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In this paper we present a detailed formulation and analysis of the rate equations for statistically
averaged quantities for an intense non-neutral beam propagating through a periodic solenoidal
focusing fieldBs°(x) with axial periodicity lengttS= const. The analysis is based on the nonlinear
Vlasov—Maxwell equations in the electrostatic approximation, assuming a thin beam with
characteristic beam radiug<<S, and small transverse momentum and axial momentum spread in
comparison with the directed axial momentpp+ y,mpB,c. The global rate equation is derived for

the self-consistent nonlinear evolution of the statistical avekage=N, 'fdXdYdXdY’xF,,

where x(X,Y,X',Y’,s) is a general phase function, are,(X,Y,X",Y',s) is the distribution
function of the beam particles in the transverse phase spgdeX’,Y’) appropriate to the Larmor
frame. The results are applied to investigate the nonlinear evolution of the generalized entropy,
mean canonical angular momentym,), center-of-mass motion fafX) and(Y), mean kinetic
energy (1/2JX’?+Y’?), mean-square beam radi(2+Y?), and coupled rate equations for the
unnormalized transverse emittanegs) and root-mean-square beam radRigs) = (X2+ Y2)12,

Most importantly, the present derivation of nonlinear rate equations for various statistical averages
(x) allows for general azimuthal variatiow/96+0) of the distribution function and self-field
potential, and therefore represents a major generalization of earlier calculations carried out for the
case of axisymmetric beam propagation. 1©98 American Institute of Physics.
[S1070-664X98)02501-4

I. INTRODUCTION vlyp<1, where v=NyZ?e’/mc® is Budker's parameter.

Periodic f . leratdré h id ¢ Here,Z;e is the particle charge\,= fdXdYn, is the num-
eriodic focusing accelerators have a wide range of o ot peam particles per unit axial length, and

applications ranging from basic scientific research, tOFb(X,Y,X’,Y’,s) is the distribution function of the beam

applications™® such as heavy ion fuspn, trltlum.pro.ducuon, .Rarticles in the transverse phase spaX¥eY(X',Y') appro-
and nuclear waste treatment. There is a growing interest if . . . .
priate to the Larmor fram& Particularly useful in experi-

developing an improved understanding of the nonlinear dy: L : : ) .
i L . . mental applications and in numerical simulation models,
namics, stability, and transport properties of intense non-

neutral beams propagating through a periodic focusing Efield,such as the nonhneﬁf scheme 'S an unders?andlng Of. the
both with respect to identifying operating regimes for quies_self—conS|stent nonlinear evolution of various statistical

,27,28 _n—1 ’ H
cent beam propagation with negligible effects of coIIectiveaverageé’ ) % __Nb dedeXdY_ XFb’_WhereX IS a
8-18 phase function defined on the four-dimensional phase space

instabilities{™"° and with respect to minimizing or eliminat- A ; ot
ing halo productiot®=22Particularly useful in describing in- (X, Y:X",Y"). Such models for the evolution of statistically

tense beam propagation in periodic focusing transport sys2veraged quantities have been developed and applied by
tems are kinetic modelstt17.1823-2&) 5504 on the nonlinear Sacherér for the case of an elliptical cross section beam
Vlasov—Maxwell equation$, which incorporate the self- Propagating through a periodic quadrupole lattice, by Lee
consistent evolution of the distribution of beam partidigs ~ and Coopé? for an axisymmetric beam propagating through
and the interaction of the beam particles with the electric an@ Ssolenoidal focusing field, and by Struckmeier and
magnetic fieldsg andB. Hofmanrt’ for beam propagation through general periodic
In this paper we present a detailed formulation andfocusing systems. Related models that study the rate equa-
analysis of the rate equations for statistically averaged quartions for emittance evolution in axisymmetric be&f and
tities for an intense non-neutral beam propagating through sheet beani§ have also been developed and applied by
periodic  solenoidal focusing field BS9(x)=B,(s)é, Wangleret al?® and by Andersor? Most importantly, the
—(1/2)B.(s)r& , whereB,(s+S)=B,(s), s is the axial co- present derivation of rate equations for the nonlinear evolu-
ordinate, andS=const is the axial periodicity length. The tion of various statistical averagég) is based on the non-
analysis is based on the nonlinear Vlasov—Maxwell equalinear Viasov—Maxwell equations and allows for general azi-
tions in the electrostatic approximatidf® It assumes a thin muthal variation ¢/96+0) of the distribution function and
beam with characteristic beam radiys<S, small transverse self-field potential. In this regard, the present analysis repre-
momentum and axial momentum spread in comparison witlsents a major extension of earlier calculations carried out for
the directed axial momentum,= y,mB,c, wherey,mc?is  axisymmetric beam propagation, e.g., in Refs. 28—30.
the characteristic kinematic energy of a beam particle, and The organization of this paper is the following. The the-
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oretical model and assumptions are summarized in Sec. Il. lwhere v is Budker’'s parameterZ;e is the particle charge,
Sec. lll, the global rate equation is derived for general phas®l,=fdxdyn, is the number of particles per unit axial
function x(X,Y,X’,Y’,s), and the results are applied to in- length, andny(x,y,s) is the particle density. Equatiof?)
vestigate the nonlinear evolution of generalized entropyassures that the self-field intensity is sufficiently weak that
mean canonical angular momentu{R,), center-of-mass |Ze¢® y,mc?|<1, where ¢° is the electrostatic potential
motion for (X) and (Y), mean kinetic energy (1/2X'?  due to the beam space charge. However, the present analysis
+Y'2), mean-square beam radigX?+Y?), and coupled does permit the potential energ@ye¢® to be comparable in

rate equations for the unnormalized transverse emittanceagnitude with the transverse kinetic energyp)z((

e(s) and root-mean-square beam radilRy(s)=(X? +p§)/2ybm of a beam particle.

+Y2)12 Here, e(s) is defined by (1/4§%(s)=(X'2+Y'?) The present analysis is carried out in the electrostatic
X(X%+Y%)—(XX"+YY')2 The rate equations obtained in approximation, where the self-electric field produced by the
Sec. lll are derived from the fully nonlinear Vlasov—Poissonbeam space charge 5= —V ¢° and the electrostatic po-
equations allowing for azimuthal asymmetrie&/ {6+ 0), tential ¢3(x,y,s) is determined self-consistently from Pois-
and are valid no matter how complex the nonlinear evolutiorson’s equation,

of the system. In Sec. IV, following a discussion of global
energy balance, and the rate equations for the special case
whereF, corresponds to the Kapchinskij—Vladimirski{V)
distribution?® we examine the coupled rate equations for the
unnormalized beam emittancg(s) and rms beam radius

H 2__v2_ 92 2 2 2 H
Ry(s) for the class of axisymmetric beam distributiorg ~ @PProximatedV==V:y =g°/9x"+4°/Jy in the thin-beam

with fixed-shape density profilenb(R,s)=[Nb/wr§(s)] approximation withr,<S. In ad(_jition, the axial b(_eam cur-
< f[R/rb(S)].28 Here, R= (x2+ Y2)l/2 is the radial distance 'rentZienbvzb, Wherevzb(x,y,S) is the ayerf’ige axial \S/Aeloc-
from the beam axist(s) is the outer radius of the beam ity, produces a transverse self-magnetic fiBit=V xAz,,
envelope, and the density shape functi¢R/r) is allowed

whereA3(x,y,s) is determined self-consistently froﬁ‘ﬁAZ
to have a general functional form. Most importantly, it is —

—47Zen,V,,. In circumstances where the average axial
found thatde(s)/ds=0, corresponding to emittance conser- velocity is approximately uniform over the beam cross sec-
vation for general density shape functiépR/r(s)], and

tion with V,,=V,= B,c= const., which we assume to be the

that the envelope equation for the outer beam rajjgs) is ~ €25€: @ con;parlson with SEajS) shows that the self-field

similar to the envelope equati®h for a KV beam Potentials,¢>(x,y,s) andA;(x,y,s), are related by the fa-

distribution?? appropriately modified by a geometric factpr ~ Mifiar expressioh

to reflect the shape of the functid(R/r). This is similar to AS= By d° @)

the result obtained by Lee and Coofidor the case of axi- 2 Po

symmetric beam propagation through a solenoidal focusingherefore, to summarize, in the thin-beam approximation the

field and general density shape functit(iR/ry). beam particles interact with the electric and magnetic fields,
E® andB, described by

2

Jf_
ax’ = ay?

