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In this paper we examine theoretically the influence of density profile shape on the diocotron
instability in a cylindrical, low-density ((),Zje<w@ non-neutral electron plasma column confined
radially by a uniform axial magnetic fiel®,e,. The analysis assumes electrostatic flute
perturbations {/9z=0) about an axisymmetric equilibrium density profhé(r), wherer = (x?
+y?)12is the radial distance from the column axis. Two classes of density profiles with inverted
population in radiug are considered. These are the followilta): a step-functiondensity profile

with uniform densityn,- A in the column interior 6r<ry , and uniform density, in an outer
annular regionr, <r<r ; and (b) a continuously-varyingdensity profile of the formng(r)
=ne(A+r2/r2)(1—r?/r2)? over the interval &sr<r,. Here,n,, r,, r, andr, are positive
constants, and the dimensionless paramétemeasures the degree of “hollowness” of the
equilibrium density profilmg(r). Detailed linear stability properties are calculated for a wide range
of system parameters, including values of the “filling factdk; radial locatiorr , of the cylindrical
conducting wall, azimuthal mode numHeretc. As a general remark, in both cases, it is found that
small increases il from the valueA =0 (corresponding to the strongest diocotron instabildsn

have a large effect on the growth rate and detailed properties of the instability. In addition, for the
step-function density profile, the instability tends to be algebraic in nature and have a large growth
rate in the unstable region of parameter space, whereas for the continuously-varying density profile,
the instability is typically much weaker and involves a narrow class of resonant particles at radius
r =r satisfying the resonance condities} — | wg(rg) =0. Here,w,=Re w is the real oscillation
frequency, andog(r)=—cEX(r)/rBy is the equilibriumE®X B,e, rotation velocity of the plasma
column. © 1998 American Institute of Physids$1070-664X98)00810-4

I. INTRODUCTION flute perturbations 4/9z=0) is thatng(r), or equivalently,
r~(alar)[r?wg(r)], be a monotonically decreasing func-
tion of radiusr. While detailed electrostatic stability proper-
ties have been calculated theoretically for a few simple
choices of density profileng(r), such as a hollow step-
function annulug;® or weak resonant versioch$of the dio-
cotron instability, there has not been a systematic analysis of
properties of the diocotron instability as a function of the
shape of the density profihag(r). Nonetheless, over the past

) decade, experimental studt&s'®of the diocotron instability,
locity, we(r) = —CE?(1)/rBo, of the plasma column. Here, and relatedpinvestigations of diocotron-like modes and v)(/)rtex

r=(x>+y? % is the radial distance from the column axis, : ) ) : e
0,5 e . o . formation and merging have become increasingly sophisti-
andE;(r) is the equilibrium radial electric field determined . .
cated. Therefore, in the present analysis, we present a sys-

self-consistently from Poisson’s equation in terms of the : . o .
o . 0 . . tematic analysis of the electrostatic eigenvalue equition
equilibrium density profileng(r) (assumed axisymmetiic

Whenever the density profile has an inverted population as geterm_me th?_dEta'led influence of profile shap_g on the dio-
function of the radial coordinate (an off-axis density maxi- cotron instability, at least for two classes of equilibrium den-

mum), the sign of sity profilesnd(r) with an inverted population in radius

The organization of this paper is the following. The as-
Jd1d , sumptions and theoretical model are discussed in Sec. I, and
ar r or [rfwe(n], detailed stability properties are calculated in Sec. Il for two

changes over the radial extent of the plasma column, and t @O'C?S of equilibrium depsny pr9f|lae(r?. These are the
ollowing: (a) a step-functiondensity profile[Eg. (7)] with

shear in the angular flow velocity can provide the free energy "
to drive the Kelvin—Helmholtz-like instability known as the uniform densityne- A=const in the column interior €r
diocotron instability Indeed, it can be shown thasafficient <r, , and uniform densityn,=const. in an outer annulur
condition for stability*~*?for small-amplitude electrostatic region r, <r<ry ; and(b) a continuously-varyinglensity

The diocotron instability, first examined theoretically
by MacFarlane and Ha¥and Levyet al,®> > and observed in
early experiments by Kyhl and Websfetand Kapetanakos
et al.® is perhaps the most ubiquitous instability in a low-
density (w§e< w?¢) non-neutral electron plasma column con-
fined radially by a uniform axial magnetic fieIBOéZ. To
briefly summarize, the diocotron instability is driven by a

sufficiently strong shear in the angua? x B,e, rotation ve-
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profile [Eq. (9)] of the form nd(r)=ng(A+r?r2)(1 149 _, w3 (1)

—r?/r2)2 over the interval &r<r,. Here,n, r, , ry and Fﬁ[r we(r)]= Oee @

rp, are positive constants, a perfectly conducting wall is lo- )

cated at radiug =r,, and the dimensionless parametr Over the years, Eq1) has been extensively analyzed for

measures the degree of “hollowness” of the equilibriumthe case of the diocotron instability in an annular electron

. X . . - . 1,35 ; : : :
density profilend(r). Detailed linear stability properties are layer;”” surface oscillations on a uniform density plasma

calculated in Sec. Ill for a wide range of system parametersSolumn;' stablel = 1 oscillation in a non-neutral plasma col-
including values of the “filling factor”A, radial locationr,, ~Umn with general density profilag(r), and the resonant

of the cylindrical conducting wall, azimuthal mode number diocotron instability > driven by weak shear in the angular
|, etc. As a general remark, in both cases, it is found tha¥elocity profile and gentle gradiertw)/ar in the density
small increases itk from the valueA =0 (corresponding to  Profile. Indeed, even a sufficient condition for stabifity™*

the strongest diocotron instabilitgan have a large effect on has been derived for general density profif¢r) that de-

the growth rate and detailed properties of the instability. Increasegor increasesmonotonically as a function of radius
addition, for the step-function density profile in Eq), the - Nonetheless, with the few exceptions noted above, there is
instability tends to be algebraic in nature and have a larg@ paucity of detailed stability results that have been obtained
growth rate in the unstable region of parameter spacdfom Eq.(1) that illustrate the sensitivity of stability proper-
whereas for the continuously-varying density profile in Eq.ties to the detailed shape of the equilibrium profilesrfr)

(9), the instability is typically much weaker and involves a and wg(r).

