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Three-dimensional kinetic stability theorem for high-intensity charged
particle beams
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Global conservation constraints obtained from the nonlinear Vlasov–Maxwell equations are used to
derive a three-dimensional kinetic stability theorem for an intense non-neutral ion beam~or charge
bunch! propagating in thezdirection with average axial velocityvb5const and characteristic kinetic
energy (gb21)mc2 in the laboratory frame. Here,gb5(12vb

2/c2)21/2 is the relativistic mass
factor, and a perfectly conducting cylindrical wall is located at radiusr 5r w , where r 5(x2

1y2)1/2 is the radial distance from the beam axis. The particle motion in the beam frame~‘‘primed’’
coordinates! is assumed to be nonrelativistic, and the beam is assumed to have sufficiently high
directed axial velocity thatvb@uv8u. Space-charge effects and transverse electromagnetic effects are
incorporated into the analysis in a fully self-consistent manner. The nonlinear Vlasov–Maxwell
equations are Lorentz-transformed to the beam frame, and the applied focusing potential is assumed
to have the~time-stationary! form csf8 (x8)5(gbm/2)@vb'

2 (x821y82)1vbz
2 z82#, wherevb' and

vbz are constant focusing frequencies. It is shown that a sufficient condition for linear and nonlinear
stability for perturbations with arbitrary polarization about a beam equilibrium distribution
f eq(x8,p8) is that f eq be a monotonically decreasing function of the single-particle energy, i.e.,
] f eq(H8)/]H8<0. Here, H85p82/2m1csf8 (x8)1feq(x8), where feq(x8) is the space-charge
potential. © 1998 American Institute of Physics.@S1070-664X~98!01909-0#
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I. INTRODUCTION

Periodic focusing accelerators1–3 and transport system
have a wide range of applications ranging from basic sc
tific research, to applications4–6 such as heavy ion fusion
tritium production, spallation neutron sources, and nucl
waste treatment. Of particular importance, at the high be
currents and charge densities of practical interest, are
effects of the intense self fields produced by the beam sp
charge and current on determining detailed equilibrium, s
bility, and transport properties. While considerable progr
can be made in understanding the self-consistent evolutio
the beam distribution functionf b(x,p,t) and the electric and
magnetic fieldsE(x,t) and B(x,t) in kinetic analyses1,7–9

based on the nonlinear Vlasov–Maxwell equations, the
fects of finite geometry, space-charge effects, and be
emittance generally make predictions of detailed stability
havior difficult. It is therefore important to develop a bas
understanding of the class of distribution functionsf b that
are stable and can propagate quiescently over large d
tances, even in parameter regimes where space-charg
fects are intense and play a controlling role in the nonlin
beam dynamics and transport properties.

With this in mind, the present analysis makes use
global ~spatially averaged! conservation constraints10 satis-
fied by the nonlinear Vlasov–Maxwell equations to det
mine a sufficient condition for stability of an intense no
neutral ion beam~or charge bunch! propagating in thez
direction with average axial velocityvb5const along the
axis of a perfectly conducting cylindrical pipe with wall ra
dius r 5(x21y2)1/25r w . The theoretical approach used
3451070-664X/98/5(9)/3459/10/$15.00
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the present analysis is motivated by the early work
Newcomb,11 Gardner,12 and Fowler,13 carried out for pertur-
bations about a spatially uniform, electrically neutral, nonr
ativistic plasma, and by the stability theorem developed
Davidson and Krall10,14 for a one-component non-neutra
plasma column confined radially by a uniform axial ma
netic field. The present analysis represents a major gene
zation of the stability theorem developed in Ref. 10, whi
was carried out for small-amplitude electrostatic pertur
tions about a nonrelativistic non-neutral plasma colu
which is infinite in axial extent. In particular, using glob
conservation constraints, the instability theorem develo
here is fully nonlinear and electromagnetic, and applies
three-dimensional perturbations with arbitrary amplitude a
polarization about a finite-length charge bunch propaga
with relativistic axial velocityvbêz .

To briefly summarize, the present analysis considers
intense charged-particle beam consisting of positiv
charged ions with charge1Zie and rest massm propagating
in the positivez direction with average axialvb and charac-
teristic kinetic energy (gb21)mc2 in the laboratory frame,
wheregb5(12vb

2/c2)21/2 is the relativistic mass factor. A
perfectly conducting cylindrical wall is located at radiusr
5r w , wherer 5(x21y2)1/2 is the radial distance from the
beam axis. The particle motion in the beam frame~the
‘‘primed’’ frame! is assumed to be nonrelativistic withuv8u
!c, and the beam is assumed to have sufficiently high
rected axial velocity thatuv8u!vb . The beam current and
charge density are allowed to be sufficiently intense that
characteristic electrostatic energyZief of a beam particle is
9 © 1998 American Institute of Physics
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3460 Phys. Plasmas, Vol. 5, No. 9, September 1998 Ronald C. Davidson
comparable in magnitude with the characteristic kinetic
ergy of a particle in the beam frame. Therefore, collect
processes associated with space-charge effects and
consistent changes in the beam current can play a contro
role in the nonlinear evolution of the distribution of bea
particlesf b(x,p,t) in the six-dimensional phase space~x,p!.
Finally, it is assumed that transverse focusing of the be
particles is provided by the average effects of applied m
netic or electric focusing fields.

In more detail, the organization of this article is as fo
lows. In Sec. II, the theoretical model and assumptions
discussed, and the nonlinear Vlasov–Maxwell equations
the applied focusing force are Lorentz-transformed to
beam frame~the primed frame! where the particle motion is
assumed to be nonrelativistic. We then specialize in Sec
to the case where the applied focusing potential in the be
frame ~assumed stationary! is of the form csf8 (x8)
5(gbm/2)@vb'

2 (x821y82)1vbz
2 z82#, where vb' and vbz

are constant focusing frequencies, and derive global~spa-
tially averaged! conservation constraints corresponding
conservation of particle plus field energy, and generali
entropy. Introducing a generalized Helmholtz free ene
F8(t8)5const, the global conservation constraints are u
in Sec. IV to derive a three-dimensional kinetic stabil
theorem for perturbations with arbitrary polarization. It
shown that asufficient condition for linear and nonlinea
stability for perturbations about a beam equilibrium distrib
tion function f eq(x8,p8) is that f eq be a monotonically de-
creasing function of the single-particle energyH8 @Eq. ~33!#,

]

]H8
f eq~H8!<0.

