PHYSICS OF PLASMAS VOLUME 5, NUMBER 9 SEPTEMBER 1998
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Global conservation constraints obtained from the nonlinear Vlasov—Maxwell equations are used to
derive a three-dimensional kinetic stability theorem for an intense non-neutral ion(beamarge

bunch propagating in the direction with average axial velocity,= const and characteristic kinetic
energy (,—1)mc in the laboratory frame. Herey,=(1—v3/c?) Y2 is the relativistic mass
factor, and a perfectly conducting cylindrical wall is located at radissr,,, wherer=(x?
+y?)12is the radial distance from the beam axis. The particle motion in the beam (tanmed”
coordinates is assumed to be nonrelativistic, and the beam is assumed to have sufficiently high
directed axial velocity thai,>|v’|. Space-charge effects and transverse electromagnetic effects are
incorporated into the analysis in a fully self-consistent manner. The nonlinear Vlasov—Maxwell
equations are Lorentz-transformed to the beam frame, and the applied focusing potential is assumed
to have the(time-stationary form y(x') = (yym/2)[ w5, (x'?+y'?) + w5,2'?], wherewy, and

w g, are constant focusing frequencies. It is shown that a sufficient condition for linear and nonlinear
stability for perturbations with arbitrary polarization about a beam equilibrium distribution
fe(X',p") is that f¢q be a monotonically decreasing function of the single-particle energy, i.e.,
dfe{H")/dH'<0. Here, H'=p’2/2m+ Pe(X') + dedX'), Where ¢ {(x') is the space-charge
potential. © 1998 American Institute of Physids$1070-664X98)01909-7

I. INTRODUCTION the present analysis is motivated by the early work of

Periodic focusi leoratdré and Newcomb!* Gardner:® and Fowler'® carried out for pertur-
eriodic focusing accelerators and transport systems bations about a spatially uniform, electrically neutral, nonrel-

have a wide range of applications ranging from basic scien-_. . .. o
tific research, to applicatiofi® such as heavy ion fusion, ativistic plasma, and by the stability theorem developed by

" . . Davidson and Kral'* for a one-component non-neutral
tritium production, spallation neutron sources, and nuclear ' . : .
lasma column confined radially by a uniform axial mag-

waste treatment. Of particular importance, at the high bearﬁ) g . . .
currents and charge densities of practical interest, are thr(]aet'c field. The present analysis represents a major generali-
effects of the intense self fields produced by the beam spa ation of_tr:je St?t;'“ty thecljlrem (lj_tevgloptlad tm F\;etf_. 10, \;thh
charge and current on determining detailed equilibrium, stal'as caglet out for sln”l[a .'?.mp' ude eteclrosl atc per ﬁ" a
bility, and transport properties. While considerable progresfOnS about a nonrelativistic non-neutral plasma column

can be made in understanding the self-consistent evolution ¢¥Nich is infinite in axial extent. In particular, using global
the beam distribution functiofy,(x,p,t) and the electric and conservation constraints, the instability theorem developed

magnetic fieldsE(x,t) and B(x,t) in kinetic analyses’® here is_fuIIy ponlinear and _electrgmagngtic, and a}pplies to
based on the nonlinear Vlasov—Maxwell equations, the efthree-dimensional perturbations with arbitrary amplitude and
fects of finite geometry, space-charge effects, and bearRolarization about a finite—lengAth charge bunch propagating
emittance generally make predictions of detailed stability beWith relativistic axial velocityv e, .

havior difficult. It is therefore important to develop a basic 10 briefly summarize, the present analysis considers an
understanding of the class of distribution functiohsthat ~ intense charged-particle beam consisting of positively
are stable and can propagate quiescently over large discharged ions with charge Z;e and rest masm propagating
tances, even in parameter regimes where space-charge #}-the positivez direction with average axial, and charac-
fects are intense and play a controlling role in the nonlineateristic kinetic energy {,—1)mc” in the laboratory frame,

beam dynamics and transport properties. where yp=(1—v3/c?) Y2 is the relativistic mass factor. A
With this in mind, the present analysis makes use ofperfectly conducting cylindrical wall is located at radius
global (spatially averagedconservation constraiffssatis-  =r.,, wherer =(x?+y?)? is the radial distance from the

fied by the nonlinear Vlasov—Maxwell equations to deter-beam axis. The particle motion in the beam frarftiee
mine a sufficient condition for stability of an intense non- “primed” frame) is assumed to be nonrelativistic wifta’ |
neutral ion beam(or charge bunchpropagating in thez  <c, and the beam is assumed to have sufficiently high di-
direction with average axial velocity,=const along the rected axial velocity thafv’'|<v,. The beam current and
axis of a perfectly conducting cylindrical pipe with wall ra- charge density are allowed to be sufficiently intense that the
dius r=(x>+y?)?=r,,. The theoretical approach used in characteristic electrostatic energye¢ of a beam particle is
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comparable in magnitude with the characteristic kinetic encharge+ Z;e and rest mass propagating in the positive
ergy of a particle in the beam frame. Therefore, collectivegirection with average axial, and characteristic kinetic en-
processes associated with space-charge effects and selfyy (yo—1)mc in the laboratory frame, wherey,=(1
consistent changes in the beam current can play a controllingvglcz)—uz is the relativistic mass factor. A perfectly con-
role in the nonlinear evolution of the distribution of beam qycting cylindrical wall is located at radius=r,,, wherer
particlesfy(x,p,t) in the six-dimensional phase spapep). = (x2+y?)Y2js the radial distance from the beam axis. It is
Finally, it is assumed that transverse focusing of the beamssymed that/ y,<1, wherev=N,Z2e?/mc is Budker's
particles is provided by the average effects of applied magparametef, ¢ is the speed of Ilightin vacug N,
netic or electric focusing fields. L = [dx dy n, is the number of beam particles per unit axial
In more detail, the organization of this article is as fol- |ength, andn,(x,y,z,t)= [d3pf,(x,p,t) is the particle den-
lows. In Sec. Il, the theoretical model and assumptions arQity. The particle motion in the beam franithe primed
discussed, and the nonlinear Vlasov—Maxwell equations anfamg is assumed to be nonrelativistic with'| <c, and the