In Eqg. (3), ny(X,y,s) is the particle density, and we have

P5=—4xmZen,. 3

ES= -V ¢3(x,Y,S),
II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a thin, intense non-neutral beam with char-  p=psol4 Bs=B,(s)&,— 1 rB.(s)&
acteristic radiug, and axial velocityV,= B8,c propagating 2

in the z direction through the periodic solenoidal focusing + By VES(X,Y,8) X8, (5)
field,* 0 '
- A Here, BS(x) is the periodic solenoidal field defined in Eq.
B¥AX)=B(s)e,~ 2 IB,(s)& . (D (1), and the electrostatic potenti@f(x,y,s) is determined in
Here, s is the axial coordinater=(x2+y?)¥?2 is the radial :i%rrr]n(ss)of the particle density,(x,y,s) from Poisson’s equa-

distance from the beam axiB,(s+ S)=B,(s) is the axial . L
In the present analysis, we make use of a kinetic ap-

magnetic field with fundamental periodicity lengts X i
proach based on the nonlinear Vlasov—Poisson equatidns

=const., “prime” denotes a derivative with respect $p : . ) o
r,<S is assumed, consistent with the thin-beam approximato describe the dynamics of the beam particles and their in-

tion, andy,mc is the characteristic energy of a beam par_teractipn_ with the _field co_nfiguration in E@5). Ir_1 this re-
ticle Whereybz(l—ﬁﬁ)*l’z Consistent with the thin-beam gard, it is convenient to introduce the normalized Larmor

approximation, the transverse momentum of a beam particlf€duency2,(s) and the normalized electrostatic potential

and the axial momentum spread are assumed to be small #(%.Y:S). defined by

comparis_on with the directe_d axial momentummpyC, Z,eB,(s)
wherem is the rest mass, ardis the speed of lighin vacuo Q(8)=—Vky(S)=— 5—F,
.. .. z 2’ymebC
In addition, it is assumed that (6)
726N, Zie g
Yo ¥pMNC <L @ YomByc?
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It is also convenient to transform to a frame of reference 1

rotating about the beam axis at the local Larmor frequency (R 7g V(RO S)) =0, (11)

Q, (s). We introduce the accumulated phase of rotation from R=ry

So to s defined by, (s)=—J3 dsvV,(s), whered6 /ds  \yhich corresponds to a zero tangential electric field at the
=) . Then the transverse orbit¥(s) and Y(s), in the  conducting wall. Here,R, 8) correspond to cylindrical coor-
rotating frame, are related to the transverse orbifs) and  dinates in the Larmor frame defined B¢=Rcosé andY
y(s), in the laboratory frame by =Rsin 6. In addition, it is assumed that the distribution func-

X=x cos 0,(s)+Y sin 6,(s), tion Fp(X,Y,X",Y’,s) satisfies

_ ™ Fp,=0, for X'—=*ow or Y'—*oo, (12
Y=—Xxsin §.(s)+y coso,(s).
and that there are no beam particles beyond some ragljus
Finally, it is assumed that the beam particles have a negligi- e.

bly small spread in axial momentum about the average value

yoMByC. Then, in the transverse phase space variables Fp=0, for (X>+Y%)V2=r,, where ro<r,. (13
(X,Y,X",Y') appropriate to the Larmor frame, it can be
shown that the distribution functior,(X,Y,X’,Y’,s)
evolves according to the nonlinear Vlasov equatn,

Note that Eq(13) implies that the beam density, is zero in
the vacuum regiomg<R=<r,,.
As a final point in concluding this section, it should be

aFy, (9|:b IFy, ap\ aF, noted that the characteristics of the nonlinear Vlasov equa-
EWL X +Y’ i —( K(S)XF =S| =7 tion (8) correspond to the single-particle equations of mo-
tion, e.g., X'(s)=dX(s)/ds and dX’'(s)/ds=— k,(s)X
A\ dIFy —dyl dX for the X motion, and similar equations for thé
_(Kz(S)YJFW Y’ ®  motion. Indeed, these equations of motion can be derived

from the HamiltoniarH, (X,Y,X’,Y’,s), defined by
where the normalized potentigd X,Y,s) is determined self-

consistently from Poisson’s equation, H, =2 (X' 24Y'2)+ § iy (s)(X2+ YD)+ ¢(X,Y,S).
(14

*? 5 27
(W+ W) == Ny fdx dY'Fp. (9)  Becausex,(s) is s-dependent for a periodic focusing lattice,
it is clear from Eq.(14) thatH, is nota single-particle con-
Here, ny(X,Y,s)=[dX'dY'F, is the particle densityN,,  stant of the motion. Therefore, it is not expected that total
= [dXdYn, is the number of particles per unit axial length, energy (kinetic energy plus potential energy plus self-field
and we have introduced the self-field perveakcalefined energy will be globally conserved by the nonlinear Vlasov—
by?:26 Poisson equationg) and (9).

2N, Z%€?
=3 23 (10)
YoMPBiC lIl. GLOBAL RATE EQUATIONS AND CONSERVATION
which is a(dimensionlessmeasure of the self-field intensity. RELATIONS
Note in Eq.(8) that X’ and Y’ correspond to normalized
velocity variables in theX—Y plane(i.e., X' denoted X/ds
andY’ denotedY/ds), and the coefficients afF,/9X’ and
dF,/9dY'" correspond to the particle accelerations in the
andY directions, respectively.
The Vlasov—Poisson equatiof® and(9) constitute the

We now make use of the Vlasov—Poisson equati@s
and(9), together with the boundary conditions in E¢b1)—
(13), to derive rate equations and conservation relations that
describe the nonlinear dynamics of the beam and its interac-
tion with the field configuration in E(5). In this regard, the