Here,H85p82/2m1csf8 (x8)1feq(x8) is defined in Eq.~30!,
wherefeq(x8) is the equilibrium space-charge potential. F
completeness, in Sec. V we show that the thermal equ
rium distribution f eq5g(H8)[b8 exp(2H8/Tb8), where b8
andTb8 are positive constants, is the unique choice of dis
bution function thatminimizesthe classical Helmholtz free
energy,FH8 (t8)5const. The thermal equilibrium propertie
of a charge bunch are summarized for the two limiting
gimes corresponding to a low-emittance, high-intensity be
with strong space-charge effects, and a low-intensity, hi
emittance beam with weak space-charge fields.

Finally, it is very important to recognize the wide rang
of applicability of the three-dimensional stability theore
developed in the present analysis. Most notably, it applie
perturbations about beam equilibriaf eq(H8) with arbitrary
polarization and initial amplitude; to continuous beams t
are radially confined and infinite in axial extent (vb'Þ0,
vbz50!; to charge bunches that are radially and axially co
fined (vb'Þ0 and vbzÞ0); and to beams with arbitrar
space-charge intensity consistent with the applied focus
potential csf8 (x8) providing confinement of the beam pa
ticles.

II. THEORETICAL MODEL AND ASSUMPTIONS

The present analysis considers an intense char
particle beam consisting of positively charged ions w
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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charge1Zie and rest massm propagating in the positivez
direction with average axialvb and characteristic kinetic en
ergy (gb21)mc2 in the laboratory frame, wheregb5(1
2vb

2/c2)21/2 is the relativistic mass factor. A perfectly con
ducting cylindrical wall is located at radiusr 5r w , wherer
5(x21y2)1/2 is the radial distance from the beam axis. It
assumed thatn/gb!1, wheren5NbZi

2e2/mc2 is Budker’s
parameter,1 c is the speed of light in vacuo, Nb

5*dx dy nb is the number of beam particles per unit ax
length, andnb(x,y,z,t)5*d3p fb(x,p,t) is the particle den-
sity. The particle motion in the beam frame~the primed
frame! is assumed to be nonrelativistic withuv8u!c, and the
beam is assumed to have sufficiently high directed axial
locity that

uv8u!vb . ~1!

Although n/gb!1 is satisfied in the regimes of practic
interest, the beam current and charge density are allowe
be sufficiently intense that the characteristic electrostatic
ergy Zief of a beam particle is comparable in magnitu
with the characteristic kinetic energy of a particle in t
beam frame. Therefore, collective processes associated
space-charge effects1,7–9 and self-consistent changes in th
beam current can play a controlling role in the nonline
evolution of the distribution of beam particlesf b(x,p,t) in
the six-dimensional phase space~x,p!. Finally, it is assumed
that transverse focusing of the beam particles is provided
applied magnetic or electric focusing fields. For example,
a periodic-focusing quadrupole magnetic field, assumin
thin beam with characteristic beam radiusr b small in com-
parison with the axial periodS of the lattice, the applied
quadrupole fieldBqf

0 (x) in the laboratory frame can be ap
proximated by1

Bqf
0 ~x!5Bq8~z!~yêx1xêy!. ~2!

Here, (x,y) is the transverse displacement from the be
axis, and Bq8(z)[@]Bx /]y# (x,y)5(0,0)5@]By /]x# (x,y)5(0,0) ,
whereBq8(z1S)5Bq8(z). On the other hand, a model widel
used in thesmooth-focusingapproximation corresponds to
transverse focusing electric fieldEsf

0 (x) of the form15

Esf
0 ~x!52

1

Zie
mvb'

2 ~xêx1yêy!, ~3!

where vb'5const is an effective betatron frequency f
transverse oscillations. The focusing electric field in Eq.~3!
would be produced by a~hypothetical! uniformly distributed,
fixed charge background with charge densityr
52mvb'

2 /2pZie5const. Equation~3! is often used to
model the average focusing properties of an alternating
gradient lattice of magnetic or electric quadrupoles.

The Vlasov–Maxwell equations1 for the evolution of the
distribution function f b(x,p,t) and self-consistent electri
and magnetic fieldsE(x,t) and B(x,t) provide a complete
nonlinear description of the collective interaction of th
beam particles with the applied and self-generated elec
and magnetic fields. In this regard, analysis of the Vlaso
Maxwell equations is greatly simplified by transforming to
frame of reference moving at the average axial velocityvb
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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5const of the beam particles, particularly because of
assumptions that the particle motion is nonrelativistic in
beam frame and thatuv8u!vb . The Lorentz transformation
relating the primed variables (x8,p8,t8) in the beam frame to
the unprimed variables (x,p,t) in the laboratory frame is
given by16

x85x, y85y, z85gb~z2vbt !,

px85px , py85py , pz85gb~pz2gmvb!, ~4!

t85gb~ t2vbz/c2!.

Here, the particle momentum and velocity are related bp
5gmv and p85g8mv8, where the kinematic mass facto
g5(11p2/m2c2)1/2 and g85(11p82/m2c2)1/2 transform
according to g85gb(g2vbpz /mc2), where gb5(1
2vb

2/c2)21/2. In the beam frame, the nonlinear Vlasov equ
tion for the distribution functionf b(x8,p8,t8) can be ex-
pressed as

] f b

]t8
1v8•

] f b

]x8
1FZieS E81

1

c
v83B8D1Ffoc8 G• ] f b

]p8
50.

~5!

Here,E8(x8,t8) andB8(x8,t8) are the self-generated electr
and magnetic fields in the beam frame, andFfoc8 5Zie(Efoc8
1c21v83Bfoc8 ) is the applied focusing force on a particle
the beam frame. Moreover, because the particle motio
assumed to be nonrelativistic in the beam frame, we appr
mate g8511p82/2mc2 and p85mv8 in the subsequen
analysis of Eq.~5!.