the applied focusing force are Lorentz-transformed t0 thgyeam is assumed to have sufficiently high directed axial ve-
beam framgthe primed frampwhere the particle motion is  |ocjty that

assumed to be nonrelativistic. We then specialize in Sec. llI

to the case where the applied focusing potential in the beam V'|<vy. (1)
frame (assumed stationaryis of the form (x")
=(yoM2)[wj, (X' 2+Yy'?) +w5,2'?], where wg, and wp,
are constant focusing frequencies, and derive gldbph-
tially averagedl conservation constraints corresponding to
conservation of particle plus field energy, and generalize
entropy. Introducing a generalized Helmholtz free energ
F’(t")=const, the global conservation constraints are use
in Sec. IV to derive a three-dimensional kinetic stability
theorem for perturbations with arbitrary polarization. It is
shown that asufficient condition for linear and nonlinear
stability for perturbations about a beam equilibrium distribu-
tion function f¢(x’,p") is that fo, be a monotonically de-
creasing function of the single-particle enetdy [Eq. (33)],

Although »/y,<1 is satisfied in the regimes of practical
interest, the beam current and charge density are allowed to
be sufficiently intense that the characteristic electrostatic en-
rgy Zie¢ of a beam particle is comparable in magnitude
ith the characteristic kinetic energy of a particle in the
eam frame. Therefore, collective processes associated with
pace-charge effe¢t5® and self-consistent changes in the
beam current can play a controlling role in the nonlinear
evolution of the distribution of beam particlég(x,p,t) in
the six-dimensional phase spaegp). Finally, it is assumed
that transverse focusing of the beam particles is provided by
applied magnetic or electric focusing fields. For example, for
a periodic-focusing quadrupole magnetic field, assuming a
J thin beam with characteristic beam radiyssmall in com-
oH’ fed H')=0. parison with the axial periodb of the lattice, the applied

R o " ] ) quadrupole fieIngf(x) in the laboratory frame can be ap-

Here,H'=p /_2m+ z,bsf(x__)+_¢>eq(x ) is defined in Eq(30), proximated by
wheregq(x') is the equilibrium space-charge potential. For . .
completeness, in Sec. V we show that the thermal equilib-  Bgi(X)=Bg(2)(y&+X8&)). @
num ?'St”buuo.r? feq=9(H )E'B. exp(—H M), w_hereﬁ .. Here, ,y) is the transverse displacement from the beam
andT, are positive constants, is the unique choice of distri-__. Yooy _

. . o : axis, and B(2)=[dBy/dY](x,y)=(0,00=[IBy/X](x.y)=(0,0)
bution function thatminimizesthe classical Helmholtz free PR b Y) =8, Y ¥)= (08

D e S -~ whereB/(z+S)=B/(z). On the other hand, a model widely

energy,F/,(t")=const. The thermal equilibrium properties q q

of a charge bunch are summarized for the two limiting re_used in thesmooth-focusingpproximation corresponds to a

; s 5
gimes corresponding to a low-emittance, high-intensity beant]ransverse focusing electric f'eEQf(X) of the fornt

with strong space-charge effects, and a low-intensity, high- 0 1 5 .
emittance beam with weak space-charge fields. Esi(X)= = 55 Mwj, (X&+Y§), ©)
Finally, it is very important to recognize the wide range '
of applicability of the three-dimensional stability theorem Where wg, =const is an effective betatron frequency for
developed in the present analysis. Most notably, it applies t&ransverse oscillations. The focusing electric field in &).
perturbations about beam equilibrfa(H’) with arbitrary =~ Would be produced by énypothetical uniformly distributed,
polarization and initial amplitude; to continuous beams thafixed charge background with charge density
are radially confined and infinite in axial extens f, #0, :—mwfﬂ/ZWZiezconSt- Equation(3) is often used to
g,=0); to charge bunches that are radially and axially con-model the average focusing properties of an alternating-
fined (wg, #0 and wg,#0); and to beams with arbitrary gradient lattice of magnetic or electric quadrupoles.
space-charge intensity consistent with the applied focusing The Vlasov—Maxwell equationgor the evolution of the
potential ¢.(x’) providing confinement of the beam par- distribution function f,(x,p,t) and self-consistent electric
ticles. and magnetic field€(x,t) and B(x,t) provide a complete
nonlinear description of the collective interaction of the
beam particles with the applied and self-generated electric
and magnetic fields. In this regard, analysis of the Vlasov—
The present analysis considers an intense chargeddaxwell equations is greatly simplified by transforming to a
particle beam consisting of positively charged ions withframe of reference moving at the average axial velogity