. ) ) . ; statistical average of a phase functiptX,Y,X’,Y’,s) over

basic dynamical equations used in the present analysis. Th . ) AP

e four-dimensional phase spacg Y, X',Y’) is denoted by
describe, in the Larmor frame, the nonlinear evolution of the )

y and is defined in the usual mannetzﬁf
charged particle beam as it propagates through the perlod%{
solenoidal fieldk,(s+ S)= k,(s). In particular, Eq.(8) de- )
scribes the incompressible evolution of the distribution func-  (X)= Ng dedeXdY xFp- (15
tion F,(X,Y,X’,Y’,s) in the four-dimensional phase space _
(X,Y,X",Y"), and Eq.(9) determines self-consistently the Here,Ny=/dXdYn=/dXdYdXdY'F; is the number of
normalized potentials(X,Y,s) in terms of the particle den- particles per unit axial length. The phase-space integral in
sity n,(X,Y,s)=/dX'dY'F,. In subsequent sections, we EQ.(15) can also be expressed in cylindrical coordinates as
make use of Eq¥8) and(9) to investigate the evolution of [fdXdYdXdY’--- f ’Tdaf “dR Rf”_ dX' [* dY’--
various global(statistically averagedquantities of physical The most basic conservation relation evident from EEI).
interest. In this regard, when carrying out averages of the&orresponds to the conservation of the total number of par-
Vlasov equation8) over the phase spacX(Y,X’,Y'), we ticles per unit axial length. Operating on EB) with

assume that a perfectly conducting cylindrical wall is locatedfdXdYdXdY’--- , integrating by parts with respect ¥,
at radiusr =R=(X?+Y?)¥2=r ,, and impose the boundary Y, X’, andY’, and making use of Eq§12) and(13), readily
condition gives
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LAY —jdXdeXdY’ Fo_y 16
gs b= s O (16)
Equation(16) is simply a statement th&, = const, no mat-
ter how complicated the nonlinear evolution of the system.
For general phase functigp(X,Y,X’,Y',s), it follows

from the definition of the statistical average in Efj5) that

. Fy
ds<X> < > JdXdeXdYX&

Multiplying the Vlasov equation8) by x, operating with
NgldedeXdY’m, integrating by parts with respect to
X, Y, X', andY’, and making use of Eq$12) and(13), the
final term in Eq.(17) can be simplified. This gives

17

, Y\ dx

<X> <as ax Y aY (KZ(S)X ax) X"
Y\ dx

—| k(S)Y+ W) W> (18

The general rate equatiofi8) can be used to evaluate
(d/ds)(x) for a wide variety of choices of phase functign
of physical interest.

A. Entropy conservation

It is important to note that the total derivative operation

on y within the angular brackets on the right-hand side of

Eq. (18) is identical to the total derivative operation By in
the nonlinear Vlasov equatiaoi). Furthermore, for smooth,
differentiableG(F,), it follows from Eq.(8) that

J —+ X’ J +Y — i X+ — i
s IX ay | EdSXF o o
Y i G(F,)=0. 19
—| kA9 Y+ =G| 7| C(Fo) = (19

Making use of Eq.(18), or operating directly on Eq(19)
with [dXdYdXdY’--- readily gives

dXdYdXdY'G(F,)=0. (20)

ds
That is, any smooth, differentiable functi®(F,) integrated
over the four-dimensional phase spa&eY,X’,Y') is a glo-
bally conserved quantity. The ca&{F,)=F, corresponds
simply to dNb/ds=0 in Eqg. (16). Many other choices of
G(Fp), such ast, —Fp InFy, etc., are also globally con-

served quantities. For example, using the standard definition ds (Pg)=

of entropysS, it follows from Eq.(20) that
d

B. Conservation of canonical angular momentum

In the normalized Larmor-frame variables used in the
present analysis, the canonical angular momerfynof an
individual particle is defined 15§

P,=XY' —-YX. (22)
Substitutingy=XY’ =Y X' into Eq. (18) readily gives

d , , ¥ Iy 44

d—S<XY -YX')= <Yﬂ _XW>__<&_0 . (23
Here, use has been made ob/9X=cosH(dliR)

—R 1sin #(dl96) and 9/ Y =sin (dldR)+R 1 cos(dlad) in
cylindrical coordinates R,6), where X=R cosf and Y
=R sin 4. To simplify the right-hand side of Eq23), it is
convenient to express Poisson’s equat{®nin cylindrical
coordinates, i.e.,

a¢+ 1oy
IR  R?96°

27K

Ny (24)

R 4R Mo

whereny(R, 6,s)=fdX'dY'F, is the density of beam par-
ticles. From Eqs(15) and(24), it follows that

<aa> N fzwdej dRRY

2
dQJ dRR—

a¢ 1 0%y
RTR 2

24
a0

7

><(RaR

1 2w

de
0

W 9 g 1a¢aa_¢)

27K
JRIOIR T RE30 90 90

xJ e -

In Eqg. (25, we have integrated by parts with respectRo
and made use dfdy/d0]r-, =0 [see Eq(11)]. Next, we
integrate by parts with respect tbon the right-hand side of
Eq. (25), and make use of the fact thag/ IR andd/ 96 are
periodic functions of# with azimuthal period z. This
readily gives(dy/36)=0, and Eq(23) reduces to
-YX')=0.

ds <XY’ (26)

Equation(26) corresponds to global conservation of ca-

ds S= nonical angular momentum, also a very powerful constraint
on the nonlinear evolution of the system. Note that the
Equations(20) and (21) are expected results because theboundary condition in Eq11), corresponding to a perfectly
nonlinear collective processes contained in the Vlasov-eonducting wall located at radil®=r,,, has played an im-
Poisson equation&3) and (9) are known to conserve both portant role in assuring thdty/96)=0 and hence that Eq.
entropy [Eq. (21)] and generalized entroppEq. (20)] no  (26) is satisfied. Note also that it ha®t been assumed that
matter how complicated the evolution of the system. NonedF,/d6 and dys/ 96 are zero(azimuthally symmetric beam
theless, Eq(20) represents a powerful global constraint onin deriving the conservation relation in E@6). That is, the
the nonlinear dynamics of the beam. beam can(in principle) develop large-amplitude azimuthal

- JdXdeXdY Fy In F,=0. (21)
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distortions, and the global conservation of canonical angulab. Rate equation for mean kinetic energy
momentum in Eq(26) will remain a valid conservation con- (1/2){X'?+ Y'?)

straint. Substitutingy = (1/2)(X'2+ Y’ into Eq. (18), we ob-
tain
C. Center of mass motion 43 (X’2+Y’2)— — K (SHXX' +YY')
Substitutingy=X in Eq. (18) readily gives
Y Y
d , <x' +Y’ > (34)
T (0=(x"), @7)
and similarly, fory=X', we obtain from Eq(18), It also readily follows from Eq(18) that (d/ds)(X*+Y?)
J =2(XX'+YY'), so that Eq.(34) can be expressed in the
N Iy equivalent form
3o (X)) =—re(8)(X) <ax>- (29) 1 L
Substituting Eq(27) into Eq. (28) then gives 353 (X"24+Y"2)y=—k,(s) Js3 (X24Y?)
d? P
=—( L J J
32 0+ Ke8)(X) < &x>. (29 _<x, %,W, a_tYﬁ> 35

Equations identical in form to Eqg27) and (28) can be _ _ . .
and @/ds)(Y')=—«k,(Y)—(3/aY), which can be com- the change in potential energy associated with the particle

bined to give motion in the periodic solenoidal focusing field, whereas the
P2 v second term on the right-hand side is related to the change in
J self-field energy
Y)+ Y . N . N .
ds? (V) +xa()(Y)= <5Y> (30 To simplify the self-field contribution on the right-hand

Equations(29) and (30) describe the evolution of the beam §ide of Eq.(35), we make use of the generalized rate equa-

centroid (X),{Y)) in response to the periodic focusing mag- tion (18 W'th X— '/’(X’YZS) and the definition of statistical

netic field x,(s+ S) = k,(s) and the average self-field com- average in Eq(15) to write

ponents—(dy/dX) and —(Jy/Y). Evidently, if the beam o " o

is initially centered (at s=sy, say with (X>S=So=0 <X’ &+Y/ p7Y> ds< Wy — < >

=(Y)s=s, aNd(X")s-5, =0=(Y")ss,, then it follows from

Egs.(27)—(30) that(X)=0=(Y) at subsequent values sf
Rate equations for the evolution of other average quan-

tities are also readily obtained. For example, substituging

=X", wheren is an integer, into Eq(18) gives = 1 dede,// 9 de’dY’F (36)
Nb aJs b

_t dedeXdY’ oy
“Ng Vo

d_s<xn>:”<xlxn oz 3D The beam density,(X,Y,s)=fdX' dY’' F, can be elimi-
nated in Eq(36) in terms of V2 ys= (% X%+ 3%/ 3Y?) s by
means of Poisson’s equatidf). This gives, after some in-
tegration by parts,

