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In this paper we present a detailed formulation and analysis of the rate equations for statistically
averaged quantities for an intense non-neutral beam propagating through a periodic solenoidal
focusing fieldBsol(x) with axial periodicity lengthS5const. The analysis is based on the nonlinear
Vlasov–Maxwell equations in the electrostatic approximation, assuming a thin beam with
characteristic beam radiusr b!S, and small transverse momentum and axial momentum spread in
comparison with the directed axial momentumpz5gbmbbc. The global rate equation is derived for
the self-consistent nonlinear evolution of the statistical average^x&5Nb

21*dXdYdX8dY8xFb ,
where x(X,Y,X8,Y8,s) is a general phase function, andFb(X,Y,X8,Y8,s) is the distribution
function of the beam particles in the transverse phase space (X,Y,X8,Y8) appropriate to the Larmor
frame. The results are applied to investigate the nonlinear evolution of the generalized entropy,
mean canonical angular momentum^Pu&, center-of-mass motion for̂X& and ^Y&, mean kinetic
energy (1/2)̂X821Y82&, mean-square beam radius^X21Y2&, and coupled rate equations for the
unnormalized transverse emittancee(s) and root-mean-square beam radiusRb(s)5^X21Y2&1/2.
Most importantly, the present derivation of nonlinear rate equations for various statistical averages
^x& allows for general azimuthal variation (]/]uÞ0) of the distribution function and self-field
potential, and therefore represents a major generalization of earlier calculations carried out for the
case of axisymmetric beam propagation. ©1998 American Institute of Physics.
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I. INTRODUCTION

Periodic focusing accelerators1–4 have a wide range o
applications ranging from basic scientific research,
applications5–8 such as heavy ion fusion, tritium productio
and nuclear waste treatment. There is a growing interes
developing an improved understanding of the nonlinear
namics, stability, and transport properties of intense n
neutral beams propagating through a periodic focusing fie8

both with respect to identifying operating regimes for quie
cent beam propagation with negligible effects of collect
instabilities,8–18 and with respect to minimizing or eliminat
ing halo production.19–22Particularly useful in describing in
tense beam propagation in periodic focusing transport
tems are kinetic models9–11,17,18,23–26based on the nonlinea
Vlasov–Maxwell equations,1 which incorporate the self
consistent evolution of the distribution of beam particlesFb

and the interaction of the beam particles with the electric
magnetic fields,E andB.

In this paper we present a detailed formulation a
analysis of the rate equations for statistically averaged qu
tities for an intense non-neutral beam propagating throug
periodic solenoidal focusing field Bsol(x)5Bz(s)êz

2(1/2)Bz8(s)r êr , whereBz(s1S)5Bz(s), s is the axial co-
ordinate, andS5const is the axial periodicity length. Th
analysis is based on the nonlinear Vlasov–Maxwell eq
tions in the electrostatic approximation.1,26 It assumes a thin
beam with characteristic beam radiusr b!S, small transverse
momentum and axial momentum spread in comparison w
the directed axial momentumpz5gbmbbc, wheregbmc2 is
the characteristic kinematic energy of a beam particle,
Phys. Plasmas 5 (1), January 1998 1070-664X/98/5(1)/279/1
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n/gb!1, where n5NbZi
2e2/mc2 is Budker’s parameter

Here,Zie is the particle charge,Nb5*dXdYnb is the num-
ber of beam particles per unit axial length, an
Fb(X,Y,X8,Y8,s) is the distribution function of the beam
particles in the transverse phase space (X,Y,X8,Y8) appro-
priate to the Larmor frame.26 Particularly useful in experi-
mental applications and in numerical simulation mode
such as the nonlineard f scheme,18 is an understanding of the
self-consistent nonlinear evolution of various statistic
averages,1,27,28 ^x&5Nb

21*dXdYdX8dY8xFb , wherex is a
phase function defined on the four-dimensional phase sp
(X,Y,X8,Y8). Such models for the evolution of statistical
averaged quantities have been developed and applied
Sacherer27 for the case of an elliptical cross section bea
propagating through a periodic quadrupole lattice, by L
and Cooper28 for an axisymmetric beam propagating throu
a solenoidal focusing field, and by Struckmeier a
Hofmann17 for beam propagation through general period
focusing systems. Related models that study the rate e
tions for emittance evolution in axisymmetric beams29,30and
sheet beams30 have also been developed and applied
Wangleret al.29 and by Anderson.30 Most importantly, the
present derivation of rate equations for the nonlinear evo
tion of various statistical averages^x& is based on the non
linear Vlasov–Maxwell equations and allows for general a
muthal variation (]/]uÞ0) of the distribution function and
self-field potential. In this regard, the present analysis rep
sents a major extension of earlier calculations carried out
axisymmetric beam propagation, e.g., in Refs. 28–30.

The organization of this paper is the following. The th
2793/$15.00 © 1998 American Institute of Physics
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oretical model and assumptions are summarized in Sec. I
Sec. III, the global rate equation is derived for general ph
function x(X,Y,X8,Y8,s), and the results are applied to in
vestigate the nonlinear evolution of generalized entro
mean canonical angular momentum̂Pu&, center-of-mass
motion for ^X& and ^Y&, mean kinetic energy (1/2)^X82

1Y82&, mean-square beam radius^X21Y2&, and coupled
rate equations for the unnormalized transverse emitta
e(s) and root-mean-square beam radiusRb(s)5^X2

1Y2&1/2. Here,e(s) is defined by (1/4)e2(s)5^X821Y82&
3^X21Y2&2^XX81YY8&2. The rate equations obtained i
Sec. III are derived from the fully nonlinear Vlasov–Poiss
equations allowing for azimuthal asymmetries (]/]uÞ0),
and are valid no matter how complex the nonlinear evolut
of the system. In Sec. IV, following a discussion of glob
energy balance, and the rate equations for the special
whereFb corresponds to the Kapchinskij–Vladimirskij~KV !
distribution,23 we examine the coupled rate equations for
unnormalized beam emittancee(s) and rms beam radiu
Rb(s) for the class of axisymmetric beam distributionsFb

with fixed-shape density profilenb(R,s)5@Nb /pr b
2(s)#

3 f @R/r b(s)#.28 Here,R5(X21Y2)1/2 is the radial distance
from the beam axis,r b(s) is the outer radius of the beam
envelope, and the density shape functionf (R/r b) is allowed
to have a general functional form. Most importantly, it
found thatde(s)/ds50, corresponding to emittance conse
vation for general density shape functionf @R/r b(s)#, and
that the envelope equation for the outer beam radiusr b(s) is
similar to the envelope equation28 for a KV beam
distribution,23 appropriately modified by a geometric factorg
to reflect the shape of the functionf (R/r b). This is similar to
the result obtained by Lee and Cooper28 for the case of axi-
symmetric beam propagation through a solenoidal focus
field and general density shape functionf (R/r b).

II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a thin, intense non-neutral beam with ch
acteristic radiusr b and axial velocityVb5bbc propagating
in the z direction through the periodic solenoidal focusin
field,1

Bso~x!5Bz~s!êz2
1
2 rBz8~s!êr . ~1!

Here, s is the axial coordinate,r 5(x21y2)1/2 is the radial
distance from the beam axis,Bz(s1S)5Bz(s) is the axial
magnetic field with fundamental periodicity lengthS
5const., ‘‘prime’’ denotes a derivative with respect tos,
r b!S is assumed, consistent with the thin-beam approxim
tion, andgbmc2 is the characteristic energy of a beam p
ticle, wheregb5(12bb

2)21/2. Consistent with the thin-beam
approximation, the transverse momentum of a beam par
and the axial momentum spread are assumed to be sma
comparison with the directed axial momentumgbmbbc,
wherem is the rest mass, andc is the speed of lightin vacuo.
In addition, it is assumed that

n

gb
5

Zi
2e2Nb

gbmc2 !1, ~2!
280 Phys. Plasmas, Vol. 5, No. 1, January 1998
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where n is Budker’s parameter,Zie is the particle charge
Nb5*dxdynb is the number of particles per unit axia
length, andnb(x,y,s) is the particle density. Equation~2!
assures that the self-field intensity is sufficiently weak t
uZiefs/gbmc2u!1, wherefs is the electrostatic potentia
due to the beam space charge. However, the present ana
does permit the potential energyZiefs to be comparable in
magnitude with the transverse kinetic energy (px

2

1py
2)/2gbm of a beam particle.
The present analysis is carried out in the electrost

approximation, where the self-electric field produced by
beam space charge isEs52“fs, and the electrostatic po
tential fs(x,y,s) is determined self-consistently from Poi
son’s equation,

S ]2

]x2 1
]2

]y2Dfs524pZienb . ~3!

