
Renormalization group reduction of the Hénon map
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Abstract. The renormalization group (RG) method is applied to the study
of discrete dynamical systems. As a particular example, the Hénon map is
considered as being applied to describe the transverse betatron oscillations in a
cyclic accelerator or storage ring possessing a FODO-cell structure with a single
thin sextupole. A powerful RG method is developed that is valid correct to fourth
order in the perturbation amplitude, and a technique for resolving the resonance
structure of the Hénon map is also presented. This calculation represents an
application of the RG method to the study of discrete dynamical systems in a
unified manner capable of reducing the dynamics of the system both far from
and close to resonances, thus preserving the symplectic symmetry of the original
map.
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1. Introduction and basic equations

It is increasingly important to develop an improved theoretical understanding of the nonlinear
dynamics of charged particle beams in high energy accelerators and storage rings [1]–[6]. An
individual particle propagating in an accelerator experiences a growth of amplitude of betatron
oscillations in a plane transverse to the particle orbit whenever a perturbing force acts on it.
This force may be of various origins, for example, high-order multipole magnetic field errors,
space–charge forces, beam–beam interaction force, power supply ripples or other external and
collective forces.

There is a growing number of robust analytical methods used to study the effects of
the nonlinear behaviour of beams in accelerators and storage rings, ranging from classical
perturbation theory [7, 8] to the Lie algebraic approach [9]–[11]. The recently developed
renormalization group (RG) method has been successfully applied to both continuous dynamical
systems [12]–[14] and maps [15, 16] that are of general interest in the physics of accelerators and
beams. In a recent paper by Goto et al [17], a symplectic map chain was investigated by means
of a new form of the regularized RG method previously introduced in [15]. This new form of the
regularization procedure (the symplectic integration method) is similar in spirit to our method
of extraction of a symplectic RG map utilizing the implicit amplitude-phase ansatz described in
section 3. The advantage of the RG method is associated with the fact that it is equally powerful
in studying finite-dimensional, as well as continuous, systems. Therefore, it is also useful when
applied to analyse the properties of chaotic dynamical systems in both the stability region and
the globally stochastic region in phase space [18]–[20].

While the RG method is well established in applications to continuous dynamical systems,
the present paper demonstrates that the RG method can also be applied successfully to study
discrete dynamical systems. As a particular example, we consider the Hénon map [21, 22] as
applied to describe the transverse betatron oscillations in a cyclic accelerator or storage ring
possessing a FODO-cell structure with a single thin sextupole. The basic equations and Hénon
transfer map used in the present analysis are summarized later in section 1, and in section 2
a powerful RG technique is developed that is valid correct to fourth order in the perturbation
amplitude. A technique for resolving the resonance structure of the Hénon map is discussed in
section 3, and in section 4 illustrative numerical results are presented.

The present analysis assumes that a certain multipole nonlinearity is concentrated at a single
point azimuthally located at θ0. Then the one-turn transfer map describing the transverse betatron
motion in a cyclic accelerator or storage ring can be written in the form [23]

zn+1 = R̂t

[
zn +

l

R
F (zn; θ0)

]
, (1.1)

where z is the state vector

z =




X

Px

Z

Pz


 , (1.2)

R̂t is an orthogonal matrix:

R̂t =




cos 2πνx sin 2πνx 0 0
− sin 2πνx cos 2πνx 0 0

0 0 cos 2πνz sin 2πνz

0 0 − sin 2πνz cos 2πνz


 , (1.3)
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and F (z; θ0) is defined by

F (z; θ0) =




0

− ∂V (X,Z;θ0)

∂X

0

− ∂V (X,Z;θ0)

∂Z


 . (1.4)

Here, (X, Z) is the transverse displacement, (Px, Pz) is the transverse canonical momentum,
l is the length of the multipole element, R is the mean machine radius and νx,z are the horizontal
and the vertical betatron tunes, respectively. Furthermore, V (X, Z; θ) is the nonlinear potential,
which can be expressed in the polynomial form

V (X, Z; θ) =
∞∑

I=2

I∑
k,m=0
k+m=I

b
(I)

km(θ)XkZm, (1.5)

where b
(I)

km(θ) are coefficients (generally functions of the azimuthal angle θ ) representing the
strength of the nonlinearity.