Similarly, it follows from Eq.(18) that

d gs (XM=~ rs)m(XX™T) — m<x'm 1M> (32

oYy 1 J _,
and <X ax Y av>:‘m axdyy 55 Viy
d Ny /m n—1y/rm+1 n+1lyrm—1 1 d
ge XXM =n(XMIXITT) = k() MEXTTEXITT) =Tk o5 [IXAMVL g2 (37)
_m<x/m 1yn ‘7‘/’> (33) In simplifying Eq. (37), we have expresseddX dY---
X =27 dof E,W dR R-- and integrated by parts with respect

Analogous equations for the evolution ¢i™), (y'™, 1t R and 6, enforcing the boundary conditions that

(Y™Y'™) (X"Y™), etc. are also readily obtained, but will not [9%/96]r=r, =0 and [¢]r-, =const at the conducting

be presented here. wall. (For convenience, the reader may wish to assume that
Two quantities of particular physical interest are thethe conducting wall is grounded, wifh]g-,; =0.) In the

mean kinetic energy (1/2X’'2+Y’2) and the mean-square normalized units used here,

beam radiugX?+ Y?). We now make use of the general rate

equation (18) to derive equations for the evolution of 1 2
(1/2)<xr2+Y/2> and<X2+Y2). /F(S)_ ddeVLlM (38)
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will be recognized as the self-field energy of the beam par{/ 5y I 1 (2= Tw Iy
ticles. X—<+Y < =—f dGJ dRRR— ny
. . oX Y Ny Jo 0 IR
Substituting Egs(37) and (38) into Eq. (35), the rate
equation(35) for the change in mean kinetic energy can be 1 27 Tw
expressed as =5 d‘gf dRRR
27K 0 0
d1 d1l d 2
— S (X2 Y2 =k (S) o= = (X2 YR — — Zi(9), (1o oy 1%
ds?2 ds?2 ds “RIRIRPIR R 762
(39
. 1 (27 (rw 1[0 ap\?
or, equivalently, - _— f e -
27K Jo do 0 dRZ JR R JR
d 1 12 12 1 2 2 e
ge |7 XEHY )+ 5 k) (XEH YD)+ Ee(9) g [ay\? 43
““rR\7g (43
1drf(s) ., o, . o
=5 ds (X+Y?). (40 Here, use has been made of Poisson’s equéfidnto elimi-

naten,(R, 6,s) in favor of V2 ¢ in cylindrical coordinates,
The left-hand side of Eq40) will be recognized as the rate and the term proportional @ y/36? has been integrated by
of change of mean total energy of the system. Indeed, makearts with respect tof, making use of(R,6#+2,s)
ing use of the definition oH, in Eq. (14), and recognizing =#(R,#,s). Integrating by parts with respect ® in Eq.
that the field energy can also be expressed’ags)=(y)  (43), and making use dfdy/d0]r- =0 [Eq.(11)], we ob-
[see Eqs(15), (24), and(38)], Eq. (40) can be expressed in tain

the equivalent formd/ds)(H, )= (1/2)(d«x,/ds){X?+Y?). oy 1 fom o]’
It is clear from Eq.(40) that the mean total energy of the <x —+Y _> =— f do| R — (44)
system is conserved whenewk,(s)/ds=0. For example, 20 IY 47K Jo IR R=r,,

this is true for the case of a uniform solenoidal focusing field It is convenient to expressy(R,6,s) :WR 5
with k,(S) = k,o=const(for all s). It is also true for a peri- — _1 r2m e '
odic step-function lattice in the localized regionsseépace  + O¥(R.0.5), wherey=(2m)""[o" df ¢ and [o" d6 ¥
where k,=0 Or k,= Kk,o=CONst. =0. If ¢ is azimuthally symmetric {iy/96=0), _thenz,//_=_ v

As a final point in concluding this section, it should be @1d 6¢=0. In general, however, there may Lastability-
emphasized that rate equations in E8f) and Eq.(39) [or induced perturbations in the system, in which case

Eq. (40)] are fully equivalent. oy(R,6,s) is nonzero. Therefore, in the general case, Eq.
(44) can be expressed as
J J
| | (x 2y 2]
E. Rate equation for mean-square beam radius 28 aY
<X2+ YZ) 12 2
1 27 Y oY
Substitutingy = X?+Y? into the generalized rate equa- == dé| |R— -5 . (49
. . 47K Jo JR R |__
tion (18) gives R=r,,

d The first term on the right-hand side of E¢5) is associated

— (X2 Y2 =2(XX'+YY). (41  with the dc space charge of the beam and can be evaluated in

ds closed form(see below. The second term on the right-hand
Furthermore, substituting=XX'+YY’ into Eq. (18 and side of Eq.(45) involves the perturbed charge density and is

carrying out the required derivative operations, we obtain typically much smaller than the first term. To evaluate
[RIYlIR]r=,, in Eq. (45), we operate on Poisson’s equa-

2
i(XX’+YY’>=d—SZE<x2+Y2> tion (24) with [37 dafBWdR R.. and make use of
ds ds* 2 J27 dof™ dR Rny(R,6,5)=N,. This readily gives
=(X"24+Y'2) = k(s)(X2+Y?) . ﬁj . 4
x(w Y(w 42 aRwR”_ | @
- &—X+ N/ (42)

whereK is the self-field perveance defined in Ef0). Sub-
Equation(42) and Eq.(35) [or Eq. (39)] represent coupled stituting Eq.(46) into Eq. (45) then gives
rate equations for the evolution gfX?+Y?) and (X'2 o o 1
+Y'2), <XR+YW>=—§K(1+A), (47)
For future reference, it is useful to simplify the final term
on the right-hand side of E¢42). Making use of the repre- WhereA is defined by

sentation X dy/dX+Y dyldY)=(R (R, 0,s)/IR) in cy- 1 (27 d@ J 2

lindrical coordinates, and the definition of statistical average A=~ f 5= |R=5 o¢ (48
: : K 27\ R ~

in Eq. (15), we obtain R=ry
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Substituting Eq(47) into Eq. (42), it is found that
? 1 2 2 2 2 1
EEO( + Y+ k(S)(X+Y >—§ K(1+A)
=(X'2+Y'?). (49)

Equation (49) describes the evolution ofX?+Y?) and is
fully equivalent to Eq(42). Here, the nonlinear evolution of
the mean-square radiliEq. (49) or Eq. (42)] is coupled to
the evolution of the mean kinetic energy (1/Z)y?+Y'2)
[Eq. (39 or Eq. (35]. Particularly important in Eq(49) is
that the self-field perveand€=const., no matter how com-

plicated the nonlinear evolution of the system. Furthermoregs 4

the term proportional td in Eq. (49) is either zerolA=0
for an azimuthally symmetric beamor small A<<1) in
many regimes of practical interest. Equatid®) [or, equiva-
lently, Eq.(42)] is an exact consequence of the fully nonlin-
ear Vlasov—Maxwell equation®) and (9).