Il. THEORETICAL MODEL AND ASSUMPTIONS
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—const of the beam particles, particularly because of thavhereV'2=g%/ax'?+ 3% dy'?+ 3°/9z'2. Here, the electro-
assumptions that the particle motion is nonrelativistic in thestatic potential¢’(x’,t") is determined self-consistently in
beam frame and thdv’|<v,. The Lorentz transformation terms of the beam charge densitypy(x',t")
relating the primed variablex(,p’,t') in the beam frame to  =Ziefd®p’f,(x",p’,t") by means of Eq(7), andA’ (x',t")

the unprimed variablesx(p,t) in the laboratory frame is is determined in terms of the beam current density

given by® Ji(x',t")=Zefd®p'v'fy(x',p’,t’) by means of Eq.(8).
With regard to the boundary conditions at the perfectly con-
X'=X, Y=y, Z'=y,(z—vpt), ducting cylindrical wall, we impose the requirement that the

tangential electric field and the normal magnetic field vanish
at radiusr=r,,. That is, [Ez]r=rW=[Ee]r=rW=[Br]r=rW
=0, whereB, , E, andE, denote field components in cylin-
. 2 drical polar coordinates in the laboratory frame. In the beam
t'=y(t—vpz/co). frame, the corresponding field components Bfe=E,, B/
Here, the particle momentum and velocity are relatedpby = ¥u(Br+v,E4/C), andE;= y,(Ey+v,,B,/c), so that the
=vymv andp’=7y'mv’, where the kinematic mass factors corresponding boundary conditions at the conducting wall in
=(1+p2/m2c2)1’2 and y'=(1+p'?/m?c?)? transform the beam frame are also given B¥; ],/ -, =[Egl
according to y'=vyp(y—vpp,/mc), where y,=(1 =[B, ]r,_r =0. In terms of the scalar and vector potentlals
_UZ/CZ) 12 In the beam frame, the nonlinear Vlasov equa- @' (X t’ ) andA (X t’ ) these boundary conditions can be
tion for the distribution functionfy(x’,p’,t") can be ex- expressed in the equivalent form
pressed as

Px=Px, Py=Py, P;=7p(P,—yMuvp), (4)

@' (r'=ry, 0,2 t")=A(r"=r,0",2't)
ofy ofy
— V' —+
ot ox’

of
+Ff’oc} 5pb 0. :A;J(rlzrwaer,zr,t,)IO. 9

1
Ziel E’' +—v X B’

(5)  In Eg.(9), without loss of generality, the constant values of

Here,E'(x',t") andB’(x’,t") are the self-generated electric ', A, andA, atr’=r,, have been set equal to zero. )
As a general remark, the components of potential

and magnetic fields in the beam frame, =Ze(E; :
gnetic ! k= Zi2(Eroc (¢',A") in the beam frame are related to the components of

+c v/ xB,,) is the applied focusing force on a particle in : )
the beam frame. Moreover, because the particle motion iBOtent'al(d” A) in the laboratory frame BY

assumed to be nonrelativistic in the beam frame, we approxi-
mate y'=1+p’'2/2mc® and p’=mv’ in the subsequent
analysis of Eq(5).

Maxwell's equations in the beam frame rel&gx’,t")
and B'(x’,t") self-consistently to the distribution function
fo(x’,p’,t'). In this regard, it is convenient to introduce the ~ A;=Yp(A;—vpd/C).

scalar and vector potentialgy’(x',t") and A"(x",t'), and  of course the inverse transformations of E®. and (10)

d'=yp(Pp—vpA,/C),

(10

express are obtained by interchanging primed and unprimed vari-
ables, and making the replacemegt— —uv,. For example,
P g ., 1a in the special case wher¢’'#0 andA’=0 in the beam
E'=E+Ei=— - ¢'— = A’, ; Ao
X c ot frame, it follows thatA,= (v, /c) ¢, A, =0, and¢=y,¢’ in

the laboratory frame.
We now turn to an evaluation of the applied focusing
B'=— 7 XA, (6)  forceF/,.=Ze(Ef,.+c v’ xB/,) on a particle in the beam

frame. Here, the applied electric and magnetic fields trans-
where E[=—V'¢' is the longitudinal electric fieldE;  form according t&° [E'Jo.=[E&+ yb(ExéerEyéy)
=—c 19A’/at’ is the transverse electric field, and the Cou-+ y,¢ ™ 'vp€,XBlroe and [B’Jroc=[B,&,+ ¥u(Bx&+ By&))
lomb gauge condition witlV’ - A’ =0 is assumed. The Max- — y,¢ *v,&,XE]sc. For thesmooth-focusinglectric field
well equationsV'-B'=0 andV’'XE’'=—c 19B'/ot’ are ng(x) defined in Eg.(3), some straightforward algebra
automatically satisfied by Eq6), and Poisson’s equation shows that the corresponding applied focusing force in the
and theV’'xXB’ Maxwell equation are readily expressed in beam frame is
the beam frame as

U, Up
[Floclst= — yome3, | | 1+ éz ) X' &+y'e)
V’2¢'=—4wzief dp’fy, (7)
Up A~
——2(X'v)'(+y'v)',)e£}. (11
on, AT s 1PN 1_ ¢’ ¢
VA __Tzief FpVIt 25z TV G To the level of accuracy of Eq1), becausdv’|<c is as-

(80 sumed, we approximate E{L1) by
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12

) are unit Cartesian vectors

[Flocls= — YoMe3, (X & +y'&).

In Egs.(11) and (12), (& .&),&

in the beam frame. Similarly, some straightforward algebrgyq

carried out for the periodiguadrupole focusingnagnetic
field Bof(x) defined in Eq(2) gives for the applied focusing
force in the beam frame

[Fioclqr=Zi€YbBgl ¥b(Z' +vpt’)]

1 n -
X E (vb+v;)(—x’e;+y’e;,)

Ronald C. Davidson

provides a stationary confining potential centered'at0 in

the beam frame. The relative axial and transverse dimensions
of the charge bunch confined by E(L6) will of course
pend on the rati@g,/wg, as well as the density of par-
ticles. In addition, aswz,—0, Eq.(16) reduces to Eq(15),

as expected.

