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Abstract

A self-consistent one-dimensional waterbag equilibrium
[ (z,p,) for a sheet beam propagating through a smooth
focusing field is shown to be exactly solvable for the
beam density n{(x) and space-charge potential ¢°(z). A
closed Schrodinger-like eigenval ue equation is derived for
small-amplitude perturbations, and the WKB approxima-
tion is employed to determine the eigenfrequency spec-
trum as a function of the normalized beam intensity s, =
@2y [ vpwh ., where @2, = 4dmiigef [ypmy is the relativis-
tic plasma frequency-squared and 77, = ny(xz = 0) isthe
on-axis number density of beam particles.

SHEET BEAM EQUILIBRIUM WITH
UNIFORM PHASE-SPACE DENSITY

We consider an intense sheet beam [1], made up of parti-
cles with charge e;, and rest mass m,,, which propagatesin
the z-direction with directed kinetic energy (v, — 1)myc?
and average axiad velocity V, = fByc = const. Here,
Y = (1 — B2)~1/2 is the relativistic mass factor, ¢ is the
speed of light in vacuo, and the beam is assumed to be uni-
form in the y- and z- directions with 9/0y = 0 = 0/0x=.
The beam is centered in the x - direction at = = 0, and
transverse confinement is provided by an applied focusing
force, F{OC = —’ybmbw%J_w, with wfﬂ_ = const in the
smooth focusing approximation. The transverse dimension
of the sheet beam is denoted by 2z, and planar, perfectly
conductingwallsarelocated at = +z,,. The particle mo-
tion in the beam frameis assumed to be nonrelativistic, and
we introduce the effective potential ¢ (z, t) defined by
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The Vlasov-Maxwell equations describing the self-
consistent nonlinear evolution of f;(x, p,,t) and ¥(z,t)
can be expressed as[2]
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As an equilibrium example (0/0t = 0) that is analyti-
cally tractable, we consider the choice of distribution func-
tion
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Fy(H.) = OH, - Hy), (4

where H, = p2 /2v,m;, +¢°(x) isthe transverse Hamilto-
nian, ©(z) is the Heaviside step-function, and n,, fIL are
positive constants. Evaluating the number density n{)(z) =
[ dp. Fy(H . ), we readily obtain
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ng(w) = { T [1 - (w)/HJ_] , —Tp < T < Ty,
07 |l'| > Tp.
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Here, the location of the beam edge (z = +x,) is deter-
mined from

YOz = +a3) = Hy, (6)

where )" (z = 0) = 0 is assumed. It is useful to introduce
the effective Debye length A, defined by
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Here, Go = (2H . /yyms)'/? is the maximum speed of a
particle with energy H, asit passes through z = 0. Sub-
stituting Eq. (5) into Eq. (3) then gives
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in the beam interior (—z;, < x < ). Equation (8) isto be
integrated subject to the boundary conditions [¢°] _ =~ =
0 = [0y°/8x] _, . For physically acceptable solutions to
Eq. (8), thecondition [9%¢°/8x?] _ > 0imposesthere-
quirement that s, liesin theinterval 0 < s, < 1, where
sy = W2y /viwp, . Theregime s, < 1 corresponds to
a low-intensity, emittance-dominated beam, whereas the
regime s, — 1 corresponds to a low-emittance, space-
charge-dominated beam. In solving Eq. (8), it isconvenient
to introduce the dimensionless variables defined by
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Substituting Eq. (9) into EQ. (8), integrating once, and en-
forcing [¢°] _, =0= [0y°/0z] _ ,dgives
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in the interval —z,/Ap < X < z,/Ap. Equation (10)
can be integrated exactly to determine X as a function of
(1 —¢°)Y2 = nd(X)/ny [see Eq. (5)]. We express X =



fowo dy° /(dy°/dX), changevariablesto z = (1— ¢°)!/2,
and make use of Eq. (10). Thisgives[1, 3]
, [t dz
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where ™ and o~ are defined by
at = i{3 — 28, £ [3(3 + 4sp — 457)]Y/?}. (12
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From Egs. (6) and (11) we obtain aclosed expression for
xp/Ap interms of the normalized beam intensity s, for the
choice of equilibrium distribution functionin Eq. (4). The
areal density of the beam particles, Ny, = [*! danj(z),
for the density profilein Eq. (5) can be expressed as

Ny = 2ny /wb dz[l — 1/}0(x)/f—\fj_]1/2, (23)
0

Some algebraical manipulation that make use of Egs. (9),
(10) and (13) gives
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where z,/A\p is determined from Eq. (11). Note that

Ny/2npz, depends only on the dimensionless inten-
sity parameter s,. Typical normalized density profiles
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Figure 1: Plots of the normalized density profile
2zynY (z) /N, versus z/z, for different values of the nor-
malized beam intensity s, corresponding to (&) s, = 0.2,
(b) sp = 0.9, (¢) sp = 0.99, (d) s, = 0.999, (€) s, =
0.999999.