F. Coupled rate equations for rms emittance
rms beam radius R,(s)

€(s) and

For future reference, it is convenient to rewrite the

coupled rate equations for the mean kinetic energy (1/2)

X({X'2+Y'?) in Eq. (35) [or Eq.(39)] and the mean-square
beam radiug X%+ Y?) in Eq. (42) [or Eq.(49)] in terms of
the root-mean-square beam radRigs) defined by’28

Ry(s)=(X?+Y?)12, (50)
and the unnormalized beam emittands) defined by26-28
€2(S)=A[(X"2+ Y 2N X2+ Y2 —(XX'+YY')?]

1d 2)2
-—R
2ds P
In Eq. (51), use has been made Bf=(X?+Y?) and (XX’
+YY')=(d/ds)(1/2)(X?+ Y?)=(d/ds)(RZ/2). Substitut-
ing Eqg. (51) into Eq. (42) and eliminating(X'2+Y"’2) in

—4

. (51

(X"2+Y'3)RE—

favor of €2(s), some straightforward algebra shows that Eq.

(42) can be expressed as
2

g2 Ro(S)+ k2(S)Ry(S)
Iy

Iy
(XY ).
Equation(52) is fully equivalent to Eq.42). If we further
express X dylIX+YdyldY) in terms of the self-field per-

veance by means of E47), then Eq.(52) for the rms beam
radiusR,(s) can also be expressed as

(s)ld 1

"R Re(® 62

d? (K/2)(1+A) _€(9)/4
@Rb(s)+ Kz(S)—W b(s " R(s)
(53

Equation(53) is fully equivalent to Eqs(52) and (42), and
has been derived from thiellly nonlinear VlasowPoisson
equations(8) and(9) for generalbeam distribution function
Fp(X,Y,X",Y',s) and self-consistent normalized potential
#(X,Y,s) defined in Eq(6). In deriving Eq.(53), noa priori
assumption has been made thdt,/90=0 or dy/d0=0.
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The striking feature of Eq53) is that it is similar in form to
the analogous equation f&t,(s) derived for the restrictive
assumption of a Kapchinskij—Vladimirskij beam
distributior”® FKY [which has uniform beam densityn,
=const. for G=R<ry(s)=v2Ry(s), and n,=0 for R
>rp(s)], in which casee(s)=const., andA=0 because
(9l30)FY=0 anddyl 96=0.

The rate equation&5) and(42) can be used to describe
the nonlinear evolution of the unnormalized rms emittance
€(s) defined in Eq(51). From Eq.(51), we obtain

1 d
()= (X2 Y?) (X2 Y2+ (X "2+ Y"Z)

d d
><d—S<X2+Y2>—2<XX’+YY’)d—S<XX’+YY’). (54)

Substituting Eqs(35) and(42) into Eq.(54) and rearranging
terms, it can be shown that E4) reduces to

disé 62(3):%%<X2+Y2><X j—;/(’JrY j—l’f>
—<x2+Y2><x' Z—;€+Y' j—lé> (55)
or, equivalently,
disé €%(s)=R} (Ribt;:b <x g—;’[;+ g—‘f>
xS ) =

If we make use of Eq€37), (38), and(47), then Eq.(56) can
also be expressed as

dR,
ds

d1l
— 2 —_R2| _
dsBE(S) R

1 d )
EK(l-f—A)—d—s@(,: ,
(57

where Z¢(s) is the self-field energy defined in E(B8).

To summarize, the rate equati@¢s2) [or Eq. (53)] for
the rms beam radiuR,(s) together with the rate equation
(56) [or Eq.(57)] for the unnormalized beam emittanegs)
are fully equivalent to the original rate equations for the
mean-square radius<?+Y?) in Eq. (42) and mean kinetic
energy (1/2§X’'2+Y’2) in Eq. (35). These equations have
been derived from the fully nonlinear Vlasov—Poisson equa-
tions (8) and (9) and are valid no matter how complex, the
nonlinear evolution of the system. Which of these represen-
tations is best to use depends, in practice, on the particular
application under consideration. In the remainder of this pa-
per, we will use primarilybut not exclusivelythe rate equa-
tions for Ry(s) ande(s).

Most importantly, the present derivation of the nonlinear
rate equations foR,(s) and e(s) allows for general azi-
muthal variation §/90+0) of the distribution functiorF,
and self-field potentialy, and therefore represents a major
generalization of earlier calculations carried out for the case
of axisymmetric beam propagation withl96=0. For ex-
ample, the rate equatiort§3) and (57) for the evolution of

1
Ry
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Ry(s) and e(s) should be compared with the rate equations 25
obtained in the axisymmetric case by Lee and Cotder

the rms beam radius, and by Wangi¢ral?® and Andersoif

for the beam emittance. In this regard, it is important to note
the remarkable similarity in form of the generalized rate
equations(53) and (57) to the analogous rate equations de- N 1.5
rived in the axisymmetric case in Refs. 28—30. As a furthel
observation, in circumstances where the conducting wall itz
sufficiently far removed r,/R,—®>) from the beam,
it should be noted from the definition in E¢48) that ~

2.0

]lll]lllllllll
I I B A A

[ A A

the dimensionless parametek occurring in the rate 0.5
equationg53) and(57) satisfiesA — 0. This follows because
lim, _.[R(3/IR)S¢¥]r=,; =0 in the far-field region at large o1 b1l 1 s
w w
radial distances from the beam axis. 0 0.5 1.0 1.5 2.0
s/S
IV. APPLICATION OF GLOBAL RATE EQUATIONS FIG. 1. Periodic step-function lattice in E¢2). Here, 5 is the so-called

filling factor.

The global rate equations and conservation relations de-
rived in Sec. lll have been obtained from the nonlinear

Vlasov-Poisson equatiort§) and(9) and are applicable over which is a statement of energy conservation between mean

a Wlde.z range of system. parameters consistent with the Rinetic energy, potential energy, and self-field energy. When
sumptions enumerated in Sec. Il. As such, the results ob-

tained in Sec. Il place very powerful global constraints onKZ(S):KzozconSt’. other rate equations, such as (I5(_‘3) for_
. . the rms beam radiuR,(s) also undergo corresponding sim-
the nonlinear evolution of the system and can be used tol.. ;
. . . .plifications.
benchmark numerical simulation codes as well as to obtanri) - . . . .
L . . . For a periodic focusing field,(s+ S) = k,(s), examina-
valuable insights regarding the nonlinear beam dynamics and
. A . . .~ tion of Eq. (40) shows that the total mean energy(s),
collective processes affecting its propagation. In this section efined b
we make use of the global rate equations derived in Sec. Iﬁj y
to investigate several aspects of beam propagation in regimes 1 1
of practical interest. These include the energy rate equation  U(s)= > (X'2+Y'2)+ > kAS)(X2+Y2)+ Z:(s), (60)
for matched beam propagatig8ec. IV A), and the coupled
rate equations for the rms beam radRjgs) and unnormal-
ized beam emittance(s) for azimuthally symmetric beam
propagation §/96=0), corresponding to the Kapchinskij—
Vladimirskij distributior> (Sec. IV B, and beam distribu-
tions with a fixed-shape density profi{€ec. IV Q.

also varies periodically for quiescefmstability-free propa-
gation of amatched beanwith Ry(s+S)=Ry(s), where
R2(s)=(X?+Y?) is the mean-square beam radius. For
present purposes, we further assume that the functional form
of k,(s) and the rms beam radiuR,(s) have half-period

