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Warm-fluid description of intense beam equilibrium and electrostatic
stability properties
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A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the
equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A
closed macroscopic model is obtained by truncating the hierarchy of moment equations by the
assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived
and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij–Vladimirskij
~KV ! equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe
the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability
properties are analyzed in detail for a cold beam with step-function density profile, and then for
axisymmetric flute perturbations with]/]u50 and ]/]z50 about a warm-fluid KV beam
equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV
equilibrium is found to beidentical to the eigenfunction derived in a full kinetic treatment.
However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations.
None of the instabilities that are present in a kinetic description are obtained in the fluid model. A
careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models
is made in order to delineate which stability features of a KV beam are model-dependent and which
may have general applicability. ©1998 American Institute of Physics.@S1070-664X~98!00508-4#
t

ion
te
ct
th

od

on
tio
ou
a
-
h
ra
ui

le
a-
th
e
ij

y

h

ol-
un-
in-
ve
in-

ob-
al
se-
s
ar-
cy
n
on
n
he
tic

ki-
m-
er-
ace

se
ions
l-
be
V

de
’’
I. INTRODUCTION

In recent years, there has been increasing interest in
equilibrium and stability properties of intense ion beams.1–4

Potential applications include heavy-ion-driven product
of inertial fusion energy, transmutation of radioactive was
spallation neutron sources, and accelerator-based produ
of tritium.5–9 Such intense beam applications necessitate
study of beam transport in a regime where space-charge
fects and collective oscillations are important.10–32 Recent
experiments and simulation studies suggest that such m
can play a deleterious role in intense beam transport.33–44 In
general, an analysis of collective modes in intense n
neutral beams requires knowledge of the beam distribu
function in six-dimensional phase space in order to carry
numerical simulations using the distribution function as
initial condition, or to perform analytical studies of equilib
rium and stability properties using kinetic theory. Althoug
analytical studies provide valuable insight regarding pa
metric behavior, such kinetic analyses can become q
complex, even under highly idealized assumptions.10–32Fur-
ther complicating this situation is the fact that the detai
form of the initial distribution function entering the acceler
tor is often unknown due to various nonideal effects in
region near the beam source. Moreover, for the case of p
odic focusing channels, the transverse Kapchinsk
Vladimirskij ~KV ! distribution10 is the only distribution
function for which the kinetic equilibrium and linear stabilit
properties have been determined analytically.10–21

Unfortunately, the KV distribution, which forms muc
3021070-664X/98/5(8)/3028/26/$15.00
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of the basis for present analytical understanding of the c
lective stability properties of intense beams, also has an
physical, highly inverted phase-space population. This
verted population provides the free energy to dri
progressively more modes of oscillation unstable with
creasing space-charge strength.1,11–20 Many of these insta-
bilities are regarded as unphysical, since they are not
served in particle-in-cell simulations of more realistic initi
distributions with noninverted, monotonic decreasing pha
space populations.33 Furthermore, the KV distribution tend
to overestimate the effects of instabilities because all p
ticles in the equilibrium distribution have the same frequen
of transverse particle oscillation~i.e., the depressed betatro
frequencyn! rather than a more realistic spread of oscillati
frequencies. Thus, the entire KV equilibrium distributio
participates in any instability rather than only a portion of t
distribution as would be anticipated in a more realis
model.

Because of these pathologies, many aspects of the
netic modes associated with the KV distribution are co
monly regarded as being of limited practical value. Nev
theless, the two-dimensional transverse phase-sp
projections of a KV beam are not too dissimilar from tho
observed in intense beam experiments and in simulat
with more realistic initial distributions. Furthermore, the co
lective modes observed in experiment and simulation can
similar in structure to those studied analytically using the K
distribution. For example, the simplest linear kinetic mo
supported by the KV model is the so-called ‘‘envelope
8 © 1998 American Institute of Physics
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mode45,1,2 which is characterized by a uniform density pe
turbation in each transverse beam slice, and a related ch
in the envelope radius. This envelope mode is experiment
observed and has a well-known parametric instability in
riodic focusing channels when the phase advance per fo
ing period of the envelope of beam particles becomes
large. Other kinetic modes supported by the KV distributi
have more detailed transverse structures11–19that are sugges
tive of classes of perturbations observed experimentally,40–43

but typically exhibit instabilities that are inconsistent wi
experimental evidence. Thus, certain features of the
model appear to be relevant to realistic beams, while oth
do not. The purpose of this paper is to better understand
the collective modes associated with the KV distributi
change under different model assumptions, so as to le
which features are model-dependent and which are likel
have general applicability. Such knowledge should pro
valuable because the KV distribution provides considera
analytical insight into the mode structure. In turn, these s
plified models can then provide valuable guidance regard
possible structure resonances and other destabilizing ef
of practical importance.

The standard kinetic description of an intense beam
based on the nonlinear Vlasov–Maxwell equations, wh
the beam is regarded as a collisionless non-neutral plasm46

Vlasov stability analyses are generally difficult due to t
need to evaluate orbit integrals that describe how sm
amplitude perturbations evolve by integrating along the p
ticle trajectories in the equilibrium field configuration. I
contrast, a macroscopic fluid model47,48 offers the prospec
for a more straightforward stability analysis. The simplic
of a fluid description results from the fact that the beam
described in terms of local macroscopic variables obtai
by averaging over the momentum-space dependence o
kinetic distribution function. Furthermore, a fluid model c
lead to results that are more amenable to physical interpr
tion, because the fluid variables consist of readily underst
macroscopic quantities. As a general remark, while mac
scopic fluid models47–54 have been applied to a number
intense beam problems ranging from studies of the elec
magnetic filamentation instability,51,52 to intense equilibrium
flow in uniform53 and periodic54 focusing systems, there ar
few instances49,50 where thermal effects are included in
self-consistent manner.

In this paper, we employ a warm-fluid model to analy
the equilibrium and electrostatic stability properties of
unbunched, intense ion beam propagating in the absenc
acceleration. Equations are derived describing self-consis
fluid equilibria and the evolution of small-amplitude pertu
bations about an arbitrary equilibrium. For simplicity, th
analysis is carried out in the nonrelativistic, electrostatic
gime, and a continuous, applied focusing field is assum
corresponding to either a solenoidal magnetic field and/o
radial electric field produced by a fixed uniform charge ba
ground. The macroscopic fluid model is based on the hie
chy of moments of the Vlasov equation, truncated by ass
ing negligible heat flow, which yields a closed system
equations.47 Such a model incorporates average thermal
fects through an anisotropic pressure tensor, which evo
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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self-consistently in the absence of heat flow. This contra
with the simpler cold-fluid approximation, where thermal e
fects are neglected under the assumption of negligible fl
pressure. The fluid model employed in the present analys
expected to be valid for high-frequency collective mod
Low-frequency modes which may be influenced by heat fl
are beyond the scope of the truncation model.

The fluid equations are employed to derive eigenva
equations that describe general perturbations about arbi
cold-beam equilibria, and axisymmetric flute perturbatio
with ]/]u50 and]/]z50 about arbitrary warm-beam equ
libria. The cold-fluid eigenvalue equation is analyzed to d
termine the stability properties of a step-function equilibriu
density profile, which is equivalent to a cold KV beam. T
warm-fluid eigenvalue equation is analytically solved for
warm KV beam equilibrium to determine the transverse flu
stability properties of a KV beam. Results are compared
those previously obtained in the kinetic treatment
Gluckstern.11 These comparisons help to elucidate whi
features of the kinetic model are a consequence of the
tailed phase-space structure of the KV distribution functio
and which features are a consequence of the bulk~macro-
scopic! properties of the distribution. Since the detaile
phase-space dependence of the KV distribution is somew
pathological, whereas the macroscopic properties are sim
to those of more realistic beams, this comparison helps
delineate which features of the kinetic KV model are like
to be of practical importance.

This paper is organized as follows. First, in Sec. II,
closed fluid model is derived for a propagating intense be
by truncating the hierarchy of moments of the Vlasov eq
tion under the assumption of negligible heat flow and a
agonal pressure tensor. The basic equations for the wa
fluid model, describing both the equilibrium properties a
the evolution of small-amplitude perturbations about an
bitrary equilibrium, are presented in Sec. III. The equilibriu
fluid equations~Sec. III A! are elucidated with examples co
responding to thermal equilibrium, the KV equilibrium, an
the waterbag equilibrium, which are familiar examples fro
the kinetic theory of a continuously focused beam.1,2 Follow-
ing a derivation of the linearized equations describing
evolution of small-amplitude perturbations about an arbitr
fluid equilibrium ~Sec. III B!, simplified eigenvalue equa
tions are derived in the cold-beam limit~Sec. III C!, and for
the case of axisymmetric flute perturbations with]/]u50
and]/]z50 in the warm-beam case~Sec. III D!. These sim-
plified eigenvalue equations are employed to analyze
macroscopic stability properties of a KV beam equilibriu
in Secs. IV and V. First, for reference, the eigenfunction a
normal modes describing perturbations about a cold
beam equilibrium with a step-function density profile are
viewed in Sec. IV. Particular attention is given to a bifurc
tion of the eigenfunction as the total canonical angular m
mentum of the cold-beam equilibrium changes from zero t
nonzero value. Second, the radial eigenfunction and nor
modes describing axisymmetric flute perturbations w
]/]u50 and]/]z50 are analyzed for the warm-beam ca
in Sec. V. This eigenfunction is found to beidentical to the
eigenfunction first derived by Gluckstern11 using a kinetic
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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description.~These so-called Gluckstern kinetic modes a
reviewed in Appendix B.! However, in contrast to the kineti
model, the dispersion relation is found to be simpler in
warm-fluid treatment, and it predicts a single, stable mode
oscillation, rather than the discrete spectrum of~possibly un-
stable! oscillation frequencies obtained in the kinetic tre
ment. It is found that the single oscillation frequency o
tained from the fluid dispersion relation is a goo
approximation to the highest-frequency branch of the kine
dispersion relation—which is always stable. This close c
respondence is shown to be exact in the limits of vanish
and maximum~focusing limit! space-charge strengths. T
gether, these results are used to argue that the high
frequency branch of the kinetic dispersion relation is flu
like, and consequently is associated with the b
~macroscopic! features of the KV equilibrium rather than th
detailed phase-space structure—suggestive of general a
cability.

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we consider a single-species
tense non-neutral beam of charged particles with charac
istic beam radiusr b and axial velocityVz.Vb5const propa-
gating in the z direction parallel to a uniform focusing
solenoidal magnetic field

Bsol~x!5Bf êz , ~1!

where Bf5const. To model an additional radial-focusin
force, we assume a~fictitious! fixed, uniform charge back
ground which produces an effective radial electric fie
Ef(x) defined by

Ef~x!52
m

Zie
v f

2~xêx1yêy! ~2!

over the radial extent of the beam. Here,Zie andm are the
charge and rest mass, respectively, of a beam particlev f

2

5const has the dimensions of frequency-squared, and
transverse coordinates (x,y) are measured from the bea
axis atx505y. The focusing electric field in Eq.~2! would
be produced by a uniformly distributed background w
charge densityr f52mv f

2/2pZie5const. Such a uniform
charge background is often used to model theaveragefocus-
ing properties of an alternating-gradient lattice of electric
magnetic quadrupoles.1,2 For future reference, we introduc
simplified terminology for two important special focusin
field configurations, and refer to the case wherev fÞ0 and
Bf50 aspure electricfocusing, and the case whereBfÞ0
andv f50 aspure magneticfocusing. In addition, the spac
charge and current of the charged particles composing
beam generally produce self-electric and self-magn
fields, Es(x,t) and Bs(x,t), which can be expressed asEs

52“f2(1/c)]A/]t, and Bs5“3A. For simplicity, the
present analysis treats the dynamics of the beam part
nonrelativistically, and the self-magnetic field generated
the average beam current is neglected. In addition, field
turbations withtransverse electromagneticpolarization are
neglected, and self-field effects are treated in the electros
approximation withBs.0 and
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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Es~x,t !52“f~x,t !, ~3!

where f(x,t) is the electrostatic self-field potential. Th
beam particles of course interact with the total electric a
magnetic fields,Ef1Es and Bsol, causing a correspondin
change in the beam distribution functionf (x,p,t) as it
evolves in the phase space~x,p!.

Consistent with the assumption of a nonrelativistic be
with bb5Vb /c!1 and the neglect of magnetic self-fields,1 it
assumed that Budker’s parametern satisfies

n5
Zi

2e2N

mc2 !1. ~4!

Here, c is the speed of lightin vacuo, N5*dxdy n is the
number of beam particles per unit axial length, andn(x,t)
5*d3p f(x,p,t) is the number density of beam particle
While the inequality in Eq.~4! assures that the self-fields a
sufficiently weak in absolute intensity that the characteris
potential energyZief satisfiesuZief/mc2u!1, the present
analysis does permitZief to be comparable in size with th
transverse kinetic energy (px

21py
2)/2m of a beam particle.

For the field configuration in Eqs.~1!–~3!, the distribu-
tion function f (x,p,t) of the beam particles evolves accor
ing to the nonlinear Vlasov equation46

H ]

]t
1v–

]

]x
1ZieF2“f1Ef1

1

c
v3Bf êzG– ]

]pJ f 50.

~5!

Here, v5p/m is the ~nonrelativistic! velocity, Ef(x)
52(mv f

2/Zie)x' is the focusing electric field due to th
‘‘fixed’’ background charge, andf(x,t) is determined self-
consistently in terms of the distribution functionf (x,p,t)
from Poisson’s equation

¹2f524pZien524pZieE d3p f . ~6!

For present purposes, a perfectly conducting cylindrical w
is assumed to be located at radiusr 5r w5const. Imposing
the requirement that the tangential electric field is equa
zero atr 5r w , i.e., @]f/]z# r 5r w

505@r 21]f/]u# r 5r w
, then

gives the boundary condition

f~r 5r w ,u,z,t !5const ~7!

for the self-field potential. Here, (r ,u,z) are cylindrical polar
coordinates, wherex5r cosu and y5r sinu, and r 5(x2

1y2)1/2 is the radial distance from the beam axis. Equatio
~5! and ~6! can be used to investigate the nonlinear be
dynamics, collective processes, and linear stability proper
over a wide range of system parameters consistent with
assumptions enumerated earlier in this section. For pre
purposes, however, we make use of Eq.~5! to derive a set of
macroscopic fluid equations that describe the self-consis
evolution of the system.

As is customary in amacroscopic fluid descriptionof
charged particle systems, we introduce the fluid quanti
corresponding to particle densityn(x,t), average flow veloc-
ity V(x,t), pressure tensorP(x,t), and heat flow tensor
Q(x,t) defined in terms of the distribution functionf (x,p,t)
by47
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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n5E d3p f ,

nV5E d3p vf ,

P5E d3p~v2V!~p2mV! f , ~8!

Q5E d3p~v2V!~v2V!~p2mV! f ,

]

Operating on Eq.~5! with *d3p¯ and taking successiv
momentum moments as indicated by Eq.~8! leads to the
chain of macroscopic moment equations advancingn, V,
P,..., i.e.,

]

]t
n1

]

]x
–~nV!50, ~9!

mnS ]

]t
1V–

]

]xDV1
]

]x
–P

5ZienS 2
]f

]x
1Ef1

1

c
V3Bf êzD , ~10!

]

]t
P1

]

]x
–~VP!1P–S ]

]x
VD1S ]

]x
VD T

–P1
]

]x
–Q

5
ZieBf

mc
~P3êz2êz3P!,

] ~11!

where (̄ )T denotes dyadic transpose. Note from Eqs.~9! to
~11!, that lower-order moments are coupled, successively
higher-order moments, e.g., the evolution of the beam d
sity n(x,t) is coupled to the flow velocityV(x,t) by the
continuity equation~9!, the evolution ofV(x,t) is coupled to
the pressure tensorP(x,t) by the force balance equation~10!,
and so on.