We now make use of the nonlinear Vlasov—Maxwell
equationg5)—(8) with Fi,.= — V' ¢(x',y’,z") specified by
Eq. (16) to derive certain globalspatially averagedconser-
vation constraintd in the beam frame that are useful in dem-
onstrating a nonlinear stability theorem. First, it is conve-
nient to rewrite Eq(5) in the form of a continuity equation
in the six-dimensional phase spac€,p’), i.e.,

1
+ 2 (X'vy yvﬂ%) (13

Here, B,(z) has been evaluated at y,(z' +vpt’). Simi- ﬂJri (V' fp)
larly, for |v'|<v,,, the quadrupole focusing force in E43)  dt' X’
can be approximated by g 1

L +&—p,‘ Zie E,+EV,XB, _V,I,Uéf}fb]zo. (17)

[Foclgr=— Z i€Y60bBgl ¥p(Z' Tupt )X &—Y'E).
(14y Here, p’=mv’, and B'=V'XA’ and E'=E +E;
=—V'¢'—c 19A’'/at" are determined self-consistently in

BecauseB(z+ S)=Bg(2) is a periodic function of, oscil-
lating about zero average value, we note from @d) that
the corresponding quadrupole focusing fof€&,] in the
beam frame is an oscillatory function of the argument

Yo(Z" +vpt’)(=2).

IIl. GLOBAL CONSERVATION CONSTRAINTS

In the remainder of this article, we specialize to the

terms off,(x’,p’,t") from Maxwell's equationg7) and (8)
with gauge conditionv’-A’=0 and boundary conditions
given in Eq.(9). For present purposes, it is assumed that the
phase-space densitf,(x’,p’,t’) is equal to zero beyond
some radiug{, i.e., f,=0 for r’'=(x"2+y'?)Y2>r{<r,,.

For the case of a charge bunch with finite axial length, i.e.,
when wg,#0 in Eq. (16), it is also assumed thdt,=0 for

|z’ |>L0/2 wherelL is larger than the axial bunch length

smooth-focusing model for the focusing force given by Eq. 2z,,.
(12) in the beam frame. Here, we note from HG2) that One useful conservation relatitris the conservation of
[F Jo=—V'¢L(x",y'"), where the potentialsl(x’,y’) is  9eneralized entropy deﬁned_ by SG(t )
deff(i%éfd by o o =(1L")fd3X’ [d®p’ G(f},). HereG(fy) is a smooth differ-
entiable function off, with G(f,—0)=0. Substituting into
%f(x,’y,):%ybmw?ﬂ(xlqylz)_ (15) Eqg. (17) and integrating by parts with respectx6 and p’

The static potentiakyi(x’,y’) in Eg. (15 provides trans-
verse confinement of the beam particles inthe y' plane,
but not in thez’ direction. That is, the charged particle beam
is infinite and continuous in th#' direction for the choice of
confining potential in Eq(15). A simple generalization of

Eq. (15) to the case of a finite-length charge bunch is to add

to Eq.(15) a stationary §/dt’ =0) contribution in the beam

frame that provides axial confinement of the ions, e.g., a

term proportional tOybmwf,Zz’2 /2, wherew g,=const is an
effective betatron frequency for the axial motion. This gives
the confining potential

¢éf(><’,y’,z’)=%vbmwéL(X’ery’zH%vbmw,zezZ’z( |
16

Although Eg. (16) is stationary ¢/dt’=0) in the beam

readily gives

d
dt’

5Gﬁfb
3y 3 —_ _°
d*x fd ﬂfbﬁt’
:__fds/jda (2 wo

J rogt )
+&_p, _V l)[foG

where it is assumed thdt=0 as|p’|—«. In Eq. (18), the
domain of spatial integration is defined bfd®x’/L’:--

=" 2,dZ/ /L' fivdr’ r'[27d6’- - . Here, two cases are

dlstmgwshed Casda) corresponds to an infinite-length

Zie

Oa

1
E'+ —v' xB’
c

(18

frame, when expressed in laboratory-frame variables we noteeam wherey(x’,y’) is specified by Eq(15), andL’ is

from Eq. (4) that z'2= y2(z—v,t)2. Therefore, the’ con-
tribution in Eq.(16) corresponds to a potential well that trav-
els in thez direction at the average axial velocity, of the
beam particles. In this regard, it is convenient to view Eq

viewed as a fundamental periodicity length for Fourier de-
composition of thez’ dependence of the distribution func-
tion and field components. Cagle) corresponds to a finite-

length charge bunch, wherg(x’,y’,z") is specified by Eq.

(16) as modeling the average potential of an rf bucket that16) with wg,#0, andL’ is chosen to be sufficiently large
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thatz'=L"/2 andz’=—L"/2 are in the far-field regions of Note that there are two contributions to the particle energy in
the charge bunch, whe' andB’ are negligibly small. I Eq. (21). The term proportional to (@) *p’?f, is associ-
either case, Eq18) gives the conservation relation ated with the particle kinetic energy in the beam frame,
1 whereas the term proportional #gf, is the potential energy
Sg(t')=— f d3x’f d3p’G(f,)=const, (19 associated with the particle motion in the confining potential
L Pidx',y’,z") of the applied focusing field.
no matter how complicated the nonlinear evolutiorf of E’ Other global conservation constraints can also be de-

andB’. For the particular choices correspondingG¢f,)  rived from the nonlinear Viasov—Maxwell equatiois7)
=f, and G(f,)=—f, Inf,, Eq. (19) corresponds to the and(6)—(8) subject to the boundary conditions in E§) at
conservation of particle number and classical entropy, ret'=r,,. For example, it can be shown that the total particle
spectively. plus field momentur? is conserved, i.e.,

A second global conservation relation of considerable

practical importance is the conservation of the total internal P(t)=— | &3’ 40’0’ f+ E'xB’ — const
energyU’ (t') carried by the particles and the fieftfsviak- (t)= L’ X PP To 4mc | st
ing use of the nonlinear Vlasov—Maxwell equatidt3) and (22