In Eq. ~3!, nb(x,y,s) is the particle density, and we hav
approximated¹2.¹'

2 5]2/]x21]2/]y2 in the thin-beam
approximation withr b!S. In addition, the axial beam cur
rentZienbVzb , whereVzb(x,y,s) is the average axial veloc
ity, produces a transverse self-magnetic fieldBs5“3Az

sêz ,
whereAz

s(x,y,s) is determined self-consistently from¹'
2 Az

524pZienbVzb . In circumstances where the average ax
velocity is approximately uniform over the beam cross s
tion with Vzb.Vb5bbc5const., which we assume to be th
case, a comparison with Eq.~3! shows that the self-field
potentials,fs(x,y,s) and Az

s(x,y,s), are related by the fa-
miliar expression1

Az
s5bbfs. ~4!

Therefore, to summarize, in the thin-beam approximation
beam particles interact with the electric and magnetic fie
Es andB, described by

Es52“fs~x,y,s!,

B5Bsol1Bs5Bz~s!êz2
1

2
rBz8~s!êr

1bb “fs~x,y,s!3êz . ~5!

Here,Bsol(x) is the periodic solenoidal field defined in Eq
~1!, and the electrostatic potentialfs(x,y,s) is determined in
terms of the particle densitynb(x,y,s) from Poisson’s equa-
tion ~3!.

In the present analysis, we make use of a kinetic
proach based on the nonlinear Vlasov–Poisson equation1,26

to describe the dynamics of the beam particles and their
teraction with the field configuration in Eq.~5!. In this re-
gard, it is convenient to introduce the normalized Larm
frequencyVL(s) and the normalized electrostatic potent
c(x,y,s), defined by

VL~s!52Akz~s!52
ZieBz~s!

2gbmbbc2 ,
~6!

c~x,y,s!5
Zie

gb
3mbb

2c2 f5~x,y,s!.
Davidson, Lee, and Stoltz
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It is also convenient to transform to a frame of referen
rotating about the beam axis at the local Larmor freque
VL(s). We introduce the accumulated phase of rotation fr
s0 to s defined byuL(s)52*s0

s dsAkz(s), where duL /ds

5VL . Then the transverse orbits,X(s) and Y(s), in the
rotating frame, are related to the transverse orbits,x(s) and
y(s), in the laboratory frame by

X5x cosuL~s!1y sin uL~s!,
~7!

Y52x sin uL~s!1y cosuL~s!.

Finally, it is assumed that the beam particles have a neg
bly small spread in axial momentum about the average va
gbmbbc. Then, in the transverse phase space varia
(X,Y,X8,Y8) appropriate to the Larmor frame, it can b
shown that the distribution functionFb(X,Y,X8,Y8,s)
evolves according to the nonlinear Vlasov equation,26

]Fb

]s
1X8

]Fb

]X
1Y8

]Fb

]Y
2S kz~s!X1

]c

]XD ]Fb

]X8

2S kz~s!Y1
]c

]YD ]Fb

]Y8
50, ~8!

where the normalized potentialc(X,Y,s) is determined self-
consistently from Poisson’s equation,

S ]2

]X2 1
]2

]Y2Dc52
2pK

Nb
EdX8dY8Fb . ~9!

Here, nb(X,Y,s)5*dX8dY8Fb is the particle density,Nb

5*dXdYnb is the number of particles per unit axial lengt
and we have introduced the self-field perveanceK defined
by1,26

K5
2NbZi

2e2

gb
3mbb

2c2 , ~10!

which is a~dimensionless! measure of the self-field intensity
Note in Eq. ~8! that X8 and Y8 correspond to normalized
velocity variables in theX2Y plane~i.e., X8 denotesdX/ds
andY8 denotesdY/ds!, and the coefficients of]Fb /]X8 and
]Fb /]Y8 correspond to the particle accelerations in theX
andY directions, respectively.

The Vlasov–Poisson equations~8! and~9! constitute the
basic dynamical equations used in the present analysis. T
describe, in the Larmor frame, the nonlinear evolution of
charged particle beam as it propagates through the peri
solenoidal fieldkz(s1S)5kz(s). In particular, Eq.~8! de-
scribes the incompressible evolution of the distribution fu
tion Fb(X,Y,X8,Y8,s) in the four-dimensional phase spa
(X,Y,X8,Y8), and Eq.~9! determines self-consistently th
normalized potentialc(X,Y,s) in terms of the particle den
sity nb(X,Y,s)5*dX8dY8Fb . In subsequent sections, w
make use of Eqs.~8! and ~9! to investigate the evolution o
various global~statistically averaged! quantities of physical
interest. In this regard, when carrying out averages of
Vlasov equation~8! over the phase space (X,Y,X8,Y8), we
assume that a perfectly conducting cylindrical wall is loca
at radiusr 5R5(X21Y2)1/25r w , and impose the boundar
condition
Phys. Plasmas, Vol. 5, No. 1, January 1998
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R

]

]u
c~R,u,s! D

R5r w

50, ~11!

which corresponds to a zero tangential electric field at
conducting wall. Here, (R,u) correspond to cylindrical coor
dinates in the Larmor frame defined byX5Rcosu and Y
5Rsinu. In addition, it is assumed that the distribution fun
tion Fb(X,Y,X8,Y8,s) satisfies

Fb50, for X8→6` or Y8→6`, ~12!

and that there are no beam particles beyond some radiusr 0 ,
i.e.,

Fb50, for ~X21Y2!1/2>r 0 , where r 0,r w . ~13!

Note that Eq.~13! implies that the beam densitynb is zero in
the vacuum regionr 0<R<r w .

As a final point in concluding this section, it should b
noted that the characteristics of the nonlinear Vlasov eq
tion ~8! correspond to the single-particle equations of m
tion, e.g., X8(s)5dX(s)/ds and dX8(s)/ds52kz(s)X
2]c/]X for the X motion, and similar equations for theY
motion. Indeed, these equations of motion can be deri
from the HamiltonianH'(X,Y,X8,Y8,s), defined by

H'5 1
2 ~X821Y82!1 1

2 kz~s!~X21Y2!1c~X,Y,s!.
~14!

Becausekz(s) is s-dependent for a periodic focusing lattic
it is clear from Eq.~14! that H' is not a single-particle con-
stant of the motion. Therefore, it is not expected that to
energy~kinetic energy plus potential energy plus self-fie
energy! will be globally conserved by the nonlinear Vlasov
Poisson equations~8! and ~9!.

III. GLOBAL RATE EQUATIONS AND CONSERVATION
RELATIONS

We now make use of the Vlasov–Poisson equations~8!
and~9!, together with the boundary conditions in Eqs.~11!–
~13!, to derive rate equations and conservation relations
describe the nonlinear dynamics of the beam and its inte
tion with the field configuration in Eq.~5!. In this regard, the
statistical average of a phase functionx(X,Y,X8,Y8,s) over
the four-dimensional phase space (X,Y,X8,Y8) is denoted by
^x& and is defined in the usual manner by26–28

^x&5
1

Nb
EdXdYdX8dY8xFb . ~15!

Here, Nb5*dXdYnb5*dXdYdX8dY8Fb is the number of
particles per unit axial length. The phase-space integra
Eq. ~15! can also be expressed in cylindrical coordinates
*dXdYdX8dY8•••5*0

2pdu*0
r wdR R*2`

` dX8*2`
` dY8••• .

