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Abstract been recognized in magnetic fusion research for test parti-

A nonlinear perturbatives(f) electromagnetic particle Cle transport[7] and for gyrokinetic theory [8, 9]. In order
simulation scheme has been developed for studying tri@ take advantage of the recent developments in perturba-
propagation of intense charged particle beams in higH'Lve particle simulations [10, 11], the present scheme is also
intensity accelerators and transport systems. The scheff@stinto thel f(= F' — Fy) formalism, wheref" is the dis-
is based on the Darwin approximation of Ampere’s lawlribution function in phase space, afg is the equilibrium
in which the transverse displacement current is neglecte@listribution. As a result, the simulation plasma has mini-
resulting in the elimination of high-frequency transverseMal numerical noise, and also provides us with the ability
electromagnetic effects and, consequently, the associatégeasily access both linear and nonlinear regimes for the
numerical restrictions in the simulations. In this paper, #hysics of interest. Since the high-frequency waves associ-
novel approach of replacing the mechanical momentundted with radiation fields are absent from the simulations,
p, by the canonical momentun® = p + gA/c, inthe We can use the scheme of adiabatic particle pushing [12],
equations of motion is used for the purpose of eliminatfor which the electrons are advanced more often, and with
ing the numerically troublesond®A /9t term. The present smaller time steps, than those for the ions and field equa-
scheme, cast in thef formalism, is ideal for studying two- tions so as to compensate for the mass ratio disparities for
stream and filamentation instabilities, which may cause délifferent charge species. The scheme is ideal for studying

terioration of the beam quality in heavy ion fusion driverstwo-stream[12] and filamentation [13] instabilities, which
and the fusion chamber. may cause deterioration of the beam quality in the heavy

ion fusion driver and fusion chamber.

1 INTRODUCTION 2 DARWIN MODEL FOR RELATIVISTIC

A nonlinear perturbatived(f) electromagnetic particle BEAMS

S|muIat|or1 SCheT“e has been developed for stud_ylng_ the Here, we take a different approach by eliminating the
propagation of intense charged particle beams in high-

intensity accelerators and transport systems. The sche e derivative of the transverse electric field in the equa-

is based on the Darwin approximation of Ampere’s law, ir]tlon of motion for the particles through the use of the

which the transverse inductive electric field is neglectec:c"jmon'C"’II momentum. The relativistic form of the Vlasov

resulting in the elimination of light waves as well as the as—ﬁg;‘;t'w tge:;rr;gwgn:g?ng;?gs]gzt'?ga%f t?]?c;ﬂtznzesﬁégﬂf
sociated numerical restrictions from the simulations. How; P 9

ever, as noted in the past [1], the presence of the tirr{(gcusing transverse external focusing field can be ex-
derivative of the vector potentialA /dt, in the equations pressed as [12]

of motion for the Darwin model can cause numerical in- r 1
stabilities. To circumvent this difficulty, procedures in- 8—+v-8—+ [—%mw%xj_ +qE+-vxB)|-— =0,
volving the removal oBA /dt in the equations of motion ¢ X ¢ 1)

have been developed, and the Darwin model has been sye. . =~ p/ym, = 1/y/T— B andfy =< v: > Je,

cessfully used in particle simulations for studying electro—< . > is the average axial velocit is the perpen-
magnetic perturbations in plasmas, such as Weibel inség.— : 9 Bl perp

oS . . icular displacement; is the direction of beam propa-

e e e e s e alen. A, = s 1S e efecive apled boa

. S . nvoiving tron frequency for transverse (perpendicular) oscillations.
culation of the transverse inductive electric field have als

. th terms of longitudinal L) and transverseT{() quanti-
been Qeyeloped [5. 6l. . In t.hls paper, we adopt a PrOC&ies relative to the direction of wave propagation, the re-
dure similar to the Hamiltonian formulation suggested byduced Maxwell's equations for the Darwin model can be
Nielson and Lewis [1] in which the mechanical momen'expressed a¥ - Bl — drp, V x B = (47/¢)I7, and
tum, p = ymv, is replaced by the canonical momentum — e = ’

T _ _
P = p + (¢/c)A, as a phase-space variable so as to e“nngTe}r?t is_defi(l/C)aB/at' ForJ, > J,, the transverse

inate the troublesom@A /ot term, whereg is the charge, ned as
c is the speed of light in vacuo, and is the rest mass. . 1 OEL
The advantage of using the canonical momentum has long J=Jlz4+ ———,



which in Fourierk-space representation yields
k2 k.J,
k2 k2

Using the Coulomb gauge witi- A =0forB =V x A,
Ampere’s law is then simplified to become

J'=J.01 k.

