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Abstract turbative particle simulation methdd f method) for solv-
: . . . ing the Vlasov-Maxwell equations. As a low-noise nonlin-
The ion-electron two-stream instability is studied numerg, . particle simulation technique, thg method has been
plemented in the recently developed Beam iltqaum,

tability and Transport (BEST) code [19-21], which has

ically for the high intensity heavy ion beams envisioned i
the Integrated Beam Experiment (IBX). We consider a 1.

b : . : .
MeV K .beam with 0.25 microcoulombs/m line denSItybeen applied to a wide range of important collective pro-
propagating through a small background electron populg

i The detailed i i fthe | lectron t esses in intense beams. We considét B IBX beam
lon. The detanied linear properties orthe jon-lectron Woxivith m = 39.1au and kinetic energy.72 MeV in the low

stream instability are studied using a 3D low-noise delta- nergy regime. Other beam parameters are: line density

particle simulation method implemented in the Beam EquiN — 1.50 x 102/ m: RMS radi _ )
L o =1. adiusR, = 1.3 and beam
librium, Stability and Transport (BEST) code. * /m; b o

transverse thermal speeg, = 0.0545;¢. For the focusing
lattice, the vacuum phase advancerjs = 72°, and the
INTRODUCTION applied betatron frequencyids;, = 1.21 x 107s71.

In typical linear inductioraccelerators for heavy ion fu- 0 F SIMULATION METHOD

sion drivers, the beam current is much higher than that in '€ theoretical model employed here is based on the

contemporary accelerators and storage rings in order to gb2nlinear Viasov-Maxwell equations. We consider a thin,

tain sufficient fusion energy gain. For a given focusingfontinu,ous’ high-intensity i.on peam - b)',With char-
lattice, most designs of heavy ion fusion drivers operatBCteristic radius, propagating in the-direction through
near the space-charge limit. Large space-charge forces ffackground electrongj = ¢), with each comonent de-

cribed by a distribution functiotf; (x, p, t) [1,7]. The

evitably induce a strong interaction among the beam parﬁ-

cles, and in some regimes can result in collective instabfionlinear Vlasov-Maxwell equations fgf(x, p, ) and the

ities [1, 2]. One of the major objectives in the Integratecfelf'generated fields can be approximated by [1,7]
Beam Experiment (IBX) proposed by the U.S. Heavy lon { 9

Fusion Virtual National Laboratory is to study collective En + V- I [vjmjw[%jn

effects in a space-charge-dominated beam [3]. In particu- v P (1)
lar, it is proposed to use IBX to investigate the ion-electron  +¢;(Vg — =V |A,)] - —} fi(x,p,t) =0,
. o . . c op
two-stream instability, which has been observed experi-
mentally in high intensity accelerators and storage rings ) 5
[4-6]. A well-documented example is the electron-proton Vi = —47TZ€J' / d’pfi(x,p,t),
(e-p) instability observed in the Proton Storage Ring exper- J )

iment [4,5]. Theoretical studies [1, 7-15] suggest that the 2, 4w 3
relative streaming motion of the high-intensity beam parti- Vide =—— Z € / “pv-fi (%, P 1).
cles through a background charge species provides the freeTo solve the Viasov-Maxwell equations, we use a low-
energy to drive the classicto-streaminstability, appro- noises f method [19-21], where the total distribution func-
priately modified to include the effects of dc space chargeion is divided into two partsf; = f;o + 0f;. Here,ws;
relativistic kinematics, presence of a conducting wall, etds the applied smooth-focusing frequengyy is a known
A background population of electrons can result by seequilibrium solution §/0t = 0) to the nonlinear Vlasov-
ondary emission when energetic beam ions strike the chamtaxwell equations (1) and (2), and the numerical simula-
ber wall [16-18], or through ionization of background neution is carried out to determine the detailed nonlinear evo-
tral gas by the beam ions. lution of the perturbed distribution functiafif;. This is
When electrons are present, two-stream interactions accomplished by advancing the weight function defined by
IBX are expected to be stronger than the two-stream ins; = 4§f;/f;, together with the particles’ positions and
stabilities observed so far in proton machinezduse of momenta. The dynamical equationsfey; is given by [21]
the much larger beam intensity. In this paper, we study
the ion-electron two-stream instability in IBX using a per- dwji _ - wﬁ)L% 5 (M)

dt fio Op dt
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Figure 1: Normalized equilibrium beam ion and back-
ground electron density profiles.