The simplest level of closure of the macroscopic m
ment equations~8!–~11! corresponds to thecold-fluid ap-
proximation inwhich the pressure-tensor contribution in E
~10! is neglected in comparison with other terms in the for
balance equation.47 In this case, we approximate (]/]x)–P
.0 in Eq. ~10! and neglect the information in Eq.~11! and
higher-order moment equations. While several aspects
equilibrium and stability properties can be investigated
such a cold-fluid model, many important effects associa
with finite beam temperature and thermal anisotropy are n
essarily absent. Therefore, in the present analysis, we re
finite-pressure effects and adopt a closure model in which
heat-flow contributions are treated as negligibly small in E
~11!.47 In this case, we approximate (]/]x)–Q.0 in Eq.
~11!, and the evolution of the pressure tensorP(x,t) is de-
scribed by
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
to
n-

-

.
-

of

d
c-
in
e
.

]

]t
P1

]

]x
–~VP!1P–S ]

]x
VD1S ]

]x
VD T

–P

5
ZieBf

mc
~P3êz2êz3P!. ~12!

Equations~9!, ~10!, and ~12!, when supplemented by Pois
son’s equation~6! and the appropriate boundary condition
then constitute a closed system of equations that describe
self-consistent evolution of the beam densityn(x,t), flow
velocity V(x,t), pressure tensorP(x,t), and electrostatic po-
tential f(x,t). This model should retain leading-order the
mal effects that are describable in an average sense in t
of a macroscopic pressure. A model that assumes a diag
form of the pressure tensor and]/]z50 was first employed
by Hofmann49 to analyze beam stability properties.

Formally, the assumption of negligible heat flo
@(]/]x)•Q.0# in Eq. ~11! is strictly justified when the par-
ticle distribution functionf is an even function ofv j2Vj ,
wherej denotes thex, y, or z Cartesian component ofv, etc.
For an intense beam propagating near the space-charge
of the applied focusing field, certain classes of transve
electrostatic oscillations~with time dependence}e2 ivt! are
known from kinetic theory10–19 to have frequencies of orde
the beam plasma frequency~i.e., v;vp!. In this situation,
transverse single-particle oscillations (}e2 int) will be on a
much slower time scale than these collective modes~i.e., v
;vp@n!, because the defocusing space-charge field ne
cancels the applied focusing field. The influence of heat fl
on modes with such rapid characteristic time scales sho
be small. On the other hand, approximations inherent in
present fluid model are likely to become more problema
for low-frequency collective modes~i.e., whenv!vp!.

Equation ~12! can be further simplified in the strong
focusing approximation, in which case the terms on
right-hand side of Eq.~12! ~which are proportional toBf! are
treated as individually large in magnitude in comparis
with the terms on the left-hand side of Eq.~12!. We then
conclude, in lowest order, that the pressure tensorP(x,t)
necessarily satisfies

P~x,t !3êz5êz3P~x,t !, ~13!

in which caseP(x,t) has thediagonal form

P~x,t !5P'~x,t !~ êxêx1êyêy!1Pi~x,t !êzêz . ~14!

Substituting Eq.~14! into Eq. ~12!, some straightforward al-
gebra shows that theperpendicular pressure P'(x,t) and the
parallel pressure Pi(x,t) evolve according to

S ]

]t
1V–

]

]xD P'12P'

]

]x
–V2P'

]Vz

]z
50, ~15!

and

S ]

]t
1V–

]

]xD Pi1Pi

]

]x
–V12Pi

]Vz

]z
50. ~16!

Here,Vz(x,t)5êz–V(x,t) is the axial component of flow ve
locity. In the subsequent analysis, we make use of Eqs.~6!,
~9!, ~10!, ~15! and ~16! to provide a closed system of equ
tions that describes the self-consistent evolution of the e
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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trostatic potentialf(x,t), density n(x,t), flow velocity
V(x,t), perpendicular pressureP'(x,t), and parallel pres-
sure Pi(x,t). Making use of the continuity equation~9! to
eliminate (]/]x)–V in Eqs.~15! and~16!, it is readily shown
that Eqs.~15! and ~16! can be expressed in the equivale
forms,

S ]

]t
1V–

]

]xD S P'

n2 D2
]Vz

]z S P'

n2 D50, ~17!

and

S ]

]t
1V–

]

]xD S Pi

n D12
]Vz

]z S Pi

n D50. ~18!

Whenever]/]z50, we note from Eqs.~17! and~18! that
P' /n2 andPi /n are constant following the~nonlinear! mo-
tion of a fluid element. Evidently, the role of the strong f
cusing field@Eqs. ~13! and ~14!# has an isotropizing effec
similar to that of collisions. Note from Eq.~17! that when
]/]z50 the dependence ofP' on n is double adiabatic
(P'}n2), corresponding totwo degrees of freedom in th
plane perpendicular toBf êz . Hofmann showed that such
double-adiabatic equation of state is also valid in perio
focusing systems,49 and for reasonable equilibria withV'(r
50)50, it follows that P' /n2ur 505const. This constrain
can be regarded as a generalization of beam emittance
servation for a periodically focused KV beam equilibrium
the case of periodically focused non-KV distributions.

The equilibrium and stability analysis in Secs. III–V
carried out in cylindrical polar coordinates (r ,u,z), where
x5r cosu, y5r sinu, and r 5(x21y2)1/2 is the radial dis-
tance from the beam axis. For completeness, we record
the complete set of dynamical equations for the beam den
n(r ,u,z,t), flow velocity V5Vr(r ,u,z,t)êr1Vu(r ,u,z,t)êu

1Vz(r ,u,z,t)êz , and perpendicular and parallel pressur
P'(r ,u,z,t) and Pi(r ,u,z,t). In cylindrical coordinates,
Eqs.~9!, ~10!, ~15!, and~16! become

]

]t
n1

1

r

]

]r
~rnVr !1

1

r

]

]u
~nVu!1

]

]z
~nVz!50, ~19!

mnS ]

]t
1Vr

]

]r
1

Vu

r

]

]u
1Vz

]

]zDVr2n
Vu

2

r
1

]

]r
P'

5ZienS 2
]

]r
f2

mv f
2

Zie
r 1

Vu

c
Bf D , ~20!

mnS ]

]t
1Vr

]

]r
1

Vu

r

]

]u
1Vz

]

]zDVu1n
VuVr

r
1

1

r

]

]u
P'

5ZienS 2
1

r

]

]u
f2

Vr

c
Bf D , ~21!

mnS ]

]t
1Vr

]

]r
1

Vu

r

]

]u
1Vz

]

]zDVz1
]

]z
Pi

52Zien
]

]z
f, ~22!
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S ]

]t
1Vr

]

]r
1

Vu

r

]

]u
1Vz

]

]zD P'12P'S 1

r

]

]r
rVr

1
1

r

]

]u
Vu1

]

]z
VzD2P'

]

]z
Vz50, ~23!

S ]

]t
1Vr

]

]r
1

Vu

r

]

]u
1Vz

]

]zD Pi

1PiS 1

r

]

]r
rVr1

1

r

]

]u
Vu1

]

]z
VzD

12Pi

]

]z
Vz50. ~24!

Equations~19!–~24! describe the nonlinear evolution ofn,
Vr , Vu , Vz , P' , and Pi , and of course must be supple
mented by Poisson’s equation~6! for the electrostatic poten
tial f(r ,u,z,t). In cylindrical coordinates, Eq.~6! can be
expressed as

S 1

r

]

]r
r

]

]r
1

1

r 2

]2

]u2 1
]2

]z2Df524pZien. ~25!

In summary, Eqs.~19!–~25! together with the appropri-
ate boundary and initial~time t50! conditions constitute a
closed macroscopic description of the nonlinear evolution
the system in the context of the present warm-fluid mod
Most notably, Eqs.~19!–~25! incorporate the effects of pres
sure anisotropy, beam rotation, a focusing magnetic fi
Bf êz , and a focusing electric fieldEf52(m/Zie)v f

2r êr due
to a fixed, uniform charge background.

III. BASIC EQUATIONS

In this section we make use of Eqs.~19!–~25! to inves-
tigate equilibrium properties (]/]t50) for axisymmetric
beam propagation parallel toBf êz ~Sec. III A!, and to derive
linearized equations describing the evolution of sma
amplitude perturbations~Sec. III B!. The linearized equa-
tions are then used to obtain the electrostatic eigenva
equation in the cold-beam approximation~Sec. III C!. Fi-
nally, in the warm-beam case, the linearized equations
simplified for the special case of axisymmetric flute pert
bations with ]/]u505]/]z ~Sec. III D!. Henceforth, all
analysis is restricted to an unbunched beam equilibri
(]/]z50) and, in practice, applies near the axial midpulse
a long-pulse beam.

A. Equilibrium properties

An equilibrium analysisof Eqs. ~19!–~25! for axisym-
metric, unbunched beam propagation proceeds by settin

]

]t
5

]

]z
5

]

]u
50, ~26!

corresponding to time-stationary solutions with no axial
azimuthal spatial variations. We denote the equilibrium p
files by n0(r ), Vr

0(r ), Vu
0(r ), Vz

0(r ), P'
0 (r ), Pi

0(r ), and
f0(r ). Making use of Eq.~26!, examination of Eqs.~19!–
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~25! shows that the radial flow velocity is necessar
Vr

0(r )50. We further assume that the axial flow veloci
satisfies

Vz
0~r !5Vb5const, ~27!

whereas the azimuthal flow velocityVu
0(r ) is generally al-

lowed to be nonzero. The assumption in Eq.~27! is consis-
tent provided the space-charge-induced electrostatic pote
energy variation over the transverse beam profile is ne
gible in comparison to the average axial particle kinetic
ergy, i.e., (1/2)mVb

2@Zie@f0(0)2f0(r b)#, wherer b is the
characteristic beam radius. In addition, the parallel press
Pi

0(r ) can have generalr dependence, whereas the perpe
dicular pressureP'

0 (r ) is related toVu
0(r ), n0(r ) andf0(r )

by the radial force balance equation~20!. Introducing the
cyclotron frequencyvc and the equilibrium angular rotatio
velocity 2v r(r ) defined by

vc5
ZieBf

mc
,

~28!

2v r~r !5
Vu

0~r !

r
,

it is readily shown that Eq.~20! reduces to

n0@v r~vc2v r !1v f
2#r 1

1

m

]

]r
P'

0 52n0
]

]r S Zief0

m D
~29!

for ]/]t5]/]u5]/]z50. The sign convention forv r in
Eqs.~28! and ~29! is chosen so that the equilibrium angul
rotation velocityv r is positive for positive ion charge spe
cies (Zie.0) with Vu

0,0. Furthermore, Poisson’s equatio
~25! for f0(r ) becomes

1

r

]

]r
r

]

]r S Zief0

m D52
4pZi

2e2

m
n0~r !. ~30!

Equations~27!, ~29!, and ~30! constitute the final equi-
librium equation within the context of the assumptions en
merated in Sec. II. Note that Eq.~29! represents a radia
force balance between the inward~focusing! forces due to
the axial magnetic field and the fixed background charge~the
terms proportional tovcv r andv f

2! and the outward~defo-
cusing! forces due to the centrifugal, pressure-gradient a
space-charge forces on a fluid element~the terms propor-
tional to v r

2, ]P'
0 /]r and ]f0/]r , respectively!. It is also

evident that the functional form of any two of the profiles f
v r(r ), n0(r ), P'

0 (r ), and f0(r ) can be specified, and th
remaining two profiles calculated self-consistently from E
~29! and ~30!. That is, there is considerable latitude in t
choice of equilibrium profiles consistent with Eqs.~29! and
~30!. It should also be pointed out that the special case wh
v r(r )5v̂ r5const corresponds to arigid-rotor equilibrium,
which has been extensively investigated in the literature
ing a kinetic model based on the Vlasov–Maxw
equations.1 We now illustrate the application of Eqs.~29!
and ~30! to specific examples of self-consistent equilibriu
profiles.
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1. Thermal equilibrium

In thermal equilibrium, the angular velocity profil
v r(r ) is constant~independent ofr !,

v r~r !5v̂ r5const, ~31!

and the perpendicular pressure profileP'
0 (r ) has the form

P'
0 ~r !5n0~r !T̂' , ~32!

where T̂'5const is the temperature~in energy units!. Sub-
stituting Eqs.~31! and~32! into Eq.~29! and integrating with
respect tor gives

nb
0~r !5n̂ expS 2

m

2T̂'

H @v̂ r~vc2v̂c!1v f
2#r 2

1
2Zie

m
f0~r !J D . ~33!

Here, n̂5n0(r 50) is the on-axis density, andf0(r 50)
50 has been assumed without loss of generality. Equa
~33! can be substituted into Eq.~30!, and Poisson’s equation
integrated numerically to determine the self-consistent p
files for f0(r ) and n0(r ). This has been done in othe
publications,1,2,29,30 and the results won’t be repeated he
except to note that for appropriate range of rotational para
eterv̂ r and on-axis beam densityn̂, the density profilen0(r )
in Eq. ~33! is bell-shaped, assuming its maximum value (n̂)
on-axis. Furthermore, the characteristic beam radiusr b ~as-
sumed to be small in comparison with the wall radiusr w! can
be many times the thermal Debye lengthlD

5(T̂'/4pZi
2e2n̂)1/2, with nearly flat density profile (n0.n̂)

in the beam interior, and withn0(r ) decreasing to exponen
tially small values over a scale length comparable tolD in
the outer surface region of the beam.

2. Warm-fluid Kapchinskij –Vladimirskij (KV)
equilibrium

As a second example, we consider the case where
density profilen0(r ) has the form of the step-function

n0~r !5 H n̂5const, 0<r ,r b,
0, r b,r<r w, ~34!

and the perpendicular pressure profile has the parabolic f
described by

P'
0 ~r !5H n̂T̂'S 12

r 2

r b
2D , 0<r ,r b,

0, rb,r<rw .

~35!

Here,r b5const is the beam radius,n̂5const is the density in
the beam interior, andT̂'5const is the effective perpendicu
lar temperature in energy units on axis (r 50). From Eq.
~34!, note that the number of particles per unit axial leng
N52p *0

r wdr rn0(r ), can be expressed as

N5pr b
2n̂ ~36!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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for the step-function density profile in Eq.~34!. Substituting
Eq. ~34! into Eq. ~30!, Poisson’s equation can be integrat
to give

f0~r !5H 2ZieN
r 2

r b
2 , 0<r ,r b,

2ZieNF112 lnS r

r b
D G , r b,r<r w .

~37!

Here, N is related to the plasma frequency-squared in
beam interior, v̂p

2[4pZi
2e2n̂/m, by Zi

2e2N/mrb
2[v̂p

2/4.
Without loss of generality, the constant occurring in Eq.~7!
has been taken to bef0(r 5r w)52ZieN@112 ln(rw /rb)#.
Substituting Eqs.~34!, ~35!, and ~37! into the radial force
balance equation~29! then gives

v̂ r~vc2v̂ r !1v f
22

2T̂' /m

r b
2 5

2Zi
2e2Nb

mrb
2 5

v̂p
2

2
, ~38!

in the region wheren0(r ) is nonzero. From Eq.~38!, note
that v r(r )5v̂ r5const~independent ofr !, corresponding to
a rigid-rotor equilibrium. The quantityv̂ r can be related
directly to the average canonical angular momentum^Pu&
defined by

^Pu&5
2p*0

r wdr rPu
0n0~r !

2p*0
r wdr rn0~r !

, ~39!

wherePu
05mr(Vu

01rvc/2) is the canonical angular momen
tum of a fluid element, andVu

0(r )52v̂ r r . Substituting Eq.
~34! into Eq. ~39! readily gives

^Pu&52mS v̂ r2
vc

2 D r b
2

2
. ~40!

That is,^Pu&50 whenever the beam is rotatingexactlyat the
Larmor frequency (v̂ r5vc/2).