The most basic conservation relation evident from Eq.~8!
corresponds to the conservation of the total number of p
ticles per unit axial length. Operating on Eq.~8! with
*dXdYdX8dY8••• , integrating by parts with respect toX,
Y, X8, andY8, and making use of Eqs.~12! and~13!, readily
gives
281Davidson, Lee, and Stoltz
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Nb5EdXdYdX8dY8

]Fb

]s
50. ~16!

Equation~16! is simply a statement thatNb5const, no mat-
ter how complicated the nonlinear evolution of the system

For general phase functionx(X,Y,X8,Y8,s), it follows
from the definition of the statistical average in Eq.~15! that

d

ds
^x&5 K ]x

]sL 1EdXdYdX8dY8x
]Fb

]s
. ~17!

Multiplying the Vlasov equation~8! by x, operating with
Nb

21*dXdYdX8dY8•••, integrating by parts with respect t
X, Y, X8, andY8, and making use of Eqs.~12! and~13!, the
final term in Eq.~17! can be simplified. This gives

d

ds
^x&5 K ]x

]s
1X8

]x

]X
1Y8

]x

]Y
2S kz~s!X1

]c

]XD ]x

]X8

2S kz~s!Y1
]c

]YD ]x

]Y8L . ~18!

The general rate equation~18! can be used to evaluat
(d/ds)^x& for a wide variety of choices of phase functionx
of physical interest.

A. Entropy conservation

It is important to note that the total derivative operati
on x within the angular brackets on the right-hand side
Eq. ~18! is identical to the total derivative operation onFb in
the nonlinear Vlasov equation~8!. Furthermore, for smooth
differentiableG(Fb), it follows from Eq. ~8! that

F ]

]s
1X8

]

]X
1Y8

]

]Y
2S kz~s!X1

]c

]XD ]

]X8

2S kz~s!Y1
]c

]YD ]

]Y8GG~Fb!50. ~19!

Making use of Eq.~18!, or operating directly on Eq.~19!
with *dXdYdX8dY8••• readily gives

d

ds EdXdYdX8dY8G~Fb!50. ~20!

That is, any smooth, differentiable functionG(Fb) integrated
over the four-dimensional phase space (X,Y,X8,Y8) is a glo-
bally conserved quantity. The caseG(Fb)5Fb corresponds
simply to dNb /ds50 in Eq. ~16!. Many other choices of
G(Fb), such asFb

2, 2Fb ln Fb , etc., are also globally con
served quantities. For example, using the standard defin
of entropyS, it follows from Eq. ~20! that

d

ds
S52

d

ds EdXdYdX8dY8Fb ln Fb50. ~21!

Equations~20! and ~21! are expected results because t
nonlinear collective processes contained in the Vlaso
Poisson equations~8! and ~9! are known to conserve bot
entropy @Eq. ~21!# and generalized entropy@Eq. ~20!# no
matter how complicated the evolution of the system. No
theless, Eq.~20! represents a powerful global constraint
the nonlinear dynamics of the beam.
282 Phys. Plasmas, Vol. 5, No. 1, January 1998
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B. Conservation of canonical angular momentum

In the normalized Larmor-frame variables used in t
present analysis, the canonical angular momentumPu of an
individual particle is defined by26

Pu5XY82YX8. ~22!

Substitutingx5XY82YX8 into Eq. ~18! readily gives

d

ds
^XY82YX8&5 K Y

]c

]X
2X

]c

]YL 52 K ]c

]u L . ~23!

Here, use has been made of]/]X5cosu(]/]R)
2R21 sinu(]/]u) and ]/]Y5sinu(]/]R)1R21 cosu(]/]u) in
cylindrical coordinates (R,u), where X5R cosu and Y
5R sinu. To simplify the right-hand side of Eq.~23!, it is
convenient to express Poisson’s equation~9! in cylindrical
coordinates, i.e.,

1

R

]

]R
R

]c

]R
1

1

R2

]c

]u2 52
2pK

Nb
nb , ~24!

wherenb(R,u,s)5*dX8dY8Fb is the density of beam par
ticles. From Eqs.~15! and ~24!, it follows that

K ]c

]u L 5
1

Nb
E

0

2p

duE
0

r w
dRR

]c

]u
nb

52
1

2pK E
0

2p

duE
0

r w
dRR

]c

]u

3S 1

R

]

]R
R

]c

]R
1

1

R2

]2c

]u2 D
52

1

2pK E
0

2p

du

3E
0

r w
dRRS 2

]c

]R

]

]u

]c

]R
1

1

R2

]c

]u

]

]u

]c

]u D .

~25!

In Eq. ~25!, we have integrated by parts with respect toR
and made use of@]c/]u#R5r w

50 @see Eq.~11!#. Next, we
integrate by parts with respect tou on the right-hand side o
Eq. ~25!, and make use of the fact that]c/]R and]c/]u are
periodic functions ofu with azimuthal period 2p. This
readily gives^]c/]u&50, and Eq.~23! reduces to

d

ds
^Pu&5

d

ds
^XY82YX8&50. ~26!

Equation~26! corresponds to global conservation of c
nonical angular momentum, also a very powerful constra
on the nonlinear evolution of the system. Note that t
boundary condition in Eq.~11!, corresponding to a perfectly
conducting wall located at radiusR5r w , has played an im-
portant role in assuring that^]c/]u&50 and hence that Eq
~26! is satisfied. Note also that it hasnot been assumed tha
]Fb /]u and ]c/]u are zero~azimuthally symmetric beam!
in deriving the conservation relation in Eq.~26!. That is, the
beam can~in principle! develop large-amplitude azimutha
Davidson, Lee, and Stoltz
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distortions, and the global conservation of canonical ang
momentum in Eq.~26! will remain a valid conservation con
straint.

C. Center of mass motion

Substitutingx5X in Eq. ~18! readily gives

d

ds
^X&5^X8&, ~27!

and similarly, forx5X8, we obtain from Eq.~18!,

d

ds
^X8&52kz~s!^X&2 K ]c

]XL . ~28!

Substituting Eq.~27! into Eq. ~28! then gives

d2

ds2 ^X&1kz~s!^X&52 K ]c

]XL . ~29!

Equations identical in form to Eqs.~27! and ~28! can be
obtained for the averageY motion, i.e., (d/ds)^Y&5^Y8&
and (d/ds)^Y8&52kz^Y&2^]c/]Y&, which can be com-
bined to give

d2

ds2 ^Y&1kz~s!^Y&52 K ]c

]YL . ~30!

Equations~29! and ~30! describe the evolution of the bea
centroid (̂ X&,^Y&) in response to the periodic focusing ma
netic field kz(s1S)5kz(s) and the average self-field com
ponents2^]c/]X& and 2^]c/]Y&. Evidently, if the beam
is initially centered ~at s5s0 , say! with ^X&s5s0

50
5^Y&s5s0

and ^X8&s5s0
505^Y8&s5s0

, then it follows from
Eqs.~27!–~30! that ^X&505^Y& at subsequent values ofs.

Rate equations for the evolution of other average qu
tities are also readily obtained. For example, substitutinx
5Xn, wheren is an integer, into Eq.~18! gives

d

ds
^Xn&5n^X8Xn21&. ~31!

Similarly, it follows from Eq.~18! that

d

ds
^X8m&52kz~s!m^XX8m21&2mK X8m21

]c

]XL , ~32!

and

d

ds
^XnX8m&5n^Xn21X8m11&2kz~s!m^Xn11X8m21&

2mK X8m21Xn
]c

]XL . ~33!

Analogous equations for the evolution of^Yn&, ^Y8m&,
^YnY8m&, ^XnYm&, etc. are also readily obtained, but will no
be presented here.

