Kinetic Studies of Temperature Anisotropy Instability in Intense Charged Particle Beams

Edward A. Startsev and Ronald C. Davidson and Hong Qin Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

Abstract

This paper extends previous analytical and numerical studies [E. A. Startsev, R. C. Davidson and H. Qin, *Phys. Plasmas* **9**, 3138 (2002)] of the stability properties of intense nonneutral charged particle beams with large temperature anisotropy $(T_{\perp b} \gg T_{\parallel b})$ to allow for nonaxisymmetric perturbations with $\partial/\partial \theta \neq 0$. The most unstable modes are identified, and their eigenfrequencies and radial mode structure are determined.

LINEAR STABILITY THEORY

It is well known that in neutral plasmas with strongly anisotropic distributions $(T_{\parallel b}/T_{\perp b} \ll 1)$ a collective Harris instability [1] may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators. For particles with charge q accelerated by a voltage V , the longitudinal temperature decreases according to $T_{\parallel bf} = T_{\parallel bi}^2/2qV$ (for a nonrelativistic beam). At the same time, the transverse temperature may increase due to nonlinearities in the applied and self-field forces, nonstationary beam profiles, and beam mismatch. These processes may provide the free energy to drive collective instabilities, and lead to a detoriation of beam quality. The instability may also result in an increase in the longitudinal velocity spread, which will make the focusing of the beam difficult, and may impose a limit on the minimum spot size achievable in heavy ion fusion experiments.

We briefly outline here a simple derivation [2] of the Harris-like instability in intense particle beams for electrostatic perturbations about the thermal equilibrium distribution with temperature anisotropy $(T_{\perp b} > T_{\parallel b})$ described *in the beam frame* by the self-consistent axisymmetric Vlasov equilibrium [3]

$$
f_b^0(r, \mathbf{p}) = \frac{\widehat{n}_b}{(2\pi m_b)^{3/2} T_{\perp b} T_{\parallel b}^{1/2}} \exp\left(-\frac{H_{\perp}}{T_{\perp b}} - \frac{H_{\parallel}}{T_{\parallel b}}\right).
$$
\n(1)

Here, $H_{\parallel} = p_z^2/2m_b$, $H_{\perp} = p_{\perp}^2/2m_b + (1/2)m_b\omega_f^2r^2 + \epsilon$ $e_b\phi^0(r)$ is the single-particle Hamiltonian for transverse particle motion, $p_{\perp} = (p_x^2 + p_y^2)^{1/2}$ is the transverse particle momentum, $r = (x^2 + y^2)^{1/2}$ is the radial distance from the beam axis, $\omega_f = const.$ is the transverse frequency associated with the applied focusing field in the smooth-focusing approximation, and $\phi^{0}(r)$ is the equilibrium space-charge potential determined self-consistently

from Poisson's equation,

$$
\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial\phi^0}{\partial r} = -4\pi e_b n_b^0,\tag{2}
$$

where $n_b^0(r) = \int d^3p f_b^0(r, \mathbf{p})$ is the equilibrium number density of beam particles. A perfectly conducting wall is located at radius $r = r_w$.

For present purposes, we consider small-amplitude electrostatic perturbations of the form

$$
\delta\phi(\mathbf{x},t) = \delta\tilde{\phi}(r) \exp(im\theta + ik_z z - i\omega t), \quad (3)
$$

where $\delta\phi(\mathbf{x}, t)$ is the perturbed electrostatic potential, k_z is the axial wavenumber, m is the azimuthal mode number and ω is the complex oscillation frequency, with $Im \omega > 0$ corresponding to instability (temporal growth). Without presenting algebraic details, using the method of characteristics [2, 3], the linearized Poisson equation can be expressed as

$$
\left(\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r} - k_z^2 - \frac{m^2}{r^2}\right)\widehat{\delta\phi}(r) = -4\pi e_b \int d^3p \widehat{\delta f_b}, \quad (4)
$$

where

$$
\widehat{\delta f}_b = e_b \frac{\partial f_b^0}{\partial H_\perp} \widehat{\delta \phi} + e_b \left[(\omega - k_z v_z) \frac{\partial f_b^0}{\partial H_\perp} + k_z v_z \frac{\partial f_b^0}{\partial H_{||}} \right]
$$

$$
\times i \int_{-\infty}^t dt' \widehat{\delta \phi} [r'(t')] \exp[i(k_z v_z - \omega)(t' - t) + im\theta'(t')],
$$

(5)

 $\left(\frac{H_{\parallel}}{T_{\parallel b}}\right)$ (**x**_⊥, **p**_⊥) at time $t' = t$ [2, 3].