2. The Hénon map

The simplest nontrivial example of a polynomial transfer map is the so-called Hénon map [21, 22].
It can describe the horizontal betatron oscillations in an accelerator possessing a FODO-cell
structure with a single thin sextupole. The two-dimensional Hénon map can be obtained from
equation (1.1) in the case when the potential V (X, Z; θ) (see equation (1.5)) contains a single
localized cubic nonlinearity. In explicit form it can be written as

Xn+1 = Xn cos ω + (Pn − SX2
n) sin ω, (2.1)

Pn+1 = −Xn sin ω + (Pn − SX2
n) cos ω, (2.2)

where

ω = 2πν, S = lλ0(θ0)β
3/2(θ0)

2R3
. (2.3)

In section 1, we briefly discussed the essence of the RG method and emphasized its power
to handle a number of problems arising in the theory of continuous dynamical systems. In this
section, we will demonstrate that the RG method can be applied successfully to study discrete
dynamical systems, and as a particular example, we consider the Hénon map. The latter can be
further simplified by eliminating the canonical momentum variableP . Multiplying equation (2.1)
by cos ω, multiplying equation (2.2) by − sin ω and summing the two equations, we obtain

Xn+1 cos ω − Pn+1 sin ω = Xn. (2.4)

Substitution of the recursion relation (2.4) into equation (2.1) yields the second-order difference
equation for X:

L̂Xn = Xn+1 − 2Xn cos ω + Xn−1 = −εSX2
n sin ω. (2.5)

Here, ε is a formal small parameter introduced for convenience to take into account the
perturbative character of the sextupole nonlinearity.
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Next we consider an asymptotic solution of the map (2.5) for small ε by means of the RG
method. The naive perturbation expansion

Xn = X(0)
n + εX(1)

n + ε2X(2)
n + · · · , (2.6)

when substituted into equation (2.5), yields the perturbation equations order by order:

L̂X(0)
n = 0, (2.7)

L̂X(1)
n = −SX(0)2

n sin ω, (2.8)

L̂X(2)
n = −2SX(0)

n X(1)
n sin ω, (2.9)

L̂X(3)
n = −S(X(1)2

n + 2X(0)
n X(2)

n ) sin ω, (2.10)

L̂X(4)
n = −2S(X(0)

n X(3)
n + X(1)

n X(2)
n ) sin ω. (2.11)

Solving equation (2.7) for the zeroth-order contribution, we obtain the simple result

X(0)
n = Aeiωn + c.c., P (0)

n = iAeiωn + c.c., (2.12)

where A is a complex constant amplitude. By virtue of equation (2.12) the first-order perturbation
equation (2.8) becomes

L̂X(1)
n = −S(A2e2iωn + 2|A|2 + c.c.) sin ω. (2.13)

The solution to equation (2.13) can be expressed as

X(1)
n = −S|A|2 cot

ω

2
+

sin ω

2
S1A

2e2iωn + c.c., (2.14)

where

S1 = S
cos ω − cos 2ω

. (2.15)

To avoid resonant secular terms, we assume in addition that

ω �= 2kπ, ω �= 2π

3
+ 2kπ, ω �= 4π

3
+ 2kπ, (2.16)

where k is an integer. The properties of the Hénon map in the case where the betatron tune is
near a resonance (in particular the 1/3 resonance) will be considered in section 3.