The profiles in Eqs.~34!, ~35!, and ~37! all have the
familiar signature of the KV beam equilibrium,10 considered
here in the context of a warm-fluid model. Indeed, the for
balance equation~38! can be cast into the form of the fami
iar envelope equation1,2,21,24for a KV beam in the smooth
beam approximation (r b5const). In this regard, we
introduce the self-field perveanceK, the unnormalized trans
verse emittanceed associated with thedirected azimuthal
motion ~relative to the Larmor frequency!, the unnormalized
transverse thermal emittancee th , and the focusing coeffi-
cient k f defined by

K5
2NZi

2e2

mVb
2 5

r b
2v̂p

2

2Vb
2 ,

ed
25S 2^Pu&

mVb
D 2

,
~41!

e th
2 5

2T̂'r b
2

mVb
2 ,

k f5S vc

2Vb
D 2

1S v f

Vb
D 2

.
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Here,Vb is the average axial velocity of the beam,K is the
dimensionless self-field perveance, the unnormalized e
tancesed ande th have dimensions of length, and the focusi
coefficientk f has dimensions of (length)22. Making use of
Eqs.~40! and~41!, the radial force balance equation~38! can
be expressed in the compact form

k f r b2
K

r b
2

ed
21e th

2

r b
3 50. ~42!

Equation~42! is identical in form to the familiar envelope
equation1,2,21,24 for a constant-radius KV beam. Note th
e25ed

21e th
2 plays the role of atotal effective emittance-

squared in Eq.~42!. Moreover, whenever the beam rotates
exactly the Larmor frequency (v̂ r5vc/2), then^Pu&50 and
ed50. In this case, the only emittance contribution in E
~42! is e th

2 , which is proportional to the on-axis perpendicul
temperatureT̂' .

3. Warm-fluid waterbag equilibrium

As a third and final equilibrium example, we consid
the radial force balance equation~29! in circumstances where
v r(r )5v̂ r5const, and the perpendicular pressure pro
P'

0 (r ) is assumed to have the double-adiabatic form

P'
0 ~r !5

T̂'

n̂
@n0~r !#2. ~43!

Here, the constantsn̂ and T̂' are the on-axis (r 50) values
of plasma density and effective temperature~in energy
units!, respectively. We substitute Eq.~43! into Eq.~29!, and
eliminate ]f0/]r by means of Eq.~30!. Operating with
r 21(]/]r )r¯ then gives the closed differential equation

1

r

]

]r
r

]

]r

n0~r !

n̂
2

1

lD
2 Fn0~r !

n̂
2

v̂ r~vc2v̂ r !1v f
2

v̂p
2/2 G50

~44!

for the equilibrium density profilen0(r ). In Eq. ~44!, lD

5(2T̂'/4pZi
2e2n̂)1/2 is an effective Debye length, andv̂p

5(4pZi
2e2n̂/m)1/2 the on-axis plasma frequency. Equatio

~44! is a ~linear! inhomogeneous Bessel’s equation forn0(r )
in the beam interior.2,28 Solving Eq.~44! for n0(r ), we ob-
tain

n0~r !5H n̂
I 0~r b /lD!2I 0~r /lD!

I 0~r b /lD!21
, 0<r ,r b ,

0, rb,r<rw .

~45!

Here, I 0(x) is the modified Bessel function of the first kin
of order zero, and the normalized beam radiusr b /lD is de-
termined self-consistently from

I 0~r b /lD!511
v̂p

2/2

v̂ rvc2v̂ r
21v f

22v̂p
2/2

. ~46!

Note from Eq.~45! that the density profilen0(r ) decreases
monotonically fromn̂ at r 50 to zero at the outer edge of th
beam (r 5r b). Note also from Eq.~46!, that v̂ rvc2v̂ r

2

1v f
2>v̂p

2/2 is required for existence of the equilibrium
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Moreover, the beam radiusr b is large in comparison with the
Debye length lD whenever v̂ rvc2v̂ r

21v f
2 is ‘‘closely

tuned’’ to v̂p
2/2.

That completes the summary of selected equilibrium
amples. Clearly, a wide variety of warm-beam equilibria c
be constructed consistent with Eqs.~27!, ~29!, and~30!, and
the assumptions enumerated in Sec. II. Moreover, it sho
be kept in mind that the functional form of the parallel pre
sure profilePi

0(r ) can be specified arbitrarily for the case
axisymmetric beam propagation with]/]u50 and ]/]z
50.

B. Linearized equations

We now make use of Eqs.~19!–~25! to investigate the
evolution of small-amplitude perturbations about the equi
rium profiles described by Eqs.~27!, ~29!, and ~30!. All
quantities are expressed as an equilibrium value (c0) plus a
perturbation (dc), i.e., c(x,t)5c0(r )1dc(x,t), where

dc~x,t !5 (
l 52`

`

(
kz52`

`

dc l~r ,kz ,v!exp@ i ~ lu1kzz2vt !#.

~47!

Here l is the azimuthal mode number,kz52pn/L is the
axial wave number, wheren is an integer andL is the fun-
damental axial periodicity length of the perturbation, andv
is the complex oscillation frequency, with Imv.0 corre-
sponding to instability~temporal growth!. We expand the
perturbations according to Eq.~47! in Eqs. ~19!–~25!, and
linearize for small-amplitude perturbations about the equi
rium profilesn0(r ),V052v r(r )r êu1Vbêz , P'

0 (r ), Pi
0(r ),

and f0(r ). Some straightforward algebra in cylindrical c
ordinates gives

2 iVdnl1
1

r

]

]r
~rn0dVr

l !1
i l

r
n0dVu

l 1 ikzn
0dVz

l 50, ~48!

2 iVn0dVr
l 2~vc22v r !n

0dVu
l

52
1

m S ]

]r
dP'

l 2
dnl

n0

]

]r
P'

0 D2
Zie

m
n0

]

]r
df l , ~49!

2 iVn0dVu
l 1Fvc2

1

r

]

]r
~r 2v r !Gn0dVr

l

52
1

m

il

r
dP'

l 2
Zie

m

il

r
n0df l , ~50!

2 iVn0dVz
l 52

1

m
ikzdPi

l 2
Zie

m
ikzn

0df l , ~51!

2 iVdP'
l 1

]P'
0

]r
dVr

l

12P'
0 S 1

r

]

]r
rdVr

l 1
i l

r
dVu

l 1 ikzdVz
l D2 ikzP'

0 dVz
l 50,

~52!
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
-
n

ld
-

-

-

2 iVdPi
l 1

]Pi
0

]r
dVr

l

1Pi
0S 1

r

]

]r
rdVr

l 1
i l

r
dVu

l 1 ikzdVz
l D12ikzPi

0dVz
l 50,

~53!

S 1

r

]

]r
r

]

]r
2

l 2

r 22kz
2D df l524pZiednl . ~54!

In Eqs. ~48!–~51!, we have introduced the Doppler-shifte
complex oscillation frequencyV defined by

V[v1 lv r2kzVb . ~55!

Equations~48!–~54! constitute the final set of linearize
equations in the present warm-fluid model. As a general
mark, keep in mind that the equilibrium profiles forv r(r ),
n0(r ), P'

0 (r ), andf0(r ) are related self-consistently by th
equilibrium radial force balance equation~29! and Poisson’s
equation~30!. In this regard, in obtaining Eq.~49!, we have
made use of Eq.~29! to simplify the term proportional to
dnl]P'

0 /]r on the right-hand side of Eq.~49!. An analysis of
Eqs. ~48!–~54! proceeds in the following manner. The pe
turbed pressures,dP'

l anddPi
l , are first calculated in terms

of dVr
l anddVu

l and dVz
l from Eqs.~52! and ~53! and then

substituted in the linearized force balance equations~49!–
~51!. Equations~48!–~51! are then used to determine th
perturbed flow velocity components,dVr

l , dVu
l , anddV

z

l , in
terms of the perturbed potentialdf l , and the results used in
the continuity equation~48! to expressdnl in terms ofdf l .
Equation ~48! then becomes an eigenvalue equation
df l(r ) and the complex oscillation frequencyv. The eigen-
value equation fordf l(r ) must be solved~often numeri-
cally! subject to the requirement thatdf l(r ) be regular at the
origin (r 50) and continuous over the interval 0<r<r w ,
wherer w is the radius of the conducting wall. Assuming th
the wall is perfectly conducting, we further require that t
tangential electric field be zero atr 5r w , i.e., dEz

l (r 5r w)
505dEu

l (r 5r w), which gives the boundary condition@see
Eq. ~7!#

df l~r 5r w!50. ~56!

We now make use of Eqs.~48!–~54! to establish the
appropriate eigenvalue equation for the two limiting cas
analyzed in Secs. IV and V.

C. Cold-beam eigenvalue equation

We first simplify Eqs.~48!–~54! in the cold-beam limit
where P'

0 (r )505Pi
0(r ). In this case,dP'

l 505dPi
l fol-

lows from Eqs.~52! and ~53!, and the equilibrium radial
force balance equation~29! reduces to

@v r~vc2v r !1v f
2#r 5

4pZi
2e2

m

1

r E
0

r

dr8 r 8n0~r 8! ~57!

in the region wheren0(r ) is nonzero. Here, use has bee
made of Eq. ~30! to eliminate ]f0/]r in favor of
*0

r dr rn0(r ). Substituting P'
0 505Pi

0 and dP'
l 505dPi

l

into Eqs.~49!–~51!, and solving fordVr
l , dVu

l , anddVz
l in
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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terms of the perturbed potentialdf l , the linearized
continuity-Poisson equations~48! and~54! can be combined
to give47

1

r

]

]r F r S 12
vp

2

G2D ]

]r
df l G2

l 2

r 2 S 12
vp

2

G2D df l

2kz
2S 12

vp
2

V2D df l52
ldf l

r

1

V

]

]r Fvp
2

G2 ~vc22v r !G .
~58!

Here, vp
2(r )54pZi

2e2n0(r )/m is the local plasma
frequency-squared, the equilibrium profiles forv r(r ) and
n0(r ) are related self-consistently by the radial force bala
equation~57!, andG2(r ,v) is defined by

G2~r ,v![V22~vc22v r !Fvc2
1

r

]

]r
~r 2v r !G . ~59!

The cold-beam eigenvalue equation~58! can be solved
numerically for a broad range of choices of density pro
n0(r ), and analytically for the choice of step-function de
sity profile in Eq.~34!. Note that the right-hand side of Eq
~58! vanishes identically wheneverl 50 ~azimuthally sym-
metric perturbations! or wheneverv r5vc/2, corresponding
to a rigid rotation of the beam equilibrium at the Larm
frequency. Here, keep in mind thatv r5vc/2 is equivalent to
^Pu&50 @see Eq.~40!#.

The cold-beam eigenvalue equation~58! will be ana-
lyzed in Sec. IV for the special case wheren0(r ) is a step-
function density profile.

D. Warm-beam eigenvalue equation for axisymmetric
flute perturbations with l 50 and k z50

We now simplify Eqs.~48!–~54! for the case of axisym-
metric flute perturbations with]/]u505]/]z. Substituting
l 50 andkz50, Eqs.~48!–~54! become

2 ivdn1
1

r

]

]r
~rn0dVr !50, ~60!

2 ivn0dVr2~vc22v r !n
0dVu

52
1

m S ]

]r
dP'2

dn

n0

]

]r
P'

0 D2
Zie

m
n0

]

]r
df, ~61!

2 ivn0dVu1Fvc2
1

r

]

]r
~r 2v r !Gn0dVr50, ~62!

2 ivn0dVz50, ~63!

2 ivdP'52
]P'

0

]r
dVr22P'

0 1

r

]

]r
rdVr , ~64!

2 ivdPi52
]Pi

0

]r
dVr2Pi

0 1

r

]

]r
rdVr , ~65!

1

r

]

]r
r

]

]r
df524pZiedn. ~66!

Here, we have dropped the superscriptl notation for thel
50 perturbations. Note from Eq.~63! that dVz50. More-
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over, althoughdPi is generally nonzero from Eq.~65!, the
perturbed parallel pressure is not required in the s
consistent determination ofdVr required in the continuity
equation~60!. Also, keep in mind that the equilibrium pro
files for v r(r ), P'

0 (r ), and n0(r ) occurring in Eqs.~60!–
~65! are related self-consistently by the radial force balan
equation~29! and the Poisson equation~30!.

We make use of Eqs.~60!, ~62!, and ~64! to eliminate
dn, dVu , anddP' , respectively, in favor ofdVr , and sub-
stitute the resulting expressions into the linearized rad
force balance equation~61! for dVr . Some straightforward
algebraic manipulation gives

H v22~vc22v r !Fvc2
1

r

]

]r
~r 2v r !G J n0dVr

52
1

m H ]

]r S dVr

]

]r
P'

0 D1
]

]r S 2
P'

0

r

]

]r
rdVr D

2
1

n0r

]P'
0

]r

]

]r
~rn0dVr !J 2

ivZie

m
n0

]

]r
df. ~67!

Equation ~67! provides a direct relation between the pe
turbed radial flow velocitydVr and the perturbed electro
static potentialdf. A second relation betweendVr and df
can be obtained from Eqs.~60! and~66!, which can be com-
bined to give

1

r

]

]r
r

]

]r
df5

4p iZie

v

1

r

]

]r
rn0dVr . ~68!

For present purposes, it is assumed that the density pr
n0(r ) extends fromr 50 to an outer radiusr 5r b , and that
n0(r )50 in the vacuum regionr b,r<r w . Integrating Eq.
~68! once with respect tor then gives

]

]r
df5

4p iZie

v
n0dVr , 0<r ,r b , ~69!

in the beam interior. Here, we have set the constant of in
gration equal to zero in Eq.~69! because of the requiremen
that df(r ) be regular atr 50. On the other hand, in the
vacuum region wheren0(r ) anddn are zero, Eq.~68! @or Eq.
~66!# can be integrated to give

]

]r
df5

A

r
, r b,r<r w , ~70!

whereA5const. Of coursedf(r ) must be continuous atr
5r b , and any discontinuity in (]/]r )df at r 5r b is related
to the surface-charge perturbation atr 5r b by the jump con-
dition

F ]

]r
dfG

r b~11e!

2F ]

]r
df G

r b~12e!

52
4pZie

r b
E

r b~12e!

r b~11e!

dr rdn

52
4p iZie

v
@n0dVr # r b~12e! ~71!
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in the limit e→01. Here, use has been made of Eqs.~66!
and ~68! to obtain Eq.~71!. Substituting Eqs.~69! and ~70!
on the left-hand side of Eq.~71! readily gives the condition
A50. It therefore follows from Eq.~70! that the perturbed
radial electric field is zero in the vacuum region, i.e.,

]

]r
df50, r b,r<r w , ~72!

for the class of axisymmetric flute perturbations withl 50
andkz50 considered here.

We therefore conclude that Eq.~69! is a valid expression
for (]/]r )df over the entire interval 0<r<r w , including
the vacuum region wheren0(r )50. Substituting Eq.~69!
into Eq. ~67! then gives the closed eigenvalue equation
dVr ,

H v22~vc22v r !Fvc2
1

r

]

]r
~r 2v r !G2vp

2~r !J n0dVr

52
1

m H ]

]r S dVr

]

]r
P'

0 D1
]

]r S 2
P'

0

r

]

]r
rdVr D

2
1

n0r

]P'
0

]r

]

]r
~rn0dVr !J . ~73!

Here, vp
2(r )54pZi

2e2n0(r )/m is the local plasma
frequency-squared. Equation~73! is the final form of the
eigenvalue equation for axisymmetric flute perturbatio
with l 50 andkz50 using the warm-beam fluid model de
veloped in Sec. II. As noted earlier, Eq.~73! is valid for
general equilibrium profilesv r(r ), n0(r ), andP'

0 (r ) consis-
tent with the radial force balance equation~29! and Poisson’s
equation~30!. The advantage of having integrated the con
nuity equation~60! and Poisson’s equation~66! to obtain the
relation in Eq.~69! is evident. The eigenvalue equation~73!
for dVr is second order~with respect to ther derivatives!,
whereas the analogous eigenvalue equation fordf when
thermal effects are included would be third order.