(6)—(8), some straightforward algebraic manipulation gives Here, the term proportional o’ f,, represents the mechani-

d  d1 3, cal momentum carried by the particles, whereas the term
T u'= av L f d°x proportional to (4rc) "1E’ X B’ is the momentum carried by
the fields.
X fd3 ' p’2+ ! 1‘+E,2+B,2
P\ om Vst To T

IV. THREE-DIMENSIONAL KINETIC STABILITY
=0. (200 THEOREM

_1fd31V/CE/B/
=T OXV g B

The Poyntang-flux contribution on the right-hand side of Eq. A three-dimensional kinetic stability theorem can be de-
(20) vanishes when the divergence term is converted to &ved by introducing a generalized Helmholtz free energy
surface integral. This is because the tangential componengfined byF(t")=U"(t") + Sg(t") =const, which is a linear

of the electric fieldE’ vanish at the perfectly conducting cOmbination of the entropy and energy conservation con-

wall atr’=r,, by virtue of the boundary conditions in Eq. Straints in Eqs(19) and(21). This gives

(9), and because of the condition that thlecomponent of |E’|2+|B'|?
E’'xB’ is a periodic function ofz’ [case(a) above, for a F'(t’)=U f d3X,{8—7T
continuous beainor vanishes at’==*L’'/2 in the far-field
region[case(b) above, for a finite-length charge buricin 3, p’? ,
both cases, Eq20) reduces to the global conservation con- +f d°p (ﬁJ”/’sf)be“G(fb) ]
straint for the total particle plus field energy, i.e.,
2 2 a2 =const. (23
POy — 1 3y 3R’ p ! E“+B . 2 ’ ’ i
U'(t=17 j d>x fd P\ o st Tot —g—— Making use ofE'=E;+E;, whereE/=-V’'¢' and E;
=—c"19A’/at’, it is convenient to rewrite the electric field
=const. (21)  energy term in Eq(23) as
|
S O S ,(|v'¢’|2 LA |E+|2)
L’fdx 87T_L'jdx 8w +2V¢.Co7t'+87T
L I A A B N L= L B T ,(lV'¢>'l2 |E+|2)
_L'jdx 8 +C '(qﬁ é’t’)+ 8 _L'fdx 8 +8’7T ' 24

Here, use has been made%f-A’=0, and the divergence From |V’ ¢'|?=V'-(¢'V'¢')—¢'V'?¢p'=V'-(¢'V' ')
term in Eq.(24) integrates to zero by virtue of the boundary +47Ze¢’ [d3p’f,, it is readily shown that
condition[¢'],,—, =0 in Eq. (9) and the axial boundary

conditions in case&@) and(b) described above. Furthermore,

it is useful to rewrite the electrostatic energy contribution in 1 3, |V ¢'|? 1 s, 1 , -

Eg. (24) in an alternate form that makes use of Poisson’'s |’ f d*x 87 L' f d*x Ezied’ fd P'fp-
equation(7) and the boundary condition o#’ in Eq. (9). (25

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



3464 Phys. Plasmas, Vol. 5, No. 9, September 1998 Ronald C. Davidson

Therefore, substituting Eq$24) and (25) into Eq. (23), it

1 o, | 672+ |6B'[>+|V' 8¢ |?
follows thatF’(t") can be expressed in the equivalent form  AF'(t")= 1~ f d=x’

8w
L[ [ 2
F= [ o [T v d%'[(g—mwgﬁziegbgq)éfb
p/2 1
+J dSP'{ om T ¥stt 5 Zied! fb+G(fb)H +G(foqt ) —G(feg) ]zconst. (29
=const, (26)  The coefficient ofsf,(x’,p’,t") in Eq. (29) will be recog-

. nized as the Hamiltonian
where Er=—c 19A’/gt" andB’=V'XA’. Equation(26)

is a powerful constraint condition on the nonlinear evolution o 1 2 i 2 B (XY g 30
of the system. Note that the representation in @) natu- “omP YsdXTY" 2 F ded XTY"Z) (30

rally separates the electromagnetic field energy contributiortl inal el tion in th bined lied f .
with transversepolarization, i.e., the terms proportional to or single-particle motion in the combined applied focusing

(87) L/ d3x'{|E1|2+|B'|2}, from the field energy contribu- potential ¢ and equilibrium space-charge potentig],.

tion in thelongitudinal space-charge field, i.e., the term pro- A linear (small-signal stability theoreri’ can be ob-
portional to [d3x’ (Z,e'12)[d3p’ f,,. tained from Eq.(29) as follows. We Taylor expand

G(feqt ofp) =G(feg + G’ (feq) fp+ G”(feo)(éfb)2/2+---,
whereG’ (feg) = dG(feg)/dfeq, and retain terms to quadratic
order in perturbed quantities. This gives

| OE1|2+| 8B |*+|V' 5|2
8w

We now consider(arbitrary-amplitudg perturbations
about a time-stationaryd(dt’ =0) equilibrium distribution
fedX',p’) in the beam frame and corresponding space
charge potentiak;ﬁgq(x’) determined self-consistently from 1
V'2¢e=—4mZiefd3p feq. It is further assumed that the [AF'](Z)IF f d3x’
equilibrium distributionf . (x’,p") carries zero current in the
beam frame, ie.fd’p'V'fe=0, so that A;=0 and 5 ,( L
Béq=O=E}eq. Denoting perturbed quantities byf,(x’, +J d°p’| [H'+ G (feg 1(fp)
Pt =To(X P 1) =X’ ,p'), 8/ (X' 1) =¢'(X'.t') )

— dedX'), SER(X',t)=Ex(x',t') and 6B'(x’,t")=B’"(x’, += G”(feo)(5fb)2+...
t'), it follows from Eq.(26) thatAF'(t")=F'(t") —F¢,can 2
be expressed as