A. Global energy balance symmetryof the form

The global energy balance equation can be expressed in
the three equivalent forms given in E¢85), (39), and(40).
For present purposes, we make use of the form given in Eq.
(40), whereZ¢(s) is the normalized self-field energy defined
in Eq. (38), and the coupling coefficient,(s+ S) = «,(s) for L .
the solenoidal field is assumed to have fundamental perionr.OS.S.TIS/z’ an((j:i _aII gubse?uent 'atF'Cj. mterva:cls. A.casle n
icity length S. The energy balance equati¢f0) is valid no ﬁg"amv:;érzs”ate In Fig. 1 for a periodic step-function lat-
matter how complex the nonlinear evolution of the system. ™™
For example, ifZ¢(s) exhibits growth and saturates nonlin-
early due to a collective instability, then the mean kinetic
energy (1/2JX’'2+Y’2) and the mean-square beam radius K2(S)=
(X2+Y2) must adjust self-consistently according to E4p).
Evidently, in the special case of a uniform focusing field
with

Kk (SI2— )= k,(SI2+5), (61)

Rb(S/Z— S) = Rb(S/2+ S),

Kg=const, 0<ss<(7n/2)S,
0, (9/2)S<s<(1—7/2)S, (62
Kkp=const, (1— n/2)S<s<S,

over the fundamental interval9s<S. Of course, the func-
tional form of x,(s) in Eq. (62) and Fig. 1 repeats for each
K4(S) = Kz0= CONSt, (58 subsequent lattice interval becausgs+ S)= k,(s). We in-
tegrate the energy balance equat{df) over one lattice pe-
riod by operating on Eq(40) with [$*Sds:-- . Because
dk,/ds has odd-function symmetry over a half-lattice inter-
val, whereasRZ(s) = (X?+ Y?) has even-function symmetry
over a half-lattice interval, it follows from Eq61) that

the total energy is conserved according to E). In this
casedk,(s)/ds=0, and Eq.(40) reduces to

1 1
> (X'2+Y'2)+ > kao{ X2+ Y?)+ Zr(s)=const, (59)
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des%<x2+v2>=o (63 d e() ¢ (1 (X2+Y2)(X?+Y?)
ds ' ds8 (s) 2ds

S

Therefore, Eq(40) gives [$*5 ds d(s)/ds=0, or, equiva- 22 , N
lently, s (XEHYEUXX +YY') | =0, (68
U(s+9)=U(s), (64)

where use has been made of/ds)(X?+Y2)=2(XX'
which corresponds to periodicvariation of the total energy T YY')- Therefore, as expected for a Kapchinskij—
U(s) with fundamental periodicity lengts. Vladlmlrsl_<|1 bez_im d|str|bu_t|on, the unnormalized beam er_mt-
tance defined in Eq(51) is an exactly conserved quantity
with e(s) =const (independent of). This conclusion also
follows from the representation of the rate equationé¢s)

B.. R.ate.equations for Kapchinskij—Vladimirskij beam in Eq. (57), where Z:(s) is the self-field energy defined in
distribution Eq. (38). Making use of Eqs(38) and(67), we obtain
We now specialize to the case of azimuthally symmetric
beam propagationdf,/d6=0=dld6) through a periodic _ 1 (rw ap\? 1 (1
solenoidal focusing fieldc,(s+S) = «,(s), placing particu- éF(s):RJ dRF‘(_) ) (‘ ! rb(s) (69

lar emphasis on the rate equations for the rms beam radius
Ry(s) [Eq. (52) or (53)] and the unnormalized beam emit- _ 1
X : Therefore, from Eq.(69), (d/ds)Z:(s)=—(K/2)r, (s
tanceg(s) [Eq.(_55) or (57). Asaﬂrs_t exqmple, we COF‘S'der X (d/ds)ry(s) andqthe ra(te e()qu;'giczr(57)( aIsZJ bgi(vtgs
the widely sétudled case of a Kapchlnsk|J—VIad|m|rsk|J beam(d/ds) 62(S)=b when A=0. This calculation also clearly
gim?ﬁ:;:zn Zen’SItWh'rcor;i,rggeggftes self-consistently the shows that if a KV beam distribution develops an
P- yp (instability-induced, sayasymmetry such that #0, then
the unnormalized beam emittance is no longer a conserved
_ guantity according to Eq57).
Ny(R.S)= ZWR (S) For an azimuthally symmetric KV beam distribution, the
0, V2Ry(s)=ry(s)<R=r, constancy ofe(s) permits a determination of the depen-
Here n(R.s)= [dX'dY'F, is the beam densityrp(s) dgnce 01; the mean kinetic energy (J(lX)% Y'2), Setting
—V2R,(s) is the outer radius of the beam envelope, and€ (S)=€=const in Eq.(S1), and solving for the kinetic
= wagb(s)dRRrb(R,s) is the number of particles per unit °"c &Y gives
axial length. Note from Eq(65) that the mean- square beam 5 a2
radius is(X?+Y?)=N, '27[> dRRRn,(R,s)=Rj(s), as E<x'2+y/2>: ZO +1 (ﬁ) , (70)
expected. Becaus@y/d6=0, it follows that the coefficient 2 4rp(s) ds
A=0 [see Eq.(48)] in the rate equatior{53) for the rms
beam radius R,(s). Substituing A=0 and Ry(s) Wwhere use has been made ®%s)=rg(s).

0<R<r,(s)=v2Ry(s), 65

=rp(s)/v2 into Eq.(53), we obtain To summarize, for a KV beam distribution propagating
) 2 through a periodic solenoidal focusing field,(s+S)

K (S) = k,(S), the outer radius,(s) of the beam envelope evolves
@rb(sH KA(S) = ra(s )) o(S) = rb(s) (66 according to the nonlinear envelope equati@®) with

sz(s):eg=const. Closed expressions for the field energy
Equation (66) is the familiar envelope equatibf for the . (s) and mean kinetic energy (142'2+Y'2) are given
outer radiusr,(s) of a Kapchinskij—Vladimirskij beam, de- in terms ofr,(s) and other system parameters by E@S)
rived as a particular application of the general rate equationgnd (70). For a matched beam with,(s+S) =ry(s), note
developed in Sec. Il. from Eqs.(69) and(70) that #¢(s) and (1/2YX'?+Y’2) are

We now turn to the evolution of the unnormalized beama|so periodic functions of with fundamental periodicity
emittancee(s) described by Eq(55), or, equivalently, Egs. length S.

(56) and (57). For the step-function density profile in Eq.
(65), Poisson’s equatiof4) is readily integrated to give

1 R? C. Rate equations for beam distributions with fixed-
5 K25, O0sR<ry(s), shaped density profile
- "ol (67)
V= 1 R The assumption of a KV beam distributiér§” and cor-
-7 K{1+2 In ro(s))’ Mp(S)<R<ry. responding step-function density profile fog(R,s) in Eq.

(65) is very restrictive. In this section, we carry out an im-
Here, we have taket(R=0,s) =0 without loss of general- portant generalization of the analysis in Sec. IV B to the
ity. Making use of Eq.(67) and R?=X?+Y? to evaluate class of azimuthally symmetric beam distributiorss (/36
dyl aX and dyl dY in the region where the beam density = =0=4dy/d6) with density profile n,fdX'dY’'F, of the
is nonzero in(65), it follows from Eq.(55) that form?®
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TABLE |. Table of values of the constarA and geometric factog the azimuthally symmetric case considered hgsee Eq.