where the subscriptj?” labels thei'th simulation particle

of the j'th speciesdp = ¢ — ¢g, anddA, = A, — A,p.
Here, the equilibrium solutionspg, A.o, fjo ) solve the
steady-state Vlasov-Maxwell equations (1) and (2). A de-
tailed description of the nonlineay method can be found
in Ref. [21].

8¢ (Arbitrary Units)

SIMULATION RESULTS

In the present simulations of the two-stream instability,
instead of using the theoretically-convenient KV distribu-
tion [1], we assume that the background equilibrium distriFigure 2: Ther-y projection (at fixed value of) of the per-
bution ©/dt = 0) is the more realistibi-Maxwelliandis-  turbed electrostatic potentiéb(z, y, ¢) for the ion-electron
tribution with temperatur@’; | = const. in the transverse two-stream instability growing from a small initial pertur-
plane, and temperatufE;; = const. in the longitudinal bation, shown at (&) = 0, and (b)wsst = 6.6.
direction. That is,

fio(r,p) = n; 5 5 (4) the equilibrium can be be characterized by a single di-
(2mm;)3/23 Ty T mensionless parametey = &2,/277w?,, wherew?, =
. L Amipe? /myy, is the beam plasma frequency on axis. The
X exp {— (b 5 )i m%ﬁj o _ pl/T27] dl } paranfetesb, which measures the self-field intensity rela-
VMl it tive to the applied focusing force, satisfies< s, < 1,
'yjmjw%jrz/Q +ej(po — BjAz0) with s, = 0 corresponding to the zero ape-charge limit,
X exp g — T, , ands;, — 1 to the space-charge-dominated limit. For IBX,
/ we takes, = 0.996, and the density profile is close to a

flat-top profile, becauss, is very close to the space-charge
and ¢, and A., are the equilibrium self-field potentials, dorminated limit. If there is a small background electron

determined self-consistently from the nonlinear MaxwelPCPulation, the spce-charge force will be partially neutral-
ized, and the beam density profile relaxes to a bell-shape.

wherer; is the density on axi§ = 0) of the j’th species,

equations . ) ) )

q Plotted in Fig. 1 are the density profiles for an ion-electron
19 3(150 two-species equilibrium with fractional charge neutraliza-
o ar —477261/05 pfio(r;p),  (®)  tion f = . /fy = 0.05,andV, = 0 andwg, = 0 for

stationary background electrons.
19 8Azo _ Zeﬂ /d pv- fio(r, p). To simulate the ioq-electrqn tvyo—strgam instability , we
ror o perturb the two-species equilibrium discussed above with

a small initial perturbation, and use theearizedversion
The equilibrium density profile for thesach species, of the BEST code to simulate the dynamics of the system
nd(r)/n; = (1/ng) [ d®pfio(r,p,t) (j = b,e), can be for many thousands of wave periods. In Fig.2, the y
readily obtained once the equilibrium potentials and projection of the perturbed potenti&b at a fixed longitu-
A,y are determined numerically from Egs.(4) and (5)dinal position is plotted at = 0 and¢ = 6.6/wg,. Clearly,
If the beam particles are the only species in the systeni$ grows to a moderate amplitude by= 6.6/wg, and
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' _ _ . R Figure 4: The maximum linear growth ratbm w),,,q. Of
E|gure 3: ' Time h|story of pertubed desnidy., /7, at @  the jon-electron two-stream instability decreases as the lon-
fixed spatial location. gitudinal momentum spread of the beam ions increases.
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