=const. (31

We now chooseG(fy), which has been arbitrary to this
1 | SE[2+| 5B |2 point, to satisfydG(feg)/dfeq=—H' so that the term linear
AF'(t")=— f d3xr+T— in 8fy, vanishes exactly in Eq31). This condition also gives

L 8m G"(feg=—dH'/of

eq» SO that Eq(31) becomesg(correct to

p’2 second order in perturbed quantilies
3a7 | E 4
+J d p{ RRCIE 1 | 5E{|2+| 0B/ [2+ |V 5|2
[AF’](2)=—,fd3x’
+§ Zie(0¢' 6fpt+ pedfpt feqdd’) . 1 st ’ (5f,)2 ) .
> p —[—&feq/aH’] =const. (32

+G(f ot 8fp) — G feq)

}ZCOHSL @7 \when fe(X',p") depends on x',p’) only through the

, HamiltonianH’, and whenf.(H") is a monotonically de-
andfe(x’',p’) by

J

—— fo(H")=<O0, 33
V’25¢’=—4w2iej dp’ 5t gh7 ed ) 39
(28) it follows that the quantitf AF’](® defined in Eq(32) is a

sum of positive-definite terms. Therefore, becausé ']
V' 2heg= —47TZief d°p’ feq, =const, no one of the terms in E(B2) can grow without
bound, and we conclude that E&3) is asufficient condition

and yg(x',y’,z') is defined in Eq.(16) for an axially for linear stability of the equilibrium (eq, ey to small-

confined charge bunch, and in E€L5 for a continuous amplitude perturbationsf,, 8¢’, SE;, andSB’.

beam. Making use of E428), some straightforward algebra The sufficient condition for stability in E433) is a very

shows that Zie/2L’)fd3x’5q§’fd3p’feq powerful result, applicable to a wide range of beam equilib-
=(Ziel2L") [d3X’ pogf d3p’ SF, and that ria foH') that are spatially confined in the transverseé (
(Ziel2L") [d3x' 8¢’ [d3p’ 6f, = (L") [d3x'|V'6¢'|?18w, —y') and axial ¢') directions, and valid for longitudinal
where use is made of E(Q). Substituting into Eq(27) then  and transverse electromagnetic perturbatiégs, SE+, 5B’
gives the equivalent constraint condition with arbitrary polarization. One example of a stable equilib-
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G (fo) 0

fp—

Gfo) 0G/atp<0

32G/21E>0

FIG. 1. Schematic of a possible functional form f&(f,) that satisfies the
inequalities in Eq(34).

rium is the thermal equilibrium distributiorf=g(H")
=B’ exp(—H'/T{), whereB’ and T, are positive constants.
The exact global constraint conditi¢®9) can be used to
show that Eq(33) is also a sufficient condition for nonlinear
stability of the equilibrium to perturbations with arbitrary
amplitude. Proof of thiswonlinear stability theorenmakes

two successive applications of the mean-value theorem and

proceeds as follows. The functional form &f(f,) in Eq.

(29) is quite general, subject only to the requirements that

G(f,—0)=0, that the integral (1/')fd3x’[fd3p’G(f,)
converge, and tha(f,) be smooth and differentiable. In

the subsequent proof of the nonlinear stability theorem, wé

exploit this generality and further assume tl@tf,) is a
monotonically decreasing function df, and has positive
concavity, i.e.,

J
— G(f,)=0,
af

° (34)
(92
9t G(fp)=0,
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| SE1|2+|6B'|2+ |V’ 8¢ |

1
AF(t) =7 f d3x’{

8
JG
+f d3p’ H/+T 5fb
oty feq
#G
+ P (6fp16fp) | $ =const. (36)
ar feqt Ofp2

As before, we eliminate the term linear #i, in Eq. (36) by
choosing [aG/afb]feq= —H’, which also implies that

[azG/&fﬁ]feq= —JH'/9f . Equation(36) then reduces to

L d{

L
+f d3p’(
(37)

Because of the assumptigRG/df2=0 in Eq.(34), and be-
ausesfy, 8fp,=0 follows by construction from the mean-
value theorem, we conclude that the right-hand side of Eg.
(37) is a sum of positive-definite terms, no one of which can
grow without bound. Therefore, becaus{e?zG/afﬁ]feq
—0dH'/9f=0, by assumption, we conclude that
dfe(H")/9H'<0 is a sufficient condition for nonlinear sta-
bility.

|SEL|?+|6B'|2+ |V 8¢’ |?

AF/(t)= =

PG

ot

) (5fb15fb)] =const.

feqt oo

V. THERMAL EQUILIBRIUM—A STATE OF MINIMUM
HELMHOLTZ FREE ENERGY

There is clearly a wide range of choices of distribution

over the entire range of values of the distribution funCtionfunctionsfeq(H’) for which 9f.q/0H'<0 and the equilib-
f,=0 accessible by the nonlinear Vlasov—Maxwell equa-rium is therefore stable. As noted earlier, one such distribu-

tions. Such a possible functional form f@i(f,) is illustrated

tion is the thermal equilibrium distributiorfo,=g(H")

schematically in Fig. 1. Two successive applications of the= g’ exp(—H'/T}), whereg’ and T}, are positive constants.
mean-value theorem allows us to express the differenc&hermal equilibrium properties of nonneutral plasmas have

G(feqt 0fp) —G(feg occurring in Eq.(29) in the form

G(foqt 6fp) — G(feg

G

feqt s

PG
J’__
of?

e
afp

(35

5fbl)6fb.