=21 dX XX2f(X) for several choices of the density shape functi¢X). (48)], the rate equatio(\53) for the rms beam radiu@b(s)
Here, f(X)=0 for X>1, and the constantA is chosen so that gr (S) readily gives
- b

I3 dX Xf(X)=1/2[Eq. (72)].

2 K/2 2(s)l4g?
f(X) for 0<X<1 A g=2[3 dXXXf(X) — 1p(S)+| k() — 2_9) ry(s)= M (76)
ds’ ro(s) ro(s)
A 1 1/2
A(1—><22)2 2 13 Equation(76) describes the nonlinear evolution of the outer
AL~ X5) 3 va beam envelope,(s) for the general class of density profiles
AL=XT n=0 . /2":1 - (n+2)2 , in Eq. (72). Apart from the geometric factay, Eq. (76) is
Acod X 1 @2 er —™2 _6l2) 20320 identical in form to the envelope equati¢®6) derived for a
2 2(wl2—1) (wl2—1) ™
AXZ(1—X?) 6 1/2 KV beam distribution. Indeed, for a KV bearg=1/2 and
AS(X—1) 1/2 1 Eqg. (76) reduces exactly to Eq66), as expected.

With regard to the unnormalized beam emittargs),
we make use of the rate equation in the form given in Eg.
(57). SettingA =0 andRZ(s) =grz(s), whereg is defined in
N R i
i f( ) 0=R<ry(9), Eq. (74) for generalf(X), we obtain
Ny(R,s)=1 7r5(S) \ru(S) (77 d1, ) 1drp1 d
0, ry(S)<R=r. dsg €979 ~1 g2 K gs F) (D

Here, f[R/ry(s)] is a smooth, but otherwise unspecified \yhere 7 (s) is the field energy defined bifor dy/36=0)
function satisfyingf =0, andr(s) is the outer radial enve-

lope of the beam. We refer t(R/r,,) as thedensity shape N T L ay\?
function and the class of profiles in E(71) asfixed-shape “r(8)= 3¢ fo dRF{ﬁ) '
profiles because the only dependence ®rnn Eq. (71) is
through the factor rgz(s), and the shape-function
f[R/ry(s)]. BecauseN,=27[> dRRn,(R,s), the normal-
ization onf in Eq. (71) is 10 dy 2K R
R R e

Equation (79) can be formally integrated to determine
dyl IR, which is required in Eq(78). This gives

(78

Substituting Eq(71) into Poisson’s equatio(24), we obtain
the equation for/(R,s), i.e.,

1 (79
f AXXf(X)=1/2. (72
0

Furthermore, the mean-square beam radlfiﬁs):<x2

+Y?) for the class of profiles in Eq(71) is given by 2 [Rirg(s)
R2(s)=Nj 27 [?® dRRRn,(R,s), which reduces to o —Kg jo dXXf(X), O<R<ry(s),
Rp(S)=grp(s), (73 R 1
. . . K=, rp(s)<R=r,,.
whereg=const. is the geometric factor defined by R ®0)
1
gzzfo dXXXf(X). (74 Note from Eq.(80) that dy/dR is continuous aR=r(s)

because of the normalization conditigﬁé dX Xf(X)=1/2.
A simple example for the choice 6fR/r(s)] in Eq.(71) is  Substituting Eq.(80) into the expression fo#:(s) in Eq.
the step-function density profile in E€G5) corresponding to  (78), and carrying out the integration ovBrgives
a KV distribution of beam particles. In this caggX) =1 for

0=X<1, andf(X)=0 for X>1, and the geometric factor in Ze(s)= 1 K 4J'l d_X ( fx dX Xf(X) 2+In T .
Eq. (74) is g=1/2, which corresponds tB2(s)=r2(s)/2. A 2 o X 0 M(S)
second example is the parabolic density profile, (82)
2N, R2 It is important to note in Eq(81) that the first term on the
ny(R,s)= - ( - rﬁ(s))’ (75  right-hand side is constafindependent o§) for the general

choice of density shape functidfiR/r,(s)]. Therefore, the
for 0<R<rp(s), andny(R,s)=0 forry(s)<R<r,,. Inthis  only s variation of Z(s) occurs through the logarithmic
case, the density shape functionfigX)=2(1—X?) for 0  term in Eq.(81), which gives

<X<1, andf(X)=0 for X>1. The corresponding geomet-

. . ) 1 K d

ric factor g and mean-square beam radius calculated from  _— » ()= — = —_ _y (s). (82)

Eq. (74) areg=1/3 andR2(s) =r2(s)/3. Clearly, many other ds 2 rp(s) ds

examples are possibl@able ). . Substituting Eq(82) into Eq. (77) then gives the important
We now turn to an examination of the rate equations for,gg it

the rms beam radiuR,(s) [Eqg. (52) or (53)] and unnormal-

ized beam emittance(s) [Eq. (55), (56), or (57)] for the i €(s)=0 83)

class of beam density profiles in EJ.1). Because\ =0 for ds '
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corresponding to the conservation of beam emittance, witfEquation(86) is identical in form to the envelope equation
€(s)=ep=const. (66) for a KV beam, provided we make the replacements
Equations(76) and (83) are similar to the results first K— K, ande— €4 in Eq.(66). Therefore, many of the results
obtained by Lee and Coopérfor the case of azimuthally obtained in analytical and numerical studies of the envelope
symmetric beam propagation through a solenoidal focusingquation(66) can be applied directly to E¢86) provided we
field, making the assumption that the density profile has thenake the replacements implied by E§5). This includes,
fixed profile shape in Eq66). Equations(76) and (83) in-  for example, the existence of self-field-induced nonlinear
deed constitute powerful results for axisymmetric beanresonances and chaotic behatt@xhibited by the beam en-
propagation. While emittance conservation is a well-knowrvelope in some parameter regimes, where there is a mis-
result for a KV beam, the fact tha{(s) =const for the gen- match between the beam and the periodic focusing field.
eral profile shape functioff R/r,(s)] has several important For a periodic focusing lattice with,(S+ S)= k,(S),
implications. First, becausg(s) = ;= const in the envelope Eg.(86) generally supports nonlinear periodic solutions with
equation(76) for the outer beam radius,(s), Eq.(76) can  r,(s+S)=ry(s), corresponding to enatched-bearsolution
be solved numerically fory(s) for a broad range of lattice in which the period of oscillation of the beam envelopés)
functions k,(s+S)=k,(s), system parameterg and ¢, is the sameas the period of the focusing field,(s). In the
and values of the geometric paramegerwhich depends on special case of a uniform focusing field whekg(s) =k,
the choice of shape functioff R/r(s)]. Second, once the =const(independent o§), Eq.(86) also supports amooth-
outer beam radius,(s) is determined from Eq(76), the = beam solution in which ry(s)=rys=const. Setting
self-consistent evolution of(s) can be determined from d?r,s/ds’=0 in Eq.(86), and solving forr, we find that
Eq. (81). Finally, similar to the result obtained for a KV

271/2

beam in Sec. IV Bsee Eq(70)], the definition of emittance 2 _ Ki K_i):i

in Eq. (51) can be used to determine the evolution of the P 2k, |2k, K

mean kinetic energy (1/2X'2+Y’2). We readily obtain, 1 (K K \2 2|12

for €(s) = eg=const, = __ | 4 ] (87)

29 | 2k, 2k, Ky

1 6(2) 1 dl’b 2 e . —-—
. (X’2+ y/2>: ———t =g (84) For specified values of beam curreit)( field strength &),
2 8gry(s) 2 ds and emittancée), we note from Eq(87) that the equilibrium

beam radiusry,s is smaller when the density profile is
strongly peaked off axis (1/g<1) than when it is peaked
as expected on axis @<1/2). Moreover, from Eq(87) the beam radius