Maxwell’s equations in the beam frame relateE8(x8,t8)
and B8(x8,t8) self-consistently to the distribution functio
f b(x8,p8,t8). In this regard, it is convenient to introduce th
scalar and vector potentials,f8(x8,t8) and A8(x8,t8), and
express

E85EL81ET852
]

]x8
f82

1

c

]

]t8
A8,

B85
]

]x8
3A8, ~6!

where EL852¹8f8 is the longitudinal electric field,ET8
52c21]A8/]t8 is the transverse electric field, and the Co
lomb gauge condition with¹8•A850 is assumed. The Max
well equations¹8•B850 and ¹83E852c21]B8/]t8 are
automatically satisfied by Eq.~6!, and Poisson’s equatio
and the¹83B8 Maxwell equation are readily expressed
the beam frame as

¹82f8524pZieE d3p8 f b , ~7!

¹82A852
4p

c
ZieE d3p8v8 f b1

1

c2

]2A8

]t82 1
1

c
¹8

]f8

]t8
,

~8!
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where¹82[]2/]x821]2/]y821]2/]z82. Here, the electro-
static potentialf8(x8,t8) is determined self-consistently i
terms of the beam charge densityrb8(x8,t8)
5Zie*d3p8 f b(x8,p8,t8) by means of Eq.~7!, andA8(x8,t8)
is determined in terms of the beam current dens
Jb8(x8,t8)5Zie*d3p8v8 f b(x8,p8,t8) by means of Eq.~8!.
With regard to the boundary conditions at the perfectly co
ducting cylindrical wall, we impose the requirement that t
tangential electric field and the normal magnetic field van
at radius r 5r w . That is, @Ez# r 5r w

5@Eu# r 5r w
5@Br # r 5r w

50, whereBr , Eu andEz denote field components in cylin
drical polar coordinates in the laboratory frame. In the be
frame, the corresponding field components areEz85Ez , Br8
5gb(Br1vbEu /c), and Eu85gb(Eu1vbBr /c), so that the
corresponding boundary conditions at the conducting wal
the beam frame are also given by@Ez8# r 85r w

5@Eu8# r 85r w

5@Br8# r 85r w
50. In terms of the scalar and vector potentia

f8(x8,t8) andA8(x8,t8), these boundary conditions can b
expressed in the equivalent form

f8~r 85r w ,u8,z8,t8!5Az8~r 85r w ,u8,z8,t8!

5Au8~r 85r w ,u8,z8,t8!50. ~9!

In Eq. ~9!, without loss of generality, the constant values
f8, Az8 andAu8 at r 85r w have been set equal to zero.

As a general remark, the components of poten
(f8,A8) in the beam frame are related to the components
potential~f, A! in the laboratory frame by16

f85gb~f2vbAz /c!,

Ax85Ax , Ay85Ay , ~10!

Az85gb~Az2vbf/c!.

Of course the inverse transformations of Eqs.~4! and ~10!
are obtained by interchanging primed and unprimed v
ables, and making the replacementvb→2vb . For example,
in the special case wheref8Þ0 and A8.0 in the beam
frame, it follows thatAz.(vb /c)f, A'.0, andf.gbf8 in
the laboratory frame.

We now turn to an evaluation of the applied focusi
forceFfoc8 5Zie(Efoc8 1c21v83Bfoc8 ) on a particle in the beam
frame. Here, the applied electric and magnetic fields tra
form according to16 @E8# foc5@Ezêz1gb(Exêx1Eyêy)
1gbc21vbêz3B# foc and @B8# foc5@Bzêz1gb(Bxêx1Byêy)
2gbc21vbêz3E# foc . For thesmooth-focusingelectric field
Esf

0 (x) defined in Eq. ~3!, some straightforward algebr
shows that the corresponding applied focusing force in
beam frame is

@Ffoc8 #sf52gbmvb'
2 F S 11

vz8vb

c2 D ~x8êx81y8êy8!

2
vb

c2 ~x8vx81y8vy8!êz8G . ~11!

To the level of accuracy of Eq.~1!, becauseuv8u!c is as-
sumed, we approximate Eq.~11! by
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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@Ffoc8 #sf52gbmvb'
2 ~x8êx81y8êy8!. ~12!

In Eqs. ~11! and ~12!, (êx8 ,êy8 ,êz8) are unit Cartesian vector
in the beam frame. Similarly, some straightforward alge
carried out for the periodicquadrupole focusingmagnetic
field Bqf

0 (x) defined in Eq.~2! gives for the applied focusing
force in the beam frame

@Ffoc8 #qf5ZiegbBq8@gb~z81vbt8!#

3S 1

c
~vb1vz8!~2x8êx81y8êy8!

1
1

c
~x8vx82y8vy8!êz8D . ~13!

Here, Bz8(z) has been evaluated atz5gb(z81vbt8). Simi-
larly, for uv8u!vb , the quadrupole focusing force in Eq.~13!
can be approximated by

@Ffoc8 #qf52
1

c
ZiegbvbBq8@gb~z81vbt8!#~x8êx82y8êy8!.

~14!

BecauseBq8(z1S)5Bq8(z) is a periodic function ofz, oscil-
lating about zero average value, we note from Eq.~14! that
the corresponding quadrupole focusing force@Ffoc8 #qf in the
beam frame is an oscillatory function of the argume
gb(z81vbt8)(5z).

III. GLOBAL CONSERVATION CONSTRAINTS

In the remainder of this article, we specialize to t
smooth-focusing model for the focusing force given by E
~12! in the beam frame. Here, we note from Eq.~12! that
@Ffoc8 #sf52¹8csf8 (x8,y8), where the potentialcsf8 (x8,y8) is
defined by

csf8 ~x8,y8!5 1
2gbmvb'

2 ~x821y82!. ~15!

The static potentialcsf8 (x8,y8) in Eq. ~15! provides trans-
verse confinement of the beam particles in thex82y8 plane,
but not in thez8 direction. That is, the charged particle bea
is infinite and continuous in thez8 direction for the choice of
confining potential in Eq.~15!. A simple generalization of
Eq. ~15! to the case of a finite-length charge bunch is to a
to Eq. ~15! a stationary (]/]t850) contribution in the beam
frame that provides axial confinement of the ions, e.g.
term proportional togbmvbz

2 z82 /2, wherevbz5const is an
effective betatron frequency for the axial motion. This giv
the confining potential

csf8 ~x8,y8,z8!5 1
2gbmvb'

2 ~x821y82!1 1
2gbmvbz

2 z82.
~16!