feq feqt fpa

Here, for positive perturbatioaf,(x’,p’,t")=0, the quanti-
ties o6fp,; and 6f,, lie in the intervals G<6fy,<fp,
< of,, whereas for negative perturbatiétfi,<0, the quan-
tities 6fy, and fp, lie in the intervals 6fy< 6fp =< 6fp,
<0. In either case, the produdf,5f, satisfiessfy, 5y
=0. Substituting Eq(35) into Eq. (29) gives (exactly

been widely studied for a cylindrical plasma column con-
fined radially by a uniform axial magnetic fietd;*1"and for

a non-neutral plasma confined radially and axially in a
Malmberg—Penning traf:*° For completeness, before sum-
marizing thermal equilibrium properties of an intense non-
neutral charge bunéhin the present application, we present
a short proof that demonstrates that the thermal equilibrium
distribution g(H')= B’ exp(—H'/T{) is that unique choice

of distribution function thatminimizesthe classical Helm-
holtz free energy F,(t')=U"(t")—T,S'(t')—u,N'(t")
=const'® Here,U(t') is the internal energy defined in Eq.
(21), S'=—(1L")fd3x'd®p'f,, In f, is the classical en-
tropy, N'=(1/L") fd3x’d%p’f, is the number of particles
per unit axial length, angt,=T/(1+In 8’)=const is the
chemical potential. This corresponds to choosing the entropy
function to be G(fy)=T,fy, In(fy/B')—Tf, in Eq. (26),
which gives
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Maxwell's equations(7) and (8) that[A’']4=0 and[Ex],
=0=[B']y. Therefore, the first two terms on the right-hand
side of Eq.(40) also vanish wherfy,=g(H'). Taking the
T/ second variation of Eq.38), and evaluating fof,=g, it is
Fio é readily shown that
g fp—~
|6E7|*+|6B'[?+|V' 66" |2
FIG. 2. The thermal equilibrium distribution functiorfy=g(H")  {&[ 6F 1} —g= 1+ f d3x’
=p' exp(~H'/T{) minimizes the classical Helmholtz free enerBy, de- b L am
fined in Eq.(38). 2
’ 3R’ (5fb)
+Tb d p T ?0, (43)
1 [El%+]B'[2 o
F;'(t’):F f d3x’ —an where T[>0 is assumed. We therefore conclude that not
m only is the thermal equilibrium distribution defined in Eq.
p'2 1 (41) nonlinearly stablgSec. 1V), it is the unique choice of
+f d3p’[ om T ¥st 5 Zie¢')fb distribution function thaminimizesthe classical Helmholtz

free energyF|, [Egs. (39), (40) and (43) and Fig. 2. Con-
servation of the classical Helmholtz free enerdy,(t’)
):CO”St- (38 —const, also provides a very powerful constraint condition
] ] ) that can be used to estimate nonlinear bounds on the unstable
Equation (38) IS an exactly conserved' quantity no matter jg|q energyA #/(t') that can develop from initiglunstable
how complicated the nonlinear evolution &§(x",p’,t"),  gistribution functiond ,(x',p’,t’ =0). This has proved to be
Er(x',t"), B'(x',t") and¢'(x,t") according to the Vlasov— 5 yseful technique in applications to uniform neutral
Maxwell equationd7), (8) and (17). plasma$®*?! and to nonrelativistic nonneutral plasnfdst’s

‘We now pose the question: what is the choice of distri-gppication to intense nonneutral beams will be the subject of
bution functionf,=g that minimizes the Helmholtz free en- 4 f,ture investigation.

+T|:)fb |n(fb/ﬁ,)_Ttl)fb

e.rgy.Fg.defined .in Eq.(38)._ That is, what is the choice of We now return to a brief examination of Eqé1) and
distribution function for which (42). Assuming axisymmetric space-charge potential
[6F ] —g=0, by(r',2'), wherer' = (x'?+y’'?)'2 the thermal equilibrium
® (399  distribution in Eq.(41) can also be expressed in beam-frame
{5[5F,’4]}fb:g>0, variables as

where §(- - -) denotes variation with respect tg. Taking the . -
) P g g Ny eXP(Ziepy/Tp)

first variation of Eq.(38) gives "N—
g(H") (2mmT,) 32
1 El.S5E.+B'- 5B’ ,
5F,’4=Ffd3x’( - T477 X ex —i IO—2+Z-e¢>’(r’z’)
Ty \2m 7O
p/2
+ 3p'| | — + '+ 7. ’ 1 1
fd P { om Vst Zied ) +3 ybmwfﬂr’2+§ ybmwfgzz’z) : (44)
T In(fy/5 )}ﬁb] =0 (40 Here, i, and ¢ are constants identified with the values of

the space-charge potential and particle density, respectively,
at the center of the charge bunch, i.é{,zné(r’zo, z’

=0) and ¢g=¢4(r'=0,2'=0). Evaluating the particle
densityné(r’,z’)=fd3p’g(H’) from Eq. (44) gives

Here, use has been made dfd3x'd®p’3Z,ed(¢’fy)
= fdax'dgp'(zie/Z)(d)' 5fb+ fb(S(;b,) = deX’dap' (]S, 5fb .
[See also discussion following EqR7) and (28).] Setting
the coefficient oféfy, equal to zero in Eq(40) gives directly

_ N — ! T R Ze ~
fo=g(H =" exp(—H'IT]), (41) ny(r 2 =R exp(_#[%(r,,z,)_(ﬁé]
where H'=p'?2m+yl+Ze¢, is the single-particle b
Hamiltonian, and the electrostatic potennjﬁg is determined YoM 5 o o s
self-consistently from Poisson’s equation T 2T (0, It wg,z'%) . (45
V2= —4wZiej d3p’g(H"). (420 The equilibrium space-charge potentig)(r’,z") occurring

in the exponent in Eq(45) must of course be determined
Because the distribution functiag(H') carries zero current self-consistently from Poisson’s equati@¢d2), which be-
in the beam frame, i.efd3p’v'g(H’)=0, it follows from  comes
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1 2

r’ &r’r

d

d
|

o )¢§(r’,2’)

+ 0212

~y Zie Yoot o o
=—4nZel, exp — = [$g(r'.2') — )
b

|

The (nonlineay Poisson equatiof¥6) can be solved numeri-
cally for ¢g(r’,z") subject to the boundary condition
¢g(r'=r,,2")=0 at the conducting wa[lEg. (9)]. The de-
tailed solution to Eq(46) of course depends on the thermal
emittance(proportional toT}), proximity of the conducting
wall atr'=r,, and the relative values a3 , w3, and
wyp=4mn|Z?e?/m. Here, &7 is the nonrelativistic plasma
frequency-squared in the beam frame at,t')=(0,0),
which is a measure of the strength @efocusing space-
charge effects.

