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Abstract

The longitudinal and transverse dynamics of a heavy ion
fusion beam during the drift compression and final focus
phase is studied. A lattice design with four time-dependent
magnets is described that focuses the entire beam pulse
onto a single focal point with the same spot size.

LONGITUDINAL DRIFT COMPRESSION

In the currently envisioned configurations for heavy ion
fusion, it is necessary to longitudinally compress the beam
bunches by a large factor after the acceleration phase and
before the beam particles are focused onto the fusion tar-
get. The objective of drift compression is to compress a
long beam bunch by imposing a negative longitudinal ve-
locity tilt over the length of the beam in the beam frame.
Because the space-charge force increases as the beam is
compressed, a larger focusing force is needed to confine
the beam in the transverse direction. It is necessary to
have a non-periodic quadrupole lattice along the beam path
when the beam is undergoing longitudinal compression. In
this paper, we describe the design of such a lattice with
four final focusing magnets that focus the beam onto the
target. The designed lattice is expected to apply for the
entire beam pulse. In particular, different slices should
be focused onto the same focal point at the target. This
is difficult with a fixed lattice. One solution is to use a
time-dependent lattice which provides a different focusing
strength for different slices of the beam pulse. We demon-
strate that the entire pulse can be compressed and focused
onto the same focal point on the target by using four time-
varying quadrapole magnets at the very beginning of drift
compression. The following set of beam parameters typical
of heavy ion fusion is used in the present study. We con-
sider aCs+ beam with rest massm = 132.9 amu, kinetic
energy(γ − 1)mc2 = 2.43 GeV, and initial beam half-
lengthzb0 = 5.85 m. The goal is to compress the beam by
a factor of21.8. The final average current is taken to be
〈If 〉 = 2254 A.

We use a one-dimensional warm-fluid model [1, 2] to
describe the longitudinal dynamics of drift compression.
For the longitudinal electric field, the conventionalg-factor
model is adopted, witheEz = − (

ge2/γ2
)
∂λ/∂z and

g = 2 ln (rw/rb). Here,e is the charge,λ(t, z) is the line
density,rw is the wall radius, andrb is the average beam
radius. We also allow for an externally applied axial focus-
ing forceFz = −κzz. In the beam frame, the warm-fluid
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equations for the line densityλ(t, z), longitudinal velocity
vz(t, z), and longitudinal pressurepz(t, z) are given by
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We treatg andrb as constants for present purposes. Among
all of the self-similar solutions [1] admitted by the nonlin-
ear hyperbolic partial differential equation system (1), the
parabolic self-similar solution is the most suitable for the
purpose of drift compression, and has the form of [1]
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)
, vz(t, z) = −vzb(t)
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,
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(2)

Following the derivation in [1], we obtain the familiar lon-
gitudinal envelope equation

d2zb

ds2
+ κzzb − Kz

1
z2
b

− ε2
l

1
z3
b

= 0, (3)

wheres = βct is the normalized time variable,Kz ≡
3Nbe

2g/2mγ5β2c2 is the effective longitudinal self-field
perveance,Nb is the total number of particles in the bunch,

andεl ≡ (
4r2

bW/mγ3β2c2
)1/2

is the longitudinal emit-
tance. In the drift compression scheme considered in this
paper, the longitudinal emittance is taken to beεl = 1.0 ×
10−5 m, whereKz = 2.88× 10−5 m , corresponding to an
average final current〈If 〉 = 2254 A, zbf = 0.268 m, and
g = 0.81. An initial longitudinal focusing force is imposed
for s < 150 m so that the beam acquires a velocity tilt
z′b = −0.0143 at sb = 150 m. The axial beam sizezb(s),
obtained numerically from the longitudinal envelope equa-
tion (3), is plotted together with the velocity tiltz′b(s) in
Fig.1. A pulse shaping technique has also been demon-
strated so that any initial pulse shape can be shaped into a
parabolic one which can then be self-similarly compressed
[1, 2].