Although Eq. ~16! is stationary (]/]t850) in the beam
frame, when expressed in laboratory-frame variables we n
from Eq. ~4! that z825gb

2(z2vbt)2. Therefore, thez8 con-
tribution in Eq.~16! corresponds to a potential well that tra
els in thez direction at the average axial velocityvb of the
beam particles. In this regard, it is convenient to view E
~16! as modeling the average potential of an rf bucket t
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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provides a stationary confining potential centered atz850 in
the beam frame. The relative axial and transverse dimens
of the charge bunch confined by Eq.~16! will of course
depend on the ratiovbz /vb' as well as the density of par
ticles. In addition, asvbz→0, Eq. ~16! reduces to Eq.~15!,
as expected.

We now make use of the nonlinear Vlasov–Maxw
equations~5!–~8! with Ffoc8 52¹8csf8 (x8,y8,z8) specified by
Eq. ~16! to derive certain global~spatially averaged! conser-
vation constraints10 in the beam frame that are useful in dem
onstrating a nonlinear stability theorem. First, it is conv
nient to rewrite Eq.~5! in the form of a continuity equation
in the six-dimensional phase space (x8,p8), i.e.,

] f b

]t8
1

]

]x8
•~v8 f b!

1
]

]p8
•H FZieS E81

1

c
v83B8D2¹8csf8 G f bJ 50. ~17!

Here, p85mv8, and B85¹83A8 and E85EL81ET8
52¹8f82c21]A8/]t8 are determined self-consistently i
terms of f b(x8,p8,t8) from Maxwell’s equations~7! and ~8!
with gauge condition¹8•A850 and boundary conditions
given in Eq.~9!. For present purposes, it is assumed that
phase-space densityf b(x8,p8,t8) is equal to zero beyond
some radiusr 08 , i.e., f b50 for r 85(x821y82)1/2.r 08,r w .
For the case of a charge bunch with finite axial length, i
whenvbzÞ0 in Eq. ~16!, it is also assumed thatf b50 for
uz8u.L08/2 whereL08 is larger than the axial bunch lengt
2zb8 .

One useful conservation relation10 is the conservation of
generalized entropy defined by SG8 (t8)
5(1/L8)*d3x8*d3p8G( f b). HereG( f b) is a smooth differ-
entiable function off b with G( f b→0)50. Substituting into
Eq. ~17! and integrating by parts with respect tox8 and p8
readily gives

d

dt8
SG8 5

1

L8
E d3x8E d3p8

]G

] f b

] f b

]t8

52
1

L8
E d3x8E d3p8S ]

]x8
• ~v8G!

1
]

]p8
•H FZieS E81

1

c
v83B8D2¹8csf8 GGJ D50,

~18!

where it is assumed thatf b50 asup8u→`. In Eq. ~18!, the
domain of spatial integration is defined by*d3x8/L8¯

5*2L8/2
L8/2 dz8/L8*0

r wdr8 r 8*0
2pdu8¯ . Here, two cases are

distinguished. Case~a! corresponds to an infinite-lengt
beam wherecsf8 (x8,y8) is specified by Eq.~15!, and L8 is
viewed as a fundamental periodicity length for Fourier d
composition of thez8 dependence of the distribution func
tion and field components. Case~b! corresponds to a finite
length charge bunch, wherecsf8 (x8,y8,z8) is specified by Eq.
~16! with vbzÞ0, andL8 is chosen to be sufficiently larg
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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that z85L8/2 andz852L8/2 are in the far-field regions o
the charge bunch, whereE8 andB8 are negligibly small. In
either case, Eq.~18! gives the conservation relation

SG8 ~ t8!5
1

L8
E d3x8E d3p8G~ f b!5const, ~19!

no matter how complicated the nonlinear evolution off b , E8
and B8. For the particular choices corresponding toG( f b)
5 f b and G( f b)52 f b ln fb , Eq. ~19! corresponds to the
conservation of particle number and classical entropy,
spectively.

A second global conservation relation of considera
practical importance is the conservation of the total inter
energyU8(t8) carried by the particles and the fields.10 Mak-
ing use of the nonlinear Vlasov–Maxwell equations~17! and
~6!–~8!, some straightforward algebraic manipulation give

d

dt8
U85

d

dt8

1

L8
E d3x8

3F E d3p8S p82

2m
1csf8 D f b1

E821B82

8p G
52

1

L8
E d3x8¹8•S c

4p
E83B8D50. ~20!

The Poyntang-flux contribution on the right-hand side of E
~20! vanishes when the divergence term is converted t
surface integral. This is because the tangential compon
of the electric fieldE8 vanish at the perfectly conductin
wall at r 85r w by virtue of the boundary conditions in Eq
~9!, and because of the condition that thez8 component of
E83B8 is a periodic function ofz8 @case~a! above, for a
continuous beam# or vanishes atz856L8/2 in the far-field
region @case~b! above, for a finite-length charge bunch#. In
both cases, Eq.~20! reduces to the global conservation co
straint for the total particle plus field energy, i.e.,

U8~ t8!5
1

L8
E d3x8F E d3p8S p82

2m
1csf8 D f b1

E821B82

8p G
5const. ~21!
ry

e,
in

n’
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Note that there are two contributions to the particle energy
Eq. ~21!. The term proportional to (2m)21p82f b is associ-
ated with the particle kinetic energy in the beam fram
whereas the term proportional tocsf8 f b is the potential energy
associated with the particle motion in the confining poten
csf8 (x8,y8,z8) of the applied focusing field.

Other global conservation constraints can also be
rived from the nonlinear Vlasov–Maxwell equations~17!
and ~6!–~8! subject to the boundary conditions in Eq.~9! at
r 85r w . For example, it can be shown that the total parti
plus field momentum10 is conserved, i.e.,

P8~ t8!5
1

L8
E d3x8S E d3p8p8 f b1

E83B8

4pc D5const.

~22!

Here, the term proportional top8 f b represents the mechan
cal momentum carried by the particles, whereas the te
proportional to (4pc)21E83B8 is the momentum carried by
the fields.

IV. THREE-DIMENSIONAL KINETIC STABILITY
THEOREM

A three-dimensional kinetic stability theorem can be d
rived by introducing a generalized Helmholtz free ener
defined byF(t8)5U8(t8)1SG8 (t8)5const, which is a linear
combination of the entropy and energy conservation c
straints in Eqs.~19! and ~21!. This gives

F8~ t8!5
1

L8
E d3x8H uE8u21uB8u2

8p

1E d3p8F S p82

2m
1csf8 D f b1G~ f b!G J

5const. ~23!