Detailed numerical solutions to EG6) will not be pre-

YpMm
— (w%lr 124 w%zz'z)

C 2T, (48)

sented here. Rather, for purposes of illustration, we conside

the simple limiting case of very low thermal emittancg, (
—0), and assume that the conducting wall is far remove
from the charge bunchr{>r{). In this case, the beam den-
sity is approximately uniform Withné(r’,z’):ﬁgzconst in-
side a spheroidal region defined by<®'?/r[*+z'?%/z,?
<1, and equal to zero for'?/r>+2'?%/z{?>1. Inside the
spheroid, it follows from Eq. (45 for T,—0 that
¢q(r',2')— ¢q is given approximately by

7

Y 2 2
Zie(py— bg)=—3ypM(w5 12+ w5,2'?)

for r'?/r}2+z'%/z}?< 1. Substituting Eq(47) into Eq. (46)
and evaluating inside the spheroid then gives the condition

1
2%y

~ 2 2 2

wpb=wﬁl+§wﬁz, (48

which relatesi )7, w5, andw3,. For specified focusing fre-
quenciesw;, andwg,, Eq.(48) should be viewed as deter-
mining the limiting space-charge densitfogg) that can be
confined in the limitT{— 0. Equation(47) should be com-
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1 ro2lz)?

—r%z)?)  2(1-r}%1Z%)%"?

a=(1

1+(1-rp?zH)Y
1—(1-rp21z,) V7

X In‘
(50)

ro2lz;?

2(1—r[%z,%)%?

127,12
ry/zy
- 121,12

N| =

B:
1+(1-rpz,%)™
1—(1-rpizhHY2e

wherea+ B/2=1. Finally, comparing the coefficients of?
andz'? in Egs.(47) and(49) gives

XIn

2 2
_27’bwm_ 2wp,
- ~ 12 - 2 2
Wppy 2wm+wﬂz 51)
2 2
1 _ YbWpz W gz
5,3— 72 5.7 7
Wph s T g,

vyhere use has been made of E4g). For weak axial focus-
ing force with w%z< wfﬂ, it follows from Eg. (51) that 8
~w5,lws <1 and a=1-w3,/2w5 . In this case, it fol-
ows from Eq.(50) that the charge bunch is highly elongated
with z,>r},. On the other hand, fon3,= w5 = ®/5/3y,
Egs.(50) and(51) give a= 8=2/3 andz=r|, corresponding
to a spherical charge bunch. For an oblate spheroi] (
<r}), alternate expressiohfor « and 3 to those in Eq(50)
must be used.

The previous analysis summarizes thermal equilibrium
properties for a very low-emittance, space-charge-dominated
charge bunch. Analysis of Eggll) and(42) also simplifies
for a high-emittance, low-intensity beam in whiche| d)é
— pgl<yliandd f2yp<wh, +w5,/2. In this case, Eq45)
reduces in lowest order to

R r
(r',z")=ny exp{ —<72+
My

Whezrert’,izZT{)/ybmw%l, 2,°=2Ty/ ypmes,, andz,’/r}?

= wj, | w3,. While the constant-density contours in E§2)
are also spheroidal in shape, it is clear from @) that the
density profile isdiffusein the emittance-dominated regime,
rather tharuniformwithin a sharp spheroidal boundary as in
the low-emittance, space-charge-dominated case.

12 Z/2
!

Ng

— 2
Zé,z (5 )

pared with the electrostatic potential calculated from Pois-

son’s equation inside an isolated, uniformly charged sphe
oid with uniform charge densityZ;en, in the region
r'2/ri?+z'?/z2<1. The corresponding potential inside the
spheroid is found to Be®

Zie(dlq~ biq = — imayp(ar 2+ pz'?), (49)
where a+ B/2=1, and the values of the constanisand 8
depend on/z;, and whether or not the spheroiddélbngated
(z,>ry) or oblate(z/<r,). For example, for an elongated
spheroid withz/>r|, the constantsx and 8 are defined

byl, 16
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VI. CONCLUSIONS

In the present analysis, we Lorentz-transformed the non-
linear Vlasov—Maxwell equations to the beam frame where
the particle motion is nonrelativistiSec. 1), and made use
of global (spatially averagedconservation constraintSec.

Ill) to derive a three-dimensional kinetic stability theorem
(Sec. IV). The analysis was carried out for the case where the
applied focusing potential in the beam fra@ssumed time-
stationary is of the formy(x') = (ypm/2)[ wj, (x'2+y'?)
+wfﬂz’2], where wg, and wg, are constant focusing fre-
quencies. It was shown thatsafficient condition for linear
and nonlinear stabilityfor perturbations about a beam equi-
librium distributionfe(x’,p") is thatdfe(H")/dH"<O0 [Eq.
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(33)], whereH' =p’2/2m+ ¢gf(x’)+¢>éq(x’) is the single- rupole lattice where the focusing force in the beam frame
particle energy defined in EG30), and ¢/ (x’) is the equi- ~depends on’ [see Eq(14)].

librium space-charge potential. It was also shoi@ec. \)
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