narrow class ofesonantparticles at radius =r satisfying ~ In the present analysis, we examir:)e the eigenvalue equa-
the resonance condition, —lwg(r)=0 in Eq. (42). Here, tion (1) for the class of density profilas;(r) which have an
w,=Re w is the real oscillation frequency. inverted population as a function of radius(i.e., profiles

As a final point, although the present analysis is re-Wwith an off-axis density maximumDepending on the “hol-
stricted to the diocotron instability for low-density non- lowness” of the density profile, the corresponding shear in
neutral plasma withw3(r) <wZ,, it should be emphasized the angular velocity profilese(r) [Eq. (2)] can provide the
that detailed stability behavior and mode oscillation proper{ree energy to drive the well-known diocotron instability. In
ties also exhibit a sensitive dependence on density profilhis regard, it is important to recognize that density profiles
Shape at conditions approaching Brillouin flow ne(r) which are monotonica”y decreaSing functions of ra-
(wge/wge_) 1) in magnetica"y_insu|ated diode geome{?}?_o dius r, will not give rise to |n5tab|l|ty Wlth7=|m(w)>0
In this case, as shown by Kaup and Thorffsthe frequency — This readily follows from Eq(1) upon multiplying byr 5§
characteristics of the magnetron mode are modified signifiand integrating fromr=0 tor=r,,. Here, it is assumed that

cantly when the density profile differs from a simple step-a perfectly conducting cylindrical wall is located at radius
function profile. r=ry, in which case the perturbed potential amplitude

6®,(r) satisfies the boundary condition

5P, (r=r,)=0. (©)]

Il. ASSUMPTIONS AND THEORETICAL MODEL ) ) _ ) _ i
Expressingw= w, +i7, and integrating the first term in Eq.

We consider here a cylindrical Iow-density)ie< w?) (1) by parts with respect to, we obtairt
non-neutral electron plasma confined radially by a uniform

axial magnetic_fieIdBo e, Equilib_rium properties are as- 0=D(wr+iy)=frwdrr( itﬂ)l 2+§|5¢I|2

sumed to be azimuthally symmetrig¢/¢ 6=0) about the col- 0 or r

umn axis and have negligible spatial variation in the axial 2

direction (@/9z=0). For low-frequency electrostatic flute _ I 1 ’9“’pe|5q) 2
perturbations of the formod(r,6,t)=3,5P,(r)exp(l 6 roce o, —lwg(r)+iy ar ]

—iwt), the eigenvalue equation can be expresséd as (4
19 9 5o —E&D _ | Jwge 5P, 1 The factors|(d/dr) 6®|% and |6®|? in Eq. (4) are mani-
ror ' o 2Tt ar [o—log(n)]’ festly real. Therefore, setting real and imaginary parts of Eq.

Here, | is the azimuthal mode numbeds is the complex (4) separately equal to zero gives

oscillation frequencyw..=€eBy,/m.C is the electron cyclo- Fy
tron frequency ando’(r)=4mng(r)e?/m, is the electron O—J drr
plasma frequency-squared, Wheng(r) is the equilibrium 0

2 |2
+r7|5<b,|2

aﬁ(b
aor 27!

electron density profile, and= (x?+y?)*? is the radial dis- | [w—loe(n)]  dwl,
tance from the axis of symmetry. In E() and related defi- - — 77 |6d) |2, (5)
- rwee [0, —lwg(r)]*+y~ ar
nitions, —e, m, andc are the electron charge, electron mass
and speed of lightin vacuq respectively, andwg(r)= and
—cE?(r)/rB0 is the equilibriumE®x Bye, angular rotation 2
velocity determined self-consistently in termsrg{r) from 1o[rw 1 I®pe
g : >tently O=y— f dr 2.2 |6®[2. (6)
the equilibrium Poisson equation, wee Jo  [or—lwg(r)]*+y° ar
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FIG. 1. Density profileng(r) plotted versus radius for the step-function
profile in Eq.(7). r—

FIG. 2. Density profileng(r) plotted versus radius for the continuously-

. . varying profile in Eq.(9). Here,A=0 is assumed.
In circumstances wherewﬁe/ar does not change sign over yingp d

the interval Gsr<r,,, the only solution to Eq(6) corre-
sponds to a zero growth rate wijh=Im w=0. By the same  ca|ly over the entire interval from=0 to r=r,. On the
token, it follows from Eq.(6) that anecessary condition for ther hand, for 82A<1/2 (the case of interest herethe
inhstability. (SOIUtiO?E Witth 7:£<w>01) is that dws/dr density profile in Eq.(9) increases monotonically from the
change sign over the intervakdr <r,. - :
T?we prgc]esent stability analysis ofWE(q.) (Sec. Ill) focuses value ned - at 3r =0 FO the n_1aX|mum Vl&,lzlue mex
=(4/27)ng(1+A)* at radiusr =r ,,=[(1—2A)/3]"7r,, and

on two classes of equilibrium profiles with inverted popula—then decreases monotonically to zéabr =r.) over the in-
tion. The first is thestep-functiordensity profile specified by y _ b

(Fig. 1 tervalr o, =r<ry. The density profile in Eq9) is illustrated
g in Fig. 2 for the case wherd =0. Finally, making use of
A-n,=const, Osr<r, Ne=27[gdrrnd(r), it is readily shown from Eq(9) that
nd(r)=1{ ne=const, r,<r<r;, 7) - (A 1
0, rp<r=r,. Ne=7pNe| 3+ 75 (10

Here, the(positive dimensionless parametdris a measure
of the electron density depression inside the annujusr
<rp , with A=1 corresponding to a flat density profile ex-
tending fromr=0 to r=ry, and A=0 corresponding to plex) eigenfrequencyw in units of the(real frequencyw,
zero electron density in the regions0 <ry, . Animportant  {o; the |=1 diocotron mode which is independent of the
physical quantity is the number of electrons per unit axialyeajled profile shape fard(r). Indeed, as first demonstrated
length  of (;[he plasma column defined  byNe | eyy? for azimuthal mode numbée=1 andgeneral den-
=2m["dr rng(r). For the equilibrium density profile in ity profile f(r), Eq. (1) supports a stable oscillatory solu-

which can be used to express in terms ofN,, A andry,.
Finally, for future reference, it will be useful in the
analysis of the eigenvalue equati@) to measure thécom-

Eq. (7) it is readily shown that tion (Im w=0) with an eigenfunction given exactly by
ro\ 2 6, _1=consXr[w—wg(r)] over the interval &<r=<r,,. En-
Ne= wrgzﬁe 1—(1—A)(—+> } (8)  forcing the boundary conditiodd,_(r=r,)=0 then gives
Mo w=wg(r=r,)=w,;, where

In Sec. lIl, it will be useful to eliminaten, in favor of N, 2ec
and examine stability properties for a fixed amount of plasma @1=g 2 Ne-
(Ng) but variable profile shape parameteksr,/r; and 0w
Fo /Ty Note from Eq.(11) that w4 is independent of the detailed
The second class of equilibrium profiles considered inprofile shape, and depends only on the total amount of
Sec. Il has continuous density variation over the radial explasma {.), the magnetic field strengtiBg) and the con-
tent of the plasma column. In particular, we consider theducting wall radius ().
continuously-varyinglensity profileng(r) specified by(Fig.