Making use ofE85EL81ET8 , where EL852¹8f8 and ET8
52c21]A8/]t8, it is convenient to rewrite the electric fiel
energy term in Eq.~23! as
1

L8
E d3x8

uE8u2

8p
5

1

L8
E d3x8S u¹8f8u2

8p
12¹8f8•

1

c

]A8

]t8
1

uET8 u2

8p D
5

1

L8
E d3x8F u¹8f8u2

8p
1

2

c
¹8•S f8

]A8

]t8 D1
uET8 u2

8p G5
1

L8
E d3x8S u¹8f8u2

8p
1

uET8 u2

8p D . ~24!
Here, use has been made of¹8•A850, and the divergence
term in Eq.~24! integrates to zero by virtue of the bounda
condition @f8# r 85r w

50 in Eq. ~9! and the axial boundary

conditions in cases~a! and~b! described above. Furthermor
it is useful to rewrite the electrostatic energy contribution
Eq. ~24! in an alternate form that makes use of Poisso
equation~7! and the boundary condition onf8 in Eq. ~9!.
s

From u¹8f8u25¹8•(f8¹8f8)2f8¹82f85¹8•(f8¹8f8)
14pZief8*d3p8 f b , it is readily shown that

1

L8
E d3x8

u¹8f8u2

8p
5

1

L8
E d3x8

1

2
Zief8E d3p8 f b .

~25!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



rm

on

tio
to
-
o-

ce

e

a

ng

c

s

ib-

l

ib-

3464 Phys. Plasmas, Vol. 5, No. 9, September 1998 Ronald C. Davidson
Therefore, substituting Eqs.~24! and ~25! into Eq. ~23!, it
follows thatF8(t8) can be expressed in the equivalent fo

F8~ t8!5
1

L8
E d3x8H uET8 u21uB8u2

8p

1E d3p8F S p82

2m
1csf8 1

1

2
Zief8D f b1G~ f b!G J

5const, ~26!

whereET852c21]A8/]t8 and B85¹83A8. Equation~26!
is a powerful constraint condition on the nonlinear evoluti
of the system. Note that the representation in Eq.~26! natu-
rally separates the electromagnetic field energy contribu
with transversepolarization, i.e., the terms proportional
(8p)21*d3x8$uETu21uB8u2%, from the field energy contribu
tion in the longitudinalspace-charge field, i.e., the term pr
portional to*d3x8(Zief8/2)*d3p8 f b .

We now consider~arbitrary-amplitude! perturbations
about a time-stationary (]/]t850) equilibrium distribution
f eq(x8,p8) in the beam frame and corresponding spa
charge potentialfeq8 (x8) determined self-consistently from
¹82feq8 524pZie*d3p8 f eq. It is further assumed that th
equilibrium distributionf eq(x8,p8) carries zero current in the
beam frame, i.e.,*d3p8v8 f eq50, so that Aeq8 50 and
Beq8 505ETeq

8 . Denoting perturbed quantities byd f b(x8,

p8,t8)5 f b(x8,p8,t8)2 f eq(x8,p8), df8(x8,t8)5f8(x8,t8)
2feq8 (x8), dET8(x8,t)5ET8(x8,t8) and dB8(x8,t8)5B8(x8,
t8), it follows from Eq.~26! thatDF8(t8)[F8(t8)2Feq8 can
be expressed as

DF8~ t8!5
1

L8
E d3x8H udET8 u21udB8u2

8p

1E d3p8F S p82

2m
1csf8 D d f b

1
1

2
Zie~df8d f b1feq8 d f b1 f eqdf8!

1G~ f eq1d f b!2G~ f eq!G J 5const. ~27!

Here, df8(x8,t8) and feq8 (x8) are related tod f b(x8,p8,t8)
and f eq(x8,p8) by

¹82df8524pZieE d3p8d f b ,
~28!

¹82feq8 524pZieE d3p8 f eq,

and csf8 (x8,y8,z8) is defined in Eq.~16! for an axially
confined charge bunch, and in Eq.~15! for a continuous
beam. Making use of Eq.~28!, some straightforward algebr
shows that (Zie/2L8)*d3x8df8*d3p8 f eq

5(Zie/2L8)*d3x8feq8 *d3p8d f b , and that
(Zie/2L8)*d3x8df8*d3p8d f b 5 (1/L8)*d3x8u¹8df8u2/8p,
where use is made of Eq.~9!. Substituting into Eq.~27! then
gives the equivalent constraint condition
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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DF8~ t8!5
1

L8
E d3x8H udET8 u21udB8u21u¹8df8u2

8p

1E d3p8F S p82

2m
1csf8 1Ziefeq8 D d f b

1G~ f eq1d f b!2G~ f eq!G J 5const. ~29!

The coefficient ofd f b(x8,p8,t8) in Eq. ~29! will be recog-
nized as the Hamiltonian

H85
1

2m
p821csf8 ~x8,y8,z8!1feq8 ~x8,y8,z8! ~30!

for single-particle motion in the combined applied focusi
potentialcsf8 and equilibrium space-charge potentialfeq8 .

A linear ~small-signal! stability theorem10 can be ob-
tained from Eq. ~29! as follows. We Taylor expand
G( f eq1d f b)5G( f eq)1G8( f eq)d f b1G9( f eq)(d f b)2/21¯ ,
whereG8( f eq)5]G( f eq)/] f eq, and retain terms to quadrati
order in perturbed quantities. This gives

@DF8#~2!5
1

L8
E d3x8F udET8 u21udB8u21u¹8dfu2

8p

1E d3p8S @H81G8~ f eq!#~d f b!

1
1

2
G9~ f eq!~d f b!21¯ D G5const. ~31!

We now chooseG( f eq), which has been arbitrary to thi
point, to satisfy]G( f eq)/] f eq52H8 so that the term linear
in d f b vanishes exactly in Eq.~31!. This condition also gives
G9( f eq)52]H8/] f eq, so that Eq.~31! becomes~correct to
second order in perturbed quantities!

@DF8#~2!5
1

L8
E d3x8S udEt8u

21udB8u21u¹8dfu2

8p

1
1

2 E d3p8
~d f b!2

@2] f eq/]H8#
D 5const. ~32!

