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Abstract equations for the line density(¢, z), longitudinal velocity
The longitudinal and transverse dynamics of a heavy iort (t,2), and longitudinal pressure. (¢, z) are given by
fusion beam during the drift compression and final focus OA " ﬂ()\v ) =0
phase is studied. A lattice design with four time-dependent o oz
magnets is described that focuses the entire beam puls% 5 2, 9\ 2 5
onto a single focal point with the same spot size. Ve vzi y 2992, FeE " 9P _
ot 0z mny? 0z myd  mydA Oz
LONGITUDINAL DRIFT COMPRESSION Ip- Ip- v,
+ v +3p.—— =0. 1)

In the currently envisioned configurations for heavy ion ot 02 02
fusion, it is necessary to longitudinally compress the beaP(Ye trealy and”? as constapts for preserjt Purposes. Ampng
bunches by a large factor after the acceleration phase a%Of the self.-5|mllalr so!uhons ,[1] adm|t.ted by the nonlin-
before the beam particles are focused onto the fusion a2 hypgrbohc par'tlal dlffer'ent!al equation system (1), the
get. The objective of drift compression is to compress Barabollc self-similar solution is the most suitable for the

long beam bunch by imposing a negative longitudinal velUrpose of drift compression, and has the form of [1]

locity tilt over the length of the beam in the beam frame. 22 >
Because the space-charge force increases as the bearmé: 2) = A (1) (1 - z2—t)> » va(t,2) = _UZb(t)zb(t)’
compressed, a larger focusing force is needed to confine b 5y N2

the beam in the transverse direction. It is necessary }Pz(t,z) = pa(t) (1 _ Z_> , dzy(t) — —u(b).
have a non-periodic quadrupole lattice along the beam path dt

2
Zp (t)
when the beam is undergoing longitudinal compression. In (2)
this paper, we .descrlbe the design of such a lattice WltI*—;‘ollowingthe derivation in [1], we obtain the familiar lon-
four final focusing magnets that focus the beam onto t tudinal envelope equation
target. The designed lattice is expected to apply for th

entire beam pulse. In particular, different slices should d*z i — K 121 3)
be focused onto the same focal point at the target. This P L

is difficult with a fixed lattice. One solution is to use awheres — Bet is the normalized time variablek, =

time-dependent lattice which provides a different focusingN ¢2g/2md 322 is the effective longitudinal self-field
strength for different slices of the beam pulse. We demon_eri/egnceN is the total number of particles in the bunch
strate that the entire pulse can be compressed and focu§&d b2 5 2 on1/2 P . o
onto the same focal point on the target by using four time@nder = (4r;W/m+*3%c?) '~ is the longitudinal emit-
varying quadrapole magnets at the very beginning of driffnce- In the d!’lf’[ compression spheme considered in this
compression. The following set of beam parameters typicBAPE": the longitudinal emittance Is taken tospe= 1.0 x
of heavy ion fusion is used in the present study. We cortd”~ M, wherek, = 2.88 x10"”m, corresponding to an
sider aC's* beam with rest mass: = 132.9amu, kinetic average final currentl;) = 2254 A, z,; = 0.268m, and
energy(y — 1)mc? = 2.43 GeV, and initial beam half- 9 = 0.81. An initial longitudinal focusing force is imposed
lengthzyo = 5.85m. The goal is to compress the beam byfor s < 150m so that the beam acquires a velocity tilt
; . .

a factor of21.8. The final average current is taken to be%, = —0.0143 ats, = 150m. The axial beam size, (s),
(If) = 2254 A. obtained numerically from the longitudinal envelope equa-

We use a one-dimensional warm-fluid model [1, 2] tdion (3), is plotted together with the velocity tif(s) in
describe the longitudinal dynamics of drift compressionf19-1. A pulse shaping technique has also been demon-
For the longitudinal electric field, the conventiogafactor ~ Strated so that any initial pulse shape can be shaped into a
model is adopted, witheE, = — (ge2/+2) 9\/dz and parabolic one which can then be self-similarly compressed

g = 2In(ry /7). Here,e is the charge)(t, z) is the line [1, 2].
density,r,, is the wall radius, and;, is the average beam
radius. We also allow for an externally applied axial focusLATTICE AND TRANSVERSE DYNAMICS

ing force I, = —r.2. In the beam frame, the warm-fluid -, oy lice in a bunched beam, the transwdysem-

* Research supported by the U.S. Department of Energy. ics in a quadrupole lattice is described approximately by




é where is the filling factor, L is the lattice periodB’ is
g 4 field gradient of the magnets, ard) is the average beam
o g radius. For the drift compression scheme considered here,
0 100 200 300 200 500 K;/Ky = 21.8. If we allow (@) to increase by a factor of
N 2.33,i.e., (a); / {(a), = 2.33, we obtainLy/Lo = 1/2,
0% and(nB’);/(nB')o = 4. We also need to specify, B’,
\8;0;5 and L. If we chooseL; = Lgexp[—(In2)s;/sf], and
YL Bj = const., then from Eq. (5)y; = no exp [(In4) s;/s¢] .
0 100 200 300 400 500 wheres; = Y2_! L;. We also choose self-consistently
s(m) 7=0 "7

the following system parameterss, = 72°, B, =

31.70T/m, Ly = 6.72m, and g = 0.0725. The fo-

cusing strength of each magnetrdis= 0.38m~2. Let N

the transverse envelope equations: denote the total number of quadrupole magnet sets. From
N-1 .

sf = ;-9 Lj weobtainV =53.