z

)7 Ji =

and
dp—J':—%mwQXJ_—qVJ_ (@—U—ZA )
dt A ¢’
q 6AJ_ 6AJ_
_E< o TV oz ©

V24, — Am T V2A, _47rJT @) can cause numerical difficulties in particle simulations. We
2T VR PR introduce here a novel way to eliminate this term by intro-
ducing the canonical momentum
where
J. = q/szdp- P=p+IA (10)
C
Likewise, we obtain .
as a new phase-space variable. From
10A, . 10A
ET = - 26, — —— =, (3) dA  OA  0A
c Ot c Ot a4, —
) . dt ot 0z
and Poisson’s equation,
we rewrite the orbit characteristics as
V2P = —dmg / Fp, o1 .
- = — Pz - _Az ’ 11
dt  ~vym ( c ) (11)
remains unchanged. The nonlinear Vlasov equation in the
Darwin approximation for, > v, becomes and
ol 9 (¢4 12
OF _ OF _ OF ) v e Gt (12)
Vi v — {'mengJ_ +qVL(® - —A;) . . .
ot ox, 0z c Thus, by transforming fromp., to P, the time derivative of
+g(5A¢ . BAL) oF (a_q)Jrl DA, | OF ; gizmcilc;lrn/ec\;zn;lgtg;rs]appears from the equations of motion.
c' Ot ey opL Nz ¢ ot op. v
(4) dx 1 q
Thus, the only difference between the electro- d—tL = (PJ_ - EAJ_) (13)
magnetostatic model [12] and the present Darwin model
is the appearance of the ter®A ; /0t + v,0A | /0z and and
0A,/0t. [For example, the latter can become important P
for (w/kv,)(v./c)* ~ O(1), for A, ~ B,®.] The JT Il —yymwixy — qV 1 (q) — U_ZAZ) (14)
term in Eq. (2) can be evaluated by first taking the time dt ¢

derivative of Poisson’s equation and by substituting therhe vjasov equation in the new coordinates can be ex-
density moment of Eq. (4) to obtain

pressed as
oo 0
dt ot dt oOx dt 0P

The transverse part of the current can be evaluated from , hare the characteristics are defined by Egs. (11) - (14).

3T = J.7 — (1/47)V® /1. 5) The corresponding form of Poisson’s equation is

V2® = —4mq / FdP, (16)

3 DARWIN MODEL FOR PARTICLE
SIMULATIONS

As discussed earlier, the ne®A, /0t and A, /Ot
terms associated with the orbit characteristics

and Ampere’s law can be expressed as

2
s B\ A [P 10 (00
(V 02>AZ_ cq/vadP—i_ch ot

dz _ p:

g 6

dt  ym’ ©) (7)

and Lo
dp., 0% 10A, >
— (22 VA, = -—V.®, 18

dt q(82+c 8t> @ oo (18)

dx, PpL where w? = (47ng*/m) [ FdP/~ is the relativistic

it am’ (8) plasma frequency-squared. As before,@g 0t term can



then be calculated by the combination of Poisson’s equdn the Klimontovich-Dupree representation, the perturbed

tion and the continuity equation, i.e.,

100 0 w? ) P
2o 4 (2A)=4 —/ 2 FdP. (19
v c Ot + 82(02 ) 5 yme (19)

distribution is related to the particle weight through

N
0f =Y w;d(x —x;)5(P — P) (26)
j=1

Thus, Egs. (11) - (19) constitute the Darwin model for an

intense relativistic beam. In the long, thin-beam appro

imation, the terms associated with;, and9® /0t in the
equations of motion and Ampere’s law can be dropped.

For a one-component relativistic beam traveling with
constant average velocity,c, which givesA, ~ 5,®, the
Darwin model in the laboratory frame becomes

oF oF oF
o +vy- E + UZE
— ’mew%XJ_“F %VJ_¢:| BBP% - %g—fg—é =0
(20)
and
V2® = —4mq / FdP. (21)

The single-beam Darwin modeln the beam frame
('primed’ variables) can be obtained by setting= 1 and
replacing(x, P, t) — (x/,p’,¢'). This gives

oF oF oF
vtV g~ el VL]
0%’ OF
—an—p,z =0, (22)
where
V20 = —4dnq / Fdp'. (23)

Thus, we recover the usual electrostatic moddhe beam
frame.

4 NONLINEAR 6 F DARWIN
FORMALISM

The correspondingf formalism [10, 11, 12] in the lab-
oratory frame can be derived by expressing= Fy + 6 f,
d =5+ oPandA, = A,q + §A., whereF, satisfies

8F0 dx 8F0 dP 8F0 -

e el A i I e o
ot dt ox  dt|, oP 7

and |o
using the equilibrium potentialsb, and A,o. The per-
turbed distribution is determined from

df  dP.| OFy dP,

OFy
at  dt |y AP, dt

24
e @

where|; denotes the perturbed trajectories obtained from

using the perturbed potentiatBp anddé A .. Definingw =
df/F, the weight function evolves according to

1 dof
Fy dt

dw
dt

~ (1 -w) (25)

denotes the zeroth-order trajectories calculated b

whereN is the total number of particles in the simulation.

“The time evolution ok;, P,;, x1;, P1;, andw, for the

j-th particle are described by Egs. (11) - (14), and (25), re-
aspectively. For the field equations, the zeroth-order poten-
tials, &y and A, are obtained by using, in Eqs. (16)-
(19) and the perturbed potentiadsh andd A ., can be ob-

tained by using f.

5 DISCUSSION

The non-radiative Darwin model developed here for
particle simulations is very similar to the usual electro-
magnetostatic model [12] and it is straightforward to im-
plement. With the absence of the high-frequency radiation
in the model, it has many numerical advantages over fully
electromagnetic codes. The application of this model to the
study of high-intensity beams will be reported elsewhere.
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