Two quantities of particular physical interest are t
mean kinetic energy (1/2)^X821Y82& and the mean-squar
beam radiuŝX21Y2&. We now make use of the general ra
equation ~18! to derive equations for the evolution o
(1/2)^X821Y82& and ^X21Y2&.
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D. Rate equation for mean kinetic energy
„1/2…ŠX821Y82

‹

Substitutingx5(1/2)(X821Y82) into Eq. ~18!, we ob-
tain

d

ds

1

2
^X821Y82&52kz~s!^XX81YY8&

2 K X8
]c

]X
1Y8

]c

]YL . ~34!

It also readily follows from Eq.~18! that (d/ds)^X21Y2&
52^XX81YY8&, so that Eq.~34! can be expressed in th
equivalent form

d

ds

1

2
^X821Y82&52kz~s!

d

ds

1

2
^X21Y2&

2 K X8
]c

]X
1Y8

]c

]YL . ~35!

The first term on the right-hand side of Eq.~35! is related to
the change in potential energy associated with the part
motion in the periodic solenoidal focusing field, whereas
second term on the right-hand side is related to the chang
self-field energy.

To simplify the self-field contribution on the right-han
side of Eq.~35!, we make use of the generalized rate equ
tion ~18! with x5c(X,Y,s) and the definition of statistica
average in Eq.~15! to write

K X8
]c

]X
1Y8

]c

]YL 5
d

ds
^c&2 K ]c

]s L
5

1

Nb
EdXdYdX8dY8c

]Fb

]s

5
1

Nb
EdXdYc

]

]s EdX8dY8Fb . ~36!

The beam densitynb(X,Y,s)5*dX8 dY8 Fb can be elimi-
nated in Eq.~36! in terms of¹'

2 c5(]2/]X21]2/]Y2)c by
means of Poisson’s equation~9!. This gives, after some in
tegration by parts,

K X8
]c

]X
1Y8

]c

]YL 52
1

2pK EdXdYc
]

]s
¹'

2 c

5
1

4pK

]

]s EdXdYu“'cu2. ~37!

In simplifying Eq. ~37!, we have expressed*dX dY•••
5*0

2p du*0
r w dR R••• and integrated by parts with respe

to R and u, enforcing the boundary conditions tha
@]c/]u#R5r w

50 and @c#R5r w
5const at the conducting

wall. ~For convenience, the reader may wish to assume
the conducting wall is grounded, with@c#R5r w

50.! In the
normalized units used here,

EF~s![
1

4pK EdXdYu“'cu2, ~38!
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will be recognized as the self-field energy of the beam p
ticles.

Substituting Eqs.~37! and ~38! into Eq. ~35!, the rate
equation~35! for the change in mean kinetic energy can
expressed as

d

ds

1

2
^X821Y82&52kz~s!

d

ds

1

2
^X21Y2&2

d

ds
EF~s!,

~39!

or, equivalently,

d

ds S 1

2
^X821Y82&1

1

2
kz~s!^X21Y2&1EF~s! D

5
1

2

dkz~s!

ds
^X21Y2&. ~40!

The left-hand side of Eq.~40! will be recognized as the rat
of change of mean total energy of the system. Indeed, m
ing use of the definition ofH' in Eq. ~14!, and recognizing
that the field energy can also be expressed asEF(s)5^c&
@see Eqs.~15!, ~24!, and~38!#, Eq. ~40! can be expressed i
the equivalent form (d/ds)^H'&5(1/2)(dkz /ds)^X21Y2&.
It is clear from Eq.~40! that the mean total energy of th
system is conserved wheneverdkz(s)/ds50. For example,
this is true for the case of a uniform solenoidal focusing fi
with kz(s)5kz05const~for all s!. It is also true for a peri-
odic step-function lattice in the localized regions ofs-space
wherekz50 or kz5kz05const.

As a final point in concluding this section, it should b
emphasized that rate equations in Eq.~35! and Eq.~39! @or
Eq. ~40!# are fully equivalent.

E. Rate equation for mean-square beam radius
ŠX21Y2

‹

Substitutingx5X21Y2 into the generalized rate equa
tion ~18! gives

d

ds
^X21Y2&52^XX81YY8&. ~41!

Furthermore, substitutingx5XX81YY8 into Eq. ~18! and
carrying out the required derivative operations, we obtain

d

ds
^XX81YY8&5

d2

ds2

1

2
^X21Y2&

5^X821Y82&2kz~s!^X21Y2&

2 K X
]c

]X
1Y

]c

]YL . ~42!

Equation~42! and Eq.~35! @or Eq. ~39!# represent coupled
rate equations for the evolution of̂X21Y2& and ^X82

1Y82&.
For future reference, it is useful to simplify the final ter

on the right-hand side of Eq.~42!. Making use of the repre
sentation̂ X ]c/]X1Y ]c/]Y&5^R ]c(R,u,s)/]R& in cy-
lindrical coordinates, and the definition of statistical avera
in Eq. ~15!, we obtain
284 Phys. Plasmas, Vol. 5, No. 1, January 1998
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K X
]c

]X
1Y

]c

]YL 5
1

Nb
E

0

2p

duE
0

r w
dRRR

]c

]R
nb

52
1

2pK E
0

2p

duE
0

r w
dRRR

3
]c

]R S 1

R

]

]R
R

]c

]R
1

1

R2

]2c

]u2 D
52

1

2pK E
0

2p

duE
0

r w
dR

1

2 F ]

]R S R
]c

]RD 2

2
]

]R S ]c

]u D 2G . ~43!

Here, use has been made of Poisson’s equation~24! to elimi-
natenb(R,u,s) in favor of ¹'

2 c in cylindrical coordinates,
and the term proportional to]2c/]u2 has been integrated b
parts with respect tou, making use ofc(R,u12p,s)
5c(R,u,s). Integrating by parts with respect toR in Eq.
~43!, and making use of@]c/]u#R5r w

50 @Eq. ~11!#, we ob-
tain

K X
]c

]X
1Y

]c

]YL 52
1

4pK E
0

2p

duFR
]c

]RG
R5r w

2

. ~44!

It is convenient to expressc(R,u,s)5c̄(R,s)
1dc(R,u,s), wherec̄[(2p)21*0

2p du c and *0
2p du dc

50. If c is azimuthally symmetric (]c/]u50), thenc5c̄
and dc50. In general, however, there may be~instability-
induced! perturbations in the system, in which ca
dc(R,u,s) is nonzero. Therefore, in the general case, E
~44! can be expressed as

K X
]c

]X
1Y

]c

]YL
52

1

4pK E
0

2p

duS FR
]c̄

]RG
R5r w

2

1FR
]dc

]R G
R5r w

2 D . ~45!

The first term on the right-hand side of Eq.~45! is associated
with the dc space charge of the beam and can be evaluat
closed form~see below!. The second term on the right-han
side of Eq.~45! involves the perturbed charge density and
typically much smaller than the first term. To evalua
@R]c̄/]R#R5r w

in Eq. ~45!, we operate on Poisson’s equ

tion ~24! with *0
2p du*0

r w dR R... and make use o

*0
2p du*0

r w dR Rnb(R,u,s)5Nb . This readily gives

FR
]

]R
c̄ G

R5r w

52K, ~46!

whereK is the self-field perveance defined in Eq.~10!. Sub-
stituting Eq.~46! into Eq. ~45! then gives

K X
]c

]X
1Y

]c

]YL 52
1

2
K~11D!, ~47!

whereD is defined by

D[
1

K2 E
0

2p du

2p S R
]

]R
dc D 2

R5r w

. ~48!
Davidson, Lee, and Stoltz

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



f

-
re

n-

he
/2
e

q

ial

e
ce

n

he

e
ua-
e
en-
ular
pa-

ar

or
ase
Substituting Eq.~47! into Eq. ~42!, it is found that

d2

ds2

1

2
^X21Y2&1kz~s!^X21Y2&2

1

2
K~11D!

5^X821Y82&. ~49!