LATTICE AND TRANSVERSE DYNAMICS

For each slice in a bunched beam, the transversedynam-
ics in a quadrupole lattice is described approximately by
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Figure 1: Dynamics of the beam half-lengthzb(s).

the transverse envelope equations:

d2a(s, z)
ds2

+ κqa(s, z) − 2K(s, z)
a(s, z) + b(s, z)

− ε2
x

a(s, z)3
= 0,
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ds2

− κqb(s, z) − 2K(s, z)
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y

b(s, z)3
= 0,

(4)

whereK(s, z) ≡ 2e2λb(s)[1 − z2/z2
b (s)]/mγ3β2c2zb(s)

is the transverse perveance. Here,z is the longitudinal
coordinate for different slices, which enters the equations
only parametrically. BecauseK(s, z) is an increasing func-
tion of s, it is necessary to increase the strength ofκq(s)
along the beam path to reduce the expansion of the beam
radius. Since the quadrupole lattice is not periodic, the
concept of a “matched beam” is not well defined. How-
ever, if the the non-periodicity is small, we can seek an
“adiabatically-matched” beam which, by definition, is lo-
cally matched everywhere [1].

We describe here the design of a non-periodic lattice
which provides the required control of beam radius when
the beam is compressed, and equally importantly, mini-
mizes the possibility of global mismatch. The drift com-
pression and final focus lattice should apply for all slices
in a bunched beam. In particular, each slice of the beam
should be focused onto the same focal point at the target.
A fixed lattice designed for one slice of the beam (e.g., the
central slice atz = 0) will not focus other slices onto the
same focal point. Actually, most of the other slices cannot
be focused at all due to their different perveance and emit-
tance. Our goal can be achieved by designing a drift com-
pression and final focus lattice for the central slice(z = 0),
and then replacing four quadrupole magnets at the begin-
ning of the drift compression by four time-dependent mag-
nets whose strength varies about the design values for the
central slice.The time-dependent magnets essentially pro-
vide a slightly different focusing lattice for different slices.

First, we design the drift compression and final focus
lattice for the central slice atz = 0. It is intuitive that a
lattice, which keeps both the vacuum phase advance and the
depressed phase advance constant, is less likely to induce
beam mismatch [3]. Constant vacuum phase advance and
constant depressed phase advance requires (whenη � 1)

η2

(
B′

[Bρ]

)2

L4 = const., K

(
2L

〈a〉
)2

= const., (5)

whereη is the filling factor,L is the lattice period,B′ is
field gradient of the magnets, and〈a〉 is the average beam
radius. For the drift compression scheme considered here,
Kf/K0 = 21.8. If we allow 〈a〉 to increase by a factor of
2.33, i.e., 〈a〉f / 〈a〉0 = 2.33, we obtainLf/L0 = 1/2,
and (ηB′)f/(ηB′)0 = 4. We also need to specifyη, B′,
andL. If we chooseLi = L0 exp [− (ln 2) si/sf ] , and
B′

i = const., then from Eq. (5),ηi = η0 exp [(ln 4) si/sf ] ,
wheresi =

∑i−1
j=0 Lj . We also choose self-consistently

the following system parameters:σv = 72 ◦, B′
i =

31.70 T/ m, L0 = 6.72 m, and η0 = 0.0725. The fo-
cusing strength of each magnet isκ̂ = 0.38 m−2 . Let N
denote the total number of quadrupole magnet sets. From
sf =

∑N−1
j=0 Lj, we obtainN = 53.
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Figure 2: Envelope dynamics for the central slice.

The resulting lattice design is illustrated in Fig. 2 to-
gether with the solutions to the transverse envelope equa-
tions. After determining the non-periodic lattice layout, we
search iteratively for the adiabatically-matched solutions.
The solutions plotted in Fig.2 are adiabatically-matched
because the envelope is locally matched and contains no
oscillations other than the local envelope oscillations. On
the global scale, the beam radius increases monotonically.
From the numerical solution shown in Fig. 2, the average
beam size increases by a factor of2.33, which agrees with
the design assumption. The final focus magnets, consist-
ing of four quadrupole magnets with different strength, will
assure that the envelope converge in both directions at the
exit of the last focusing magnet (botha′ andb′ are nega-
tive ). Right after the last focusing magnet, the beam enters
the neutralization chamber where the space-charge force is
neutralized and the beam is focused onto a focal point at