The second-order perturbation equation (2.9) becomes

L̂X(2)
n = −2F sin ω|A|2Aeiωn − sin2 ωSS1A

3e3iωn + c.c., (2.17)

where

F = S
(S1

2
sin ω − S cot

ω

2

)
. (2.18)

The solution to equation (2.17) can be readily expressed in the form

X(2)
n = inF |A|2Aeiωn +

sin2 ω

2
S1S2A

3e3iωn + c.c., (2.19)

where

S2 = S
cos ω − cos 3ω

, ω �= (2k + 1)π, ω �= (2k + 1)
π

2
. (2.20)

Continuing further with the third-order calculation, we note that

L̂X(3)
n = −S(	0|A|4 + 	2|A|2A2e2iωn + 	4A

4e4iωn + c.c.) sin ω. (2.21)
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Here, the notation

	0 = S2 cot2 ω

2
+

S2
1

2
sin2 ω, (2.22)

	2 = S1

(
S2 sin ω − S cot

ω

2

)
sin ω + 2inF, (2.23)

	4 = S1

4
(S1 + 4S2) sin2 ω, (2.24)

has been introduced. The solution to the third-order perturbation equation (2.21) is found in a
straightforward manner to be

X(3)
n = −S

2
	0|A|4 cot

ω

2
+ (B + inS1F sin ω)|A|2A2e2iωn +

sin ω

2
S3	4A

4e4iωn + c.c., (2.25)

where

B = S2
1

2

(
S2 sin ω − S cot

ω

2

)
sin2 ω − S2

1F
S

sin ω sin 2ω, (2.26)

S3 = S
cos ω − cos 4ω

, ω �= 2π

5
+ 2kπ, ω �= 4π

5
+ 2kπ. (2.27)

Finally, we retain terms proportional to the fundamental harmonic eiωn in the fourth-order
perturbation equation, i.e.

L̂X(4)
n = (C − 2inF2 sin ω)|A|4Aeiωn + c.c., (2.28)

where

C = −2S
(
B +

S2
1S2

4
sin3 ω − S	0

2
cot

ω

2

)
sin ω. (2.29)

We obtain the secular fourth-order contribution to the fundamental harmonic in the form

X(4)
n =

(
inD − n2F2

2

)
|A|4Aeiωn + c.c., (2.30)

where the coefficient D is defined by

D = −C + F2 cos ω

2 sin ω
. (2.31)

Close inspection of the naive perturbation solution starting from the second-order
result (2.19) shows that secular terms (proportional to n, n2, etc) are present. To remove
these terms, we define the renormalization transformation A → Ã(n) by collecting all terms
proportional to the fundamental harmonic eiωn. This gives

Ã(n) =
[
1 + iε2nF |A|2 + ε4

(
inD − n2F2

2

)
|A|4

]
A. (2.32)

Solving perturbatively equation (2.32) for A in terms of Ã(n), we obtain

A = [1 − iε2nF |Ã(n)|2 + O(ε3)]Ã(n). (2.33)

A discrete version of the RG equation can be defined by considering the difference

Ã(n + 1) − Ã(n) = iε2F |A|2A + ε4
(

iD − F2

2
− nF2

)
|A|4A. (2.34)
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Substituting the expression for A in terms of Ã(n) (see equation (2.33)) into the right-hand side
of equation (2.34), we can eliminate the secular terms up to O(ε4). This gives

Ã(n + 1) =
[
1 + iε2F |Ã(n)|2 + ε4

(
iD − F2

2

)
|Ã(n)|4

]
Ã(n). (2.35)

This naive RG map does not preserve the symplectic symmetry of the original system and does
not have a constant of the motion. To recover the symplectic symmetry, we regularize [15] the
naive RG map (2.35) by noting that the coefficient in the square brackets multiplying Ã(n) can
be exponentiated as

Ã(n + 1) = Ã(n) exp[iω̃(|Ã(n)|)], (2.36)

where

ω̃(|Ã(n)|) = ε2F |Ã(n)|2 + ε4D|Ã(n)|4. (2.37)

Although the renormalization procedure described above may seem somewhat artificial, it holds
in all orders. By extracting a symplectic implicit map in terms of the real part and the argument
(phase) of the renormalized amplitude Ã(n), a partial proof (up to fourth order) of this assertion
will be presented in the next paragraph. It is clear now that the regularized RG map (2.36)
possesses the obvious integral of motion

|Ã(n + 1)| = |Ã(n)| =
√

J
2

. (2.38)