Equation ~49! describes the evolution of̂X21Y2& and is
fully equivalent to Eq.~42!. Here, the nonlinear evolution o
the mean-square radius@Eq. ~49! or Eq. ~42!# is coupled to
the evolution of the mean kinetic energy (1/2)^X821Y82&
@Eq. ~39! or Eq. ~35!#. Particularly important in Eq.~49! is
that the self-field perveanceK5const., no matter how com
plicated the nonlinear evolution of the system. Furthermo
the term proportional toD in Eq. ~49! is either zero~D50
for an azimuthally symmetric beam!, or small (D!1) in
many regimes of practical interest. Equation~49! @or, equiva-
lently, Eq.~42!# is an exact consequence of the fully nonli
ear Vlasov–Maxwell equations~8! and ~9!.

F. Coupled rate equations for rms emittance e„s … and
rms beam radius Rb„s …

For future reference, it is convenient to rewrite t
coupled rate equations for the mean kinetic energy (1
3^X821Y82& in Eq. ~35! @or Eq. ~39!# and the mean-squar
beam radiuŝ X21Y2& in Eq. ~42! @or Eq. ~49!# in terms of
the root-mean-square beam radiusRb(s) defined by27,28

Rb~s!5^X21Y2&1/2, ~50!

and the unnormalized beam emittancee(s) defined by1,26–28

e2~s!54@^X821Y82&^X21Y2&2^XX81YY8&2#

54F ^X821Y82&Rb
22S 1

2

d

ds
Rb

2D 2G . ~51!

In Eq. ~51!, use has been made ofRb
25^X21Y2& and ^XX8

1YY8&5(d/ds)(1/2)^X21Y2&5(d/ds)(Rb
2/2). Substitut-

ing Eq. ~51! into Eq. ~42! and eliminating^X821Y82& in
favor of e2(s), some straightforward algebra shows that E
~42! can be expressed as

d2

ds2 Rb~s!1kz~s!Rb~s!

5
e2~s!/4

Rb
3~s!

2
1

Rb~s! K X
]c

]X
1Y

]c

]YL . ~52!

Equation~52! is fully equivalent to Eq.~42!. If we further
expresŝ X ]c/]X1Y]c/]Y& in terms of the self-field per-
veance by means of Eq.~47!, then Eq.~52! for the rms beam
radiusRb(s) can also be expressed as

d2

ds2 Rb~s!1S kz~s!2
~K/2!~11D!

Rb
2~s! D Rb~s!5

e2~s!/4

Rb
3~s!

.

~53!

Equation~53! is fully equivalent to Eqs.~52! and ~42!, and
has been derived from thefully nonlinear Vlasov–Poisson
equations~8! and ~9! for generalbeam distribution function
Fb(X,Y,X8,Y8,s) and self-consistent normalized potent
c(X,Y,s) defined in Eq.~6!. In deriving Eq.~53!, noa priori
assumption has been made that]Fb /]u50 or ]c/]u50.
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The striking feature of Eq.~53! is that it is similar in form to
the analogous equation forRb(s) derived for the restrictive
assumption of a Kapchinskij–Vladimirskij beam
distribution23 Fb

KV @which has uniform beam densitynb

5const. for 0<R,r b(s)[&Rb(s), and nb50 for R
.r b(s)#, in which casee(s)5const., andD50 because
(]/]u)Fb

KV50 and]c/]u50.
The rate equations~35! and~42! can be used to describ

the nonlinear evolution of the unnormalized rms emittan
e(s) defined in Eq.~51!. From Eq.~51!, we obtain

d

ds

1

4
e2~s!5^X21Y2&

d

ds
^X821Y82&1^X821Y82&

3
d

ds
^X21Y2&22^XX81YY8&

d

ds
^XX81YY8&. ~54!

Substituting Eqs.~35! and~42! into Eq.~54! and rearranging
terms, it can be shown that Eq.~54! reduces to

d

ds

1

8
e2~s!5

1

2

d

ds
^X21Y2&K X

]c

]X
1Y

]c

]YL
2^X21Y2&K X8

]c

]X
1Y8

]c

]YL , ~55!

or, equivalently,

d

ds

1

8
e2~s!5Rb

2 S 1

Rb

dRb

ds K X
]c

]X
1Y

]c

]YL
2 K X8

]c

]X
1Y8

]c

]YL D . ~56!

If we make use of Eqs.~37!, ~38!, and~47!, then Eq.~56! can
also be expressed as

d

ds

1

8
e2~s!5Rb

2 S 2
1

Rb

dRb

ds

1

2
K~11D!2

d

ds
EFD ,

~57!

whereEF(s) is the self-field energy defined in Eq.~38!.
To summarize, the rate equation~52! @or Eq. ~53!# for

the rms beam radiusRb(s) together with the rate equatio
~56! @or Eq.~57!# for the unnormalized beam emittancee(s)
are fully equivalent to the original rate equations for t
mean-square radiuŝX21Y2& in Eq. ~42! and mean kinetic
energy (1/2)̂X821Y82& in Eq. ~35!. These equations hav
been derived from the fully nonlinear Vlasov–Poisson eq
tions ~8! and ~9! and are valid no matter how complex, th
nonlinear evolution of the system. Which of these repres
tations is best to use depends, in practice, on the partic
application under consideration. In the remainder of this
per, we will use primarily~but not exclusively! the rate equa-
tions for Rb(s) ande(s).

Most importantly, the present derivation of the nonline
rate equations forRb(s) and e(s) allows for general azi-
muthal variation (]/]uÞ0) of the distribution functionFb

and self-field potentialc, and therefore represents a maj
generalization of earlier calculations carried out for the c
of axisymmetric beam propagation with]/]u50. For ex-
ample, the rate equations~53! and ~57! for the evolution of
285Davidson, Lee, and Stoltz
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Rb(s) ande(s) should be compared with the rate equatio
obtained in the axisymmetric case by Lee and Cooper28 for
the rms beam radius, and by Wangleret al.29 and Anderson30

for the beam emittance. In this regard, it is important to n
the remarkable similarity in form of the generalized ra
equations~53! and ~57! to the analogous rate equations d
rived in the axisymmetric case in Refs. 28–30. As a furt
observation, in circumstances where the conducting wa
sufficiently far removed (r w /Rb→`) from the beam,
it should be noted from the definition in Eq.~48! that
the dimensionless parameterD occurring in the rate
equations~53! and~57! satisfiesD→0. This follows because
limr w→`@R(]/]R)dc#R5r w

50 in the far-field region at large
radial distances from the beam axis.

IV. APPLICATION OF GLOBAL RATE EQUATIONS

The global rate equations and conservation relations
rived in Sec. III have been obtained from the nonline
Vlasov-Poisson equations~8! and~9! and are applicable ove
a wide range of system parameters consistent with the
sumptions enumerated in Sec. II. As such, the results
tained in Sec. III place very powerful global constraints
the nonlinear evolution of the system and can be used
benchmark numerical simulation codes as well as to ob
valuable insights regarding the nonlinear beam dynamics
collective processes affecting its propagation. In this sect
we make use of the global rate equations derived in Sec
to investigate several aspects of beam propagation in reg
of practical interest. These include the energy rate equa
for matched beam propagation~Sec. IV A!, and the coupled
rate equations for the rms beam radiusRb(s) and unnormal-
ized beam emittancee(s) for azimuthally symmetric beam
propagation (]/]u50), corresponding to the Kapchinskij
Vladimirskij distribution23 ~Sec. IV B!, and beam distribu-
tions with a fixed-shape density profile~Sec. IV C!.

