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Abstract

A nonlinear perturbative (δf) electromagnetic particle
simulation scheme has been developed for studying the
propagation of intense charged particle beams in high-
intensity accelerators and transport systems. The scheme
is based on the Darwin approximation of Ampere’s law,
in which the transverse displacement current is neglected,
resulting in the elimination of high-frequency transverse
electromagnetic effects and, consequently, the associated
numerical restrictions in the simulations. In this paper, a
novel approach of replacing the mechanical momentum,
p, by the canonical momentum,P = p + qA/c, in the
equations of motion is used for the purpose of eliminat-
ing the numerically troublesome∂A/∂t term. The present
scheme, cast in theδf formalism, is ideal for studying two-
stream and filamentation instabilities, which may cause de-
terioration of the beam quality in heavy ion fusion drivers
and the fusion chamber.

1 INTRODUCTION

A nonlinear perturbative (δf) electromagnetic particle
simulation scheme has been developed for studying the
propagation of intense charged particle beams in high-
intensity accelerators and transport systems. The scheme
is based on the Darwin approximation of Ampere’s law, in
which the transverse inductive electric field is neglected,
resulting in the elimination of light waves as well as the as-
sociated numerical restrictions from the simulations. How-
ever, as noted in the past [1], the presence of the time
derivative of the vector potential,∂A/∂t, in the equations
of motion for the Darwin model can cause numerical in-
stabilities. To circumvent this difficulty, procedures in-
volving the removal of∂A/∂t in the equations of motion
have been developed, and the Darwin model has been suc-
cessfully used in particle simulations for studying electro-
magnetic perturbations in plasmas, such as Weibel insta-
bilities [1, 2], whistler and magnetosonic waves [3] and
shear-Alfvén waves [4]. Other methods involving the cal-
culation of the transverse inductive electric field have also
been developed [5, 6]. In this paper, we adopt a proce-
dure similar to the Hamiltonian formulation suggested by
Nielson and Lewis [1] in which the mechanical momen-
tum, p = γmv, is replaced by the canonical momentum,
P = p + (q/c)A, as a phase-space variable so as to elim-
inate the troublesome∂A/∂t term, whereq is the charge,
c is the speed of light in vacuo, andm is the rest mass.
The advantage of using the canonical momentum has long

been recognized in magnetic fusion research for test parti-
cle transport [7] and for gyrokinetic theory [8, 9]. In order
to take advantage of the recent developments in perturba-
tive particle simulations [10, 11], the present scheme is also
cast into theδf(≡ F −F0) formalism, whereF is the dis-
tribution function in phase space, andF0 is the equilibrium
distribution. As a result, the simulation plasma has mini-
mal numerical noise, and also provides us with the ability
to easily access both linear and nonlinear regimes for the
physics of interest. Since the high-frequency waves associ-
ated with radiation fields are absent from the simulations,
we can use the scheme of adiabatic particle pushing [12],
for which the electrons are advanced more often, and with
smaller time steps, than those for the ions and field equa-
tions so as to compensate for the mass ratio disparities for
different charge species. The scheme is ideal for studying
two-stream[12] and filamentation [13] instabilities, which
may cause deterioration of the beam quality in the heavy
ion fusion driver and fusion chamber.

2 DARWIN MODEL FOR RELATIVISTIC
BEAMS

Here, we take a different approach by eliminating the
time derivative of the transverse electric field in the equa-
tion of motion for the particles through the use of the
canonical momentum. The relativistic form of the Vlasov
equation describing the propagation of an intense particle
beam with narrow momentum spread through a smooth-
focusing transverse external focusing field can be ex-
pressed as [12]
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wherev = p/γm, γb = 1/

√
1 − β2

b andβb =< vz > /c,
< vz > is the average axial velocity,x⊥ is the perpen-
dicular displacement,z is the direction of beam propa-
gation, andωβ = const. is the effective applied beta-
tron frequency for transverse (perpendicular) oscillations.
In terms of longitudinal (L) and transverse (T ) quanti-
ties relative to the direction of wave propagation, the re-
duced Maxwell’s equations for the Darwin model can be
expressed as∇ · EL = 4πρ, ∇ × B = (4π/c)JT , and
∇ × ET = −(1/c)∂B/∂t. For Jz � J⊥, the transverse
current is defined as
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which in Fourierk-space representation yields
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Using the Coulomb gauge with∇·A = 0 for B = ∇×A,
Ampere’s law is then simplified to become
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and Poisson’s equation,