Equation~73! will be used in Sec. V to investigate de
tailed stability properties for the choice of step-function de
sity profile and parabolic pressure profile in Eqs.~34! and
~35!.

IV. COLD-BEAM STABILITY PROPERTIES

The cold-beam eigenvalue equation~58!, derived for the
case of zero transverse and longitudinal equilibrium pr
sures@i.e., P'

0 (r )505Pi
0(r )#, can be used to investigate d

tailed stability properties for a wide range of equilibriu
density profilesn0(r ) and angular velocity profilesv r(r )
consistent with the cold-fluid radial force balance equat
~57!. For present purposes, we consider the case wheren0(r )
has the step-function profile in Eq.~34! and Fig. 1. This
simple case, corresponding to a cold KV beam equilibri
with T̂'50, allows analytical progress and can be physica
motivated. In many intense-beam applications, the ther
emittancee th is small and the transverse density profile
approximately uniform over a distance of many thermal D
bye lengthslD out to some radiusr b(@lD), where the den-
sity falls abruptly to zero over a few Debye lengths. In su
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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instances, the fluid modes predicted by this cold-beam mo
should be similar to those of realistic beam distributions.

For a cold beam with step-function density profil
T̂'50 and the equilibrium force balance equation~57! re-
duces to the simple condition

v̂ r~vc2v̂ r !1v f
25

v̂p
2

2
~74!

in the beam interior (0<r ,r b). Here, v̂p
254pn̂Zi

2e2/m,
wheren0(r )5n̂5const andv r(r )5v̂ r5const are the equi-
librium density and angular rotation velocity in the interv
0<r ,r b . Equation~74! can be solved for the angular rota
tion velocity to give

v̂ r5
vc

2
6F S vc

2 D 2

1v f
22

v̂p
2

2 G1/2

. ~75!

For existence of the equilibrium, it follows from Eq.~75!
that the inequality

se[
2v̂p

2

vc
214v f

2 <1 ~76!

is required, wherese is a positive, dimensionless measure
space-charge strength. Forse.1, radially confined equilibria
do not exist because the defocusing self-field force prop
tional to v̂p

2/2 is too large for the beam to be radially co
fined by the net focusing force proportional to (vc/2)2

1v f
2. The limiting case,se→1 is referred to as the Brillouin

density limit and corresponds to the space-charge limit of
transport channel neglecting thermal effects. Further anal
of the equilibrium structure of a KV beam is presented
Appendix A.

For the step-function density profile in Eq.~34!, the av-
erage canonical angular momentum^Pu& is given by Eq.
~40! as ^Pu&52m(v̂ r2vc/2)r b

2/2. It follows that ^Pu&50
implies that the beam is rotating at the Larmor frequen
i.e., v̂ r5vc/2. Note also that Eq.~75! can be expressed in
terms of the space-charge parameterse as

v̂ r2
vc

2
56

v̂p

&

S 12se

se
D 1/2

. ~77!

FIG. 1. Equilibrium density profilen0(r ) is plotted as a function of radiusr
for a step-function density profile. A perfectly conducting, cylindrical wa
is located atr 5r w .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Equation~77! shows that a cold KV equilibrium witĥPu&
50 corresponds to the Brillouin density limit with self-fiel
parameterse51, whereaŝ Pu&Þ0 corresponds tose,1.

For the step-function density profile in Eq.~34!, the
cold-beam eigenvalue equation~58! reduces to47

1

r

]

]r H r F12
vp

2~r !

V224~v̂ r2vc/2!2G ]

]r
df l J

2
l 2

r 2 F12
vp

2~r !

V224~v̂ r2vc/2!2Gdf l

2kz
2F12

vp
2~r !

V2 Gdf l

52
2ldf l

r

v̂p
2~v̂ r2vc/2!

V@V224~v̂ r2vc/2!2#
d~r 2r b!, ~78!
l
l
re
q

,

th
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whereV5v1 l v̂ r2kzVb is the Doppler-shifted oscillation
frequency,d(x) is the Dirac delta-function, and

vp
2~r !5 H v̂p

25const, 0<r ,r b,
0, rb,r<rw .

~79!

The eigenvalue equation~78! can be solved analytically be
cause the coefficients proportional tovp

2(r ) are constant,
both inside the beam, wherevp

2(r )5v̂p
2, and outside the

beam, wherevp
2(r )50. The solution that is regular atr

50, continuous atr 5r b , and satisfiesdf l(r 5r w)50 at the
conducting wall can be expressed as
df l~r !5H AlJl~Tr !, 0<r ,r b,

AlJl~Trb!
I l~kzr !Kl~kzr w!2Kl~kzr !I l~kzr v!

I l~kzr b!Kl~kzr w!2Kl~kzr b!I l~kzr w!
, r b,r<r w ,

~80!
en-
ly.
de
sity

y

’’
Eq.

all

r the

-

whereT2 is defined by

T252kz
2

12v̂p
2/V2

12v̂p
2/@V224~v̂ r2vc/2!2#

. ~81!

Here,Al is a constant,Jl(x) is the l th-order ordinary Besse
function, andI l(x) andKl(x) are l th-order modified Besse
functions of the first and second kind, respectively. The
maining boundary condition is obtained by integrating E
~78! across the surface of the beam atr 5r b . Multiplying Eq.
~78! by r , and operating with* r b(12e)

r b(11e)
dr¯ , where e

→01, readily gives

F ]

]r
df l G

r 5r b~11e!

2F12
v̂p

2

V224~v̂ r2vc/2!2G
3F ]

]r
df l G

r 5r b~12e!

52
2l @df l # r 5r b

r b

v̂p
2~v̂ r2vc/2!

V@V224~v̂ r2vc/2!2#
. ~82!

Substituting Eqs.~80! into Eq. ~82! and rearranging terms
we obtain the dispersion relation

kzr b

Kl~kzr w!I l8~kzr b!2Kl8~kzr b!I l~kzr w!

Kl~kzr w!I l~kzr b!2Kl~kzr b!I l~kzr w!

2F12
v̂p

2

V224~v̂ r2vc/2!2GTrb

Jl8~Trb!

Jl~Trb!

522l
v̂p

2~v̂ r2vc/2!

V@V224~v̂ r2vc/2!2#
. ~83!

Here, a prime denotes differentiation with respect to
functional argument, i.e.,Jl8(Trb)5@dJl(x)/dx#x5Trb

. The
-
.

e

Bessel function recursion relationsxJl8(x)5 lJ l(x)
2xJl 11(x), xIl8(x)5 l I l(x)1xIl 11(x), and xKl8(x)5 lK l

(x)2xKl 11(x) can be used to further simplify Eq.~83! and
subsequent expressions.

Often, the beam density is directly measured experim
tally, whereas the potential must be inferred indirect
Therefore, it is also useful to determine the normal-mo
eigenfunction expressed in terms of the perturbed den
dn. In this regard, the Poisson equation~54! and the eigen-
value equation~78! can be employed withdf l given by Eq.
~80! to express the eigenfunction fordnl(r ) as

dnl~r !5
Al

4pZie
~kz

22T2!Jl~Tr !Q~r b2r !

1
Al

4pZie

v̂p
2

V224~v̂ r2vc/2!2 FTrbJl8~Trb!

12lJ l~Trb!
v̂ r2vc/2

V G 1

r
d~r 2r b!, ~84!

where Q(x) is the Heaviside step function defined b
Q(x)51 for x.0 andQ(x)50 for x,0. The terms in the
expression fordnl in Eq. ~84! that multiply the step and delta
functions correspond to ‘‘body-wave’’ and ‘‘surface-wave
perturbations, respectively. The surface-wave term in
~84! is a singular layer of charge at the edge radiusr b of the
beam that is a manifestation, within linear theory, of a sm
change in the edge radius of the beam.~This can be demon-
strated using analogous arguments to those employed fo
case of warm-beam perturbations withkz50 and l 50 in
Appendix C.! Comparing Eqs.~80! and ~84!, note that the
body-wave component (0<r ,r b) of the cold-beam density
eigenfunction,dnl , is proportional to the potential eigen
function df l .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The eigenfunction~80! and the dispersion relation~83!
describe perturbations about a cold-beam equilibrium w
step-function density profile. In general, the dispersion re
tion ~83! is a transcendental equation which determines
Doppler-shifted oscillation frequencyV5v1 l v̂ r2kzVb in
terms of the azimuthal mode numberl , the normalized axial
wave numberkzr b , the beam plasma frequencyv̂p , and the
shifted frequencyv̂ r2vc/2522^Pu&/mrb

2. For present pur-
poses, we analyze, in turn, properties of the solutions to
~83! for zero and nonzero canonical angular moment
^Pu&. For ^Pu&50, the solution is described analytically. O
the other hand, for̂ Pu&Þ0, the solution to Eq.~83! must
generally be determined numerically. Various limiting cas
including those with multispecies generalizations a
streaming instabilities, have been analyzed elsewhere.47

A. Beam equilibrium with zero canonical angular
momentum

In Sec. III A 2, it was shown for a warm-fluid KV beam
equilibrium that nonzero canonical angular momentum^Pu&
f
e

q.
i-
a
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d

plays the role of a directed emittance,ed52u^Pu&u/mVb .
This directed emittanceed adds in quadrature with the the
mal beam emittance,e th5(2T̂'r b

2/mVb
2)1/2, to produce the

total effective emittance-squarede2 of the beam, i.e.,e2

5ed
21e th

2 . The total emittance-squarede2 and the self-field
perveanceK5v̂p

2r b
2/2Vb

2 then fix the equilibrium beam ra
dius r b , determined from the envelope equation~42!. Larger
emittance leads to increased beam radiusr b . Because of this,
intense beams are usually launched from the source u
conditions such that̂Pu&50 in order to reduce the trans
verse beam size. Thus, the special case of a cold beam
^Pu&50 is of considerable practical interest.

A cold KV beam equilibrium witĥ Pu&50 necessarily
rotates at the Larmor frequency withv̂ r5vc/2, which cor-
responds to the Brillouin density limit with space-charge p
rameterse51. For v̂ r5vc/2, it follows from Eq. ~81! that
T252kz

2, and Jl(Tr)5 i l I l(kzr ). In this case, the expres
sions for the eigenfunction in terms of the perturbed poten
@Eq. ~80!# and perturbed density@Eq. ~84!# reduce to
df l~r !5H i lAl I l~kzr !, 0<r ,r b,

i lAl I l~kzr b!
I l~kzr !Kl~kzr w!2Kl~kzr !I l~kzr w!

I l~kzr b!Kl~kzr w!2Kl~kzr b!I l~kzr w!
, r b,r<r w ,

~85!
ity
-

V
he
he
and

dnl~r !5
i lAl

2pZie
kz

2I l~kzr !Q~r b2r !

1
i lAl

4pZie

v̂p
2

V2 kzr bI l8~kzr b!
1

r
d~r 2r b!, ~86!

respectively. The solution in Eq.~85! can also be obtained
directly by noting forv̂ r5vc/2 that the right-hand side o
the eigenvalue equation~78! vanishes, and the eigenvalu
equation reduces to

1

r

]

]r H r F12
vp

2~r !

V2 G ]

]r
df l J

2S l 2

r 2 1kz
2D F12

vp
2~r !

V2 Gdf l50. ~87!

Because the coefficients proportional tovp
2(r ) in the reduced

eigenvalue equation~87! are constant both inside the beam
wherevp

2(r )5v̂p
2, and outside the beam, wherevp

2(r )50,
Eq. ~87! is of the modified Bessel form. The solution in E
~85! then follows trivially from the relevant boundary cond
tions. Similarly, after some algebraic simplifications th
make use ofv̂ r5vc/2, the dispersion relation~83! reduces to

V25v̂p
2

I l8~kzr b!

I l~kzr w! F I l~kzr b!Kl~kzr w!2Kl~kzr b!I l~kzr w!

I l~kzr b!Kl8~kzr b!2Kl~kzr b!I l8~kzr b!G .
~88!
,

t

Using the modified Bessel function Wronskian ident
I l8(x)Kl(x)2I l(x)Kl8(x)51/x, the cold-beam dispersion re
lation ~88! can be further simplified to give

V25v̂p
2kzr bI l~kzr b!I l8~kzr b!FKl~kzr b!

I l~kzr b!
2

Kl~kzr w!

I l~kzr w! G .
~89!

The dispersion relation~89! determines the oscillation
frequency of electrostatic perturbations about a cold K
beam equilibrium rotating at the Larmor frequency. T
simple analytical form of the dispersion relation is due to t
assumption thatv̂ r5vc/2. In the long-axial-wavelength
limit kz

2r w
2 !1, the dispersion relation~89! can be further

simplified using asymptotic expressions forI l(x) andKl(x)
to give

V2.5
v̂p

2

2
~kzr b!2 lnS r w

r b
D , kz

2r w
2 !1 and l 50,

vp
2

2 F12S r b

r w
D 2l G , kz

2r w
2 !1 and lÞ0.

~90!

Similarly, in the short-axial-wavelength limitskz
2r w

2 @1,l 2

andkz
2r b

2@1,l 2, the dispersion relation~89! simplifies to give

V2.H v̂p
2kzr bI l8~kzr b!Kl~kzr b!, kz

2r w
2 @1,l 2,

v̂p
2

2
, kz

2r b
2@1,l 2.

~91!
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Here, kz
2r w

2 @1,l 2 is used to denotekz
2r w

2 @1 for l 50 and
kz

2r w
2 @ l 2 for lÞ0, etc. Also, in Eqs.~90! and~91!, note that

r w.r b , so kz
2r w

2 !1 and kz
2r b

2@1 imply that kz
2r b

2!1 and
kz

2r w
2 @1, etc. Note from Eqs.~90! and ~91! that the plasma

oscillations described by Eq.~89! are dispersive. The l 50,
kz

2r w
2 !1 limit in Eq. ~90! is V25gv̂p

2(kzr b)2/4 with geomet-
ric factor g52 ln(rw /rb), which corresponds to the well
known oscillation frequency for long-wavelength longitud
nal perturbations in a cold beam with step-function dens
profile.47 Note also, that short-wavelength perturbations w
kz

2r b
2@1,l 2 have characteristic frequencyV56v̂p /&,

which is the well-known oscillation frequency of perturb
tions in beam radius~i.e., envelope oscillations! for a cold
KV beam.1,2

Plots of the normalized frequencyuV/v̂pu, obtained
from Eq. ~89!, versus normalized axial wave numberkzr b

are presented in Fig. 2 for 0<kzr b<10, r b /r w50.5, and
azimuthal mode numbersl 50, 1, 2, and 3. Note that ther
are two frequencies6uVu corresponding to each dispersio
curve plotted, and the normal modes associated with th
solutions are related by a phase difference. Note also f
Fig. 2 that thelÞ0 dispersion curves have only a weak d
pendence onkz , whereas thel 50 curve is strongly depen
dent onkz for kz

2r b
2&1. Consistent with Eq.~91!, all curves

approach the envelope-mode oscillation frequencyuV/v̂pu
51/& in the short-wavelength limitkz

2r b
2@1,l 2. The corre-

sponding eigenfunctionsdf l(r ), normalized todf l(r 5r b)
5i lAl I l(kzr b), are plotted versusr /r b in Fig. 3 for r in the
interval 0<r<r w and the choice of system parameterskzr b

51, r b /r w50.5, andl 50, 1, 2, and 3. Here, the expressio
for df l(r ) in Eq. ~85! has been used. As the azimuthal mo
numberl increases, we note from Fig. 3 that the eigenfu
tions df l(r ) become increasingly peaked atr 5r b , corre-
sponding to a strong surface-charge perturbation at the
face of the beam. Finally, note from Eqs.~85! and ~86! that
df l(r )/df l(r 5r b)5dnl(r )/dnl(r 5r b) interior to the beam
(0<r ,r b) and dnl(r )50 exterior the beam (r b,r<r w).
Therefore, the normalized potential curves in Fig. 3 se
equally well to illustrate the interior structure of the bod
wave component of the density eigenfunctiondnl(r ).