A. Global energy balance

The global energy balance equation can be expresse
the three equivalent forms given in Eqs.~35!, ~39!, and~40!.
For present purposes, we make use of the form given in
~40!, whereEF(s) is the normalized self-field energy define
in Eq. ~38!, and the coupling coefficientkz(s1S)5kz(s) for
the solenoidal field is assumed to have fundamental per
icity length S. The energy balance equation~40! is valid no
matter how complex the nonlinear evolution of the syste
For example, ifEF(s) exhibits growth and saturates nonlin
early due to a collective instability, then the mean kine
energy (1/2)̂X821Y82& and the mean-square beam rad
^X21Y2& must adjust self-consistently according to Eq.~40!.
Evidently, in the special case of a uniform focusing fie
with

kz~s!5kz05const, ~58!

the total energy is conserved according to Eq.~40!. In this
casedkz(s)/ds50, and Eq.~40! reduces to

1

2
^X821Y82&1

1

2
kz0^X

21Y2&1EF~s!5const, ~59!
286 Phys. Plasmas, Vol. 5, No. 1, January 1998
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which is a statement of energy conservation between me
kinetic energy, potential energy, and self-field energy. Whe
kz(s)5kz05const, other rate equations, such as Eq.~53! for
the rms beam radiusRb(s) also undergo corresponding sim-
plifications.

For a periodic focusing fieldkz(s1S)5kz(s), examina-
tion of Eq. ~40! shows that the total mean energyU(s),
defined by

U~s!5
1

2
^X821Y82&1

1

2
kz~s!^X21Y2&1EF~s!, ~60!

also varies periodically for quiescent~instability-free! propa-
gation of a matched beamwith Rb(s1S)5Rb(s), where
Rb

2(s)5^X21Y2& is the mean-square beam radius. Fo
present purposes, we further assume that the functional fo
of kz(s) and the rms beam radiusRb(s) have half-period
symmetryof the form

kz~S/22s!5kz~S/21s!,
~61!

Rb~S/22s!5Rb~S/21s!,

for 0<s<S/2, and all subsequent lattice intervals. A case i
point is illustrated in Fig. 1 for a periodic step-function lat-
tice, where

kz~s!5H kz05const, 0<s,~h/2!S,
0, ~h/2!S,s,~12h/2!S,
kz05const, ~12h/2!S,s<S,

~62!

over the fundamental interval 0<s<S. Of course, the func-
tional form of kz(s) in Eq. ~62! and Fig. 1 repeats for each
subsequent lattice interval becausekz(s1S)5kz(s). We in-
tegrate the energy balance equation~40! over one lattice pe-
riod by operating on Eq.~40! with *s

s1S ds••• . Because
dkz /ds has odd-function symmetry over a half-lattice inter-
val, whereasRb

2(s)5^X21Y2& has even-function symmetry
over a half-lattice interval, it follows from Eq.~61! that

FIG. 1. Periodic step-function lattice in Eq.~62!. Here,h is the so-called
filling factor.
Davidson, Lee, and Stoltz
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s1S

ds
dkz

ds
^X21Y2&50. ~63!

Therefore, Eq.~40! gives*s
s1S ds dU(s)/ds50, or, equiva-

lently,

U~s1S!5U~s!, ~64!

which corresponds to aperiodicvariation of the total energy
U(s) with fundamental periodicity lengthS.

B. Rate equations for Kapchinskij–Vladimirskij beam
distribution

We now specialize to the case of azimuthally symme
beam propagation (]Fb /]u505]c/]u) through a periodic
solenoidal focusing fieldkz(s1S)5kz(s), placing particu-
lar emphasis on the rate equations for the rms beam ra
Rb(s) @Eq. ~52! or ~53!# and the unnormalized beam em
tancee(s) @Eq. ~55! or ~57!#. As a first example, we conside
the widely studied case of a Kapchinskij–Vladimirskij bea
distribution23 Fb

KV , which generates self-consistently th
step-function density profile1,23,26,28

nb~R,s!5H Nb

2pRb
2~s!

, 0<R,r b~s!5&Rb~s!,

0, &Rb~s!5r b~s!,R<r w .
~65!

Here, nb(R,s)5*dX8dY8Fb is the beam density,r b(s)
[&Rb(s) is the outer radius of the beam envelope, a
Nb52p*0

r b(s)dRRnb(R,s) is the number of particles per un
axial length. Note from Eq.~65! that the mean-square bea
radius is^X21Y2&[Nb

212p*0
r b dRRR2nb(R,s)5Rb

2(s), as
expected. Because]c/]u50, it follows that the coefficient
D50 @see Eq.~48!# in the rate equation~53! for the rms
beam radius Rb(s). Substituting D50 and Rb(s)
5r b(s)/& into Eq. ~53!, we obtain

d2

ds2 r b~s!1S kz~s!2
K

r b
2~s! D r b~s!5

e2~s!

r b
3~s!

. ~66!

Equation ~66! is the familiar envelope equation1,28 for the
outer radiusr b(s) of a Kapchinskij–Vladimirskij beam, de
rived as a particular application of the general rate equat
developed in Sec. III.

We now turn to the evolution of the unnormalized bea
emittancee(s) described by Eq.~55!, or, equivalently, Eqs.
~56! and ~57!. For the step-function density profile in Eq
~65!, Poisson’s equation~24! is readily integrated to give

c5H 2
1

2
K

R2

r b
2~s!

, 0<R,r b~s!,

2
1

2
KS 112 ln

R

r b~s! D , r b~s!,R<r w .

~67!

Here, we have takenc(R50,s)50 without loss of general-
ity. Making use of Eq.~67! and R25X21Y2 to evaluate
]c/]X and]c/]Y in the region where the beam densitynb

is nonzero in~65!, it follows from Eq. ~55! that
Phys. Plasmas, Vol. 5, No. 1, January 1998
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d

ds

1

8
e2~s!52

K

r b
2~s!

S 1

2

d

ds
^X21Y2&^X21Y2&

2^X21Y2&^XX81YY8& D50, ~68!

where use has been made of (d/ds)^X21Y2&52^XX8
1YY8&. Therefore, as expected for a Kapchinski
Vladimirskij beam distribution, the unnormalized beam em
tance defined in Eq.~51! is an exactly conserved quantit
with e(s)5const ~independent ofs!. This conclusion also
follows from the representation of the rate equation fore(s)
in Eq. ~57!, whereEF(s) is the self-field energy defined in
Eq. ~38!. Making use of Eqs.~38! and ~67!, we obtain

EF~s!5
1

2K E
0

r w
dRRS ]c

]RD 2

5
1

2
KS 1

4
1 ln

r w

r b~s! D . ~69!

Therefore, from Eq. ~69!, (d/ds)EF(s)52(K/2)r b
21(s)

3(d/ds)r b(s), and the rate equation~57! also gives
(d/ds)e2(s)50 when D50. This calculation also clearly
shows that if a KV beam distribution develops a
~instability-induced, say! asymmetry such thatDÞ0, then
the unnormalized beam emittance is no longer a conse
quantity according to Eq.~57!.

For an azimuthally symmetric KV beam distribution, th
constancy ofe(s) permits a determination of thes depen-
dence of the mean kinetic energy (1/2)^X821Y82&. Setting
e2(s)5e0

25const in Eq.~51!, and solving for the kinetic
energy gives

1

2
^X821Y82&5

e0
2

4r b
2~s!

1
1

4 S drb

ds D 2

, ~70!

where use has been made of 2Rb
2(s)5r b

2(s).
To summarize, for a KV beam distribution propagatin

through a periodic solenoidal focusing fieldkz(s1S)
5kz(s), the outer radiusr b(s) of the beam envelope evolve
according to the nonlinear envelope equation~66! with
e2(s)5e0

25const. Closed expressions for the field ener
EF(s) and mean kinetic energy (1/2)^X821Y82& are given
in terms ofr b(s) and other system parameters by Eqs.~69!
and ~70!. For a matched beam withr b(s1S)5r b(s), note
from Eqs.~69! and~70! thatEF(s) and (1/2)̂ X821Y82& are
also periodic functions ofs with fundamental periodicity
lengthS.

C. Rate equations for beam distributions with fixed-
shaped density profile

The assumption of a KV beam distributionFb
KV and cor-

responding step-function density profile fornb(R,s) in Eq.
~65! is very restrictive. In this section, we carry out an im
portant generalization of the analysis in Sec. IV B to t
class of azimuthally symmetric beam distributions (]Fb /]u
505]c/]u) with density profile nb*dX8dY8Fb of the
form28
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nb~R,s!5H Nb

pr b
2~s!

f S R

r b~s! D , 0<R,r b~s!,

0, r b~s!,R<r w .