In Eq. (4), we express the pert for perturbations about the choice of the anisotropic thermal equilibrium distribution function in Eq. (1). In the orbit integral in Eq. (5), $Im \omega > 0$ is assumed, and $r'(t') = [x'^2(t') + y'^2(t')]^{1/2}$ and $\theta'(t')$ are the transverse orbits in the equilibrium field configuration such that $[\mathbf{x}'_{\perp}(t'), \mathbf{p}'_{\perp}(t')]$ passes through the phase-space point

+ complete set of vacuum eigenfunctions $\{\phi_n(r)\}\$ is defined In Eq. (4), we express the perturbation amplitude as $\delta\phi(r) = \sum \alpha_n \phi_n(r)$, where $\{\alpha_n\}$ are constants, and the by $\phi_n(r) = A_n J_m(\lambda_n r/r_w)$. Here, λ_n is the n'th zero of Bessel function $J_m(\lambda_n) = 0$, and A_n is a normalization constant [2]. This gives the matrix dispersion equation

$$
\sum_{n} \alpha_n D_{n,n'}(\omega) = 0. \tag{6}
$$

The condition for a nontrivial solution to Eq. (6) is

$$
det\{D_{n,n'}(\omega)\}=0,\t(7)
$$

Research supported by the U. S. Department of Energy

which plays the role of a matrix dispersion relation that determines the complex oscillation frequency ω [2].

In the present analysis, it is convenient to introduce the effective *depressed* betatron frequency ω_{β} . It can be shown [3] for the equilibrium distribution in Eq. (1), that the mean-square beam radius $r_b^2 = \langle r^2 \rangle$ = $N_b^{-1}2\pi \int_0^{r_w} dr r^3 n_b^0(r)$ is related *exactly* to the line density $N_b = 2\pi \int_0^{r_w} dr r n_b^0(r)$, and the transverse beam temperature $T_{\perp b}$, by the equilibrium radial force balance equation

$$
\omega_f^2 r_b^2 = \frac{N_b e_b^2}{m_b} + \frac{2T_{\perp b}}{m_b}.
$$
 (8)

Equation (8) can be rewritten as

$$
\left(\omega_f^2 - \frac{1}{2}\bar{\omega}_{pb}^2\right)r_b^2 = \frac{2T_{\perp b}}{m_b},\tag{9}
$$

where we have introduced the effective *average* beam plasma frequency $\bar{\omega}_{pb}$ defined by

$$
r_b^2 \bar{\omega}_{pb}^2 \equiv \int_0^{r_w} dr r \omega_{pb}^2(r) = \frac{2e_b^2 N_b}{m_b},\tag{10}
$$

where $\omega_{nb}^2(r) = 4\pi n_b^0(r)e_b^2/\gamma_b m_b$ is the relativistic plasma frequency-squared. Then, Eq. (9) can be used to introduce the effective *depressed* betatron frequency $\omega_{\beta\perp}$ defined by

$$
\omega_{\beta \perp}^2 \equiv \left(\omega_f^2 - \frac{1}{2}\bar{\omega}_{pb}^2\right) = \frac{2T_{\perp b}}{m_b r_b^2},\tag{11}
$$

and the normalized tune depression $\bar{\nu}/\nu_0$ defined by

$$
\frac{\bar{\nu}}{\nu_0} \equiv \frac{\omega_{\beta \perp}}{\omega_f} = (1 - \bar{s}_b)^{1/2}.
$$
 (12)