FIG. 2. Solutions for the normalized frequencyuV/v̂pu of electrostatic per-
turbations, calculated from the cold-fluid dispersion relation~89!, are plotted
as a function of normalized axial wave numberkzr b for a cold KV beam
equilibrium rotating at the Larmor frequency (v̂ r5vc/2). The ratio of beam
radius to conducting walls radius is chosen to ber b /r w50.5, and results are
shown for azimuthal mode numbersl 50, 1, 2, and 3.
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B. Beam equilibrium with nonzero canonical angular
momentum

Since the directed and thermal emittances,ed

52u^Pu&umVb and e th5(2T̂'r b
2/mVb

2)1/2 are indistinguish-
able in their contributions to the equilibrium envelope rad
of a KV beam@see Eq.~42!#, one might expect, particularly
for small azimuthal mode numbersl , that these emittance
also contribute in a qualitatively similar manner to the flu
modes supported by the equilibrium. In particular, one mi
conjecture that awarmKV beam with canonical angular mo
mentum ^Pu&52m(v̂ r2vc/2)r b

2/250 and total emittance
e5e th might support similar mode structure to a cold K
beam with^Pu&Þ0 and total emittancee5ed , provided the
values ofe th anded are the same.

Motivated by this conjecture, we now analyze the co
beam dispersion relation~83! for nonzero canonical angula
momentum^Pu&. It is found that the dispersion relation de
scribes stable electrostatic oscillations for all physically
lowed equilibrium parameters. In contrast to the case^Pu&
50 analyzed in Sec. IV A, when̂Pu&Þ0 andv̂ rÞvc/2, it
is found that analytical simplification is straightforward on
in the long-axial-wavelength regime wherekz

2r w
2 !1. In this

limit, asymptotic expressions for the Bessel functions can
employed to show that

V2.
v̂p

2

2
~kzr b!2 lnS r w

r b
D , ~92!

for kz
2r w

2 !1 andl 50, and

V.~v̂ r2vc/2!6
1

2 H 4S v̂ r2
vc

2 D 2

12v̂p
2F12S r b

r w
D 2l G J 1/2

, ~93!

for kz
2r w

2 !1 and lÞ0. Comparing Eqs.~92! and ~93! for
^Pu&Þ0 with the corresponding limits in Eq.~90! for ^Pu&
50, it is evident that the long-wavelengthl 50 solutions are
the same in the two cases. On the other hand, the lo
wavelengthlÞ0 solutions are modified when̂Pu&Þ0, i.e.,
when v̂ rÞvc/2.

FIG. 3. Solutions for the normalized eigenfunctiondf l /df l(r 5r b) of elec-
trostatic perturbations, calculated from Eq.~85!, are plotted as a function o
normalized radial coordinater /r b for a cold KV beam equilibrium rotating
at the Larmor frequency (v̂ r5vc/2). The system parameters are identical
those in Fig. 2 withkzr b51.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The important features of the solutions to the cold-be
dispersion relation~83! with ^Pu&Þ0 are illustrated in Fig.
4. Here the normalized frequencyV/v̂p , calculated numeri-
cally from Eq.~83!, is plotted versus normalized axial wav
numberkzr b for 0<kzr b<10 and the choice of system pa
rametersr b /r w50.5 and v̂ r2vc/250.5v̂p , and azimuth-
al mode numbersl 50, 1, and 2. This choice of relativ
angular velocity,v̂ r2vc/250.5v̂p , corresponds to self-field
parameterse5v̂p

2/(vc
214v f

2)52/3, and canonical angula
momentum^Pu&52mv̂p

2r b
2/4. For ^Pu&Þ0, note from Fig.

4 that the positive-~solid! and negative-frequency~dashed!
branches forV are of equal magnitude with opposite sign f
l 50, whereas the magnitudes are different whenlÞ0. The
corresponding eigenfunctionsdf l(r ), normalized to
df l(r 5r b)5AlJl(Trb), are plotted versusr /r b in Fig. 5 for
the same choice of system parameters as in Fig. 4 and
kzr b51. Here, the full expression fordf l(r ) in Eq. ~80! has
been used. Forl>1, note from Fig. 5 that the normalize
eigenfunctions for the positive-~solid! and negative-
frequency~dashed! solutions plotted in Fig. 4 have differen
functional forms within the beam (r ,r b), whereas outside
the beam (r .r b), or for l 50 within the beam, the normal
ized eigenfunctions are the same for both positive- a
negative-frequency solutions. Also, comparing Eqs.~80! and
~84!, note thatdf l(r )/df l(r 5r b)5dnl(r )/dnl(r 5r b) inte-
rior to the beam (0<r ,r b) anddnl(r )50 exterior the beam
(r b,r<r w). Therefore, analogous to the case where^Pu&
50, the normalized potential curves in Fig. 5 also illustra
the interior structure of the body-wave component of
density eigenfunctiondnl(r ).

Contrasting Figs. 2 and 3 obtained for^Pu&50 with the
corresponding Figs. 4 and 5 obtained for^Pu&Þ0, it is evi-
dent that the mode frequencies and eigenfunctions for e
trostatic perturbations about a cold KV beam equilibriu
exhibit a sensitive dependence on canonical angular mom
tum. In particular, finitê Pu& significantly changes the mod
structure. For̂ Pu&Þ0, the positive and negative mode fr
quenciesV remain equal in magnitude forl 50, but differ in
magnitude forlÞ0. This contrasts with the case^Pu&50,

FIG. 4. Solutions for the normalized frequencyV/v̂p of electrostatic per-
turbations, calculated from the cold-fluid dispersion relation~83!, are plotted
as a function of normalized axial wave numberkzr b for a cold KV beam
equilibrium with^Pu&Þ0. System parameters correspond tor b /r w50.5 and
v̂ r2vc/250.5v̂p , and results are shown for azimuthal mode numberl
50, 1, 2, and 3.
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where the positive and negative mode frequencies are e
in magnitude for alll . Moreover, the functional dependenc
of V on the normalized axial wave numberkzr b changes
significantly for finite ^Pu&. Larger-magnitude frequencie
uVu are found as (v̂ r2vc/2)2}^Pu&

2 is increased, and the
frequencies are shifted aboutV50. Also, the normalized
eigenfunctionsdf l(r )/df l(r 5r b) differ significantly within
the beam (r ,r b). The eigenfunction bifurcates from mod
fied Bessel function form, i.e.,df l(r );I l(kzr ), to ordinary
Bessel function form, i.e.,df l(r );Jl(Tr) with T real,
wheneverT2 defined in Eq.~81! satisfiesT2.0. It follows
from Eqs. ~81!, ~92!, and ~93! that for small ^Pu&

2}(v̂ r

2vc/2)2/v̂p
2!1 and kz

2r w
2 !1, this bifurcation to ordinary

Bessel function form occurs for azimuthal mode numbel
50 whenkz

2r w
2 ,8(v̂ r2vc/2)2/@v̂p

2 ln(rw /rb)#, and does not
occur for lÞ0. As (v̂ r2vc/2)2/v̂p

2 is increased, the bifurca
tion threshold value ofkz

2r b
2 increases forl 50, and modes

with lÞ0 begin to bifurcate forkz
2r b

2 less thanl -dependent
threshold values. It is found numerically, for (v̂ r

2vc/2)2/v̂b
2 sufficiently large at fixedr w /r b , that all al-

lowed frequenciesV correspond toT2.0 and df l(r )
;Jl(Tr), with T real for all azimuthal mode numbersl and
all values ofkzr b . The choice of̂ Pu&Þ0 parameters illus-
trated in Figs. 4 and 5 satisfy this threshold condition@for
r b /r w50.5, all modes havedf l(r );Jl(Tr), with T real for
all values ofl andkz

2r b
2 when uv̂ r2vc/2u/v̂p.0.457#. Con-

trasting Figs. 3 and 5, note that the ordinary Bessel func
structure of the eigenfunction illustrated in Fig. 5 is le
peaked at the beam edge (r 5r b) than for the case where th
eigenfunction has modified Bessel function structure as ill
trated in Fig. 3.

V. WARM-BEAM STABILITY PROPERTIES FOR
AXISYMMETRIC FLUTE PERTURBATIONS ABOUT A
KV BEAM EQUILIBRIUM

In all practical applications, charged particle beams ha
a finite velocity spread, which is represented in the pres
fluid model by nonzero transverse and longitudinal pr
sures,P'

0 (r ) andPi
0(r ). In a kinetic model, it is well-known

that the velocity spread of the beam equilibrium can hav

FIG. 5. Solutions for the normalized eigenfunctiondf l /df l(r 5r b) of elec-
trostatic perturbations, calculated from Eq.~80!, are plotted as a function o
normalized radial coordinater /r b for a cold KV beam equilibrium with
^Pu&Þ0. The system parameters are identical to those in Fig. 4 withkzr b

51.
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strong influence on the detailed stability properties of
system. The influence of finite velocity spread on the sta
ity behavior of the system must also be examined in
present fluid model. Further motivating this point, significa
differences in mode structure were found in Sec. IV fo
cold KV beam equilibrium with zero and nonzero canonic
angular momentum̂Pu&. These differences, together wit
the conjecture that finitêPu& can provide qualitatively simi-
lar effects to finite velocity spread further motivates the ne
for a warm-beam stability theory with nonzero pressure. T
general analysis of warm-beam stability properties forkz

Þ0 is complicated. Therefore, to obtain readily interpreta
results, we examine the fluid stability properties of a wa
KV beam equilibrium for the case of axisymmetric flute pe
turbations withl 50 andkz50. The analysis of more com
plicated modes with finite axial wave number (kzÞ0) is de-
ferred to future studies.

The warm-beam eigenvalue equation~73!, derived forl
50 andkz50, can be used to investigate transverse stab
properties for a wide range of warm-beam equilibria w
radial profiles for densityn0(r ), angular velocityv r(r ), and
perpendicular pressureP'

0 (r ) consistent with the warm-fluid
radial force balance equation~29!. In the present analysis, w
consider the special case corresponding to a warm KV b
equilibrium, where the equilibrium densityn0(r ) has the
step-function profile in Eq.~34! and Fig. 1, withn0(r )5n̂
5const within the beam (0<r ,r b), and the equilibrium
pressure profile decreases parabolically with radiusr within
the beam according toP'

0 (r )5n̂T̂'(12r 2/r b
2) with

T̂'5const@see Eq.~35!#. In this case, the equilibrium pres
sure gradient force is linear inr , and the radial force-balanc
equation~29! reduces to the simple form given in Eq.~38!.
Equation~38! can be solved for the angular rotation veloc
v̂ r to give

v̂ r5
vc

2
6F S vc

2 D 2

1v f
22

v̂p
2

2
2

2T̂'

mrb
2G1/2

. ~94!

This result generalizes the previous cold-beam result in
~75! to include finite thermal effects withT̂'Þ0. The two
solutions in Eq.~94! correspond to fast- and slow-rotation
modes of the equilibrium. Beam launching conditions w
determine the particular frequency selected. The condi
for existence of a radially confined equilibrium that follow
from Eq. ~94! is (vc/2)21v f

2>v̂p
2/212T̂' /mrb

2. Contrast-
ing this constraint with the cold-beam equilibrium constra
in Eq. ~76!, note that the addition of finite beam temperatu
(T̂'Þ0) results in a lesser amount of space-charge (}v̂p

2)
being confined for fixed values ofvc andv f .

As indicated in Sec. IV, the step-function density profi
assumed in the present analysis is a good approximatio
those of more realistic beam distributions when the be
thermal emittancee th is sufficiently small. However, the
parabolic pressure profileP'

0 (r ) associated with the KV
equilibrium may differ significantly from the pressure pr
files characteristic of more realistic beam distributions. F
example, in the limit of small thermal emittance, the dens
profile n0(r ) of a thermal equilibrium beam is approximate
uniform in the beam interior, and therefore the equilibriu
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pressure profileP'
0 (r )5n0T' , with T'5const, is nearly

constant in the beam interior, rather than parabolic. S
differences may significantly influence the fluid modes of t
beam, particularly as the effects of finite temperature beco
appreciable. Nevertheless, because the transverse ki
modes of a warm KV beam equilibrium are known analy
cally ~see Appendix B!, this simple case affords an idea
example that illustrates the consequences of the approx
tions inherent in the present warm-fluid model.

For the warm-fluid KV equilibrium, the eigenvalu
equation ~73! for axisymmetric flute perturbations can b
simplified. Substituting Eqs.~34! and ~35! into Eq. ~73!, the
eigenvalue equation for the perturbed radial flow veloc
dVr can be expressed within the beam (0<r ,r b) as

@v22v̂p
224~v̂ r2vc/2!2#dVr

522
T̂'

m

]

]r F1

r S 12
r 2

r b
2D ]

]r
rdVr G . ~95!

Motivated by analogy with Gluckstern’s kinetic modes11 for
a warm KV beam~see Appendix B!, we look for solutions to
Eq. ~95! where the perturbed potentialdf can be expanded
within the beam in terms of a finite polynomial inr 2. Spe-
cifically, we takedf5dfn , where

dfn55 (
j 50

n

aj S r

r b
D 2 j

, 0<r ,r b,

( j 50
n aj

ln~r w /r b!
lnS r w

r D , r b,r<r w .

~96!

Here,n is a positive integer defining the cutoff of the pow
series expansion, and theaj are expansion coefficients tha
must be determined consistent with the eigenvalue equa
~95! and the boundary condition in Eq.~71!. Note that the
form of Eq. ~96! satisfies the Poisson equation~66! outside
the beam (r b,r<r w), is continuous atr 5r b , and vanishes
at the conducting wall, i.e.,dfn(r 5r w)50. It should also be
pointed out, on general grounds, that one would expect
the expansion coefficientsaj to depend on the mode oscilla
tion frequencyv as well as on equilibrium parameters.

Equation~69! can be applied to show that the perturb
radial flow velocitydVr5dVrn corresponding to the poten
tial expansion in Eq.~96! is given by

dVrn5
22iv

~4pqn̂!r b
(
j 51

n

ja j S r

r b
D 2 j 21

, ~97!

within the beam. Substituting Eq.~97! into the eigenvalue
equation~95!, we obtain

(
j 51

n21 H Fv22v̂p
224~v̂ r2vc/2!22

8T̂'

mrb
2 j 2Gaj

1
8T̂'

mrb
2 ~ j 11!2aj 11J j S r

r b
D 2 j 21

1anFv22v̂p
224~v̂ r2vc/2!22

8T̂'

mrb
2 n2GnS r

r b
D 2n21

50.

~98!
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The coefficients of each radial power in Eq.~98! must be set
separately equal to zero for the expansions in Eqs.~96! and
~97! to be valid. Therefore, the coefficient of the highe
radial power,r 2n21, yields the dispersion relation

v25v̂p
214~v̂ r2vc/2!21

8T̂'

mrb
2 n2. ~99!

Equation~99!, together with setting the coefficients of su
cessive powers ofr 2 in the summation in Eq.~98! equal to
zero yields the recursion relation

aj 1152
n22 j 2

~ j 11!2 aj ~100!

for j 51,2,3,...,n21.
The jump condition at the beam edge radiusr b in Eq.

~71! must also be satisfied. Substituting the perturbation
Eqs.~96! and ~97! into Eq. ~71! gives the requirement

(
j 50

n

aj50. ~101!

Note from Eq.~96! that this condition implies thatdfn50 at
the beam edge (r 5r b) and in the vacuum region (r b,r
<r w). Equation~101!, together with the recursion relatio
~100! can be used to show that the eigenfunction expans
in Eq. ~96! can be expressed succinctly as

dfn5H An

2 FPn21S 122
r 2

r b
2D 1PnS 122

r 2

r b
2D G , 0<r ,r b,

0, r b,r<r w.
~102!

