2 l ~X2Xw!#2exp@ l ~X2Xw!#

@exp~ lXw!2exp~2 lXw!#
,

0,X<Xw . ~39!

Here, the constantdFb[dF l(X50) is the perturbed poten
tial amplitude at the surface of the plasma column (X50).

Interior to the plasma, wherevpe
2 (X) and vE(X) are

specified by Eqs.~9! and ~30!, the eigenvalue equation~33!
reduces to

F ]2

]X2 1Fl
I~X,v!GdF l

I~X!50, 2`<X,0. ~40!

Here,Fl
I(X,v) is defined by

Fl
I~X,v!52 l 212v̂d

]

]X
$@D1exp~2X!#@12exp~2X!#2%

3$v2 l v̂d@D1~ 1
2 2D!exp~2X!

2 1
3 ~22D!exp~4X!1 1

4 exp~6X!#%21. ~41!
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In the present analysis, Eq.~40! is integrated numerically in
Region I (2`<X,0) subject to the boundary conditions
Eq. ~35! at X→2`, and the solution fordF l

I(X) is matched
at X50 to the solution fordF l

II(X) in Region II given in Eq.
~39! by imposing the boundary conditions in Eq.~37!. For
specified values of the dimensionless parameterD, total
amount of plasma (v1) and location of the conducting wa
(r b /r w), this procedure gives numerical solutions for t
eigenfunctiondF l(X) and ~complex! eigenfrequencyv.

In the subsequent analysis, it should be recognized
there are significant differences between thecontinuously-
varying density profile in Eq.~9! and thestep-functionden-
sity profile in Eq.~7!. First, the continuously-varying densit
profile in Eq. ~9! is very sensitive to small increases in th
dimensionless parameterD. This is evident from Fig. 12,
whereD is varied fromD50 to D50.2 at fixed values ofNe

and r b /r w . Second, thesteepdensity gradient at the inne
surfacer 5r b

2 in Eq. ~7! ~see also Fig. 1! tends to produce a
strong version of the diocotron instability with sizeab
growth rateIm v measured in units ofv1 ~see Figs. 3–7!.
By contrast, the density gradients in Eq.~9! and Fig. 12 are
gentle, and we find in the subsequent analysis that the gro
rates of the diocotron instability are correspondingly sm
with Im v!v1 . Indeed, denoting the real oscillation fre
quency byRe v5v r , it is found that a small class ofreso-
nant particles1,9,11 located at radiusr 5r s determined from
the resonance condition

v r2 lvE~r s!50 ~42!

play a controlling role in determining properties of the di
cotron instability for the continuously-varying density profi
in Eq. ~9!. By contrast, for the case of the step-function de
sity profile in Eq. ~7!, the diocotron instability calculated
from the dispersion relation~25!, which is a quadratic equa
tion for v, tends to bealgebraic in nature.

Typical results obtained by numerically integrating t
eigenvalue equation~40! and matching boundary condition
at X50 as described earlier in this section are presente
Figs. 13 and 14 for the case wherer b /r w50.5. Shown in
Fig. 13 are plots versusD of the normalized real oscillation
frequencyRe v/v1 and growth rateIm v/v1 of the un-
stable diocotron modes with azimuthal mode numberl
52,3,4. It is evident from Fig. 13 that thel 53 mode has the
largest growth rate, and that thel 51 mode is stable with
Im v50 andRe v5v1 , as expected. Moreover, from Fig
13~b!, the instability growth rate is strongest whenD50, i.e.,
when the density depression in Fig. 12 is largest, and
instability growth rates decrease to negligibly small levels
D is increased to modest values (D&0.08). Similar behavior
is evident in Fig. 14 whereRe v/v1 and Imv/v1 are plot-
ted versus the azimuthal mode numberl for l 51,2,...,7, and
values of D corresponding toD50, 0.01 and 0.03. With
regard to the linear dependence ofRe v on mode numberl
evident from the numerical results in Fig. 14~a!, a remark-
ably good fit is provided by the empirical formul
Re v5(5l 24)v1 . Finally, from Fig. 14~b!, the l 53 mode
exhibits the strongest instability, and the maximum grow
rate decreases rapidly asD is increased to small nonzer
values.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Typical numerical results obtained for the radial depe
dence of the complex eigenfunction are illustrated in Figs.
and 16 for the choice of system parametersD50 and
r b /r w50.5 ~see Fig. 14 for the corresponding values
Re v andIm v). The most natural~but perhaps least infor
mative! representation of the eigenfunction is in terms of t
perturbed electrostatic potential, which is shown in Fig.
for azimuthal mode numberl 52. As expected,dF l(r ) has
both real and imaginary parts in Fig. 15, and the eigenfu
tion has a broad radial structure with maximum magnitu
where the plasma density is large. Because the eigenv
equation~1! is homogeneous in the complex eigenfuncti
dF l(r ), it should be noted thatdF l(r ) can be scaled by a
factor exp(ia), wherea is a constant phase factor. In Fig. 1
when integrating Eq.~1! @or equivalently, Eq.~33!#, we have
chosen the phasea so that the eigenfunctiondF l(r ) is
purely real for small values ofr near the origin. A careful