~71!

Here, f @R/r b(s)# is a smooth, but otherwise unspecifie
function satisfyingf >0, andr b(s) is the outer radial enve
lope of the beam. We refer tof (R/r b) as thedensity shape
function, and the class of profiles in Eq.~71! asfixed-shape
profiles because the only dependence ons in Eq. ~71! is
through the factor r b

22(s), and the shape-function
f @R/r b(s)#. BecauseNb[2p*0

r b dRRnb(R,s), the normal-
ization on f in Eq. ~71! is

E
0

1

dXX f~X!51/2. ~72!

Furthermore, the mean-square beam radiusRb
2(s)5^X2

1Y2& for the class of profiles in Eq.~71! is given by
Rb

2(s)5Nb
212p*0

r b(s) dRRR2nb(R,s), which reduces to

Rb
2~s!5grb

2~s!, ~73!

whereg5const. is the geometric factor defined by

g52E
0

1

dXXX2f ~X!. ~74!

A simple example for the choice off @R/r b(s)# in Eq. ~71! is
the step-function density profile in Eq.~65! corresponding to
a KV distribution of beam particles. In this casef (X)51 for
0<X,1, andf (X)50 for X.1, and the geometric factor in
Eq. ~74! is g51/2, which corresponds toRb

2(s)5r b
2(s)/2. A

second example is the parabolic density profile,

nb~R,s!5
2Nb

pr b
2~s! S 12

R2

r b
2~s! D , ~75!

for 0<R,r b(s), andnb(R,s)50 for r b(s),R<r w . In this
case, the density shape function isf (X)52(12X2) for 0
<X,1, and f (X)50 for X.1. The corresponding geome
ric factor g and mean-square beam radius calculated fr
Eq. ~74! areg51/3 andRb

2(s)5r b
2(s)/3. Clearly, many other

examples are possible~Table I!.
We now turn to an examination of the rate equations

the rms beam radiusRb(s) @Eq. ~52! or ~53!# and unnormal-
ized beam emittancee(s) @Eq. ~55!, ~56!, or ~57!# for the
class of beam density profiles in Eq.~71!. BecauseD50 for

TABLE I. Table of values of the constantA and geometric factorg
52*0

1 dX XX2f (X) for several choices of the density shape functionf (X).
Here, f (X)50 for X.1, and the constantA is chosen so that
*0

1 dX X f(X)51/2 @Eq. ~72!#.

f (X) for 0<X,1 A g[2*0
1 dXXX2f (X)

A 1 1/2
A(12X2) 2 1/3
A(12X2)2 3 1/4

A(12X2)n, n.0 n11 (n12)21

A cosSp2 XD 1

2

~p/2!2

~p/221!
52.161

p/2

~p/221!
26S 2

p D 2

50.320

AX2(12X2) 6 1/2
Ad(X21) 1/2 1
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the azimuthally symmetric case considered here@see Eq.
~48!#, the rate equation~53! for the rms beam radiusRb(s)
5Agrb(s) readily gives

d2

ds2 r b~s!1S kz~s!2
K/2g

r b
2~s! D r b~s!5

e2~s!/4g2

r b
3~s!

. ~76!

Equation~76! describes the nonlinear evolution of the out
beam enveloper b(s) for the general class of density profile
in Eq. ~71!. Apart from the geometric factorg, Eq. ~76! is
identical in form to the envelope equation~66! derived for a
KV beam distribution. Indeed, for a KV beam,g51/2 and
Eq. ~76! reduces exactly to Eq.~66!, as expected.

With regard to the unnormalized beam emittancee(s),
we make use of the rate equation in the form given in E
~57!. SettingD50 andRb

2(s)5grb
2(s), whereg is defined in

Eq. ~74! for generalf (X), we obtain

d

ds

1

8
e2~s!5grb

2~s!S 2
1

r b

drb

ds

1

2
K2

d

ds
EFD , ~77!

whereEF(s) is the field energy defined by~for ]c/]u50!

EF~s!5
1

2K E
0

r w
dRRS ]c

]RD 2

. ~78!

Substituting Eq.~71! into Poisson’s equation~24!, we obtain
the equation forc(R,s), i.e.,

1

R

]

]R
R

]c

]R
52

2K

r b
2~s!

f S R

r b~s! D . ~79!

Equation ~79! can be formally integrated to determin
]c/]R, which is required in Eq.~78!. This gives

]c

]R
5H 2K

2

R E
0

R/r b~s!

dXX f~X!, 0<R,r b~s!,

2K
1

R
, r b~s!,R<r w .

~80!

Note from Eq.~80! that ]c/]R is continuous atR5r b(s)
because of the normalization condition*0

1 dX X f(X)51/2.
Substituting Eq.~80! into the expression forEF(s) in Eq.
~78!, and carrying out the integration overR gives

EF~s!5
1

2
KF4E

0

1 dX

X S E
0

X

dX X f~X! D 2

1 ln
r w

r b~s!G .
~81!

It is important to note in Eq.~81! that the first term on the
right-hand side is constant~independent ofs! for the general
choice of density shape functionf @R/r b(s)#. Therefore, the
only s variation of EF(s) occurs through the logarithmic
term in Eq.~81!, which gives

d

ds
EF~s!5 2

1

2

K

r b~s!

d

ds
r b~s!. ~82!

Substituting Eq.~82! into Eq. ~77! then gives the importan
result

d

ds
e2~s!50, ~83!
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corresponding to the conservation of beam emittance, w
e(s)5e05const.

Equations~76! and ~83! are similar to the results firs
obtained by Lee and Cooper28 for the case of azimuthally
symmetric beam propagation through a solenoidal focus
field, making the assumption that the density profile has
fixed profile shape in Eq.~66!. Equations~76! and ~83! in-
deed constitute powerful results for axisymmetric be
propagation. While emittance conservation is a well-kno
result for a KV beam, the fact thate(s)5const for the gen-
eral profile shape functionf @R/r b(s)# has several importan
implications. First, becausee(s)5e05const in the envelope
equation~76! for the outer beam radiusr b(s), Eq. ~76! can
be solved numerically forr b(s) for a broad range of lattice
functions kz(s1S)5kz(s), system parametersk and e0 ,
and values of the geometric parameterg, which depends on
the choice of shape functionf @R/r b(s)#. Second, once the
outer beam radiusr b(s) is determined from Eq.~76!, the
self-consistent evolution ofEF(s) can be determined from
Eq. ~81!. Finally, similar to the result obtained for a KV
beam in Sec. IV B@see Eq.~70!#, the definition of emittance
in Eq. ~51! can be used to determine the evolution of t
mean kinetic energy (1/2)^X821Y82&. We readily obtain,
for e(s)5e05const,

1

2
^X821Y82&5

e0
2

8grb
2~s!

1
1

2
g S drb

ds D 2

. ~84!

For the particular choice of a KV beam distribution, whe
the geometric factor isg51/2, Eq.~84! reduces to Eq.~70!,
as expected.

Table I shows a tabulation of values of the geome
factor g52*0

1 dX XX2f (X) defined in Eq.~74! for several
choices of the profile shape functionf (X). Here, f (X) is
normalized according to*0

1 dX X f(X)51/2 @Eq. ~72!#, and
the rms beam radiusRb(s) is related to the outer beam radiu
r b(s) by Rb

2(s)5grb
2(s) @Eqs. ~73! and ~74!#. Note from

Table I thatg51/2 for a KV beam distribution, which ha
the step-function density profile in Eq.~65!, whereasg
,1/2 when the density profile is peaked on axis and
creases monotonically to zero atr 5r b(s)(X51). On the
other hand, if the density profile is strongly peaked off ax
theng.1/2. Indeed, for an infinitesimally thin annulus ce
tered at r 5r b(s), which corresponds tof (X)5(1/2)d(X
21) in Table I, we obtain the geometric factorg51.