If, for example, the beam density were uniform over the beam cross section, then Eq. (11) corresponds to the usual definition of the depressed betatron frequency for a Kapchinskij – Vladimirskij (KV) [3] beam, and it is readily shown that the radial orbit $\hat{r}(\tau)$ occurring in Eq. (5) can be expressed as [2]

$$
\widehat{r}^2(\tau) = \frac{H_{\perp}}{m_b \omega_{\beta \perp}^2} \left[1 - \sqrt{1 - \left(\frac{\omega_{\beta \perp} P_{\theta}}{H_{\perp}}\right)^2} \cos(2\omega_{\beta \perp} \tau) \right].
$$
\n(13)

In general, for the choice of equilibrium distribution function in Eq. (1), there will be a spread in transverse depressed betatron frequencies $\omega_{\beta\perp}(H_{\perp}, P_{\theta})$, and the particle trajectories will not be described by the simple trigonometric function in Eq. (13). For present purposes, however, we consider a simple *model* in which the radial orbit $\hat{r}(\tau)$ occurring in Eq. (5) is approximated by Eq. (13) with the constant frequency $\omega_{\beta\perp}$ defined in Eq. (11), and the approximate equilibrium density profile is defined by $m_b^0(r) = \hat{n}_b \exp(-m_b \omega_{\beta}^2 \omega^2 / 2T_{\perp b})$. For a nonuniform beam, ω_{β}^{-1} is the characteristic time for a particle with thermal speed $v_{th\perp} = (2T_{\perp b}/m_b)^{1/2}$ to cross the rms radius

 r_b of the beam. In this case $D_{n,n'}(\omega)$ can be evaluated in closed analytical form [2] provided the conducting wall is sufficiently far removed from the beam $(r_w/r_b \geq 3, \text{say}).$ In this case, the matrix elements decrease exponentially away from the diagonal, with

$$
\left|\frac{D_{n,n+k}}{D_{n,n}}\right| \sim \exp\left(-\frac{\pi^2 k^2}{4} \frac{r_b^2}{r_w^2}\right),\tag{14}
$$

where k is an integer. Therefore, for $r_w/r_b \geq 3$, we can approximate $\{D_{n,n'}(\omega)\}\$ by a *tri-diagonal* matrix. In this case, for the lowest-order radial modes ($n = 1$ and $n = 2$), the dispersion relation (7) can be approximated by [2]

$$
D_{1,1}(\omega)D_{2,2}(\omega) - [D_{1,2}(\omega)]^2 = 0, \tag{15}
$$

where use has been made of $D_{1,2}(\omega) = D_{2,1}(\omega)$.

Typical numerical results [2] obtained from the approximate dispersion relation utilizing Eq. (15) are presented in Figs. 1 – 2 for the case where $r_w = 3r_b$. Only the leadingorder nonresonant terms and one resonant term at frequencies $\omega \approx \pm 2\omega_{\beta\perp}$ for even values of m, and $\omega \approx \pm \omega_{\beta\perp}$ for odd values of m , have been retained in the analysis [2]. Note from Fig. 1 that the critical values of k_zr_w for the onset of instability and for maximum growth rate increase as the azimuthal mode number m is increased. As expected, finite – $T_{||b}$ effects introduce a finite bandwidth in k_zr_w for instability, since the modes with large values of k_zr_w are stabilized by Landau damping [2, 3]. Also, the unstable modes with odd azimuthal number are purely growing. Note from Fig. 2 that the $m = 1$ dipole mode has the

Figure 1: Plots of normalized growth rate $(Im \omega)/\omega_f$ and real frequency $(Re\omega)/\omega_f$ versus $k_z r_w$ for $\bar{\nu}/\nu_0 = 0.53$ and $T_{||b}/T_{\perp b} = 0.02$ [2].