(11)

2) Ill. ANALYSIS OF EIGENVALUE EQUATION
Alas f 1 f 2 o<r<r We now make use of the eigenvalue equatipnto in-
no(r)={ ° re ra) b (9) vestigate detailed electrostatic stability properties for the
0, ry<r=r equilibrium density profiles®(r) in Egs.(7) and(9), both of
] lw-

A which have inverted profiles and are expected to exhibit in-
Here,n.A is the density on-axisr=0). ForA=1/2, itis  stability (Im »>0), at least for modest values of the “fill-
readily shown from Eq(9) thatnd(r) decreases monotoni- ing factor” A (see Figs. 1 and)2

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



3500 Phys. Plasmas, Vol. 5, No. 10, October 1998 R. C. Davidson and G. M. Felice

A. Step-function density profile ( | r\!
6P|(r)=6d_| —=|, 0=r<r,,
For the step-function density profile in Fig. 1 and Eq. i rb) <o
(7), we first evaluate the angular velocity profibg(r). Sub- c
stituting Eq.(7) into Eq. (2) readily gives 5®(r)=4 8P| (r)=Br'+ T rg <r<ry,
. FrN ety [
Awy, O$r<rg, SBM(r)= 5D, [(ry/1) (rtjr/rw)z(lr/rw) ]’
we(r)= 2\ 12 n L= )
wg 1—(1— A) , o <r<ry, rE<r=<ry. (16)

Here, to assure the continuity &f®(r) atr=r, andr
over the radial extent (8r<ry) of the plasma column. =r/  the constantd and C are related to the constants
Here,wq is an effectivediocotron frequencyefined in terms ~ 6® _= 5@, (r =r,) and 6® ,=46®,(r=r;) by the condi-
of n, by tions

1 _
. @2, 2mngec B=w[(f§)'5¢+—(fb)'5‘b—], 17

~ 20, By (13

(rb)(rb)l

W[ (rp)' 6@, +(ry)'sd_ 1. (19

Eliminating n in favor of N, and w; by means of Eqs(8)

and(11), note thatwy can be expressed directly in terms of The remammg boundary conditions at the surfaces,
w, according to andr=r_ can be derived by operatlng on the eigenvalue

equation(15) with f'b(1+5)drr - and [ o (1

1 T -, re-
3 (rw/ry)® spectively, in the Ilrrrnt( 0. . This |ves(1 )
4= (A=A (ry it )] (e specivey. ; o es
5@ —{—5@{}
In the special case where=1 (uniform density plasma col- L' rp(1+e) or rp(1-e)
umn), it is clear from Eq(12) that wg(r) = @4= const across .
the entire radial extent of the plasma column<(0<r). _ 2wg(1-4A)  5P(ry) 19
On the other hand, for€A <1, there can be a strong radial B oy o—log(ry)’ (19
shear inwg(r), particularly whenA is sufficiently small,
which leads to unstable solutions to Ef) with Im »>0. {igq)'“} _{_ 5(1)”
Substituting the step-function density profil® into the ar ! are LT 19
eigenvalue equatiofil) gives
2wy 6D\(ry)
2 == ) (20)
%;irri&pl |25q)| ry, o—log(ry)
where e—0, , and 8®|(r), 60|'(r) and 5®/"(r) are de-
2] . D(rp) ~ fined in Eq.(16). Equations(19) and(20) relate the discon-
=== wg(1—-A —(—) o(r—ry) tinuity in perturbed radial electric field at the surfaces
b =r, andr=r, to the perturbed charge density at those
2l . 8D(ry) . surfaces.
+ O on(rD) (r=rp). (15 Substituting Eq(16) into Eqgs.(19) and(20), and elimi-

nating the constant® and C in favor of the constants

. o b _ =60 (r=r,) andsd , =5P(r=ry), we obtain
Here, wq is defined in Eq(13), and use has been made of

Eq. (7) to expressand(r)/ar=ngy(1—A)&(r—ry)—Nned(r (1-Mog 1 b+ (rp/ry)’ 55.-0
—r). For the step-function density profile in E€), we w—lAoy 1=(rpr)? |7 7 1=(rgir))? "
note from the right-hand side of Poisson’s equatibd) that (21

the perturbed charge densityesn,(r) is equal to zero ex-

cept at the surfaces located etr, andr=r;, where _ 2(fp/rp)’ B 2w4

and(r)/r is singular. Equatiori15) is readily solved in the 1—(r,/r/)2 " o—log1—(1=A)(ry/r)?]

three regions: &r<r, (Region ); rp <r<r; (Region I));

andry <r<r,, (Region Ill). Denoting 6® = &®,(r=r,) LT+(rg/lry)®  1+(rplrg)?

and 6® ,=46®(r=r, ), and enforcing regularity od®,(r) + 1—(rg/ry)? + 1—(ry/Irp)? 6P, =0. (22)

atr=0, continuity of6®(r) over the interval &r=<r,, and
8®,(r=r,)=0 at the conducting wall, we readily obtainthe =~ Here, use has been made of E@2) to express
solution to Eq.(15) in the three regions. We find we(ry)=Awg and we(ry)=wq[1—(1—A)(r,/ry)?].
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Equations(21) and (22) are of the formadd_+béd, =0
andcéd_+déd . =0, wherea, b, c andd are constant
coefficients that depend an. The condition for a nontrivial
solution with 6&_#0 and 6&,#0 is given byad—bc

=0, which plays the role of a dispersion relation that deter-

mines the complex oscillation frequeney=w,+iy as a
function of wg, A, r, /1y, etc.