zfol = − a

∂a/∂s

∣∣∣∣
s=sff

= − b

∂b/∂s

∣∣∣∣
s=sff

, (6)



wherezfol is the distance between the focal point and the
exit from the last final focus magnet, andsff is the distance
from the beginning of the drift compression to the exit from
the last final focus magnet. It is necessary thata/ (∂a/∂s)
andb/ (∂b/∂s) have the same value ats = sff for a fo-
cal point to exist. The transverse spot size measured by
the envelope amplitudes at the focal pointafol andbfol is
determined by the emittance and incident angle ats = sff ,

afol =
εx

∂a/∂s

∣∣∣∣
s=sff

, bfol =
εy

∂b/∂s

∣∣∣∣
s=sff

. (7)

For the central slice atz = 0, we obtain zfol =
5.276 m, andafol = bfol = 1.22 mm .

For other slices(z 6= 0), the objective is to manipulate
the beam and magnet configuration so that the beam par-
ticles can be focused onto a focal region with the same or
smaller spot size,

zfol = 5.276 m, afol ≈ bfol . 1.22 mm . (8)

We observe, for the line density profileλ(s, z) = λb(s)[1−
z2/z2

b (s)], that the solution to the transverse envelope
equations for all of the slices can be scaled down from that
of the central slice according to


a(s, z)
b(s, z)

∂a(s, z)/∂s
∂b(s, z)/∂s


 =

√
1 − z2/z2

b (s)




a(s, 0)
b(s, 0)

∂a(s, 0)/∂s
∂b(s, 0)/∂s


 ,

(9)
provided the emittance is negligibly small or scales with the
perveance according to(εx, εy) ∝ 1−z2/z2

b (s). However,
the emittance in general is small but not negligible, and
does not scale with the perveance. In fact, during adiabatic
drift compression, the emittance scales with the beam size,
i.e., εx ∝ a andεy ∝ b, which is assumed in the present
analysis. This implies that the scaling in Eq. (9) and the
requirement in Eq. (8) can’t be satisfied.

One solution to this difficulty is to vary the strength of
four magnets in the very beginning of the drift compres-
sion for different value ofz such that the desired scal-
ing in Eq. (9) holds ats = sff . Combined with Eqs. (6)
and (7), this will guarantee the satisfaction of the require-
ment in Eq. (8). This is a viable solution because the emit-
tance, and therefore the departure from the desired scal-
ing, are small. Numerically, the necessary variation of the
strength of the magnets is found by a 4D root-searching al-
gorithm. Shown in Fig.3 is the dynamics ofa(s, z) and
b(s, z) for z/zb(s) = 0.968, when the strength of the 3rd,
5th, 7th and 9th magnets are modified to satisfy Eq. (9) at
s = sff . The initial conditions are taken to be those satis-
fying Eq. (9) ats = 0. As evident for Fig. 3, a small per-
turbation in the strength of the magnets introduces a small
envelope mismatch in such a way that Eq. (9) is satisfied at
s = sff . We note that a similar scaling does not exist for
0 < s < sff .Plotted in Fig.4 are the strengths of the 3rd,
5th, 7th and 9th magnets as functions ofz which are able
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Figure 3: Envelope dynamics for the slice near the front of
the beam pulse withz/zb(s) = 0.968.
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Figure 4: Strengths of the 3rd, 5th, 7th, and 9th magnets as
functions ofz/zb(s).

to focus the entire beam onto a focal region with the same
spot size. In principle, we can use this method to correct
any deviation from requirement (8) due to other possible
mechanisms, such as momentum spread and magnet im-
perfections.

REFERENCES

[1] H. Qin and R. C. Davidson, Phys. Rev. ST Accel. Beams5,
03441 (2002).

[2] H. Qin and R. C. Davidson, Laser and Particle Beams20, 565
(2002).

[3] E. P. Lee and J. J. Barnard, Laser and Particle Beams20, 581
(2002).