It is important to note that the secular terms encountered in the higher harmonics (e2iωn, e3iωn,
etc) can be summed to give the renormalized amplitudes which, when expressed in terms of Ã(n),
do not contain secular terms. This means that, once the amplitude of the fundamental harmonic is
renormalized, any problems associated with divergences in higher harmonics are being remedied
automatically. To demonstrate this, we express the amplitude of the second harmonic as

A2 = ε
[S1

2
sin ω + ε2(B + inS1F sin ω)|A|2

]
A2, (2.39)

which, by virtue of equation (2.33), acquires the form

A2 = ε
[S1

2
sin ω + ε2B|Ã(n)|2

]
Ã2(n). (2.40)

By analogy, the amplitude of the third harmonic

A3 = ε2
[S1S2

2
sin2 ω + ε2

(
B3 +

3in

2
S1S2F sin2 ω

)
|A|2

]
A3 (2.41)

can also be renormalized. The result is

A3 = ε2
[S1S2

2
sin2 ω + ε2B3|Ã(n)|2

]
Ã3(n). (2.42)

Proceeding in a manner similar to above, we can represent the canonical conjugate
momentum Pn according to

Pn = iB̃(n)eiωn + c.c. + higher harmonics, (2.43)

where

B̃(n + 1) = B̃(n) exp[iω̃(|Ã(n)|)]. (2.44)
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Using now the relation (2.4) between the canonical conjugate variables (Xn, Pn), we can express
the renormalized amplitude B̃(n) in terms of Ã(n) as

B̃(n) = iÃ(n)

sin ω
[e−i(ω+ω̃) − cos ω]. (2.45)

In addition, the sextupole nonlinearity shifts the closed orbit by the constant value (in normalized
coordinates)

Xco = −εSJ
2

[
1 +

ε2

4
	0J + O(ε3)

]
cot

ω

2
, Pco = −Xco tan

ω

2
, (2.46)

which is a common property for all odd multipole nonlinearities.
Neglecting higher harmonics and iterating the regularized RG maps (2.36) and (2.44), the

renormalized solution of the Hénon map can be expressed as

X(1)
n = Xco +

√
2J cos ψ(J ; n), (2.47)

P (1)
n = Pco +

√
2J [α(1)

H (J ) cos ψ(J ; n) − β
(1)

H (J ) sin ψ(J ; n)], (2.48)

where

ψ(J ; n) = [ω + ω̃(J )]n + φ̃, (2.49)

α
(1)

H (J ) = cos ω − cos[ω + ω̃(J )]

sin ω
, β

(1)

H (J ) = sin[ω + ω̃(J )]

sin ω
. (2.50)

It is evident that the integral of motion J has the form of a generalized Courant–Snyder
invariant [24], which can be expressed as

2J = (X(1) − Xco)
2 +

[P (1) − Pco − α
(1)

H (J )(X(1) − Xco)]2

β
(1)2
H (J )

. (2.51)

It is important to emphasize that equation (2.51) represents a transcendental equation for
the invariant J as a function of the canonical variables (X, P ), because the coefficients αH and
βH depend on J . Note also that the sextupole nonlinearity gives rise to a nonlinear tune shift
ω̃, leading to the distortion of the invariant curves (circles in normalized phase space1 (X, P ))
even in an approximation where only the contribution of the first harmonic is taken into account.
Further distortions of the phase-space trajectories are introduced by higher harmonics.