Here,Pn(x) denotes thenth-order Legendre polynomial, an
An5const denotes the linear mode amplitude, which can
identified in terms of the expansion coefficientsaj of the
nth-order eigenmode expansion in Eq.~96! asAn5a0 . Com-
paring Eqs.~96! and~102!, we note that the expansion coe
ficients aj are pure numbers, independent of both the eq
librium beam parameters and the mode oscillation freque
v. Therefore, when expressed in terms of the normali
radial coordinater /r b , the radial mode structure isindepen-
dentof both the equilibrium beam parameters andv.

The radial eigenfunction~102! and the dispersion rela
tion ~99! specify the transverse fluid mode structure for p
turbations about a warm KV beam equilibrium. Evident
the dispersion relation~99! predicts stable oscillations with
single distinct value ofv2 for all allowed equilibrium beam
parameters. It should also be pointed out that stability
expected from general energy considerations applied to
warm-fluid KV beam equilibrium and certain other classes
rigidly rotating fluid equilibria.55 For the important specia
cases of pure electric or pure magnetic focusing~see Appen-
dix A! appropriate to model alternating gradient or solen
dal transport channels, respectively, the dispersion rela
~99! can be expressed in alternative useful forms. For p
electric focusing withvc505v̂ r andv fÞ0, the dispersion
relation can be expressed as
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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n0
D 2

5212S n

n0
D 2

~2n221!. ~103!

Here, n2[v f
22v̂p

2/252T̂' /mrb
2 and n0

2[v f
252T̂' /mrb

2

1v̂p
2/2 are the squares of the depressed and undepre

single-particle oscillation frequencies in the equilibrium fie
configuration@see Appendix A, Eqs.~A3! and ~A4!#. The
tune depressionn/n0 conveniently parametrizes the norma
ized mode oscillation frequencyv/n0 in Eq. ~103!. As
shown in Appendix A, the limitn/n0→0 corresponds to a
cold, space-charge-dominated beam, andn/n0→1, corre-
sponds to a warm, temperature-dominated beam. On
other hand, for pure magnetic focusing withv f50 and
vcÞ0, the dispersion relation~99! can be expressed conve
niently as

S v

vc
D 2

5
v̂p

2

vc
2 1S 12

2v̂p
2

vc
2 D n22

4~v̂ r2vc/2!2

vc
2 n2. ~104!

Here, Eq.~94! has been used to eliminateT̂' /mrb
2 in Eq.

~99!. Note that (122v̂p
2/vc

2)>4(v̂ r2vc/2)2/vc
2 is implied

from the warm-beam equilibrium constraint equation~94!
with T̂'>0.

The mode structure is illustrated in Figs. 6 and 7. As
specific example, the electric focusing case is conside
and Eq.~103! is used in Fig. 6 to plot the normalized mod
oscillation frequenciesv/n0 as a function of the tune depres
sion n/n0 . Low-order solutions with radial mode numbe
n51 to n55 are shown. Note that the cold-beam limit wi
n/n0→0 andv→6&n056v̂p corresponds to the familia
long-wavelength (kz

2r b
2→0) limit found in Sec. IV A. The

warm-beam limit with n/n0→1 and v→62nn0 corre-
sponds to collective oscillations in the absence of spa
charge effects. In Fig. 7, the radial eigenfunctions cor
sponding to the modes of oscillation in Fig. 6 are plott
versus the normalized radial coordinater /r b . The radial
mode structure is illustrated in terms of both the perturb
potentialdfn(r ) and the body-wave component of the pe
turbed densitydnn(r ) normalized to their on-axis value
dfn(r 50) anddnn(r 50), respectively. Here, Eq.~102! is
used to calculate the perturbed potential, and the corresp
ing perturbed density is determined in Eq.~C11! of Appen-
dix C. Note that the radial mode structure is independen
the tune depression,n/n0 , and that the density perturbation
become more peaked towards the beam edge (r 5r b) with
increasing mode numbern. The plots of the potential and
density eigenfunctions in Fig. 7 are valid for all possib
combinations of focusing fields~pure electric, pure magnetic
or combined electric and magnetic!. The general structure o
the eigenfunction in Eq.~102! is analyzed in detail in Ap-
pendix C. This analysis includes expansions of initial~time
t50! perturbations in density and potential in terms of t
eigenfunctionsdfn , expressions for the eigenmode in term
of the perturbed density (dn) including singular surface-
wave terms, and explicit power-series~in-r 2! expressions for
the low-order eigenfunctions.

Gluckstern’s kinetic treatment of transverse modes
perturbations about a KV beam equilibrium is reviewed
Appendix B for the case of pure electric focusing in t
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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absence of beam rotation~vc505v̂ r and v fÞ0!. It is
found that the radial eigenfunction obtained in the kine
treatment@see Eq.~B9!# is identical to the expression de
rived in the present warm-fluid theory in Eq.~102! and Fig.
6. However, the dispersion relation derived in the kine
theory @see Eq.~B10!# is strikingly different than the corre
sponding fluid dispersion relation in Eq.~103!. To illustrate
this, the oscillation frequencies supported by the fluid@Eq.

FIG. 6. Solutions for the normalized frequencyuv/n0u of axisymmetric flute
perturbations, calculated from the warm-fluid dispersion relation~103!, are
plotted as a function of the tune depressionn/n0 for a warm KV beam
equilibrium with vc505v̂ r andv fÞ0 in the electrostatic approximation
Frequencies are shown for radial mode numbersn51, 2, 3, 4, and 5.

FIG. 7. Solutions for the normalized radial eigenfunction of axisymme
flute perturbations are plotted as a function of normalized radial coordi
r /r b for a warm KV beam equilibrium in the electrostatic approximatio
The eigenfunction is plotted in terms of~a! the normalized potential
dfn /dfn(r 50), and~b! the normalized densitydnn /dnn(r 50), as calcu-
lated from Eqs.~102! and ~C11!, respectively, for radial mode numbersn
51,2,..., and 5.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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~103!# and kinetic @Eq. ~B10!# dispersion relations for a
warm KV beam with pure electric focusing are contrasted
Fig. 8. Solutions of thenth-order polynomial~in v2! kinetic
dispersion relation~solid curves! and the fluid dispersion re
lation ~dashed curves! are plotted as a function of the tun
depressionn/n0 for radial mode numbersn51,2,3,4, and 5.
The oscillation frequency Rev and the growth rate Imv are
shown in absolute value because both6v are solutions to
the fluid and kinetic dispersion relations. For given rad
mode number and tune depression, the fluid dispersion r
tion predicts stable oscillations with a single distinct value
v2, whereas the kinetic dispersion relation yields 2n pos-
sible modes of oscillation, some of which can become
stable (Imv.0) over a range ofn/n0,0.3985. The~identi-
cal! radial eigenmode structure of the fluid and kinetic mod
illustrated in Fig. 7 is independent of both the tune depr
sion,n/n0 , and the mode oscillation frequency,v. Note that
progressively more modes of oscillation become unstabl
the kinetic model for higher radial mode numbern. The
kinetic mode structure illustrated in Figs. 7 and 8 is analyz
in greater detail in Appendix B. For present purposes,
note that the oscillation frequencies of the fluid mod
closely track the~always stable! high-frequency kinetic
branch with largestuvu over the entire range of space-char
strength, 0<n/n0<1. Moreover, the fluid and high
frequency kinetic oscillation frequencies become identica
the cold- and warm-beam limits,n/n0→0 andn/n0→1. For
the special case of radial mode numbern51, the fluid and
kinetic dispersion relations both reduce to the famil
envelope-mode dispersion relation,2 (v/n0)252
12(n/n0)2, and the fluid and kinetic curves overlay exact
for 0<n/n0<1 in Fig. 8~a!.

To interpret the mode comparisons in Fig. 8, we be
by pointing out that it is not surprising that then51 modes
are identical in both the fluid and kinetic descriptions. It
expected on general grounds that the lowest-order pertu
tion about an equilibrium should reflect the structure of t
equilibrium itself. In Appendix C, it is shown that the stru
ture of then51 eigenfunction is equivalent to an infinites
mal change in equilibrium beam density with a correspo
ing, charge-conserving change in beam radius. Thus,
lowest-order perturbation reflects the structure of the equi
rium and corresponds to the situation encountered in an
velope model based on the assumption that the distribu
evolution is self-similar to the equilibrium beam structure24

Furthermore, the moment equations derived in an envel
model are spatial averages of fluid equations. These con
erations indicate that the exactn51 mode agreement in Fig
8~a! should be expected. Next, the lack of instability in t
fluid description and the good agreement between
~stable! high-frequency kinetic and fluid modes can be qua
tatively understood as follows. The present fluid model
based on the assumption of negligible heat flow, so it is
surprising that high-frequency oscillations are well-mode
for n/n0!1, because heat flow should be negligible for
cold beam on fast oscillation timescales. However, for
~stable! high-frequency branch, it is remarkable that t
simple fluid dispersion relation approximates well the co
plicated,nth-order polynomial~in v2! kinetic dispersion re-

te
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 8. Solutions for the normalized oscillation frequencyuRev/n0u and growth rateuIm v/n0u of axisymmetric flute perturbations, calculated from the kine
dispersion relation~B10!, are plotted~solid curves! as a function of the tune depressionn/n0 for a warm KV beam equilibrium withvc505v̂ r and v f

Þ0 in the electrostatic approximation. Results are shown for radial mode numbersn51, 2, 3, 4, and 5 in~a!–~e!, and the normalized oscillation frequencie
of the fluid modes shown in Fig. 6 are also plotted~dashed curves!.
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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lation over the entire range of space-charge strength
<n/n0<1, and becomes exact in the warm-beam lim
n/n0→1. Evidently, for perturbations about a KV bea
equilibrium, the neglected heat flow terms in Eq.~11! are
negligible relative to the retained pressure terms for
highest-frequency mode. The lack of instability in the flu
model indicates that this approximation breaks down
lower-frequency modes, and the well-known kinetic ins
bilities for a KV beam indicated in Fig. 8 are not recovere
However, these kinetic instabilities are associated with
~unphysical! inverted phase-space population of the KV d
tribution ~see Appendix B!, and are not observed experime
tally for more realistic phase-space distributions.40,41Thus, it
may be preferable that the approximations inherent in
present warm-fluid model have removed such behavior. N
that kinetic beam distributions with monotonic decreas
phase-space populations are stable.1 Such distributions are
also necessarily stable in any fluid~moment! model and are
not dissimilar in macroscopic properties to a KV beam eq
librium when n/n0!1. From this perspective, it is not su
prising that the present macroscopic model does not rec
the instabilities inherent in a kinetic treatment of a KV bea

The results presented here have a number of impor
implications. First, the analysis shows that certain, hig
frequency kinetic modes supported by a KV beam equi
rium are well approximated by the present, warm-flu
model and are consequently a feature of the coarse, ma
scopic structure of the equilibrium as opposed to the deta
phase-space structure. Such kinetic modes arefluid-like,
whereas modes not obtained in the present fluid model
kinetic-like and require more details of the structure of t
full distribution function. Because the macroscopic prop
ties of the KV beam equilibrium are not too dissimilar fro
those of more physically realistic beams, these fluid-l
modes are likely a good approximation to the high-freque
collective modes supported by beam equilibria with mon
tonically decreasing phase-space populations w
]F0(H0)/]H0<0 ~see Appendix B!. Such correspondence
will, of course, be limited to time scales where kinetic effe
such as Landau damping can be neglected. From this
other results presented here, we conclude that models b
on an assumed, self-similar evolution of the beam distri
tion are of questionable validity for all but lowest-order~i.e.,
envelope-model! considerations. Even if a single, stab
mode of oscillation is excited, the radial profiles of all ma
roscopic quantities would oscillate in time. Depending
measurement phases, no discernible perturbation may be
served at one phase, while later the perturbation reappea
the mode oscillates. Likely perturbations could, in practi
involve a spectrum of modes with differing oscillation fr
quencies. Poorly defined launching conditions can furt
complicate interpretations.39 Higher-order structure reso
nances, etc., calculated under the assumption of self-sim
distribution evolution could lead to erroneous conclusio
Finally, because the radial mode structure obtained in
kinetic and fluid models are identical, and the macrosco
properties of a KV beam equilibrium are similar to what
expected for a cold, space-charge-dominated beam, this
gests that the modes describing perturbations about a
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beam may form a reasonable basis state for characteri
perturbations in beam density—even for non-KV beams.

VI. CONCLUSIONS

A variety of modes of oscillation can be obtained fro
different theoretical models of charged-particle beams. So
models may predict instability in situations where othe
may not. It is important to analyze collective modes a
instabilities using a hierarchy of model assumptions, so a
learn which features are model dependent and which h
general applicability. In this paper, we have employed
warm-fluid model derived under the assumption of negligi
heat flow and a diagonal pressure tensor to investigate
electrostatic stability properties of unbunched beams. P
ticular emphasis was placed on a KV beam equilibrium w
uniform charge density and parabolic pressure profile. T
was motivated by the fact that the kinetic modes that
scribe perturbations about a KV beam equilibrium are kno
analytically, affording an opportunity to better understa
differences between the kinetic and fluid descriptions, a
because the kinetic modes for a KV beam are freque
studied theoretically. The fluid modes were analyzed for p
turbations about a KV equilibrium in both the cold-bea
limit, and for axisymmetric transverse perturbations abou
warm-beam equilibrium. The cold-beam results were use
examine the effects of finite beam canonical angular mom
tum on collective modes. The warm-fluid transverse stabi
results were compared with kinetic theory. It was shown t
the fluid description reproduces exactly the radial eigenfu
tion obtained in kinetic theory but has a distinct~stable! os-
cillation frequency, in contrast to the multiplicity of~possi-
bly unstable! frequencies obtained in the kinetic theory. Th
fluid-mode oscillation frequency approximates very well t
highest-frequency kinetic mode, and is an important ma
festation of the~physical! macroscopic features of the equ
librium, whereas the possibly unstable, lower-frequency
netic modes depend on the~unphysical! inverted phase-spac
population of the equilibrium distribution. Implications o
these results with regard to the interpretation of collect
oscillations supported by realistic beam distributions w
discussed. These results promise to increase our unders
ing of the evolution of density variations in intens
beams—a topic of increasing importance in recent exp
ments.

It should be emphasized that the stability results p
sented in this paper were derived for beam focus
produced by the simultaneous presence of a continu
solenoidal magnetic field,Bsol5Bf êz , and a continuous ra
dial electric field,Ef52(m/Zie)v f

2x' . These fields repre-
sent that average focusing properties of a periodic lattice
solenoids, or a periodic lattice of alternating gradient quad
poles~electric or magnetic!, respectively. In practice, the sta
bility results will typically be applied for pure magnetic fo
cusing ~Ef50 and BsolÞ0! and a rigidly rotating beam
equilibrium (v̂ rÞ0), or for pure electric focusing~EfÞ0
and Bsol50! and a nonrotating beam equilibrium (v̂ r50).
Also, as explained in Sec. IV, in the pure magnetic focus
case the beam is typically launched with zero canonical
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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gular momentum in order to achieve a minimum beam
dius, corresponding to equilibrium beam rotation at the L
mor frequency,v̂ r5ZieBf /2mc5vc/2. In this case, it is
shown in Appendix A that the pure magnetic and the p
electric focusing cases are equivalent under the corres
dencev f

2⇔(vc/2)2. Here, we have retained both electr
and magnetic focusing components explicitly to allow ana
sis of beam stability with nonzero canonical angular mom
tum (v̂ rÞvc/2), and to allow easy identification of appro
priate substitutions to analyze other focusing cases
directly considered.