Table | shows a tabulation of values of the geometricrbs generally scale.s a ; )
factor g=2f3 dX XX2f(X) defined in Eq.(74) for several . We now examine the envelope equati@) for a peri-
choices of the profile shape functidifX). Here, f(X) is odic focusing fieldx,(S+S) = x,(s) and matched-beam so-
normalized according tgg dX Xf(X)=1/2 [Eq. (72)], and lutions rb(SJ.r S):rb(s)' Iqspectlon of Eqs(85) .and (86)
the rms beam radiug,(s) is related to the outer beam radius shows that it is usef‘}JI to mtrqduce the dimensionless quan-
ro(s) by R3(s)=gri(s) [Egs. (73 and (74)]. Note from tities (denoted by a “hat}, defined by

For the particular choice of a KV beam distribution, where
the geometric factor ig=1/2, Eq.(84) reduces to Eq(70),

Table | thatg=1/2 for a KV beam distribution, which has . K.S KS
the step-function density profile in EJ65), whereasg Kzfi:?,
<1/2 when the density profile is peaked on axis and de- g
creases monotonically to zero atr,(s)(X=1). On the s
other hand, if the density profile is strongly peaked off axis, S= 3
theng>1/2. Indeed, for an infinitesimally thin annulus cen-
tered atr=ry(s), which corresponds td (X)=(1/2)8(X k,(8)=kK,(sIS) S,
—1) in Table I, we obtain the geometric factge 1.
We conclude this section with a brief discussion of prop- . . rp(s/S) \/@
erties of the envelope equatidi@6) for general geometric Fp(S)= Jes =V g "o(s/9). (88)
factorg. Defining A 9 A
Becaus&K =K S/ €, we note from Eq(88) thatK is a dimen-
K Ei K sionless measure of the beam current, which is proportional
9 297 to K. Substituting Eq(88) into Eq.(86), the envelope equa-
1 tion can be expressed in the equivalent form
6955 €, (85) d2 o o k o 1
g2 Mo(S)+| ko(s)— %) rp(S)= %) (89
it follows that Eq.(76) can be expressed in the equivalent b b
form where k,(5+1)=k,(S) for a periodic focusing lattice. In
Iy K 2 solving Eq.(89) 1;urr?e:cically forfk%(éJr 1A)1;Af)b(§,)(,JI ithis nelc-
_ __9 -_9 essary to specify the functional form &f(s) and the value
e T e - s
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O T e o N — =0.25, where the phase advaneecalculated numerically

- 3 from Egs.(89) and (90) is plotted versuKS/e. Here, the
25 W vacuum phase advance is,=limy_ o c=74.69° for the
- ] choice of lattice parameters in Fig. 3.
20F ]
A 15F E V. CONCLUSIONS
b Fooee e . In this paper, we have presented a detailed formulation
1.0 T Tt e E and analysis of the rate equations for statistically averaged
C : quantities for an intense non-neutral beam propagating
0.5 o . through a periodic solenoidal focusing fi@3°(x) described
0 L . by Eq.(1). The analysis was based on the nonlinear Vlasov—
0 0.5 10 15 50 Maxwell equations in the electrostatic approximation, as-

S'/S suming a thin beam with characteristic beam radigs S,
negligibly small axial momentum spread about the directed
valuep,= y,mByc, and v/ y,=N,Z?e?/ ypmE<1, wherev

FIG. 2. Plots oﬁb(é)_vs §=§/S qbtained numerically from Eq89) for the is Budker's parameter. Following a discussion of the theo-
choice of step-function lattice in Eq62). Here, k,0S?=6.25 andn=1/4, . .
and the two cases correspond K&/ e=1 (dashed curveand KS/e=10 rgtlcal modell and assumptlo(Sec. le the glObaI rate equa_
(solid curve. tion was derivedSec. Ill) that describes the self-consistent
nonlinear evolution of the statistical averagéy)
=Ng1f dXdYdXdyF,, wherey is a general phase func-
Typical numerical solutions to Eq89) over the interval tion defined on the transverse four-dimensional phase space
0=<s/S<1 are illustrated in Fig. 2 for the choice of a step- (X,Y,X’,Y’). The results were then applied to investigate
function lattice in Eq(62). Here, we assume lattice strength the evolution of the generalized entropy, mean canonical an-
Kk0S?=6.25 and filling factorp=0.25. The two cases shown gular momentum(P,), center-of-mass motion fafX) and
in Fig. 2 correspond t& =KS/e=1 (low beam currentand  (Y), mean kinetic energy (1/2X'?+Y’2), mean-square
KS/e=10 (high beam current As expected, the normalized beam radiugX?+Y?), and coupled rate equations for the
beam radius’,(S) increases aK is increased because of unnormalized transverse emittangs) and rms beam radius

repulsive space-charge effects. Ry(S) =(X?+Y?)2 The rate equations obtained in Sec. IlI
An important quantity in accelerator physics is the so-are derived from the fully nonlinear Vlasov—Poisson equa-
called phase advancéor “tune”) o, defined by tions, allowing for azimuthal asymmetrieg/¢8+0), and
- are valid no matter how complex the nonlinear evolution of
°_ds b _ds (9p)  the system. Following a discussion of global energy balance

O=E€ Y o AL -
9)o ri(s) 0 Ip(s) (Sec. IV), and the rate equations for the special case, where

F, corresponds to the Kapchinskij—Vladimirsk§V) distri-
bution, with a step-function radial density profile, we exam-
ined the coupled rate equations for the unnormalized beam
emittancee(s) and rms beam radiuR,(s) for the class of
axisymmetric beam distributiorts, with fixed-shape density
profile nb(R,s)=[Nb/7-rr§(s)]f[R/rb(s)]. Here,ry(s) is the
outer radius of the beam envelope, and the density shape

Note that the phase advanee becomes increasingly de-
pressed as the normalized beam currrtKS/e is in-
creasedlarger beam radius,). This is illustrated in Fig. 3
for the choice of lattice parameters,,S°=6.25 and 7

Log——r T T function f(R/ry) is allowed to have a general functional
L ] form. Most importantly, it was found thate(s)/ds=0, cor-
0.8 7] responding to emittance conservation for general density
- R shape functiorf (R/ry,), and that the envelope equati6rb)
0.6 _' for the outer beam radius,(s) is similar to the envelope
> 1 equatiod?® for a KV beam distributiorf? approximately
\b - i modified by the geometric factgr to reflect the shape of the
o 04 7 function f(R/rp). This is similar to the result obtained by
- . Lee and Coopéf for the case of axisymmetric beam propa-
0.2 ] gation through a solenoidal focusing field and general den-
i . sity shape functiorf(r/ry). Future work will include a de-
- . termination of axisymmetric distribution$-, that self-
ol v v b b L e e 5 ) X
0 2 4 6 8 10 consistently generate different functional forms for the

KS/e density shape functiofi(R/ry). Finally, while the present
work has been motivated by applications to periodic focus-

FIG. 3. Plot of phase advaneedefined in Eq(90) versusK S/ e obtained Ing systems WIth(Z(s+ S) - KZ(S)’ it should pe emphaS|zed
numerically from(89) for the choice of step-function lattice in E@2) with that most of the key results are not restricted to the case

Kk2S*=6.25 andy=1/4. where k,(s) is periodic.
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