We conclude this section with a brief discussion of pro
erties of the envelope equation~76! for general geometric
factor g. Defining

Kg[
1

2g
K,

eg[
1

2g
e, ~85!

it follows that Eq.~76! can be expressed in the equivale
form

d2

ds2 r b~s!1S kz~s!2
Kg

r b
2~s! D r b~s!5

eg
2

r b
3~s!

. ~86!
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Equation~86! is identical in form to the envelope equatio
~66! for a KV beam, provided we make the replaceme
K→Kg ande→eg in Eq. ~66!. Therefore, many of the result
obtained in analytical and numerical studies of the envel
equation~66! can be applied directly to Eq.~86! provided we
make the replacements implied by Eq.~85!. This includes,
for example, the existence of self-field-induced nonline
resonances and chaotic behavior31 exhibited by the beam en
velope in some parameter regimes, where there is a m
match between the beam and the periodic focusing field

For a periodic focusing lattice withkz(s1S)5kz(s),
Eq. ~86! generally supports nonlinear periodic solutions w
r b(s1S)5r b(s), corresponding to amatched-beamsolution
in which the period of oscillation of the beam enveloper b(s)
is thesameas the period of the focusing fieldkz(s). In the
special case of a uniform focusing field wherekz(s)5k̄z

5const~independent ofs!, Eq. ~86! also supports asmooth-
beam solution in which r b(s)5r bs5const. Setting
d2r bs /ds250 in Eq. ~86!, and solving forr bs , we find that

r bs
2 5

Kg

2k̄z
1F S Kg

2k̄z
D 2

1
eg

2

k̄z
G1/2

5
1

2g H K

2k̄z
1F S K

2k̄z
D 2

1
e2

k̄z
G1/2J . ~87!

For specified values of beam current (K), field strength (k̄z),
and emittance~e!, we note from Eq.~87! that the equilibrium
beam radiusr bs is smaller when the density profile i
strongly peaked off axis (1/2,g,1) than when it is peaked
on axis (g,1/2). Moreover, from Eq.~87! the beam radius
r bs generally scales asg21/2.

We now examine the envelope equation~86! for a peri-
odic focusing fieldkz(s1S)5kz(s) and matched-beam so
lutions r b(s1S)5r b(s). Inspection of Eqs.~85! and ~86!
shows that it is useful to introduce the dimensionless qu
tities ~denoted by a ‘‘hat’’!, defined by

K̂5
KgS

eg
5

KS

e
,

ŝ5
s

S
,

k̂z~ ŝ!5kz~s/S!S2,

r̂ b~ ŝ!5
r b~s/S!

AegS
5A2g

eS
r b~s/S!. ~88!

BecauseK̂5KS/e, we note from Eq.~88! that K̂ is a dimen-
sionless measure of the beam current, which is proportio
to K. Substituting Eq.~88! into Eq. ~86!, the envelope equa
tion can be expressed in the equivalent form

d2

dŝ2 r̂ b~ ŝ!1S k̂z~ ŝ!2
K̂

r̂ b
2~ ŝ!

D r̂ b~ ŝ!5
1

r̂ b
3~ ŝ!

, ~89!

where k̂z( ŝ11)5k̂z( ŝ) for a periodic focusing lattice. In
solving Eq.~89! numerically for r̂ b( ŝ11)5 r̂ b( ŝ), it is nec-
essary to specify the functional form ofk̂z( ŝ) and the value
of K̂5KS/e.
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Typical numerical solutions to Eq.~89! over the interval
0<s/S<1 are illustrated in Fig. 2 for the choice of a step
function lattice in Eq.~62!. Here, we assume lattice strength
kz0S256.25 and filling factorh50.25. The two cases shown
in Fig. 2 correspond toK̂5KS/e51 ~low beam current! and
KS/e510 ~high beam current!. As expected, the normalized
beam radiusr̂ b( ŝ) increases asK̂ is increased because of
repulsive space-charge effects.

An important quantity in accelerator physics is the so
calledphase advance~or ‘‘tune’’ ! s, defined by1

s[egE
0

s ds

r b
2~s!

5E
0

1 dŝ

r̂ b
2~ ŝ!

. ~90!

Note that the phase advances becomes increasingly de-
pressed as the normalized beam currentK̂5KS/e is in-
creased~larger beam radiusr̂ b!. This is illustrated in Fig. 3
for the choice of lattice parameterskz0S256.25 and h

FIG. 2. Plots ofr̂ b( ŝ) vs ŝ5s/S obtained numerically from Eq.~89! for the
choice of step-function lattice in Eq.~62!. Here,kz0S256.25 andh51/4,
and the two cases correspond toKS/e51 ~dashed curve! and KS/e510
~solid curve!.

FIG. 3. Plot of phase advances defined in Eq.~90! versusKS/e obtained
numerically from~89! for the choice of step-function lattice in Eq.~62! with
kz0S256.25 andh51/4.
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50.25, where the phase advances calculated numerically
from Eqs. ~89! and ~90! is plotted versusKS/e. Here, the
vacuum phase advance issv5 limK→0 s574.69° for the
choice of lattice parameters in Fig. 3.

V. CONCLUSIONS

In this paper, we have presented a detailed formulat
and analysis of the rate equations for statistically avera
quantities for an intense non-neutral beam propaga
through a periodic solenoidal focusing fieldBsol(x) described
by Eq.~1!. The analysis was based on the nonlinear Vlaso
Maxwell equations in the electrostatic approximation, a
suming a thin beam with characteristic beam radiusr b!S,
negligibly small axial momentum spread about the direc
valuepz5gbmbbc, andn/gb5NbZi

2e2/gbmc2!1, wheren
is Budker’s parameter. Following a discussion of the the
retical model and assumptions~Sec. II!, the global rate equa
tion was derived~Sec. III! that describes the self-consiste
nonlinear evolution of the statistical averagêx&
5Nb

21* dXdYdXdYxFb , wherex is a general phase func
tion defined on the transverse four-dimensional phase sp
(X,Y,X8,Y8). The results were then applied to investiga
the evolution of the generalized entropy, mean canonical
gular momentum̂ Pu&, center-of-mass motion for̂X& and
^Y&, mean kinetic energy (1/2)^X821Y82&, mean-square
beam radiuŝ X21Y2&, and coupled rate equations for th
unnormalized transverse emittancee(s) and rms beam radius
Rb(s)5^X21Y2&1/2. The rate equations obtained in Sec.
are derived from the fully nonlinear Vlasov–Poisson equ
tions, allowing for azimuthal asymmetries (]/]uÞ0), and
are valid no matter how complex the nonlinear evolution
the system. Following a discussion of global energy bala
~Sec. IV!, and the rate equations for the special case, wh
Fb corresponds to the Kapchinskij–Vladimirskij~KV ! distri-
bution, with a step-function radial density profile, we exa
ined the coupled rate equations for the unnormalized be
emittancee(s) and rms beam radiusRb(s) for the class of
axisymmetric beam distributionsFb with fixed-shape density
profile nb(R,s)5@Nb /pr b

2(s)# f @R/r b(s)#. Here,r b(s) is the
outer radius of the beam envelope, and the density sh
function f (R/r b) is allowed to have a general function
form. Most importantly, it was found thatde(s)/ds50, cor-
responding to emittance conservation for general den
shape functionf (R/r b), and that the envelope equation~76!
for the outer beam radiusr b(s) is similar to the envelope
equation1,28 for a KV beam distribution,23 approximately
modified by the geometric factorg to reflect the shape of the
function f (R/r b). This is similar to the result obtained b
Lee and Cooper28 for the case of axisymmetric beam prop
gation through a solenoidal focusing field and general d
sity shape functionf (r /r b). Future work will include a de-
termination of axisymmetric distributionsFb that self-
consistently generate different functional forms for t
density shape functionf (R/r b). Finally, while the present
work has been motivated by applications to periodic foc
ing systems withkz(s1S)5kz(s), it should be emphasized
that most of the key results are not restricted to the c
wherekz(s) is periodic.
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