Taking into account all harmonics up to the fifth harmonic, we can express the renormalized
fourth-order solution of the Hénon map in the form

Xn = X(1)
n +

5∑
M=2

XM cos Mψ(J ; n), (2.52)

Pn = P (1)
n +

5∑
M=2

XM[α(M)

H cos Mψ(J ; n) − β
(M)

H sin Mψ(J ; n)]. (2.53)

The amplitudes XM of the various harmonics are given by the expressions

X2 = εJ
2

(S1 sin ω + ε2BJ ), X4 = 1

4
ε3S3	4J 2 sin ω, (2.54)

X3 = ε2J
√

J
2
√

2
(S1S2 sin2 ω + ε2B3J ), X5 = 1

2
√

2
ε4C5J 2

√
J . (2.55)

1 Note that αH = 0 and βH = 1 for ω̃ = 0.
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Furthermore, similar to equation (2.50), the generalized α
(M)

H and β
(M)

H functions can be expressed
as

α
(M)

H (J ) = cos ω − cos M[ω + ω̃(J )]

sin ω
, β

(M)

H (J ) = sin M[ω + ω̃(J )]

sin ω
. (2.56)

3. Resonance structure of the Hénon map

The solution to the first-order perturbation equation (2.13) was obtained in the form (2.14),
assuming that the unperturbed betatron tune ν is far from the third-order resonance 3ν = 1. It is
important to study the properties of the Hénon map near a nonlinear resonance by means of the
RG method. In what follows, we demonstrate how the RG reduction of the Hénon map works
near the one-third resonance. A similar procedure can be performed near all other resonances.

Let us expand ω according to

ω = ω0 + εδ1 + ε2δ2 + · · · , ω0 = 2π

3
. (3.1)

Equation (2.5) can then be expressed in alternate form

L̂0Xn = Xn+1 − 2Xn cos ω0 + Xn−1 = 2Xn(cos ω − cos ω0) − εSX2
n sin ω. (3.2)

The perturbation expansion (2.6), when substituted into equation (3.2), yields the perturbation
equations

L̂0X
(0)
n = 0, (3.3)

L̂0X
(1)
n = −

√
3

2
(2δ1X

(0)
n + SX(0)

n ), (3.4)

L̂0X
(2)
n = −

√
3δ1X

(1)
n +

(δ2
1

2
−

√
3δ2

)
X(0)

n + S
(δ1

2
X(0)

n −
√

3X(0)
n X(1)

n

)
. (3.5)

Noting that 2ω0 = 2π − ω0, equations (3.3)–(3.5) can be solved, yielding the result

X(0)
n = Aeiω0n + c.c., P (0)

n = iAeiω0n + c.c., (3.6)

X(1)
n = −S

√
3

3
|A|2 + inG(A, A∗)eiω0n + c.c., (3.7)

X(2)
n = A + inB + (inC + n2D)eiω0n + c.c., (3.8)

where

G(A, A∗) = δ1A +
S
2

A∗, (3.9)

A = 2δ1

3
S|A|2, B =

√
3S
3

(G∗A − GA∗), (3.10)

D = 1

2
(−δ1G + SG∗A∗), C = −	 + D√

3
, (3.11)

	 =
(δ2

1

2
−

√
3δ2

)
A +

δ1S
2

A∗ + S2|A|2A. (3.12)

Proceeding as before, we define the renormalized amplitude by

Ã(n) = A + iεnG + ε2(inC + n2D). (3.13)
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Taking into account the expression

A = Ã − iεnG(Ã, Ã∗) + O(ε2), (3.14)

which relates the amplitude A to the renormalized amplitude Ã(n), we obtain the renormalized
resonant map

Ã(n + 1) = Ã(n) + iεG̃(n) + ε2[iC̃(n) + D̃(n)], (3.15)

where

�̃(n) = �[Ã(n), Ã∗(n)], (3.16)

and � represents C, D or G.
It is important to note that the resonant shift in the closed orbit is automatically renormalized,

once the renormalization transformation A → Ã(n) has been performed. The result is

Xco(n) = εS
3

[−
√

3 + 2εδ1 + O(ε2)]|Ã(n)|2. (3.17)

Note that the closed orbit can be corrected up to third order (in the sextupole strength S) by
choosing the first-order resonance detuning δ1 to be δ1 = √