Figure 1: Dynamics of the beam half-lengif{s).
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whereK (s, z) = 2e*M\y(s)[1 — 22 /22 (s)]/my> 52?2 (s)

is the transverse perveance. Heteis the longitudinal
coordinate for different slices, which enters the equations
only parametrically. Becaud€ (s, z) is an increasing func-
tion of s, it is necessary to increase the strengthxgfs)
along the beam path to reduce the expansion of the beam3
radius. Since the quadrupole lattice is not periodic, the 2
concept of a “matched beam” is not well defined. How- é PO
ever, if the the non-periodicity is small, we can seek an -1} ||
“adiabatically-matched” beam which, by definition, is lo- 2
cally matched everywhere [1].

We describe here the design of a non-periodic lattice
which provides the required control of beam radius when
the beam is compressed, and equally importantly, mini- — T
mizes the possibility of global mismatch. The drift com- "“505 504 506 508 510 512 514 516
pression and final focus lattice should apply for all slices
in a bunched beam. In particular, each slice of the beam Figure 2: Envelope dynamics for the central slice.
should be focused onto the same focal point at the target.

A fixed lattice designed for one slice of the beam (e.g., the The resulting lattice design is illustrated in Fig.2 to-
central slice at = 0) will not focus other slices onto the gether with the solutions to the transverse envelope equa-
same focal point. Actually, most of the other slices canndtons. After determining the non-periodic lattice layout, we
be focused at all due to their different perveance and emigearch iteratively for the adiabatically-matched solutions.
tance. Our goal can be achieved by designing a drift con-he solutions plotted in Fig.2 are adiabatically-matched
pression and final focus lattice for the central slice= 0), ~because the envelope is locally matched and contains no
and then replacing four quadrupole magnets at the begi@scillations other than the local envelope oscillations. On
ning of the drift compression by four time-dependent magthe global scale, the beam radius increases monotonically.
nets whose strength varies about the design values for theEom the numerical solution shown in Fig. 2, the average
central slice.The time-dependent magnets essentially prigeam size increases by a factor20$3, which agrees with
vide a slightly different focusing lattice for different slices.the design assumption. The final focus magnets, consist-

First, we design the drift compression and final focu#g of four quadrupole magnets with different strength, will
lattice for the central slice at = 0. It is intuitive that a assure that the envelope converge in both directions at the
lattice, which keeps both the vacuum phase advance and €#t of the last focusing magnet (bott and b’ are nega-
depressed phase advance constant, is less likely to inddi ). Right after the last focusing magnet, the beam enters
beam mismatch [3]. Constant vacuum phase advance alifi¢ neutralization chamber where the space-charge force is
constant depressed phase advance requires (wkerl)  neutralized and the beam is focused onto a focal point at

B\’ 2L\ 2 a b
2 4 _ _ L = _
n ([Bp]) L* = const., K <®> = const., (5) Zfol 9a/0s | _ /05 | , (6)
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wherezy,, is the distance between the focal point and the
exit from the last final focus magnet, ang; is the distance
from the beginning of the drift compression to the exit from
the last final focus magnet. It is necessary thatda/9s)
andb/ (0b/0s) have the same value at= sy for a fo-
cal point to exist. The transverse spot size measured by 3
. . . 2
the envelope amplitudes at the focal paint; andby,, is
determined by the emittance and incident angle-ats; ,
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For the central slice at = 0, we obtain zy,; =
5.276 m, andafol = bfol =1.22mm.

For other slicegz # 0), the objective is to manipulate 350 375 400 425 450 475 500
the beam and magnet configuration so that the beam par-

ticles can be focused onto a focal region with the same or 4
smaller spot size, 2
0 —
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Zfol =D.276m, afo ~ bry S 1.22mm. (8) 502 504 506 508 510 512 514 516
. . . s(m)
We observe, for the line density profilgs, z) = Ay(s)[1—  Figure 3: Envelope dynamics for the slice near the front of

2%/zj(s)], that the solution to the transverse envelopgnhe beam pulse with/z,(s) = 0.968.
equations for all of the slices can be scaled down from that

of the central slice according to 38
as. 2) (s, 0) .
b(s, z) / b(s,0) =
da(s,z)/0s | — L= 2%/2(s) da(s,0)/0s |’ 7
Ob(s, z)/0s 0b(s,0)/0s < o3
9 =
provided the emittance is negligibly small or scales withthe £
perveance according e, ¢,) oc 1 — 22 /2% (s). However, %2
the emittance in general is small but not negligible, and
does not scale with the perveantefact, during adiabatic 30 L - ”
drift compression, the emittance scales with the beam size, ' ' 2/ 2(9) '

i.e., e, o a ande, o b, which is assumed in the present
analysis. This implies that the scaling in Eq.(9) and th&igure 4: Strengths of the 3rd, 5th, 7th, and 9th magnets as
requirement in Eq. (8) can't be satisfied. functions ofz/z(s).

One solution to this difficulty is to vary the strength of

four magnets in the very beginning of the drift compres- . . .
sion for different value of- such that the desired scal- © focus the entire beam onto a focal region with the same

ing in Eq. (9) holds as — s;;. Combined with Egs. (6) spot size. In principle, we can use this method to correct

and (7), this will guarantee the satisfaction of the require"’—lny deviation from requirement (8) due to other possible

ment in Eg. (8). This is a viable solution because the emi{pechamsms, such as momentum spread and magnet im-
tance, and therefore the departure from the desired cherfecnons.
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