A simple limit in which to check Eqgs(21) and (22) is
the special case whete= 1, which corresponds to a uniform
density profile with densityﬁe extending fromr=0 to
r=r, . Equation (21) gives 6®_=(r,/r}) 6®, for
A=1, and substitution into Eq22) then gives the simple
result

o— (-1 wg=wy(riiry,)?, for A=1, (23)
Equation(23) is the expected restilfor the case of a uni-
form step-function density profile extending from=0 to
r=r, . Note from Eq.(23) thatw is purely real, correspond-
ing to a stable oscillation. Moreover, fo=1 andA=1, Eg.
(23) reduces taw=wq(r;/r,)?=w,, as expectedsee Eq.
(1414

We now return to Eqs(21) and (22) for general values
of A, r,/ry , etc. Setting the two-by-two determinant of the
coefficients of6® _ and §® , in Eqgs.(21) and(22) equal to
zero, and rearranging terms, it is readily shown that

( )2'+ (1-B)od1-(p/r5)"]
E

X{
(24)
Equation(24) can be cast into the form of a quadratic equa-

tion for w/&)d. Some straightforward algebraic manipulation
gives

i
o

a)_l(:)d
wd 1= (ry/r5)?]

w—logd1—(1-A)(ry/ri)?]

1—(ry/ry)?
1—(rglry)?

(wl @g)?—2b(wlwg)+Cc=0, (25)
where the constants andc are defined by
2b=1[1+A— (1= A)(ry /r)2]—{[1—(r{Iry)?]
—(1=A)[1—(ry/ry)?}, (26)
C=12[1— (1= A)(rg /ri)2IA—{I[ 1= (r{ 12 A

—1[1=(ry /r)? 1A= A)[1— (1= A)(ry/rg)?]

(A=A (ryIrg)? ML= (rgr)?T}. (27)
The solutions to Eq(25) are given by
2 b (b0 28
OF
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FIG. 3. Plots of(a) normalized real frequendy e w/ w,; and(b) normalized
growth ratelm w/wq versusrb’/rg for the unstablduppe) branch in Eq.
(28). Numerical results are presented for azimuthal mode numbers

=1,2,..,10, assuming a fixed conducting wall radius wigtr,,=0.5, and
filling factor A=0 [see Eq(7)].

the unstable branch im w=+(c—b?)w4>0, and the
real frequency isRe w=bwy. Of coursem » andRe
can be expressed in units of the 1 frequencyw; by means
of Eqg. (14). For azimuthal mode numbér1, and general
values ofA, r, /ry andr,/r,,, it is readily shown that the
two solutions in Eq.(28) reduce to stable oscillations with
frequencyw= w4(r,/ry)? (upper sigh and w=w, (lower

Evidently, the necessary and sufficient condition for instabil-sigr), wherew has been eliminated in favor af; by means

ity is
c>h2. (29)

Whenever the inequality in EqR9) is satisfied, the solutions
to Eqg. (28) occur in conjugate pairs, and the growth rate of

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to Al
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Typical numerical results for the unstaljlgoped branch
in Eq. (28) are illustrated in Figs. 3-5. Her®e w/w, and
Im w/w, are plotted versus, /r, for fixed values of the
conducting wall location r( /r,,=0.5) and values of filling
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b b FIG. 5. Plots of(a) normalized real frequendy e w/ w4 and(b) normalized

growth ratelm w/w, versusry /g for the unstablguppe) branch in Eg.
(28). Numerical results are presented for azimuthal mode numbers
=1,2,..,10, assuming fixed conducting wall radius witf/r,,=0.5, and
filling factor A=0.5[see Eq(7)].

FIG. 4. Plots of(a) normalized real frequendye w/w, and(b) normalized
growth ratelm w/w, versusry/ry for the unstableguppe) branch in Eq.
(28). Numerical results are presented for azimuthal mode numbers
=1,2,..,10, assuming a fixed conducting wall radius wigt{r,,=0.5, and
filling factor A=0.1[see Eq.(7)].

whereA=0.1. Comparing Figs.(#) and 3b), several points

factor A corresponding ta =0 (Fig. 3, A=0.1(Fig. 49 and are noteworthy. First, foA=0.1, thel =2 mode isnot un-
A=0.5 (Fig. 5. The results in Figs. 3-5 are presented forstable. Second, the maximum growth rates are reduced in
azimuthal mode numbertk=1,2,..,10. ForA=0, as ex- Fig. 4(b) relative to Fig. 8b). Finally, the bandwidth struc-
pected from previous analyst3jt is evident from Fig. 80)  ture in Fig. 4b) differs from that in Fig. 8), with each
that as the layer thickness is decreaéiadreasing values of mode stabilizing (m w=0) for r, /r, exceeding a certain
ry /Ty ), thel=2 mode is the first to go unstable, then the critical value less than unity. For example, the3 mode in
=3 mode, the =4, etc. Furthermore, the maximum growth Fig. 4(b) is unstable only in the range 0.47, /r, <0.88,
rate is larger for larger values, and occurs in the limit of a and no longer extends to valuesrgf/r, approaching unity
very thin annulus i, /r; —1). as in Fig. 3b). The stabilizing influence of introducing

Introducing even asmall population of electrons in the plasma in the interior region9r <r is even more strongly
interior region G=r<r, can have a significant influence on evident in Fig. 5, wher&ke w/w,; andIim o/w, are plotted
stability properties. This is evident from Fig. 4, where versusr,/r, for the case wherd =0.5.
Re w/w, andlm w/w, are plotted versus, /r, for the case Detailed stability properties are readily calculated from
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FIG. 7. Plots of(a) normalized real frequendy e w/w, and(b) normalized
FIG. 6. Plots of(a) normalized real frequende w/w; and(b) normalized  growth ratelm w/w, versus filling factorA for the unstabléuppe) branch
growth ratelm o/, versus filling factorA for the unstabléuppe) branch  in Eq. (28). Numerical results are presented for azimuthal mode numibers
in Eq. (28). Numerical results are presented for azimuthal mode numbers =1 2 .. 10, and fixed geometric factorg/r=0.5 andr;/r,,=0.7 [see
=1,2,..,10, and fixed geometric factorg/ry =0.5 andr,/r,=0.5[see  Eq.(7)].
Eq. (7).