∇2Φ = −4πq
∫
Fdp,

remains unchanged. The nonlinear Vlasov equation in the
Darwin approximation forvz � v⊥ becomes
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Thus, the only difference between the electro-
magnetostatic model [12] and the present Darwin model
is the appearance of the terms∂A⊥/∂t + vz∂A⊥/∂z and
∂Az/∂t. [For example, the latter can become important
for (ω/kvz)(vz/c)2 ∼ O(1), for Az � βbΦ.] The JT

term in Eq. (2) can be evaluated by first taking the time
derivative of Poisson’s equation and by substituting the
density moment of Eq. (4) to obtain

∇2∂Φ
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= 4πq
∂
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∫
vzFdp.

The transverse part of the current can be evaluated from

JT = Jzẑ − (1/4π)∇∂Φ/∂t. (5)

3 DARWIN MODEL FOR PARTICLE
SIMULATIONS

As discussed earlier, the new∂Az/∂t and ∂A⊥/∂t
terms associated with the orbit characteristics
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can cause numerical difficulties in particle simulations. We
introduce here a novel way to eliminate this term by intro-
ducing the canonical momentum

P = p +
q

c
A (10)

as a new phase-space variable. From
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we rewrite the orbit characteristics as
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Thus, by transforming frompz toPz, the time derivative of
Az conveniently disappears from the equations of motion.
Similarly, we obtain
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The Vlasov equation in the new coordinates can be ex-
pressed as
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where the characteristics are defined by Eqs. (11) - (14).
The corresponding form of Poisson’s equation is

∇2Φ = −4πq
∫
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FdP/γ is the relativistic

plasma frequency-squared. As before, the∂Φ/∂t term can



then be calculated by the combination of Poisson’s equa-
tion and the continuity equation, i.e.,
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Thus, Eqs. (11) - (19) constitute the Darwin model for an
intense relativistic beam. In the long, thin-beam approx-
imation, the terms associated withA⊥ and∂Φ/∂t in the
equations of motion and Ampere’s law can be dropped.

For a one-component relativistic beam traveling with a
constant average velocityβbc, which givesAz � βbΦ, the
Darwin model in the laboratory frame becomes
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and

∇2Φ = −4πq
∫
FdP. (21)

The single-beam Darwin modelin the beam frame
(’primed’ variables) can be obtained by settingγb = 1 and
replacing(x,P, t) → (x′,p′, t′). This gives
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where
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∫
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Thus, we recover the usual electrostatic modelin the beam
frame.

4 NONLINEAR δF DARWIN
FORMALISM

The correspondingδf formalism [10, 11, 12] in the lab-
oratory frame can be derived by expressingF = F0 + δf ,
Φ = Φ0 + δΦ andAz = Az0 + δAz, whereF0 satisfies

∂F0

∂t
+
dx
dt

· ∂F0

∂x
+
dP
dt

∣∣∣∣
0
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and |0 denotes the zeroth-order trajectories calculated by
using the equilibrium potentials,Φ0 andAz0. The per-
turbed distribution is determined from
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where|δ denotes the perturbed trajectories obtained from
using the perturbed potentials,δΦ andδAz . Definingw =
δf/F , the weight function evolves according to

dw

dt
= (1 −w)

1
F0

dδf

dt
. (25)

In the Klimontovich-Dupree representation, the perturbed
distribution is related to the particle weight through

δf =
N∑

j=1

wjδ(x− xj)δ(P −Pj) (26)

whereN is the total number of particles in the simulation.
The time evolution ofzj , Pzj, x⊥j , P⊥j, andwj for the
j-th particle are described by Eqs. (11) - (14), and (25), re-
spectively. For the field equations, the zeroth-order poten-
tials, Φ0 andAz0, are obtained by usingF0 in Eqs. (16)-
(19) and the perturbed potentials,δΦ andδAz, can be ob-
tained by usingδf .

5 DISCUSSION

The non-radiative Darwin model developed here for
particle simulations is very similar to the usual electro-
magnetostatic model [12] and it is straightforward to im-
plement. With the absence of the high-frequency radiation
in the model, it has many numerical advantages over fully
electromagnetic codes. The application of this model to the
study of high-intensity beams will be reported elsewhere.
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