When f eq(x8,p8) depends on (x8,p8) only through the
HamiltonianH8, and whenf eq(H8) is a monotonically de-
creasing function ofH8 with

]

]H8
f eq~H8!<0, ~33!

it follows that the quantity@DF8# (2) defined in Eq.~32! is a
sum of positive-definite terms. Therefore, because@DF8# (2)

5const, no one of the terms in Eq.~32! can grow without
bound, and we conclude that Eq.~33! is asufficient condition
for linear stability of the equilibrium (f eq,feq) to small-
amplitude perturbationsd f b , df8, dET8 , anddB8.

The sufficient condition for stability in Eq.~33! is a very
powerful result, applicable to a wide range of beam equil
ria f eq(H8) that are spatially confined in the transverse (x8
2y8) and axial (z8) directions, and valid for longitudina
and transverse electromagnetic perturbationsdf8,dET8 ,dB8
with arbitrary polarization. One example of a stable equil
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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rium is the thermal equilibrium distributionf eq5g(H8)
[b8 exp(2H8/Tb8), whereb8 andTb8 are positive constants

The exact global constraint condition~29! can be used to
show that Eq.~33! is also a sufficient condition for nonlinea
stability of the equilibrium to perturbations with arbitrar
amplitude. Proof of thisnonlinear stability theoremmakes
two successive applications of the mean-value theorem
proceeds as follows. The functional form ofG( f b) in Eq.
~29! is quite general, subject only to the requirements t
G( f b→0)50, that the integral (1/L8)*d3x8*d3p8G( f b)
converge, and thatG( f b) be smooth and differentiable. I
the subsequent proof of the nonlinear stability theorem,
exploit this generality and further assume thatG( f b) is a
monotonically decreasing function off b and has positive
concavity, i.e.,

]

] f b
G~ f b!<0,

~34!

]2

] f b
2 G~ f b!>0,

over the entire range of values of the distribution functi
f b>0 accessible by the nonlinear Vlasov–Maxwell equ
tions. Such a possible functional form forG( f b) is illustrated
schematically in Fig. 1. Two successive applications of
mean-value theorem allows us to express the differe
G( f eq1d f b)2G( f eq) occurring in Eq.~29! in the form

G~ f eq1d f b!2G~ f eq!

5
]G

] f b
U

f eq1d f b1

•d f b

5S ]G

] f b
U

f eq

1
]2G

] f b
2 U

f eq1d f b2

d f b1D d f b . ~35!

Here, for positive perturbationd f b(x8,p8,t8)>0, the quanti-
ties d f b1 and d f b2 lie in the intervals 0<d f b2<d f b1

<d f b , whereas for negative perturbationd f b<0, the quan-
tities d f b1 and d f b2 lie in the intervalsd f b<d f b1<d f b2

<0. In either case, the productd f b1d f b satisfiesd f b1d f b

>0. Substituting Eq.~35! into Eq. ~29! gives ~exactly!

FIG. 1. Schematic of a possible functional form forG( f b) that satisfies the
inequalities in Eq.~34!.
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DF8~ t8!5
1

L8
E d3x8H udET8 u21udB8u21u¹8df8u2

8p

1E d3p8F S H81
]G

] f b
U

f eq

D d f b

1S ]2G

] f b
2 U

f eq1d f b2

D ~d f b1d f b!G J 5const. ~36!

As before, we eliminate the term linear ind f b in Eq. ~36! by
choosing @]G/] f b# f eq

52H8, which also implies that

@]2G/] f b
2# f eq

52]H8/] f eq. Equation~36! then reduces to

DF8~ t8!5
1

L8
E d3x8H udET8 u21udB8u21u¹8df8u2

8p

1E d3p8S ]2G

] f b
2 U

f eq1d f b2

D ~d f b1d f b!J 5const.

~37!

Because of the assumption]2G/] f b
2>0 in Eq. ~34!, and be-

caused f b1d f b>0 follows by construction from the mean
value theorem, we conclude that the right-hand side of
~37! is a sum of positive-definite terms, no one of which c
grow without bound. Therefore, because@]2G/] f b

2# f eq

52]H8/] f eq>0, by assumption, we conclude th
] f eq(H8)/]H8<0 is a sufficient condition for nonlinear sta
bility.

V. THERMAL EQUILIBRIUM—A STATE OF MINIMUM
HELMHOLTZ FREE ENERGY

There is clearly a wide range of choices of distributi
functions f eq(H8) for which ] f eq/]H8<0 and the equilib-
rium is therefore stable. As noted earlier, one such distri
tion is the thermal equilibrium distributionf eq5g(H8)
[b8 exp(2H8/Tb8), whereb8 andTb8 are positive constants
Thermal equilibrium properties of nonneutral plasmas ha
been widely studied for a cylindrical plasma column co
fined radially by a uniform axial magnetic field,1,14,17and for
a non-neutral plasma confined radially and axially in
Malmberg–Penning trap.18,19 For completeness, before sum
marizing thermal equilibrium properties of an intense no
neutral charge bunch20 in the present application, we prese
a short proof that demonstrates that the thermal equilibr
distribution g(H8)5b8 exp(2H8/Tb8) is that unique choice
of distribution function thatminimizesthe classical Helm-
holtz free energy FH8 (t8)5U8(t8)2Tb8S8(t8)2mb8N8(t8)
5const.13 Here,U(t8) is the internal energy defined in Eq
~21!, S852(1/L8)*d3x8d3p8 f b ln fb is the classical en-
tropy, N85(1/L8)*d3x8d3p8 f b is the number of particles
per unit axial length, andmb85Tb8(11 ln b8)5const is the
chemical potential. This corresponds to choosing the entr
function to be G( f b)5Tb8 f b ln(fb /b8)2Tb8fb in Eq. ~26!,
which gives
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FH8 ~ t8!5
1

L8
E d3x8H uET8 u21uB8u2

8p

1E d3p8F S p82

2m
1csf8 1

1

2
Zief8D f b

1Tb8 f b ln~ f b /b8!2Tb8 f bG J 5const. ~38!

Equation ~38! is an exactly conserved quantity no matt
how complicated the nonlinear evolution off b(x8,p8,t8),
ET8(x8,t8), B8(x8,t8) andf8(x,t8) according to the Vlasov–
Maxwell equations~7!, ~8! and ~17!.