mum growth rate is a rapidly decreasing functionlofor
Eq. (28) as a function of the filling factoA for fixed values azimuthal mode numbels=3. Third, comparing Figs. (6)
of the geometric factors, /r, andr /r,,. Typical numeri- and qb), it is clear for each value of that the maximum
cal results are presented in Figs. 6 and 7, wHResw/w;,  growth rate is reduced as the conducting wall is brought into
andIlm o/w, are plotted versua for azimuthal mode num- closer proximity to the outer surfacg of the plasma. Here,
bersl=1,2,..,10, andfixed value ofr,/r; =0.5. The only keep in mind thatr,/r,=0.5 in Fig. 6, whereas/r,
difference between the two cases is the location of the con=0.7 in Fig. 7.
ducting wall, withr /r,,=0.5 in Fig. 6, and, /r,,=0.7, in Comparing the relative magnitudes of the2 and|
Fig. 7. The strong dependence of detailed stability behavior=3 growth rates in Figs.(6) and 1b), it is evident that the
on A is evident from Figs. 6 and 7. First, at fixed values ofl =2 mode exhibits a special sensitivity to the location of the
ro/rp andr,/r,, but varyingA, the modes arésolated conducting wall. Indeed, careful examination of E¢(&6)—
from one anotherexcept for a modest overlap of the 2 (28) shows that as the conducting wall is removed to infinity
and =3 modes over a relatively narrow range &f For  (r,/r,—0), the growth rate of thé=2 mode reducesx-
example, in Fig. @), whenA=0.5, only thel=4 mode is actly to Im =0 for arbitrary values ofA andr,/r; . On
unstable, etc. Second, it is clear from Figblthat the maxi-  the other hand, at fixed values afandr,/r. , the higher
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FIG. 8. Stability—instability contour plots d&?=¢ obtained from Eqs(26) ~ FIG. 9. Stability—instability contour plots di?=¢ obtained from Eqs(26)
and(27) in the parameter spade, /r,,, ry, /r,,) for azimuthal mode num-  and(27) in the parameter spacg; /I, , r; /r,,) for azimuthal mode number
bersl =2,3,4, and filling factorA =0. =2, and filling factorsA=0.1, 0.2, 0.3 and 0.6.

mode numberk=3 continue to exhibit instability as the con- ~'p) When A#0, leading to regions of stability lfr w

- + ;
ducting wall is removed to infinity witn; /r,,—0, at leastin —0) &t both smaller and larger values f/r,, . (Itis the
certain very narrow regions of the parameter Spacéeglonsmsmethe elongated loops in Fig. 9 that correspond
(Arglr) to instability with Im »>0.) Furthermore, from Fig. 9, the
It is evident from Figs. 3—7 that detailed stability behav- €@ Of €5 /T, Iy /Ty) parameter space corresponding to in-

ior exhibits a sensitive dependence on the dimensionless pat@Pility (Im «=0) becomes smaller ansjf smaller asis
rameters, ry /r; andr;/r,, for the choice of step-function ncréased, and shifts to larger values rgf/r,,. For azi-

. S . Sy muthal mode numbdr=3, it is evident from Fig. 10 that the
density profile in Eq(7). Moreover, the inequalitg>b< in

. - , . . stability—instability contour also detaches from the 45-
Eqg. (29 is a necessary and sufficient condition for mStab'I'degree line wheh 0, although the shape and orientation of

ity. Indeed the ineql_JaIity:sz can be used to generate con- \he nstable region is more complex than for the2 case
tour plots in two-dimensional subspaces of the parametefy,own in Fig. 9.

Space (o /Tw.r5 /7w, A) that separate regions of instability In concluding Sec. Il A, we summarize briefly proper-
(c>b* and Im »>0) from regions of stable oscillations ties of the (complex eigenfunction solution fo®,(r) in
(b?>c and Im w=0). Typical numerical results are illus- Eqg.(16). Here, the amplitude facto®b _= 6®,(r=r,) and
trated in Figs. 8-10, where stability—instability contours 5® ,=45®(r=r.) are related by Eq$21) and(22), where
are plotted in the parameter space, {r,,,r./ry). Be- the complex oscillation frequenay=w,+ivy is determined
causer, =r, , only the regions above the 45-degree linesself-consistently from the dispersion relation in E24), or

in Figs. 8—10 are physically allowed. Figure 8 correspondsquivalently, Eq(25). Because of the*' dependences, we
to the case\ =0 first considered by Levyand the contours note from Eq.(16) that 5®,(r) is generally peake(strongly
are plotted for azimuthal mode numbérs2, 3 and 4. Figure so for largel-values at the inner and outer surfaces of the
8 is, of course, consistent with the stability behavior pre-step-function density profile at=r, andr=r;. , respec-
sented in Fig. 3. For example, at fixed valuergfir,,, as tively. Typical numerical results are illustrated in Fig. 11,
ro/rp =(rp/rw)(ry/ry) is increased, it follows from Fig. 8 whereRe 6®,(r) andim 6®,(r) are plotted versus radius
that thel =2 mode is the first to go unstable, then the3  for azimuthal mode numbdr= 3, filling factor A=0.1 and
mode, then =4, etc., which should be compared with the geometric factors, /r, =0.7 andr;/r,=0.5. This corre-
results in Fig. 8). As is evident from Figs. 9 and 10, and as sponds(approximately to the maximum-growth-rate param-
would be expected from the quantitative stability results pre-eters for the unstable=3 mode in Fig. 4. Without loss of
sented in Figs. 4-7, the stability—instability contours un-generality, we pick the phase of the eigenfunct&dap (r) for
dergo a dramatic change in topology &ss increased from mode numberl =3 so thaté® _ is purely real, and plot
the A=0 case shown in Fig. 8. This is illustrated for azi- Re 6®(r) andIm 6®,(r), normalized in units oféd _,
muthal mode numbdr=2 in Fig. 9 and fod =3 in Fig. 10, versus radiusr in Fig. 11. Becausew=w,+iy=6.7w,
for several values of the filling factak=0.1, 0.2, 0.3 and +il.4w; has nonzero real and imaginary parts determined
0.6. Comparing thé=2 contours in Figs. 8 and 9, it is clear from Eq. (25), it follows from Egs.(21) and (22) that 5P ..
that thel =2 contour detaches from the 45-degree ling (  =(2.57+i0.074)5® _ is also complex. As expected from
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FIG. 10. Stability—instability —contour plots of b2=c obtained from Egs. (26) and (27) in the parameter space
(rg/ry, rolr,,) for azimuthal mode numbeér=3, and filling factors@ A=0.1, (b) A=0.2, (c) A=0.3 and(d) A=0.6.