FIG. 13. Plots versusD of ~a! the normalized real frequencyRe v/v1 , and
~b! normalized growth rateIm v/v1 obtained numerically for the choice o
continuously-varying density profile in Eq.~9!. Here, r b /r w50.5 is as-
sumed, and results are presented for mode numbersl 51,2,3,4.
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examination of Eq. ~1! for small r then shows that
@r 21(]/]r )(r ]/]r )2 l 2/r 2#Im dF l(r ) is proportional to
@r 21]vpe

2 /]r #vr5 lvE(r )Re dF l(r ). Therefore, as eviden
from Fig. 15,Im dF l(r ) vanishes untilr increases tor s , the
resonant radius that solvesv r5 lvE(r s).

As shown in Fig. 16, for mode numbersl 52, 3 and 4, it
is much more informative to plot the real and imagina
parts of the eigenfunction for the perturbed densitydnl(r )
5(4pe)21@r 21(]/]r )(r ]dF l /]r )2( l 2/r 2)dF l #. Evi-
dently, for each value ofl 52, 3 and 4, bothRe dnl(r ) and
Im dnl(r ) are very strongly peaked in a narrow radial regi
of the positive density gradient. Indeed, from the numeri
solutions forRe v5v r , it is found that the precise radia
locationr 5r s of the localized density perturbation in Fig. 1
is determined from the resonance conditionv r2 lvE(r s)

FIG. 14. Plots versus azimuthal mode numberl of ~a! the normalized real
frequencyRe v/v1 , and~b! the normalized growth rateIm v/v1 obtained
numerically for the choice of a continuously-varying density profile in E
~9!. Here,r b /r w50.5 is assumed, and results are presented forD50, 0.01
and 0.03.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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50 in Eq. ~42!, wherevE(r ) is the angular velocity profile
defined in Eq.~30!. ~Here,D50 andr b /r w50.5 for the plots
in Fig. 16.!

Note also from Fig. 16 that asl increases froml 52 to
l 53 to l 54, the resonant radiusr 5r s moves progressively
outwards towards the density maximum atr max/rb5(1/3)1/2

50.577 ~for D50!. This is further illustrated in Fig. 17
where the values ofr s calculated numerically from Eqs.~30!
and ~42! and the numerical solutions forv r are plotted for
mode numbersl 51,2,...,10. In Fig. 17, the values ofr s to
the right of the density maximum but to the left ofr b corre-
spond to purely oscillatory modes withIm v50 and mode
numbersl 56,...,10. For values ofr s in Fig. 17 to the left of
the density maximum, thel 51 mode, of course, is a stab
oscillation with Im v50 and Re v5v1 , whereas thel
52,3,..., modes are unstable, with largest growth rate fol
53, and a negligibly small growth rate forl>7 ~see Fig.
14!. Finally, it should also be pointed out in Fig. 16 that t
real and imaginary parts of the eigenfunctiondnl(r ) satisfy
charge conservation,*0

r bdrrdnl(r )50, as expected.
For the continuously-varying density profile specified

Eq. ~9!, it is evident from Figs. 13, 14 and 16, that the di
cotron instability is both weak (Im v!uRe vu) and reso-
nant. Therefore, to better understand semi-quantitative
tures of the instability, it is useful to summarize briefly
formulation of theresonantdiocotron instability1,9,11 devel-
oped originally by Briggset al.9 We denotev r5Re v and
g5Im v, and Taylor expand the effective dispersion re
tion D(v r1 ig)50 in Eq. ~4! for ug/v r u!1. This gives

D~v r1 ig!5Dr~v r !1 i FDi~v r !1g
]Dr~v r !

]v r
G1¯50,

~43!

whereDr(v r)[Re D(v r) andDi(v r)[Im D(v r). Setting
real and imaginary parts in Eq.~43! separately equal to zer
then gives

FIG. 15. Plots ofRe dF l(r ) and Im dF l(r ) versusr /r b obtained numeri-
cally for D50 and l 52 for the choice of a continuously-varying densi
profile in Eq.~9!. Here,r b /r w50.5 is assumed.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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FIG. 16. Plots ofRe dnl(r ) and Im dnl(r ) versusr /r b obtained numeri-
cally for D50 and r b /r w50.5 for azimuthal mode numbers~a! l 52, ~b!
l 53 and~c! l 54. The continuously-varying density profilene

0(r ) in Eq. ~9!
is also plotted versusr /r b in the figures.
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Dr~v r !50,
~44!

g52
Di~v r !

]Dr~v r !/]v r
.