3/2. In terms of betatron tune, this
implies

�ν =
√

3

4π
. (3.18)

Since the naive RG map (3.15) does not preserve the symplectic structure of the original
Hénon map, an important step at this point consists of constructing a symplectic map in
appropriate variables equivalent to (3.15). Unfortunately, the regularization procedure described
in the previous paragraph cannot be applied to the map (3.15). The reason is that in the resonant
case |Ã(n)| is no longer an integral of motion. An alternative way to overcome this difficulty is
to represent Ã(n) as

Ã(n) =
√

Jneiϕn, (3.19)

and attempt to find an (implicit) map in terms of the new variables (ϕn, Jn) of the form

ϕn+1 = ϕn + g(Jn+1, ϕn), Jn+1 = Jn + f (Jn+1, ϕn). (3.20)

Expanding the unknown functions f and g in a perturbation series

f =
∞∑

k=1

εkfk, g =
∞∑

k=1

εkgk, (3.21)

and substituting equation (3.19) into equation (3.15), we can determine f and g up to second
order. We obtain

f1(ϕ, J ) = SJ 3/2 sin 3ϕ, g1(ϕ, J ) = δ1 +
S
2

√
J cos 3ϕ, (3.22)

f2(ϕ, J ) = 3δ1SJ 3/2 cos 3ϕ − δ1S
√

3

2
J 3/2 sin 3ϕ +

3S2

4
J 2 cos 6ϕ, (3.23)

g2(ϕ, J ) = δ2 − 5S2
√

3

12
J − 3δ1S

4

√
J sin 3ϕ − δ1S

√
3

4

√
J cos 3ϕ − S2

4
J sin 6ϕ. (3.24)

The map (3.20) is symplectic provided the condition
∂g

∂ϕn

+
∂f

∂Jn+1
= 0 (3.25)
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holds. To verify equation (3.25), we evaluate the determinant of its Jacobian

det(ĴM) = det

( 1 + gϕn
+ gJn+1

∂Jn+1
∂ϕn

gJn+1
∂Jn+1
∂Jn

fϕn
+ fJn+1

∂Jn+1
∂ϕn

1 + fJn+1
∂Jn+1
∂ϕn

)
, (3.26)

where subscripts denote differentiation with respect to the variables indicated. Taking into
account

∂Jn+1

∂ϕn

= fϕn
+ fJn+1

∂Jn+1

∂ϕn

�⇒ ∂Jn+1

∂ϕn

= fϕn

1 − fJn+1

, (3.27)

∂Jn+1

∂Jn

= 1 + fJn+1

∂Jn+1

∂Jn

�⇒ ∂Jn+1

∂Jn

= 1

1 − fJn+1

, (3.28)

we obtain

det(ĴM) = 1 + gϕn

1 − fJn+1

. (3.29)

The requirement that det(ĴM) = 1 leads to the condition (3.25). It is straightforward to verify
that f and g as given by equations (3.22)–(3.24) satisfy equation (3.25).

The representation (3.19) of the renormalized amplitude Ã(n) together with (3.20) can be
used as an alternate way to obtain the exponential form (2.36) of the RG map (2.35). The
expansions

f =
∞∑

k=1

ε2kf2k, g =
∞∑

k=1

ε2kg2k, (3.30)

when substituted into equation (2.35), after some straightforward algebra, lead to the result

f2(ϕ, J ) ≡ 0, f4(ϕ, J ) ≡ 0, (3.31)

g2(ϕ, J ) = FJ , g4(ϕ, J ) = DJ 2. (3.32)

Thus, we obtain the symplectic implicit map

ϕn+1 = ϕn + ε2FJn+1 + ε4DJ 2
n+1, Jn+1 = Jn, (3.33)

which is the RG map (2.36) written for the real part and the argument of the amplitude Ã(n).