Eq. (16), the eigenfunctiod®,(r), plotted versus radiusin +Im[ryo_(ry)]+Im[ry o, (ry)]=0, which correspond to
Fig. 11, develops both real and imaginary components in theero net perturbed charge densit;e.,efgwdrr oni(r)=0, as
intervalr, <r=r,,. expected.

As a final point, the right-hand side of E(L5) is equal
to 4mesn(r), wheredn(r) is the perturbed density of elec- B. Continuously-varying density profile
trons. For the step-function equilibrium density profile in Eq.
(7), it is clear from Eq(15) that the perturbed charge density
is equal to zero everywhere except at the surfaces, and
r=r, , where there are largsingulaj perturbations in sur-
rg(l+ €)
rp(1-¢)

As a second example, we consider the continuously-
varying density profile in Eq(9) and Fig. 2. Herend(r)
varies smoothly over the interval<tr <r,, and has an in-
verted population for sufficiently small values af<1/2.
dr Substituting Eq(9) into Eq.(2) and integrating with respect
to r gives the angular velocity profile

face charge densityg_(r,)=(27r}) Y—-e)f

+
Iy, (1+e)

Xrén(r) anda+(rg)E(Zwr;)*l(—e)frg(lie)drr5n|(r), ) 2 4 6
where e—0, . Without present algebraic details, which  @e(r)=wg A+ E_A) 2320t 75
make use of Eqs(21), (22) and (24), it can be shown that b b b
Reryo_(ry)]+Reryo.(ry)]1=0 and Im [ryo_(ry)] o<r<ry, (30)
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FIG. 11. A plot of the complex eigenfunctiof® (r) versus radiugs ob- /
tained from Eq.(16) for azimuthal mode number=3, filling factor A r rb
=0.1 and geometric factons,/rp =0.7 andrg/r,,=0.5. Here, we have
takens® _ to be real, and made use of E¢81), (22) and(25) to determine ~ FIG. 12. Plots versus/ry, of the normalized profiles fofa) mring(r)/Ne
the real and imaginary Components(i‘bJr X and (b) wE(r)/w1 calculated from EqS(Q), (10), (30) and (31) for rb/I’W

=0.5 and several values of the dimensionless parametarresponding to

A=0, 0.03, 0.08 and 0.2.

where = w3J20.=2mNeedBy. Here,wq can be elimi-

nated in favor olN, and thel =1 diocotron frequencw, by

means of Eqs(10) and(11). This gives lytical solutions to the eigenvalue equati¢l) are not trac-

r2/p2 table as was the case for the step-function density profile
;,dz""—bwl_ (31 treated in Sec. Il A. In the subsequent analysis of &g,
(A/3+1/12) we make use of the numerical code developed by Vithice

Plots of the normalized profiles fomrgng(r)/Ne and solving eigenvalue equations in planar geometry. In this re-

wg(r)/w, versusr/ry, calculated from Eq9) and(30), re-  gard, it is convenient to introduce the stretched radial vari-

spectively, are shown in Fig. 12 for several values of thedbleX defined by

dimensionless parametdrto illustrate the sensitive depen- "

dence of profile shape ak. Here, use has been made of Egs.  X= In(—

(10) and(31) to eliminaten, andwg in favor of N, andw . o
For ng(r) specified by Eq(9) and sufficiently smallA, so thatr=0 corresponds tX= —o, r=r corresponds to

the shear in the angular velocity profilg-(r) defined in Eg. X=0 andr=r,, corresponds taX=X,=In(r,,/r,). Some

(30) is sufficiently large to drive the diocotron instability. straightforward algebra that makes use of Hds. (32) and

For the equilibrium profiles in Eq49) and (30), exact ana- rd/dr =3/ dX gives the transformed eigenvalue equation

, or r =exp(X), (32
b
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J
W+F|(X,w) 5<D|(X):0 (33)
Here,F|(X,w) is defined by
| 9 w2 (X
Fi(X,w)=—12+ pelX) (34)

o—lwg(X) IX wee
where wﬁe(x) and wg(X) are defined in Eqs9) and (30)

with r/rp=expX). The transformed eigenvalue equation
(33 is solved in the two regions corresponding to the fol-

lowing: the plasma interiofRegion |, where &r<r,, or
equivalently,—<X<0), and the vacuum regiofRegion
I, where ry<r=<r,, or equivalently GIX<X,

=In(r,,/rp)]- Requiring thatéd, be regular at the origin and
vanish at the conducting wall gives the boundary condition

SD|(X——®)=0,

i 5P|
R I

and
od/'(X=X,,)=0.

(39

:0,

X——

(36)

In addition, for the continuously-varying density profile in

Eq. (9), it is readily shown from Eq933) and(34) that both

R. C. Davidson and G. M. Felice 3507

In the present analysis, E0) is integrated numerically in
Region | (—eo<X<0) subject to the boundary conditions in
Eq. (35) at X— —, and the solution f06<I>,'(X) is matched
atX=0 to the solution fos®|'(X) in Region Il given in Eq.
(39 by imposing the boundary conditions in E@7). For
specified values of the dimensionless parametertotal
amount of plasmad,;) and location of the conducting wall
(rp/ry), this procedure gives numerical solutions for the
eigenfunctions®,(X) and(complex eigenfrequencyw.

In the subsequent analysis, it should be recognized that
there are significant differences between tmmtinuously-
varying density profile in Eq(9) and thestep-functiorden-
sity profile in Eq.(7). First, the continuously-varying density

grofile in Eq.(9) is very sensitive to small increases in the

imensionless parametéy. This is evident from Fig. 12,
whereA is varied fromA =0 to A=0.2 at fixed values of
andr,/r,,. Second, thesteepdensity gradient at the inner
surfacer=r, in Eq. (7) (see also Fig. Jltends to produce a
strong version of the diocotron instability with sizeable
growth ratelm » measured in units ok, (see Figs. 3-){

By contrast, the density gradients in E§) and Fig. 12 are
gentle and we find in the subsequent analysis that the growth
rates of the diocotron instability are correspondingly small
with Im w<<w;. Indeed, denoting the real oscillation fre-

6®((X) and doP,/9X are continuous across the surface ofquency byRe w=w,, it is found that a small class oéso-

the plasma column & =0 (corresponding to =ry), i.e.,

S®|(X=0)=56d'(X=0),

9 (37
— 6D

oxX !