To evaluateDr(v r) andDi(v r), we make use of

lim
g→01

1

v r2 lvE~r !1 ig

5
P

v r2 lvE~r !
2 ipd@v r2 lvE~r !# ~45!

in Eq. ~4!, whereP denotes Cauchy principal value. Subs
tuting Eq.~45! into Eq. ~4! and taking the limitg→01 then
gives

Dr~v r !5E
0

r w
drr H U ]

]r
dF lU2

1
l 2

r 2 udF l u2

2
l

rvce

P]vpe
2 /]r

v r2 lvE~r !
udF l u2J , ~46!

and

Di~v r !5
l

vce
pE

0

r w
dr

]

]r
vpe

2 ~r !d@v r2 lvE~r !#udF l u2

5
p

vce
F]vpe

2 ~r !/]r udF l u2

u]vE~r !/]r u G
r 5r s

, ~47!

where the resonant radiusr s solvesv r5 lvE(r s). Substitut-
ing Eqs.~46! and ~47! into Eq. ~44! then gives1

FIG. 17. Plots forD50 andr b /r w50.5 of the resonant radiusr s calculated
from v r2 lvE(r s)50 for azimuthal mode numbersl 51,2,...,10, andval-
ues ofr s located within the plasma (0,r s,r b). Here, the density profile
ne

0(r ) and angular velocity profilevE(r ) are specified by Eqs.~9! and~30!,
andv r5Re v is determined numerically from the eigenvalue equation.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
05Dr~v r !5E
0

r w
drr H U ]

]r
dF lU2

1
l 2

r 2 udF l u2

2
l

vce

P]vpe
2 /]r

v2 lvE~r !
udF l u2J , ~48!

and

g5
p

l F]vpe
2 ~r !/]r udF l u2

u]vE~r !/]r u G
r 5r s

3F2E
0

r w
dr

P]vpe
2 /]r

~v r2 lvE!2 udF l u2G21

. ~49!

Equation~48! plays the role of a dispersion relation1 for
the real oscillation frequencyv r , whereas Eq.~49! deter-
mines the growth rateg of the resonant diocotron instability
Of course neither Eq.~48! nor Eq.~49! provide information
on the detailed functional form of the complex eigenfuncti
dF l(r ). Nonetheless, important qualitative features of t
instability are evident. In particular, for the continuousl
varying density profile in Eq.~9!, the factor@¯#21 in Eq.
~49! is positive, so that the positive density gradient fac
@]vpe

2 /]r # r 5r s
drives the resonant diocotron instability fo

values of the resonant radiusr s to the left of the density
maximum.

IV. CONCLUSIONS

In this paper, we have made use of the electrostatic
genvalue equation~1! to determine the influence of densit
profile shape on the diocotron instability in a low-dens
(vpe

2 !vce
2 ) non-neutral plasma column confined by a un

form axial magnetic fieldB0êz . The assumptions and theo
retical model were described in Sec. II, and in Sec. III d
tailed stability results were presented for two classes
equilibrium density profilesne

0(r ) with inverted population
as a function of radiusr . The first~Sec. III A! corresponds to
the step-function density profile in Eq.~7! ~see Fig. 1!,
whereas the second~Sec. III B! corresponds to the
continuously-varying density profile in Eq.~9! ~see Figs. 2
and 12!. In both cases, the dimensionless parameterD con-
trols the degree of ‘‘hollowness’’ of the equilibrium densi
profile, with D50 corresponding tone

0(r 50)50. Detailed
stability properties were calculated in Sec. III for a wid
range of system parameters, including values ofD, radial
location r w of the conducting wall, azimuthal mode numb
l , etc. As a general remark, in both cases, it was shown
small increases in the ‘‘filling factor’’D from the valueD
50 can have a large effect on the growth rate and deta
properties of the instability. In addition, for the step-functio
density profile in Eq.~7!, which has a steep density gradie
at the inner layer surface (r 5r b

2), the instability tends to be
algebraic in nature and have a large growth rate in the
stable region of parameter space~see Figs. 3–7!. By contrast,
for the continuously-varying density profile in Eq.~9!, the
instability is typically much weaker~see Figs. 13 and 14! and
involves a narrow class of resonant particles at radiusr 5r s

satisfying the resonance condition in Eq.~42!. To help better
understand the qualitative features of the weak resonant
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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cotron instability, an expression for the growth ra
g5Im v was presented in Eq.~49!, which relates the
growth rateg directly to the density gradient]vpe

2 (r )/]r at
the resonant radiusr 5r s .

In conclusion, to help motivate future experimental stu
ies, the present analysis has quantified the sensitive de
dence of the diocotron instabilty growth rate and mode str
ture on the shape of the equilibrium density profilene

0(r ).
Detailed stability properties have been calculated for profi
ranging from a thin annulus to a continuously varying de
sity profile with inverted population. It is hoped that th
work will motivate future experimental studies, both to te
the validity of the linear stability analysis, and to help gui
the planning of experiments to preferentially excite cert
modes~l -values! and follow their nonlinear evolution. In this
regard, it is important to note that the perturbed dens
dnl(r ), rather than the perturbed potentialdf l(r ), is a par-
ticularly sensitive diagnostic of the detailed mode structu
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