4. Numerical results

In this section we present illustrative numerical results revealing the stability properties of the
Hénon map. We use the analytical renormalized solution expressed by equations (2.52)–(2.56)
to construct the phase portrait of the Hénon map near the third-order resonance with ν = 0.323
(also ν = 0.345 25), near the fourth-order resonance with ν = 0.24, and near the fifth-order
resonance with ν = 0.19. All calculations are performed for a relatively large value of the
sextupole strength corresponding to S = 0.1.

In figure 1 the phase portrait of the Hénon map near the third-order resonance with ν = 0.323
is depicted. It shows the stability region and the invariant curves for different values of the
modulus squared of the renormalized amplitude Ã (see equation (2.38)). As the value of the
invariant J increases, it reaches a value Jmax above which the phase trajectories begin to intersect.
This is due to the fact that the perturbation renormalization technique, valid for unperturbed
betatron tunes sufficiently far from resonances, does not work well in this region and the reduction
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Figure 1. Phase portrait of the Hénon map obtained from equations (2.52)–(2.56)
near the third-order resonance with ν = 0.323. Here, J takes values ranging from
J = 0.15 (inner contour) to J = Jmax = 3.85 (outer contour).
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Figure 2. Phase portrait of the Hénon map obtained from equations (2.52)–(2.56)
near the third-order resonance with ν = 0.345 25. Here, J takes values ranging
from J = 0.15 (inner contour) to J = Jmax = 3.85 (outer contour).

procedure near resonances developed in section 3 should be employed. However, the quantity
Jmax is closely related to the dynamic aperture. For the case where ν = 0.323 it is approximately
Jmax = 3.85. Figure 2 represents the phase portrait of the Hénon map for ν = 0.345 25. The
value of Jmax is the same as in the case where ν = 0.323.

Figures 3 and 4 show the phase portrait of the Hénon map near the fourth-order and fifth-
order resonances where ν = 0.24 and 0.19, respectively. The dynamic aperture in the case of
the fourth-order resonance is approximately Jmax = 19.01, while in the case of the fifth-order
resonance it is Jmax = 28.5.

5. Conclusions

While the RG method is well established in applications to continuous dynamical systems, the
present paper demonstrates that the RG method can also be applied successfully to study discrete
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Figure 3. Phase portrait of the Hénon map obtained from equations (2.52)–(2.56)
near the fourth-order resonance with ν = 0.24. Here, J takes values ranging
from J = 0.5 (inner contour) to J = Jmax = 19.01 (outer contour).
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Figure 4. Phase portrait of the Hénon map obtained from equations (2.52)–(2.56)
near the fifth-order resonance with ν = 0.19. Here, J takes values ranging from
J = 1.5 (inner contour) to J = Jmax = 28.5 (outer contour).

dynamical systems. As a particular example, we considered the Hénon map as applied to describe
the transverse betatron oscillations in a cyclic accelerator or storage ring possessing a FODO-
cell structure with a single thin sextupole. The basic equations and Hénon transfer map used in
the present analysis were summarized in section 1, and in section 2 a powerful RG technique
was developed that is valid correct to fourth order in the perturbation amplitude. Analytical
expressions (see equations (2.52) and (2.53)) for the renormalized fourth-order solution of the
Hénon map were obtained, showing a very good agreement with the numerical solution. A
technique for resolving the resonance structure of the Hénon map was discussed in section 3,
and in section 4 illustrative numerical results were presented. Moreover, it was shown that, using
the implicit amplitude-phase map ansatz introduced in section 3, one can extract a renormalized
symplectic map and thus recover the symplectic structure of the original Hénon map. This
technique yields results similar to the ones obtained by means of the regularization procedure [15]
and [17] proposed previously. The present calculation represents a successful application of the
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powerful RG method to the study of discrete dynamical systems far from and close to resonances
in a unified manner. In section 3 it was shown that the RG map can be further expressed in
terms of an implicit symplectic map in both cases, far from and close to resonances. Further
applications to discrete dynamical systems will include generic polynomial transfer maps, the
standard Chirikov–Taylor map, etc.
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