We now pose the question: what is the choice of dis
bution functionf b5g that minimizes the Helmholtz free en
ergy FH8 defined in Eq.~38!. That is, what is the choice o
distribution function for which

@dFH8 # f b5g50,
~39!

$d@dFH8 #% f b5g>0,

whered~¯! denotes variation with respect tof b . Taking the
first variation of Eq.~38! gives

dFH8 5
1

L8
E d3x8H ET8•dET81B8•dB8

4p

1E d3p8F S p82

2m
1csf8 1Zief8D

1Tb8 ln~ f b /b8!Gd f bJ 50. ~40!

Here, use has been made of*d3x8d3p8 1
2Zied(f8 f b)

5 *d3x8d3p8(Zie/2)(f8d f b1 f bdf8) 5 *d3x8d3p8f8d f b .
@See also discussion following Eqs.~27! and ~28!.# Setting
the coefficient ofd f b equal to zero in Eq.~40! gives directly

f b5g~H8![b8 exp~2H8/Tb8!, ~41!

where H85p82/2m1csf8 1Ziefg8 is the single-particle
Hamiltonian, and the electrostatic potentialfg8 is determined
self-consistently from Poisson’s equation

¹82fg8524pZieE d3p8g~H8!. ~42!

Because the distribution functiong(H8) carries zero curren
in the beam frame, i.e.,*d3p8v8g(H8)50, it follows from

FIG. 2. The thermal equilibrium distribution functionf b5g(H8)
[b8 exp(2H8/Tb8) minimizes the classical Helmholtz free energyFH8 de-
fined in Eq.~38!.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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Maxwell’s equations~7! and ~8! that @A8#g50 and @ET8#g

505@B8#g . Therefore, the first two terms on the right-han
side of Eq.~40! also vanish whenf b5g(H8). Taking the
second variation of Eq.~38!, and evaluating forf b5g, it is
readily shown that

$d@dFH8 #% f b5g5
1

L8
E d3x8S udET8 u21udB8u21u¹8df8u2

4p

1Tb8E d3p8
~d f b!2

g D>0, ~43!

where Tb8.0 is assumed. We therefore conclude that n
only is the thermal equilibrium distribution defined in E
~41! nonlinearly stable~Sec. IV!, it is the unique choice of
distribution function thatminimizesthe classical Helmholtz
free energyFH8 @Eqs. ~39!, ~40! and ~43! and Fig. 2#. Con-
servation of the classical Helmholtz free energy,FH8 (t8)
5const, also provides a very powerful constraint conditi
that can be used to estimate nonlinear bounds on the uns
field energyDEF8 (t8) that can develop from initial~unstable!
distribution functionsf b(x8,p8,t850). This has proved to be
a useful technique in applications to uniform neut
plasmas13,21 and to nonrelativistic nonneutral plasmas.22 It’s
application to intense nonneutral beams will be the subjec
a future investigation.

We now return to a brief examination of Eqs.~41! and
~42!. Assuming axisymmetric space-charge poten
fg8(r 8,z8), wherer 85(x821y82)1/2, the thermal equilibrium
distribution in Eq.~41! can also be expressed in beam-fram
variables as

g~H8!5
n̂b8 exp~Zief̂g8/Tb8!

~2pmTb8!3/2

3expF2
1

Tb8
S p82

2m
1Ziefg8~r 8,z8!

1
1

2
gbmvb'

2 r 821
1

2
gbmvbz

2 z82D G . ~44!

Here, n̂b8 and f̂g8 are constants identified with the values
the space-charge potential and particle density, respectiv
at the center of the charge bunch, i.e.,n̂b8[ng8(r 850, z8
50) and f̂g8[fg8(r 850, z850). Evaluating the particle
densityng8(r 8,z8)5*d3p8g(H8) from Eq. ~44! gives

ng8~r 8,z8!5n̂b8 expS 2
Zie

Tb8
@fg8~r 8,z8!2f̂g8#

2
gbm

2Tb8
~vb'

2 r 821vbz
2 z82! D . ~45!

The equilibrium space-charge potentialfg8(r 8,z8) occurring
in the exponent in Eq.~45! must of course be determine
self-consistently from Poisson’s equation~42!, which be-
comes
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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S 1

r 8

]

]r 8
r 8

]

]r 8
1

]2

]z82Dfg8~r 8,z8!

524pZien̂b8 expS 2
Zie

Tb8
@fg8~r 8,z8!2f̂g8#

2
gbm

2Tb8
~vb'

2 r 821vbz
2 z82! D . ~46!

The ~nonlinear! Poisson equation~46! can be solved numeri
cally for fg8(r 8,z8) subject to the boundary conditio
fg8(r 85r w ,z8)50 at the conducting wall@Eq. ~9!#. The de-
tailed solution to Eq.~46! of course depends on the therm
emittance~proportional toTb8!, proximity of the conducting
wall at r 85r w , and the relative values ofvb'

2 , vbz
2 and

v̂pb8
254pn̂b8Zi

2e2/m. Here,v̂pb8
2 is the nonrelativistic plasma

frequency-squared in the beam frame at (r 8,z8)5(0,0),
which is a measure of the strength of~defocusing! space-
charge effects.

Detailed numerical solutions to Eq.~46! will not be pre-
sented here. Rather, for purposes of illustration, we cons
the simple limiting case of very low thermal emittance (Tb8
→0), and assume that the conducting wall is far remov
from the charge bunch (r w@r b8). In this case, the beam den
sity is approximately uniform withng8(r 8,z8).n̂b85const in-
side a spheroidal region defined by 0<r 82/r b8

21z82/zb8
2

,1, and equal to zero forr 82/r b8
21z82/zb8

2.1. Inside the
spheroid, it follows from Eq. ~45! for Tb8→0 that
fg8(r 8,z8)2f̂g8 is given approximately by

Zie~fg82f̂g8!52 1
2gbm~vb'

2 r 821vbz
2 z82! ~47!

for r 82/r b8
21z82/zb8

2,1. Substituting Eq.~47! into Eq. ~46!
and evaluating inside the spheroid then gives the conditi

1

2gb
v̂pb8

25vb'
2 1

1

2
vbz

2 , ~48!

which relatesv̂pb8
2, vb'

2 andvbz
2 . For specified focusing fre

quenciesvb' andvbz , Eq. ~48! should be viewed as dete
mining the limiting space-charge density (v̂pb8