Figure 2: Plots of normalized growth rate $(Im \omega)_{max}/\omega_f$ and real frequency $(Re\omega)_{max}/\omega_f$ at maximum growth versus tune depression $\bar{\nu}/\nu_0$ for $T_{\parallel b}/T_{\perp b} = 0.02$ [2].

highest growth rate, $(Im \omega)/\omega_f \simeq 0.15$, for $\bar{\nu}/\nu_0 \simeq 0.45$, and that the critical value of $\bar{\nu}/\nu_0$ for the onset of the instability, and the value of $(\bar{\nu}/\nu_0)^{max}$ with maximum growth

rate, decrease with azimuthal mode number m . The instability is absent for $\bar{\nu}/\nu_0 > 0.77$ for the choice of parameters in Fig. 2. The real frequency $(Re\omega)/\omega_f$ of the unstable modes with odd azimuthal numbers $m = 1, 3, \dots$ are zero and are not plotted in Fig. 2. Moreover, the real frequency is plotted only for the unstable modes.

BEST SIMULATION RESULTS

Typical numerical results obtained with the *linearized* version of the 3D BEST code [4] are presented in Figs. 3-5 [2] for the case where $r_w = 3r_b$ and $T_{\parallel b}/T_{\perp b} = 0.02$, and for perturbations with a spatial dependence proportional to $\exp(ik_z z + im\theta)$, where k_z is the axial wavenumber, and m is the azimuthal mode number. Random initial perturbations are introduced to the particle weights, and the beam is propagated from $t = 0$ to $t = 200\omega_f^{-1}$. Note from Fig.

Figure 3: Plots of normalized real frequency $(Re\omega)/\omega_f$ and growth rate $(Im \omega)/\omega_f$ versus $k_z r_w$ for $\bar{\nu}/\nu_0 = 0.53$ and $T_{\parallel b}/T_{\perp b} = 0.02$ [2].

Figure 4: Plots of normalized real frequency $(Re\omega)_{max}/\omega_f$ and growth rate $(Im\omega)_{max}/\omega_f$ at maximum growth versus normalized tune depression $\bar{\nu}/\nu_0$ for $T_{\parallel b}/T_{\perp b} = 0.02$ [2].

3 that the instability has a finite bandwidth with maximum growth rate occurring at $k_z r_w \simeq 9$. From Fig. 4, the critical value of $\bar{\nu}/\nu_0$ for the onset of the instability decreases with azimuthal mode number m. The real frequency $(Re\omega)/\omega_f$ of the unstable modes for odd azimuthal numbers $m = 1, 3$ are zero and are not plotted. Moreover, the real frequency is plotted only for the unstable modes. Consistent with the analytical predictions, note that the dipole mode $(m = 1)$ has the largest growth rate. Furthermore, all modes are found to be stable in the region $\bar{\nu}/\nu_0 \geq 0.85$. The simulation results presented in Figs. 3 and 4 are in good qualitative agreement with the theoretical model (see Figs. 1 and 2). Moreover, Fig. 5 shows that instability is absent for $T_{\parallel b}/T_{\perp b} > 0.08$.

Figure 5: Longitudinal threshold temperature $T_{||h}^{th}$ normalized to the transverse temperature $T_{\perp b}$ for onset of instability plotted versus normalized tune depression $\bar{\nu}/\nu_0$ [2].

CONCLUSIONS

To summarize, the BEST code [4] was used to investigate the detailed stability properties of intense charged particle beams with large temperature anisotropy $(T_{\parallel b}/T_{\perp b} \ll$ 1) for three-dimensional perturbations with several values of azimuthal wave number $m = 0, 1, 2, 3$. An analytical model, which generalizes the classical Harris-like instability to the case of an intense charged particle beam with anisotropic temperature, has been developed [2]. Both the simulations and the analytical results clearly show that moderately intense beams with $s_b > 0.5$ are linearly unstable to short wavelength perturbations with $k_z^2 r_b^2 \geq 1$, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value.

REFERENCES

- [1] E. G. Harris, Phys. Rev. Lett. **2**, 34 (1959).
- [2] E. A. Startsev, R. C. Davidson and H. Qin, Phys. Plasmas **10** submited (2003); Phys. Plasmas **9**, 3138 (2002);
- [3] R. C. Davidson and H. Qin, *Physics of Intense Charged Particle Beams in High Energy Accelerators* (World Scientific, Singapore, 2001), and references therein.
- [4] H. Qin, R. C. Davidson and W. W. Lee, Phys. Rev. Special Topics on Accelerators and Beams **3**, 084401 (2000); **3**, 109901 (2000).