Finally, for simplicity of presentation, the stabilit
analysis presented here has been carried out for the case
nonrelativisticion beam. It should be emphasized, howev
that the warm-fluid formalism is readily extended to the ca
of an intense ion beam propagating in the axial direct
with relativistic average axial velocityVb and relativistic
mass factorgb5(12Vb

2/c2)21/2, provided the ion motion in
the beam frame~‘‘primed’’ coordinates! is nonrelativistic
with ion velocities satisfyinguv8u!c, and the directed axia
velocity Vb is large relative to particle velocities in the bea
frame, i.e.,Vb@uv8u. These restrictions are met in the r
gimes of practical interest for heavy-ion fusion and the
tense proton accelerators envisioned for tritium product
and spallation neutron sources. For completeness, the re
istic generalizations of the cold- and warm-beam stabi
analyses in Secs. IV and V, consistent with the inequali
uv8u!c andVb@uv8u, are presented in Appendix D.
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APPENDIX A: PARTICLE ORBITS IN A KV BEAM
EQUILIBRIUM

In this appendix, we analyze the transverse dynamic
particles in the equilibrium field configuration of a KV bea
to better understand the implications of changing equilibri
parameters on the particle motion. Using the notation e
ployed in Sec. III A, we examine the motion of a partic
with transverse coordinatex' moving within the beam (0
<r ,r b). The equation of motion of the particle is given b

d2

dt2
x'52S v f

22
v̂p

2

2 D x'1vc

d

dt
x'3êz . ~A1!

DenotingZ5x1 iy , the equation of motion~A1! can be ex-
pressed asd2Z/dt252(v f

22v̂p
2/2)Z1 ivcdZ/dt. The solu-

tion to this equation can be expressed asZ5Ẑ exp(2int),
whereẐ is a complex amplitude determined from the initi
conditions of the particle motion, andn5const is the particle
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oscillation frequency. Substituting this expression into t
equation of motion givesn21vcn2(v f

22v̂p
2/2)50, or

equivalently,

n52
vc

2
6

1

2
~vc

214v f
222v̂p

2!1/2. ~A2!

All particles in a KV beam equilibrium undergo transver
oscillations in the presence of the applied focusing field a
the defocusing space-charge field at the frequencies defi
in Eq. ~A2!. The two solutions forn correspond to fast and
slow modes of particle oscillation in the equilibrium field
and are symmetrically located above and below the Larm
frequency,2vc/2.

In most practical applications of the present model,
beam will be subject to pure electric focusing~vc50, and
v fÞ0! and will not be in a state of macroscopic rotatio
(v̂ r50), or will be subject to pure magnetic focusing~v f

50 andvcÞ0! and will be in a state of macroscopic rota
tion (v̂ rÞ0). These two cases model the average focus
properties of a periodic lattice of alternating-gradient quad
poles~electric or magnetic!, or a periodic lattice of solenoids
respectively. We now analyze, in turn, both of these spe
cases in greater detail.

In the pure electric focusing case withvc505v̂ r and
v fÞ0, the square of the single-particle oscillation frequen
in Eq. ~A2! reduces to

n25v f
22

v̂p
2

2
5

2T̂'

mrb
2 . ~A3!

Here, we have employed the equilibrium constraint con
tion, v f

25v̂p
2/212T̂' /mrb

2, which follows from Eq. ~94!
with vc505v̂ r . The orbital oscillation frequencyn in Eq.
~A3! is commonly referred to as thedepressedbetatron fre-
quency. It is also convenient to define anundepressedbeta-
tron frequency

n0
25v f

25
2T̂'

mrb
2 1

v̂p
2

2
, ~A4!

by taking n→n0 and v̂p
2→0 in Eq. ~A3!. Note from Eqs.

~A3! and ~A4! that n0 corresponds to the oscillation fre
quency of a single particle in the applied focusing fie
which is proportional tov f

2, and thatn25n0
22v̂p

2/2, show-
ing that the actual particle oscillation frequency in the pr
ence of space-charge (v̂p

2Þ0) is depressedfrom the applied-
field value. The ration/n0 is referred to as thetune
depressionand provides a convenient, dimensionless m
sure of space-charge strength in the equilibrium beam, w
n/n0→0 corresponding to a cold, space-charge-domina
beam withT̂'→0 andv̂p

2/2→v f
2, andn/n0→1 correspond-

ing to a temperature-dominated beam withT̂' /mv̂p
2r b

2→`.
The fact that Eq.~A4! predicts a single, distinct particle os
cillation frequencyunu follows from the absence of an applie
magnetic field (vc50) and macroscopic beam rotation (v̂ r

50).
In the pure magnetic focusing case withv f50, vcÞ0,

andv̂ rÞ0, it is convenient to rewrite Eq.~A2! in the Larmor
frame, rotating about the beam axis (r 50) with angular ve-
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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locity 2vc/2. In the Larmor frame, the frequency of tran
verse particle oscillations isn85n1vc/2. Equation ~A2!
then reduces to

~n8!25S vc

2 D 2

2
v̂p

2

2
5

2T̂'

mrb
2 1~v̂ r2v̂c/2!2. ~A5!

Here, we have employed the equilibrium constraint condit
(v̂ r2vc/2)25(vc/2)22v̂p

2/222T̂' /mrb
2, which follows

from Eq. ~94! with v f50. As expected, Eq.~A5! has the
same form as Eq.~A3! with the focusing termv f

2 replaced
by (vc/2)2 andT̂' replaced byT̂'1m(v̂ r2v̂c/2)2r b

2/2. This
‘‘shifted’’ measure of temperature includes contributio
from both the thermal emittancee th

2 52T̂'r b
2/mVb

2 @Eq. ~41!#
and the directed emittanceed

25(2^Pu&/mVb
2)2 @Eq. ~41!# ap-

propriate for a beam with canonical angular moment
^Pu&52m(v̂ r2vc/2)r b

2/2 @Eq. ~40!#. Note that the directed
emittanceed vanishes for a beam with zero canonical ang
lar momentum rotating at the Larmor frequency (v̂ r

5vc/2).
The correspondence between the pure electric and

magnetic focusing cases discussed above can be under
more generally in terms of a simple transformation arg
ment. Assuming a general distribution of beam space-cha
~not necessarily a KV equilibrium!, it is clear from the
Vlasov–Poisson system in Eqs.~5!–~7! that the equations o
motion of a particle with transverse coordinatex' and axial
coordinatez are

d2

dt2
x'52v f

2x'1vc

d

dt
x'3êz2

Zie

m
“'f, ~A6!

d2

dt2
z52

Zie

m

]f

]z
, ~A7!

where f is the electrostatic potential for the average se
electric field. To transform the transverse equations of m
tion to the Larmor frame~‘‘primed’’ coordinates! rotating
with angular velocity2vc/2 about theêz axis, we define

x85x cos
vc

2
t2y sin

vc

2
t,

~A8!

y85x sin
vc

2
t1y cos

vc

2
t.

In the Larmor frame, Eq.~A6! is expressed as

d2

dt2
x'8 52Fv f

21S vc

2 D 2Gx'8 2
Zie

m
“'8 f. ~A9!

Note that the equation of motion~A6! in the laboratory
frame for pure electric focusing (vc50) is identical to the
equation of motion~A9! in the Larmor frame for pure mag
netic focusing (v f50) provided we make the replaceme
(vc/2)2→v f

2. Therefore, if the radial profiles for the pur
electric-focused and magnetic-focused equilibria are ide
cal, and the magnetic-focused equilibrium is rigidly rotati
with angular velocityv̂ r5vc/2 @see the equilibrium force
balance equation~29! and note the rotation sense defined
Eq. ~28!# so that the equilibrium is ‘‘nonrotating’’ in the
Larmor frame, it follows that the Larmor-frame stabilit
analysis of the magnetic-focused equilibrium will be iden
cal ~in primed variables! to the stability analysis of the
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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electric-focused equilibrium under the corresponden
(vc/2)2⇔v f

2. In this context, a rigidly rotating, magnetic
focused beam equilibrium with zero canonical angular m
mentum (v̂ r5vc/2) can be regarded as equivalent to a no
rotating beam equilibrium with pure electric focusing. Th
result holds for both the fluid and kinetic descriptions.

APPENDIX B: TRANSVERSE KINETIC MODES OF A
KV BEAM

In this appendix, we summarize results from a kine
stability analysis of a continuously focused, warm KV bea
equilibrium. Gluckstern11–13and other authors14–19have em-
ployed an electrostatic Vlasov–Poisson model to derive a
lytically the normal-mode structure of transverse (kz50)
flute perturbations about a KV beam equilibrium. We refer
these modes asGluckstern modes. For present purposes, th
summary here is limited to the case of symmetric pertur
tions (]/]u50) with azimuthal mode numberl 50.

For simplicity, we consider a nonrotating (v̂ r50) beam
with pure electric focusing~Bf50 andv f

2Þ0!. The Vlasov–
Poisson equations~5!–~7! for the transverse (]/]z50) dis-
tribution functionF(x' ,p' ,t)5*dpz f (x' ,p,t) can be ex-
pressed as

H ]

]t
1

]H

]p'

•

]

]x'

2
]H

]x'

–

]

]p'
J F~x' ,p' ,t !50,

¹'
2 f524pZieE dpxdpy F, ~B1!

f~r 5r w ,u,t !5const.

Here,

H5
p'

2

2m
1m

n0
2

2
x'

2 1Zief~x' ,t ! ~B2!

is the single-particle Hamiltonian, andn05v f denotes the
frequency of undepressed particle oscillations in the app
focusing field @see Appendix A, Eq.~A4!#. Perturbations
with ]/]u50 are assumed and expanded according to

f5f0~r !1df~r ,v!exp~2 ivt !,
~B3!

F5F0~x' ,p'!1dF~r ,p' ,v!exp~2 ivt !,

where equilibrium quantities~superscript zero! correspond to
]/]t50 solutions to Eqs.~B1! and ~B2! with df505dF.
For present purposes, we assume a KV equilibrium distri
tion defined by1,2

F0~x' ,p'!5
n̂

2pm
d~H02T̂'!. ~B4!

Here, d(x) is the Dirac delta function,n̂5const, andT̂'

5const. Note that all particles in the distribution functionF0

have the same value of single-particle energy in the equ
rium fields (H05T̂'), constituting a highly inverted popula
tion in phase space where the entire distribution will parti
pate in any instability. It follows trivially from the
Hamiltonian form of the Vlasov equation~B1! that the KV
distributionF0 specified by Eq.~B4! @or any other function
F0(H0)# is a valid equilibrium solution (]/]t50) when
df505dF. The form ofF0 in Eq. ~B4! is consistent with a
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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uniform beam density,*dpxdpy F05n̂, and a parabolic
pressure profile,*dpxdpy (p'

2 /2m)F05n̂T̂'(12r 2/r b
2), in

the beam interior (0<r ,r b). Here,

r b
25

2T̂' /m

n0
22v̂p

2/2
~B5!

is the square of the equilibrium beam radius,v̂p
2

54pZi
2e2n̂/m is the plasma frequency squared, and the c

straint equation~B5! is identical to the envelope equatio
given in Eq.~38! with v̂ r505vc , or in Eq. ~42! with ed

505vc .
The linear eigenvalue equation for the perturbed pot

tial df(r ,v) can be derived as follows. First the perturb
tions ~B3! are substituted into the Vlasov–Poisson equati
~B1!, and the equations are expanded to linear order indf
anddF. Then thelinearizedVlasov equation is solved ford f
using the method of characteristics.1 This solution can then
be substituted into the linearized Poisson equation to ob
the eigenvalue equation

1

r

]

]r
r

]

]r
df5v̂p

2U~r b2r !

3F 1

v'

]

]v'

I orbGU
v

'
2 5~2T̂' /m!~12r 2/r

b
2!

1
v̂p

2r b

2T̂' /m
d~r 2r b!@df1I orb#uv'50 . ~B6!

Here, v'5p' /m, U(x) is the Heaviside step function de
fined byU(x)51 for x.0 andU(x)50 for x,0, and

I orb~r ,v' ,v!5 ivE
2p

p dc

2p E
2`

0

dt df@ r̃ ~t!,v#

3exp~2 ivt! ~B7!

is the orbit integral.1,11 In Eqs. ~B6! and ~B7!, Im v.0 is
assumed~corresponding to instability!, and
s

ss
e
is
d
i-
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r̃ 2~t!5r 2 cos2~nt!1
rv'

n
cos~c!sin~2nt!

1
v'

2

n2 sin2~nt! ~B8!

is the radial trajectory of a particle in the equilibrium
field configuration, with ‘‘initial’’ conditions (t50) corre-
sponding to x̃(0)5r cosu, ỹ(0)5r sinu, p̃x(0)
5p' cosfp , and p̃y(0)5p' sinfp . Here,c[u2fp , and

n5(n0
22v̂p

2/2)1/25(2T̂' /mrb
2)1/2 denotes the frequency o

transverse particle oscillations in the full~applied- plus self-!
field configuration of the KV beam equilibrium@see Appen-
dix A, Eq. ~A3!#. The terms on the right-hand side of th
eigenvalue equation~B6! multiplying the step and delta
functions represent body- and surface-wave perturbatio
respectively.

It can be shown11,15 that the integro-differential equatio
~B6! subject to the boundary conditiondf(r 5r w)50 sup-
ports normal-mode solutions,df5dfn , that can be ex-
panded as a finite polynomial inr 2 as

dfn5H An

2 FPn21S 122
r 2

r b
2D 1PnS 122

r 2

r b
2D G , 0<r ,r b,

0, rb,r<rw .
~B9!

Here, n51,2,3,... is the radial mode number,An5const is
the linear amplitude parameter of the mode, andPn(x) is the
nth-order Legendre polynomial. Eachn-labeled eigenfunc-
tion, dfn , has 2n distinct frequenciesv satisfying an
nth-degree polynomial~in v2! dispersion relation that can b
expressed in normalized form as

2n1
12~n/n0!2

~n/n0!2 FBn21S v/n0

n/n0
D2BnS v/n0

n/n0
D G50.

~B10!

Here,Bn(a) is defined by
Bn~a![5
1, n50,

@~a/2!2202#

@~a/2!2212#

@~a/2!2222#

@~a/2!2232#
¯

@~a/2!22~n21!2#

@~a/2!22n2#
, n51,3,5,...,

@~a/2!2212#

@~a/2!2222#

@~a/2!2232#

@~a/2!2242#
¯

@~a/2!22~n21!2#

@~a/2!22n2#
, n52,4,6,... .

~B11!
of
in

-

eal
This explicit polynomial form of the dispersion relation wa
first derived by Wang and Smith.15 Note that the normalized
mode frequencyv/n0 depends on the single dimensionle
equilibrium parameter,n/n0 , the tune depression of th
beam. Explicit polynomial representations of the kinetic d
persion relation are summarized in Table I for radial mo
numbersn51 to n55 in terms of the dimensionless var
ablesv̄[v/n0 and n̄[n/n0 .
-
e

The structure of the eigenfunction~B9! for the Gluck-
stern modes is analyzed in detail in Appendix C. Plots
low-order eigenfunctions are presented in Fig. 7, both
terms of the perturbed potential~df! and the perturbed den
sity (dn5*dpxdpy dF) for 0<r ,r b . Plots of low-order
solutions to the dispersion relation~B10! are presented in
Fig. 8. Because6v are both solutions to the polynomial~in
v2! dispersion relation, only the absolute values of the r
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and imaginary parts ofv are plotted. Note from Eq.~B9! and
Fig. 7 that the radial structure of thenth-order eigenfunction
is independent of the values of the 2n solutions forv sup-
ported by the dispersion relation. As evident from Fig. 8,
branches are stable (Imv50) in the warm-beam limit with
n/n0→1, and have oscillation frequencyv/n0562,64,...,
62n. In the cold-beam limit withn/n0→0, there are two
stable solutions withv56&n056v̂p , and all other solu-
tions are marginally stable withv→0. For general tune de
pressions, 0<n/n0<1, the lowest-order solution withn51
describes the well-known linear envelope mode correspo
ing to stable oscillations in the beam radiusr b at frequency
v56n0@212(n/n0)2#1/2.2 Unstable solutions with Imv
.0 can exist for mode numbersn.1. For a given value of
n, the high-frequency branch with the largestuvu is always
stable for 0<n/n0<1. Unstable branches with smaller va
ues of uvu exist for n/n0 less than the threshold values
n/n0 where two stable branches with realv intersect. The
growth rates of these unstable branches achieve a maxim
at some value ofn/n0 below the threshold value for onset o
instability, before decreasing to zero~i.e., Imv→0! in the
cold-beam limit withn/n0→0. The branch with maximum
instability threshold first becomes unstable atn/n0

50.2425, 0.3859, 0.3985, and 0.3972 for mode numbern
52, 3, 4, and 5, respectively. This instability threshold
maximum forn54 and slowly decreases with increasingn
for n.4. Generally, for increasing mode numbern, more
branches ofv are found to be unstable at low values
n/n0 . Such high-order instabilities are a consequence of
highly inverted~singular! population of the KV equilibrium
distributionF0, and will not occur for equilibrium distribu-
tions F0(H0) that are monotonically decreasing functions
H0 with ]F0/]H0<0, which are known to be stable.1

Finally, it should be noted that the stability results d
rived in this appendix for the case of a nonrotating KV be
equilibrium with pure electric focusing can be applied to
KV beam equilibrium with zero canonical angular mome
tum and pure magnetic focusing using the transforma
arguments presented in Appendix A.