2) that can be
confined in the limitTb8→0. Equation~47! should be com-
pared with the electrostatic potential calculated from Po
son’s equation inside an isolated, uniformly charged sph
oid with uniform charge densityZien̂b8 in the region
r 82/r b8

21z82/zb
2,1. The corresponding potential inside th

spheroid is found to be1,16

Zie~feq8 2f̂eq8 !52 1
4mv̂pb8

2~ar 821bz82!, ~49!

wherea1b/251, and the values of the constantsa and b
depend onr b8/zb8 and whether or not the spheroid iselongated
(zb8.r b8) or oblate (zb8,r b8). For example, for an elongate
spheroid withzb8.r b8 , the constantsa and b are defined
by1,16
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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a5
1

~12r b8
2/zb8

2!
2

r b8
2/zb8

2

2~12r b8
2/zb8

2!3/2

3 lnU11~12r b8
2/zb8

2!1/2

12~12r b8
2/zb8

2!1/2U,
~50!

1

2
b52

r b8
2/zb8

2

~12r b8
2/zb8

2!
1

r b8
2/zb8

2

2~12r b8
2/zb8

2!3/2

3 lnU11~12r b8
2/zb8

2!1/2

12~12r b8
2/zb8

2!1/2U,
wherea1b/251. Finally, comparing the coefficients ofr 82

andz82 in Eqs.~47! and ~49! gives

a5
2gbvb'

2

v̂pb8
2 5

2vb'
2

2vb'
2 1vbz

2 ,

~51!
1

2
b5

gbvbz
2

v̂pb8
2 5

vbz
2

2vb'
2 1vbz

2 ,

where use has been made of Eq.~48!. For weak axial focus-
ing force with vbz

2 !vb'
2 , it follows from Eq. ~51! that b

.vbz
2 /vb'

2 !1 and a.12vbz
2 /2vb'

2 . In this case, it fol-
lows from Eq.~50! that the charge bunch is highly elongate
with zb8@r b8 . On the other hand, forvbz

2 5vb'
2 5v̂pb8

2/3gb ,
Eqs.~50! and~51! give a5b52/3 andzb85r b8 corresponding
to a spherical charge bunch. For an oblate spheroid (zb8
,r b8), alternate expressions1 for a andb to those in Eq.~50!
must be used.

The previous analysis summarizes thermal equilibri
properties for a very low-emittance, space-charge-domina
charge bunch. Analysis of Eqs.~41! and~42! also simplifies
for a high-emittance, low-intensity beam in whichZieufg8
2f̂g8u!csf8 andv̂pb8

2/2gb!vb'
2 1vbz

2 /2. In this case, Eq.~45!
reduces in lowest order to

ng8~r 8,z8!5n̂b8 expH 2S r 82

r b8
2 1

z82

zb8
2D J , ~52!

where r b8
2[2Tb8/gbmvb'

2 , zb8
2[2Tb8/gbmvbz

2 , and zb8
2/r b8

2

5vb'
2 /vbz

2 . While the constant-density contours in Eq.~52!
are also spheroidal in shape, it is clear from Eq.~52! that the
density profile isdiffusein the emittance-dominated regime
rather thanuniformwithin a sharp spheroidal boundary as
the low-emittance, space-charge-dominated case.

VI. CONCLUSIONS

In the present analysis, we Lorentz-transformed the n
linear Vlasov–Maxwell equations to the beam frame wh
the particle motion is nonrelativistic~Sec. II!, and made use
of global ~spatially averaged! conservation constraints~Sec.
III ! to derive a three-dimensional kinetic stability theore
~Sec. IV!. The analysis was carried out for the case where
applied focusing potential in the beam frame~assumed time-
stationary! is of the formcsf8 (x8)5(gbm/2)@vb'

2 (x821y82)
1vbz

2 z82#, wherevb' and vbz are constant focusing fre
quencies. It was shown that asufficient condition for linear
and nonlinear stabilityfor perturbations about a beam equ
librium distribution f eq(x8,p8) is that] f eq(H8)/]H8<0 @Eq.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~33!#, where H85p82/2m1csf8 (x8)1feq8 (x8) is the single-
particle energy defined in Eq.~30!, andfeq8 (x8) is the equi-
librium space-charge potential. It was also shown~Sec. V!
that the thermal equilibrium distributionf eq5g(H8)
[b8 exp(2H8/Tb8), whereb8 andTb8 are positive constants
is the unique choice of distribution function that minimiz
the classical Helmholtz free energyFH8 (t8)5const defined in
Eq. ~38!. Thermal equilibrium properties of a charge bun
were summarized~Sec. V! for the two limiting regimes cor-
responding to a low-emittance, high-intensity beam w
strong space-charge effects, and a low-intensity, hi
emittance beam with weak space-charge effects.

It is very important to recognize the wide range of a
plicability of the three-dimensional stability theorem dev
oped in the present analysis. Most notably, it applies to p
turbations about equilibria f eq(H8) with arbitrary
polarization and initial amplitude; tocontinuous beamsthat
are radially confined and infinite in axial extent (vb'

Þ0,vbz50); to charge bunchesthat are radially and axially
confined (vb'Þ0 andvbzÞ0); and to beams with arbitrar
space-charge intensity consistent with the requirement
the applied focusing potentialcsf8 (x8) provide confinement
of the beam particles. As a final point, it should be emp
sized that the stability theorem developed here has far w
applicability than to the case wherecsf8 (x8) has the simple
quadratic dependence onx8, y8 andz8 in Eq. ~16!, provided
the confining potential is time-stationary in the beam fram
i.e., ]csf8 /]t850. The main requirement on thex8 depen-
dence is thatcsf8 (x8) correspond to aconfiningpotential, i.e.,
that the focusing force@Ffoc8 #sf52¹8csf8 is restoring.

Important future generalizations of the present analy
will include: ~a! use of the global conservation constra
corresponding to the classical Helmholtz free ene
FH8 (t8)5const defined in Eq.~38! to determine nonlinea
bound estimates on the unstable field energyDEF8 (t8) that
can be released for various choices of~unstable! initial dis-
tribution function f b(x8,p8,t850); and ~b! investigation of
stability properties for the case of a periodic-focusing qu
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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-
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rupole lattice where the focusing force in the beam fra
depends ont8 @see Eq.~14!#.
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