= igq;“
ax oo

X=0 X=0

In the vacuum region, Where»f,e(X)=0, Eq. (33) re-
duces to
(92

e

SO"(X)=0, O0<X<X,, (38

where X,,=In(r,,/rp). Integrating Eq.(38), and enforcing
6®'(X=X,)=0 gives the solution

exf — I (X—Xy) ] —expg 1 (X—Xy)]
[exp(IXy) —exp(—IXy)]
0<X=Xy-

oD/ (X)= 6Dy,

(39

Here, the constari®,= 6®,(X=0) is the perturbed poten-

tial amplitude at the surface of the plasma columx+(Q0).

Interior to the plasma, where)ge(x) and wg(X) are
specified by Egs(9) and (30), the eigenvalue equatioi33)
reduces to
2

J
2 HFI(X,0) [8|(X)=0, —==X<O0. (40

Here,F|(X,w) is defined by
Fl(X,w)=—1%+ Z&d%{[A—FexﬁZX)][l—exp(ZX)]z}

X{w—loglA+(%—A)exp(2X)

— 3(2—A)exp4X)+ exp(6X)]} L. (41)

nant particled®!! located at radius =r determined from
the resonance condition

w;—lwg(rg)=0 (42

play a controlling role in determining properties of the dio-
cotron instability for the continuously-varying density profile
in Eq. (9). By contrast, for the case of the step-function den-
sity profile in Eq.(7), the diocotron instability calculated
from the dispersion relatio25), which is a quadratic equa-
tion for w, tends to bealgebraicin nature.

Typical results obtained by numerically integrating the
eigenvalue equatiof0) and matching boundary conditions
at X=0 as described earlier in this section are presented in
Figs. 13 and 14 for the case wherg/r,,=0.5. Shown in
Fig. 13 are plots versuA of the normalized real oscillation
frequencyRe w/w; and growth ratelm w/w, of the un-
stable diocotron modes with azimuthal mode numblers
=2,3,4. Itis evident from Fig. 13 that the=3 mode has the
largest growth rate, and that thee1 mode is stable with
Im w=0 andRe w= w4, as expected. Moreover, from Fig.
13(b), the instability growth rate is strongest wh&r=0, i.e.,
when the density depression in Fig. 12 is largest, and the
instability growth rates decrease to negligibly small levels as
A is increased to modest values£0.08). Similar behavior
is evident in Fig. 14 wher®e w/w, andlmw/w, are plot-
ted versus the azimuthal mode numbéor 1=1,2,..,7, and
values of A corresponding tAA=0, 0.01 and 0.03. With
regard to the linear dependenceR¢ w on mode number
evident from the numerical results in Fig. (84 a remark-
ably good fit is provided by the empirical formula
Re w=(5l-4)w,. Finally, from Fig. 14b), thel=3 mode
exhibits the strongest instability, and the maximum growth
rate decreases rapidly as is increased to small nonzero
values.
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FIG. 13. Plots versuA of (a) the normalized real frequend¥e /w4, and l

(b) normalized growth ratém w/w, obtained numerically for the choice of

continuously-varying density profile in Eq9). Here, r,/r,=0.5 is as-  FIG. 14. Plots versus azimuthal mode numberf (a) the normalized real
sumed, and results are presented for mode numbets2,3,4. frequencyRe w/w,, and(b) the normalized growth ratem /e, obtained
numerically for the choice of a continuously-varying density profile in Eq.
(9). Here,r, /r,=0.5 is assumed, and results are presentead\fe, 0.01
and 0.03.
Typical numerical results obtained for the radial depen-

dence of the complex eigenfunction are illustrated in Figs. 15

and 16 for the choice of system parametérs=0 and €xamination of Eg.(1) for small r then shows that
r,/r,=0.5 (see Fig. 14 for the corresponding values of[r ~*(a/ar)(ra/ar)—12/r?]im 6® (r) is proportional to
Re w andlm ). The most naturalbut perhaps least infor- [~ 'dw3d/dr], 1o )R€ 8P (r). Therefore, as evident
mative) representation of the eigenfunction is in terms of thefrom Fig. 15,Im 6®(r) vanishes untit increases tog, the
perturbed electrostatic potential, which is shown in Fig. 15resonant radius that solves =l wg(rg).

for azimuthal mode numbdr=2. As expectedo®,(r) has As shown in Fig. 16, for mode numbdrs 2, 3 and 4, it
both real and imaginary parts in Fig. 15, and the eigenfuncis much more informative to plot the real and imaginary
tion has a broad radial structure with maximum magnitudeparts of the eigenfunction for the perturbed density(r)
where the plasma density is large. Because the eigenvalue(4me) [r~(a/ar)(raé®,/ar)—(1%/r?) 6d,]. Evi-
equation(1) is homogeneous in the complex eigenfunctiondently, for each value df=2, 3 and 4, bottRe én(r) and
6®(r), it should be noted tha#®,(r) can be scaled by a Im én|(r) are very strongly peaked in a narrow radial region
factor exp{«), wherea is a constant phase factor. In Fig. 15, of the positive density gradient. Indeed, from the numerical
when integrating Eq(1) [or equivalently, Eq(33)], we have solutions forRe w=w,, it is found that the precise radial
chosen the phase so that the eigenfunctiod®(r) is locationr =r 4 of the localized density perturbation in Fig. 16
purely real for small values af near the origin. A careful is determined from the resonance conditien—Iwg(rs)
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FIG. 15. Plots ofRe 6®,(r) andIm &®,(r) versusr/ry, obtained numeri- 1.0

cally for A=0 andl=2 for the choice of a continuously-varying density
profile in Eq.(9). Here,r, /r,,=0.5 is assumed.