APPENDIX C: STRUCTURE OF THE
EIGENFUNCTIONS FOR GLUCKSTERN MODES

In this appendix, we analyze properties of t
Gluckstern-mode eigenfunctions for azimuthally symme

TABLE I. Kinetic dispersion relation calculated from Eq.~B10! for electro-
static perturbations with radial mode numbersn51 to n55 about a warm
KV beam equilibrium. Here,v̄5v/n0 and n̄5n/n0 .

Mode n Dispersion relation

1 v̄222(11 n̄2)50
2 v̄422(119n̄2)v̄224n̄2(1217n̄2)50
3 v̄622(1127n̄2)v̄418(1197n̄2) n̄2v̄2296(1123n̄2) n̄4

50
4 v̄822(1159n̄2)v̄6152(1183n̄2) n̄2v̄4

232(1911621n̄2) n̄4v̄2

2288(92521n̄2) n̄650
5 v̄1022(11109n̄2)v̄8148(31338n̄2) n̄2v̄6

264(5717588n̄2) n̄4v̄4

1128(97142055n̄2) n̄6v̄2223040(91631n̄2) n̄850
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( l 50), electrostatic flute perturbations (kz50) about a
warm KV beam equilibrium with edge radiusr b . Specifi-
cally, the structure of the eigenfunctions, when expresse
terms of the perturbed potential~df! and the perturbed den
sity (dn), is examined. Because the eigenfunctions are
same in these variables for both the warm-fluid@see Sec. V,
Eq. ~102!# and kinetic@see Appendix B, Eq.~B9!# theories
presented in this manuscript, all results presented here a
to both models.

First, we demonstrate that the Gluckstern modes can
used to describe an arbitrary perturbation in density or
tential. Let dn(r ) represent an initial~time t50! perturba-
tion in density about a warm KV beam equilibrium. Oth
than having small amplitude (udnu/n̂!1), the radial struc-
ture of the perturbation is arbitrary. The Poisson equat
~66! can be solved subject to the boundary conditiondf(r
5r w)50 at the conducting wall in order to express the in
tial density perturbationdn(r ) in terms of the corresponding
perturbation in electrostatic potentialdf(r ). We introduce
the scaled radial coordinate

X5122S r

r b
D 2

. ~C1!

For values of radiusr extending from the beam center t
the beam edge, 0<r<r b , note that21<X<1, whereX51
andX521 correspond to the beam center (r 50) and edge
~r 5r b), respectively. In terms ofX, the Poisson equation
~66! can be expressed conveniently as

pZierb
2dn~X!52

]

]X F ~X221!

X11

]

]X
df~X!G . ~C2!

Because the Legendre polynomialsPn(X) form a com-
plete, orthogonal set on the interval21<X<1, it follows
that df can be expanded within the beam as

df~X!5 (
n50

`

CnPn~X!, ~C3!

where the constantsCn are given by

Cn5
2n11

2 E
21

1

dX Pn~X!df~X!. ~C4!

The expansion~C3! can be expressed in the equivalent for

df~X!5 (
n51

`

dfn~X!, ~C5!

where

dfn~X!5
An

2
@Pn21~X!1Pn~X!# ~C6!

are the Gluckstern eigenfunctions describing normal-m
perturbations within the warm-fluid@see Eq.~102!# or kinetic
@see Eq. ~B9!# models, as expressed in terms ofX51
22r 2/r b

2, and the coefficientsAn andCn are related by

An52(
j 50

n21

~21!n111 jCj . ~C7!
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TABLE II. Normalized body-wave (0<r ,r b) eigenfunctions for the potential (dfn) and density (dnn) for
electrostatic perturbations with radial mode numbersn51 to n55 about a warmKV beam equilibrium. Here,
r̄ 5r /r b , and the perturbations in potential and density are calculated from Eqs.~C6! and ~C11!, respectively.
The results apply to both the warm-fluid and kinetic models.

Mode n Potentialdfn /An DensitypZierb
2dnn /An

1 12 r̄ 2 1
2 124r̄ 213r̄ 4 4(123r̄ 2)
3 129r̄ 2118r̄ 4210r̄ 6 9(128r̄ 2110r̄ 4)
4 1216r̄ 2160r̄ 4280r̄ 6135r̄ 8 16(1215r̄ 2145r̄ 4235r̄ 6)
5 1225r̄ 21150r̄ 42350r̄ 61350r̄ 82126r̄ 10 25(1224r̄ 21126r̄ 42224r̄ 61126r̄ 8)
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In Eq. ~C5!, we have implicitly enforced continuity ofdfn at
the edge radiusr b of the beam. The inverse of the transfo
mation specified by Eq.~C7! is

C05A1/2,
~C8!

Cn5
An1An11

2
, j 51,2,3,... .

These results explicitly demonstrate for a warm KV be
equilibrium that an arbitrary initial perturbation in densi
@dn(r )# or potential@df(r )# can be expanded in terms o
the eigenfunctionsdfn(r ). This analysis does not addre
the general completeness problem, which requires show
that arbitrary initial pressure and flow velocity perturbatio
can be simultaneously represented in the present fluid mo
Such considerations are important in understanding
launching conditions for collective waves.

We now investigate the radial structure of thenth-order
Gluckstern eigenfunctiondfn . As evident from Eq.~C6!,
the eigenfunctiondfn is expressed simply within the bea
as a sum two Legendre polynomials,Pn21 and Pn , with
argumentX5122r 2/r b

2. It is useful to note that at the beam
center ~r 50 and X51! and the beam edge~r 5r b and
X521!, the resultsPn(1)51 and Pn(21)5(21)n show
that the eigenfunctiondfn has values

dfn~r 50!5An ,
~C9!

dfn~r 5r b!50.

Becausedfn50 at the beam edge,r 5r b , it follows from
the Poisson equation~66! that dfn must vanish outside the
beam (r b,r<r w). The vanishing ofdfn in the vacuum
region is consistent with Eqs.~102! and~B9!. For reference,
the eigenfunctionsdfn are presented in explicit, expande
form in Table II for radial mode numbersn51 to n55.
These expressions are valid over the range 0<r<r b , and
are presented in terms of the scaled radial coordinatr̄
[r /r b . In general, thenth-order eigenfunctiondfn hasn
nodes (dfn50) andn antinodes~dfn at relative maxima or
minima with ]dfn /]r 50! over the range 0<r<r b . The
tabulated eigenfunctionsdfn are plotted in Fig. 7~a!.

Finally, for completeness, we express the Gluckst
eigenfunction defined in Eq.~C6! in terms of the perturbed
density (dn) rather than the perturbed potential~df!. Using
the Poisson equation~66! with df5dfn anddn5dnn along
with the corresponding perturbed fluid~Sec. III D! or kinetic
g 2001 to 192.55.106.156. Redistribution subject to A
ng

el.
e

n

equations~Appendix B!, it can be shown that the densit
representation of the Gluckstern eigenfunction,dnn , can be
expressed as

dnn5dnn~r !ubodyQ~r b2r !1dnnusurface

r b
2

r
d~r 2r b!.

~C10!

Here,Q(x) is the Heaviside step function defined byQ(x)
51 for x.0 andQ(x)50 for x,0, andd(x) is the Dirac
delta function. The step and delta functions in Eq.~C10!
multiply the ‘‘body-wave’’ and ‘‘surface-wave’’ terms,
dnnubody and dnnusurface, which specify the smooth densit
perturbation within the beam (0<r<r b) and the singular
density perturbation at the beam edge (r 5r b), respectively.
The body-wave component,dnnubody, can be calculated in
terms of the scaled radial coordinateX5122(r /r b)2 from
the Poisson equation~C2! and recursion relations for th
Legendre polynomials. We obtain

pZierb
2dnnubody

5
An

~X221!~X11!
$~n21!~n22!Pn23~X!

1~n21!@~n21!22X~n22!#Pn22~X!

1@~2n21!~X21!2n~n21!X2n2X

1~n21!2X2#Pn21~X!1@n~X21!1n2X2#Pn~X!%.

~C11!

The amplitude of the surface-wave component,dnnusurface,
can be calculated using the fact that the perturbation in
duces zero net charge into the system, or equivalently,
*0

r wdr rdnn50. This implies that r b
2dnnusurface

52*0
r b(12e)dr rdnnubody, wheree→01. This integral can

be carried out using the Poisson equation~66! and recursion
relations for the Legendre polynomials to show that

pZierb
2dnnusurface5~21!n

nAn

2
. ~C12!

The singular surface-charge perturbation given by E
~C10! and ~C12! is the manifestation, within linear theory
of a perturbation induced by a small change in beam rad
dr b , with udr bu/r b!1. To understand this, note that th
total ~equilibrium plus perturbed! density can be expresse
as n(r )5@ n̂1dnn(r )ubody#Q(r b2r )1dnnusurface(r b

2/r )d(r
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2r b), wheren0(r )5n̂Q(r b2r ) is the equilibrium density
profile defined in Eq.~34!, and r b is the equilibrium beam
radius. To linear order, this equation can be expres
equivalently as

n~r !5@ n̂1dnn~r !ubody#QF r b1~21!n
nAn

2pZien̂r b
2r G

5@ n̂1dnn~r !ubody#Q@r b1dr b2r #, ~C13!

which shows that the surface-wave perturbation can
interpreted as a change in beam radius,dr b

5(21)n(nAn/2pZien̂r b). Aside from the complication of
the mode description associated with this surface term,
evident from the form of the body-wave density perturbat
in Eq. ~C11! and the form of the corresponding potent
perturbation in Eq.~C6! that the Gluckstern eigenfunction
expressed more simply in terms ofdfn than in terms of
dnn . Nevertheless, Eqs.~C10!–~C12! can be useful to inter-
pret the mode structure in practical situations because
profile of the beam charge density is often directly measu
experimentally. At the beam center~r 50 andX51! and the
beam edge@r 5r b(12e) andX52114e wheree→01#, it
can be shown that the nonsingular, body-wave componen
the density eigenfunctiondnn given by Eq.~C11! has the
values

pZierb
2dnn~r 50!ubody5n2An ,

~C14!
pZierb

2dnn~r 5r b!ubody5~21!n11n3An .

In contrast to the potential eigenfunctiondfn , which van-
ishes asr approaches the beam edge@r 5r b(12e) with e
→01#, the density eigenfunctiondnnubody is nonzero and be
comes large with increasing mode indexn. For reference,
explicit representations of the body-wave component of
eigenfunctiondnn are presented in Table II for radial mod
numbersn51 to n55. The presentation format is analogo
to that used to represent the eigenfunctiondfn in Table II.
For thenth-order eigenfunction,dnn , it is found that there
are n21 nodes (dnn50) andn21 antinodes~dnn at rela-
tive maxima or minima with]dnn /]r 50! within the beam
(0<r ,r b). The tabulated eigenfunctionsdnn are plotted in
Fig. 7~b!.

APPENDIX D: RELATIVISTIC GENERALIZATIONS

We consider an ion beam propagating in thez direction
with average axial velocityVb and relativistic mass facto
gb5(12bb

2)21/2, wherebb5Vb /c. In situations where the
ion motion in the beam frame~‘‘primed’’ coordinates! is
nonrelativistic withuv8u!c, and the velocity of directed ion
motion is large relative to ion velocities in the beam fram
with Vb@uv8u, the nonrelativistic electrostatic formalism d
veloped in Secs. II–V is readily extended to the relativis
regime. This can be carried out through the use of the L
entz transformations appropriate for the electrostatic po
tial, f85gb(f2bbAz), the z component of the vector po
tential, Az85gb(Az2bbf), and the wave frequency an
axial wave number,v85gb(v2kzVb) and kz85gb(kz
Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to A
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2vbb /c). Particularly important, for nonrelativistic motio
in the beam frame, is the fact thatAz8.0, which givesAz

5bbf andf2bbAz5(12bb
2)f5f/gb

2.
We present here, without giving a detailed derivatio

the relativistic generalizations of the cold-beam and war
beam fluid stability results in Secs. IV and V, valid foruv8u
!c andVb@uv8u. Common to both analyses is the equili
rium force balance equation~38!, which is generalized in the
relativistic case to become

v̂ r~vc /gb2v̂ r !1v f
2/gb2

2T̂' /gbm

r b
2

5
2Zi

2e2Nb

gb
3mrb

2 5
v̂p

2

2gb
3 . ~D1!

Here, gb5(12bb
2)21/2 is the relativistic mass factor, an

v̂p
254pn̂Zi

2e2/m andvc5ZieBf /mc are the nonrelativistic
plasma frequency-squared and the cyclotron frequency,
spectively.

First we consider the cold-beam (T̂'→0) stability re-
sults of Sec. IV, derived for the step-function density profi
in Eq. ~79! and general values of azimuthal harmonic nu
ber l and axial wave numberkz . The relativistic generaliza-
tion of the full cold-beam dispersion relation in Eq.~83! is
given by

kzr b

Kl~kzr w!I l8~kzr b!2Kl8~kzr b!I l~kzr w!

Kl~kzr w!I l~kzr b!2Kl~kzr b!I l~kzr w!

2F12
v̂p

2/gb

V224~v̂ r2vc/2gb!2GTrb

Jl8~Trb!

Jl~Trb!

522l
~v̂p

2/gb!~v̂ r2vc/2gb!

V@V224~v̂ r2vc/2gb!2#
. ~D2!

Here, identical to the nonrelativistic case,V is defined by
V5v2 l v̂ r2kzVb , while the coefficientT occurring in Eq.
~D2! is relativistically generalized as

T252kz
2

12v̂p
2/gb

3V2

12v̂p
2/gb@V224~v̂ r2vc/2gb!2#

. ~D3!

The relativistic generalization of the eigenfunction in E
~80! is identical in form provided Eq.~D3! is used in place of
Eq. ~81! to defineT2. Moreover, the equilibrium parameter
v̂p

2, vc , v̂ r , and gb occurring in Eqs.~D2! and ~D3! are
related by the generalized equilibrium force balance con
tion ~D1! with T̂'50. Other results presented in Sec. IV c
be generalized to the relativistic case in the obvious man

Next we consider the stability results of Sec. V, deriv
for the case of a warm KV beam equilibrium with axisym
metric flute perturbations~l 50 andkz50!. The dispersion
relation ~99! is generalized to become

v25v̂p
2/gb14~v̂ r2vc/2gb!21

8T̂'

gbmrb
2 n2, ~D4!
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and the eigenfunction given by Eq.~102! is unchanged in
form. Again, the equilibrium parameters are related by E
~D1!, and other results presented in Sec. V can be gene
ized in the obvious manner.

Finally, it should be pointed out that the two differin
relativistic factors occurring in the terms involving th
plasma frequency-squared in Eqs.~D1!–~D4!, v̂p

2/gb and
v̂p

2/gb
3, correspond to corrections due to leading-order ki

matic effects and combined kinematic/magnetic self-field
fects, respectively. Also, similar arguments to those p
sented here can be used to obtain the relativi
generalizations of the kinetic stability analysis summariz
in Appendix B.
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