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Motivation

¢ Low pressure rf discharges routinely
operate at conditions where collisionless
heating dominates.

¢ A lot of diagnostics (n, E, B, ¢, EDF).

¢ Self-consistent simulations are possible
and needed.



Plasma Parameters

¢ Plasma density n = 10° - 103 cm=s.
¢ Gas pressure = few mTorr.

¢ Small degree of ionization < 104
¢ Electron temperature T, = few eV.
¢ lon temperature T, = 0.03 eV.

¢ Spatial scale = mm- m.



Nonlinear Landau Damping of a
Single Wave



Nonlinear Oscillation
IN a Potential Well
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Nonlinear Oscillation
and Collisions
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V, Electron dynamics is a combination
of rare collisions and oscillations in
the wave.




Diffusion in Energy
Corresponds to Heating
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Diffusion in Energy
Qualitative Discussion

¢ Random collisions => diffusion in energy.

¢ D=frequency * (energy change)? averaged
over velocity direction.
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Diffusion in Energy
Qualitative Discussion
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Collisionless heating depends on collisions!



Diffusion In Energy
Quantitative Discussipon

¢ Solving Boltzmann equation with 'M/‘
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Analytical Solution for Nonlinear
Damping Decrement Accounting
for Collisions
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Anomalous Skin Effect
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Collisionless Heating
INn Slab Geometry
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Importance of Nonlinear Effects for
Calculation of Surface Impedance
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¢ The real part of surface impedance in ohm.

The plasma parameters are n=10! cm-3,
.=5ev, |=4cm.




Conclusions

+ The electron Boltzmann kinetic equation
has been solved analytically for
nonlinear Landau damping problem for
any value of collision frequency.

Yni — i tanh(V’Cr).

¢ The efficiency of the collisionless
heating is described by the diffusion
coefficient D=D, tanh(vz,).



Self-consistent System of
Equations for Kinetic
Description of Low-pressure
Discharges Accounting for
nonlocal and collisionless
Electron Dynamics

For more info:
Phys. Rev.E 68, 026411 (2003);

Plasma Sources Sci. Technol. 12, 170 & 302 (2003),




Overview

= Calculate nonlocal conductivity In
nonuniform plasma.

= Find a nonMaxwellian electron energy
distribution function driven by collisionless
heating of resonant electrons.

= What to expect: self-consistent system for
Kinetic treatment of collisionless and
nonlocal phenomena in inductive
discharge.



Inductive Discharge

E_(X) The electron energy
B distribution is given by
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Nonlocal Conductivity
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Energy Diffusion Coefficient

u+e, —
(U+s) fo(5+g:)—v;fo

d —df d —
——(D._+ V. f,= (U+&
dg(g ) d Zk:‘/k( &) \/G

2 E—&, | %4
Qb (gx) [Qb (gx)n _a)]2 + V2

8 n

dz.

B (e) - Q,(c.) ] E (z)cos(nd(z))
™y [v.]

D,...V., are from the electron-electron collision integral, Vi is

Inelastic collision frequency, upper bar denotes space

averaging with constant energy.

Energy diffusion coefficient is function of the rf electric field
E, and the plasma potential ¢(x).



Comparison With Experiment
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Appl. Phys. 82, 5944 (1997).] and simulation predictions using a non-local
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Comparison With Experiment
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Comparison between simulated (lines) and experimental (symbols)
EEDFs for 1 mTorr. Data are taken from V. A. Godyak and V. I.

Kolobov, phys. Rev. Lett., 81, 369 (1998).



Influence of Plasma
Potential on rf Heating
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Conclusion

# The self-consistent system of equations
IS derived for description of collisionless
heating and anomalous skin effect in
nonuniform plasmas.

+ The robust kinetic code was developed
for fast modeling of discharges, which
predicts nonMaxwellian electron energy
distribution functions In rf discharges.



Stochastic Heating
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Thermodynamics: equilibrium with hot wall T, — o0, (M =)

— Electrons are always heated

Necessary condition: subsequent collisions with sheath are
random/ independent.

1. Dynamic chaos
2. Randomization due to collisions



Stochastic heating as
Fermi acceleration
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Fermi mapping
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Paradox

o For A¢g(Au) <1if there is no collisions
there is no dissipation. However,
collisionless heating exists.

¢ Collisions need to be accounted In
collisionless heating!

+ Role of collisions and non-linear effects
as randomisation processes need to be
Investegated.




Anomalous Capacitive Sheath with Deep

Radio Frequency Electric Field Penetration
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Overview

+ Quick overview of what this talk is all
about
= Influence of self-consistency and

nonlocality on collisionless power
deposition

= What to expect: revision of previous test
particle models



Schematic of the sheath
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Schematic of a sheath. The negatively
charged electrode pushes electrons
away by different distances

depending on the strength of the
electric field at the electrode. Shown
are the density and potential profiles
at two different times. The solid line
shows the maximum sheath
expansion.



ODbjectives

¢ Design revised self-consistent kinetic theory
of the capacitive sheath accounting for:

m Perturbation of plasma near the sheath due
to bunching in the sheath field.

= Influence of the electric field in plasma on
sheath heating




Electron density and electric
field near the sheath
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Change In velocity kick due
electric field near the sheath
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Plot of the average square of the dimensionless velocity kick
as a function of the dimensionless velocity taking into
account (a) both and - solid line; (b) only - dashed line;

and (c) no electric field - dotted line.



Effect of self consistency on
power absorption
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ratio of the bulk plasma density to the sheath density,
taking into account (a) self consistent treatment and (b)

test particle model.



Comparison With Experiment
for Capacitive Discharge
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Conclusions

A novel nonlinear effect of anomalously deep penetration of an
external radio frequency electric field into a plasma is described.
A self-consistent kinetic treatment reveals a transition region
between the sheath and the plasma. Because of the electron
velocity modulation in the sheath, bunches in the energetic
electron density are formed in the transition region adjacent to
the sheath. The width of the region is of order V{/®, where V; is
the electron thermal velocity, and o is frequency of the electric
field. The presence of the electric field in the transition region
results in a cooling of the energetic electrons and an additional
heating of the cold electrons in comparison with the case when
the transition region is neglected. Additional information on the
subject is posted in

|. Kaganovich, PRL 2002
http://arxiv.org/abs/physics/0203042
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