2xyn)(x) /Ny areillustrated in Fig.1 for values of s, rang-
ing from s, = 0.2 to s, = 0.999999 [1]. Finaly, defin-
ing the equilibrium transverse pressure profile by P2 (z) =
S5 dpe (P2 /ysms) f7 , we readily obtain
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Comparing Egs. (5) and (15), note that P(z) =
const[n9(z)]*, which corresponds to a triple-adiabatic
pressure rel ation.

LINEARIZED EQUATIONSAND
STABILITY ANALISIS

The linearized Vlasov-Maxwell eguations can be ex-
pressed as[2]
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where dny(z,t) = ffooo dp. 6 fp is the perturbed number
density of beam particles. In analyzing Egs. (16) and (17),
it is convenient to change variables from (z, p.,t) to the
new variables (z', H, , ) defined by [1]

H, = Py +¢°(x). (18)
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Substituting Egs. (18) into Egs. (16) and (17) gives for
the evolution of the perturbations &fy(«', H,,7) and

dip(a’,7),
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In Eq. (19), v, = +v(H,,z") for the forward-moving
particles with v, > 0, and v, = —v(H,z') for the
backward-moving particleswith v, < 0, where
2HJ_ 1/2 |: 1/10($I):|1/2
c=tu(H 2=+ = 1-— .
v v(H,x") <’meb) T,
(21)
Furthermore,
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where 5y = (2H, /vyms)'/2. Using Egs. (19)-(22)

and introducing 0E,(z',7) = —(9/0z")dp(a’,7) =
—(72/e)(8/0x")6¢ (2", T), after some algebraic manipu-
lation we obtain [1]
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where N (z') is the (dimensionless) profile shape function
defined by

(24)

In the anadlysis of Eq. (23),
a normal-mode approach and express 0E, (z,

we make use of

T) =



SE, (2',w) exp (—iwT), where w is the (generaly com-
plex) oscillation frequency. Equation (23) can be repre-
sented in a convenient form by introducing the angle vari-
able a defined by
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where X, = X'(xz;). Substituting Eqg. (25) into Eq. (23)
gives the eigenvalue equation
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Equation (27) is to be solved over the interval —7/2 <
a < m/2 subject to the boundary conditions & E\w(a =
+7/2,w) = 0. Substituting Egs. (10) and (24) into Eq.
(25) gives
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where a™ is defined in Eqg. (12). Some algebraical manip-
ulation gives exactly for the inverse function NV («)
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where sn (3, ) isthe Jacobi elliptic sine function and x =
[(1—a%)/(at —a")]*2. InEgs. (28)-(29), the " stretched”
half-layer thickness (X,) measured in units of the Debye
length (\p) isgiven by
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where F' is the dliptic integral of the first kind. Using
the expression for N («) in Eq. (29), the eigenvalue equa-
tion (27) can be solved numerically for 6E$(a, w) and the
eigenvalues w? subject to the boundary conditions E, (a=
+7/2,w) = 0. An approximate expression for the eigen-
values of the Schroedinger-like equation (27) can be ob-
tained in the WKB approximation. The Born-Zommerfeld
formula, when applied to Eq. (27), gives

o w/2 w 2 1/2
P / da [(72 m) —N(a)] —mm, (31)
YoWo J_x/2 Wpb

where w,, is the mth-mode eigenfrequency with m half-
wavelength oscillations of § £, over the layer thickness.

Making use of Eq. (28), theresultin Eq. (31) can be rewrit-
ten as

: dz(q2, — 2)'/?
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where ¢,,, and r are defined by ¢,,, = wp,/(@Wps /) and
r = &[(¢?, — at)/(¢2, — 1)]/?. Equation (32) has been
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Figure 2: Plots of the normalized mode frequencies
Wy /wgL versus the on-axis (z = 0) tune depression
v/vg = (1 — s3)'/? for several values of mode numbers
m = 1,2,3,4. The dotted curves are the numerical so-
Iutions of the eigenvalue equation (27); the solid curves
are the solutions obtained in the WKB approximation [Eq.
(32)].

solved numerically [1] for w?2,, and the results have been
compared with the numerlcal sol utions of the eigenvalue
equation (27) (Fig. 2). In Fig. 2, the convention is such
that there are m half-wavelength oscillations of § £, over
the layer thickness. Note that low beam intensity (s, < 1)
correspondsto v /vy — 1, withw,,, ~ mwg, , whereasthe
space-charge-dominated regime (s, — 1) corresponds to
v/vyg — 0, Withwp, ~ wgi ~ Wpp/7s.

To summarize, we have demonstrated that the self-
consistent waterbag equilibrium f satisfying the steady-
state (0/0t = 0) Vlasov-Maxwell equations is ex-
actly solvable for the beam density nf(z) and electro-
static potential ¢°(x). In addition, we derived a closed
Schroedinger-like el genval ue equation for small-amplitude
perturbations (¢ f5, d¢) about the self-consistent waterbag
equilibriumin Eq. (4). In the eigenvalue equation, the den-
sity profile nj(z) plays the role of the potentia V(z) in
the Schroedinger equation. The eigenvalue equation was
investigated analytically and numerically, and the eigenfre-
guencies were shown to be purely real.
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