0.5
=0 in Eq. (42), wherewg(r) is the angular velocity profile ]
defined in Eq(30). (Here,A=0 andr,/r,,=0.5 for the plots
in Fig. 16) S

Note also from Fig. 16 that dsincreases froni=2 to < 0.0 I
| =3 to =4, the resonant radius=r, moves progressively  “°
outwards towards the density maximumraty,/r,=(1/3)%? i
=0.577 (for A=0). This is further illustrated in Fig. 17 ~05 I
where the values af, calculated numerically from Eq§30) T
and (42) and the numerical solutions fas, are plotted for
mode number$=1,2,..,10. In Fig. 17, the values of, to

_1.0-..,| ) 1

the right of the density maximum but to the left gf corre- e
spond to purely oscillatory modes witm »=0 and mode 0.0 0.2 04 06 08 1.0
numberd =6,...,10. For values afs in Fig. 17 to the left of r/,—b

the density maximum, the=1 mode, of course, is a stable

oscillation with Im =0 and Re w=w;, Whereas thd

=2,3,.., modes are unstable, with largest growth ratelfor 1.04

=3, and a negligibly small growth rate foe=7 (see Fig.
14). Finally, it should also be pointed out in Fig. 16 that the :
real and imaginary parts of the eigenfunctién,(r) satisfy 0.97
charge conservatiorf,gbdrr5n|(r)=O, as expected.

For the continuously-varying density profile specified by -~ [
Eq. (9), it is evident from Figs. 13, 14 and 16, that the dio- ~< (o
cotron instability is both weaklfh w<|Re w|) and reso- S —
nant. Therefore, to better understand semi-quantitative fea-
tures of the instability, it is useful to summarize briefly a -
formulation of theresonantdiocotron instability *** devel- —0.57
oped originally by Briggset al® We denotew,=Re w and
vy=Im w, and Taylor expand the effective dispersion rela- -
tion D(w,+iy)=0 in Eq.(4) for | y/w,|<1. This gives —-1.01

D(w +iy)=D(w)+i Di(wr)‘f"}’aD(;((uwr) +---=0, 0.0 0.2 O‘A“r/rOﬁ 08 1.0
(43) °

— ) = ; FIG. 16. Plots ofRe én|(r) andIm én,(r) versusr/ry, obtained numeri-
WhTre%r(wr) . Re Do) _andD,(wr) Im Dl(wr). Slettlng cally for A=0 andr,/r,,=0.5 for azimuthal mode numbets) | =2, (b)
rea ar_' imaginary parts in E¢43) separately equal to zero I =3 and(c) | =4. The continuously-varying density profitd(r) in Eq.(9)
then gives is also plotted versus/r,, in the figures.
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FIG. 17. Plots forA=0 andr/r,,=0.5 of the resonant radiug calculated
from w, —lwg(rg)=0 for azimuthal mode numbets=1,2,..,10, andval-
ues ofrg located within the plasma @r¢<r,). Here, the density profile
ng(r) and angular velocity profileg(r) are specified by Eq$9) and(30),
andw,=Re w is determined numerically from the eigenvalue equation.

D/(w,)=0,
(44)
~ Di(w)
v D (w ) dw,”
To evaluateD,(w,) andD;(w,), we make use of
li !
im ———————
y—0, o~ lwg(r)+iy
= P i I 45
—m—wé[wr— we(r)] (45

in Eq. (4), whereP denotes Cauchy principal value. Substi-

tuting Eq.(45) into Eq.(4) and taking the limity— 0, then
gives

Dr(wr)=forwdrr[

| Pdwjdor

rwee o, —lwg(r)

2 |2
+r—2|5q)||2

&5(1)
ar O

|5d>||2). (46)

and
(e, )
Dyl = o | dr SR o oen)]] o0

w

Wee

(47)

Jwhe(r)1r| 8D |?
|dwg(r)/or| _

where the resonant radiug solvesw, =l wg(rs). Substitut-
ing Egs.(46) and (47) into Eq. (44) then give$

R. C. Davidson and G. M. Felice

fw d 2 2
O=Dr(wr)=f drri|—6®,| + —|6®|?
0 or r
| Pdwhddr
I o 2
a)cew—le(l’)|5®l| ’ (48)
and
7 [dwi(r)]or| 5P|
YTT T Jowe(n)lor] _
rw  PdwiJor -t
X[ = | dr——"—] 8|2 49
f ( r_le)Zl ||} ( )

Equation(48) plays the role of a dispersion relatfofor
the real oscillation frequencyw,, whereas Eq(49) deter-
mines the growth rate of the resonant diocotron instability.
Of course neither Eq48) nor Eq.(49) provide information
on the detailed functional form of the complex eigenfunction
o®,(r). Nonetheless, important qualitative features of the
instability are evident. In particular, for the continuously-
varying density profile in Eq(9), the factor[---]" ! in Eq.
(49) is positive, so that the positive density gradient factor
[ﬁwgelﬁr]_rs drives the resonant diocotron instability for
values of the resonant radiug to the left of the density
maximum.

IV. CONCLUSIONS

In this paper, we have made use of the electrostatic ei-
genvalue equatiofil) to determine the influence of density
profile shape on the diocotron instability in a low-density
(whe<w?) non-neutral plasma column confined by a uni-
form axial magnetic fieldB,e,. The assumptions and theo-
retical model were described in Sec. Il, and in Sec. Ill de-
tailed stability results were presented for two classes of
equilibrium density profilemg(r) with inverted population
as a function of radius. The first(Sec. Il A) corresponds to
the step-function density profile in Ed7) (see Fig. 1,
whereas the secondSec. Il B) corresponds to the
continuously-varying density profile in E¢9) (see Figs. 2
and 12. In both cases, the dimensionless paramAteon-
trols the degree of “hollowness” of the equilibrium density
profile, with A=0 corresponding tm2(r=0)=0. Detailed
stability properties were calculated in Sec. Il for a wide
range of system parameters, including valuesAopfradial
locationr,, of the conducting wall, azimuthal mode number
I, etc. As a general remark, in both cases, it was shown that
small increases in the “filling factor”A from the valueA
=0 can have a large effect on the growth rate and detailed
properties of the instability. In addition, for the step-function
density profile in Eq(7), which has a steep density gradient
at the inner layer surface €r ), the instability tends to be
algebraic in nature and have a large growth rate in the un-
stable region of parameter spdsee Figs. 3—)7 By contrast,
for the continuously-varying density profile in E¢P), the
instability is typically much weake(see Figs. 13 and 14nd
involves a narrow class of resonant particles at radias,
satisfying the resonance condition in E42). To help better
understand the qualitative features of the weak resonant dio-
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