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Effects of the Plasma Conductivity on Transverse
Instabilities in High-Intensity Ion Beam

Han S. Uhm and Ronald C. Davidson

Abstract—A stability analysis of a propagating ion beam
through a plasma medium is carried out in terms of transverse
conductivity of the background plasma. Coupled eigenvalue equa-
tions are obtained for the flat-top density profiles of beam ions and
plasma electrons. The dispersion relation of the transverse insta-
bility in an intense ion beam propagating through the background
plasma is derived, including the plasma conductivity (470, /w),
the magnetic decay time 74 and fractional charge neutralization
f. It is shown that the obtained dispersion relation recovers the
previous one of the electron-ion two-stream instability in the limit
of 0; — 0. On the other hand, the dispersion relation of the
resistive-hose instability is recovered when o, — oo. Influence of
the finite transverse conductivity o, on the resistive hose stability
properties are investigated for the ion beam propagating through
a plasma channel. The growth rate of the resistive hose instability
decreases considerably as the transverse conductivity 4mwo, /w
decreases from infinity.

Index Terms—Instability, ion beam, plasma conductivity, resis-
tive-hose, two-stream.

I. INTRODUCTION

IGH-ENERGY ion accelerators and transportation

system [1]-[4] have a wide range of applications in-
cluding basic scientific research, spallation neutron sources,
nuclear waste transmutation, and heavy ion fusion [5]-[7].
Background electrons and plasmas are often present at the
high ion current densities of practical interest. It has been
recognized [8]-[17] for many years that the relative streaming
motion of a charged particle beam through a background
charge species provides a free energy to drive the classical
two-stream instability. In addition, the presenting background
plasma may act like a resistive medium, which may drive
the resistive hose instability [18]-[22] in the propagating ion
beam. The transverse two-stream instability [16] of ion beams
propagating through a background electron cloud occurs when
the charged particles (including electrons and ions) are in the
collisionless regime. On the other hand, the resistive plasma
medium consisted of collisional electrons develops the resistive
hose instability in the ion beam [20] The transverse two-stream
and resistive hose instabilities in the propagating ion beams
appear fundamentally different from each other, although they
are in common oscillating transversely. It is, therefore, needed
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to find the information how one instability mechanism evolves
to the other. In this context, we develop an instability theory of
a propagating ion beam through a plasma medium, assuming
that the transverse conductivity of the plasma can change from
zero to infinity. A general dispersion relation of the transverse
instability in the ion beam will be derived in terms of the
transverse conductivity of the background plasma. The general
dispersion relation recovers that of the electron-ion two-stream
instability in the limit of zero transverse conductivity. It is
also shown that the dispersion relation of the resistive-hose
instability will be obtained when the transverse conductivity
goes infinity.

Basic assumptions and equilibrium properties of an intense
ion beam propagating through a background plasma are
presented in Section II, assuming that the beam ions are in
monochromatic. The background plasma provides a conduc-
tivity tensor, which has transverse and longitudinal elements.
Stability analysis is carried out in Section III in terms of the
transverse conductivity o . Coupled eigenvalue equations (32)
and (33) are obtained for the flat-top density profiles of beam
ions and plasma electrons. The dispersion relation [see (39)] of
the transverse instability in an intense ion beam propagating
through a background plasma is derived in Section III, which
is one of the main results in this paper and can be used to
investigate stability properties of the electron-ion two-stream
instability in an intense ion beam over a broad range of system
parameters, including the plasma conductivity (47wo | /w), the
magnetic decay time 74 and fractional charge neutralization f.
Finally, it is shown in Section IV that the obtained dispersion
relation recovers the previous one [16], [17] of the electron-ion
two-stream instability in the limit of 0, — 0. On the other
hand, the dispersion relation [19] of the resistive-hose insta-
bility is recovered when o, — oo. Influence of the finite
transverse conductivity o on the resistive hose stability prop-
erties are briefly investigated in Section IV for a finite pulse
size of the ion beam propagating through a plasma channel.
As expected, growth rate of the resistive hose instability in an
ion beam decreases considerably as the transverse conductivity
4mo ) /w decreases from infinity.

II. BASIC ASSUMPTIONS AND EQUILIBRIUM PROPERTIES

The equilibrium configuration consists of an intense ion beam
with radius 7, that propagates in the z direction with directed
kinetic energy (7, — 1)msc? through a perfectly conducting
cylinder with wall radius r,,. The ion beam propagates through
background (stationary) electrons with characteristic directed
axial momentum y,my Gy in the z direction, where Vi, = (¢ =
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const. is the average axial velocity, and v, = (1 — 87)~? is the
relativistic mass factor. In order to simplify the analysis, it is
assumed that the background column of electrons also has the
radius 7. In the context of the smooth-focusing approximation,
the beam ions are radially confined by the applied transverse fo-
cusing force modeled by [23]

Fio. = —mempwipx. (D

where x| = we, + ye, is the transverse displacement from
the beam axis, my, is the ion rest mass, c is the speed of light
in vacuo, and wg, = const. is the effective betatron frequency
for transverse ion motion in the applied focusing field. The
equilibrium and stability analyses are carried out by using
cylindrical polar coordinates (r, 8, z), where the z axis is along
the beam propagation direction, and r is the radial distance
from the z axis. Both the ion beam and background electrons
(in equilibrium), are assumed to be azimuthally symmetric
(0/00 = 0) and axially uniform (9/0z = 0). As for the
background electrons, to the extent that the beam ion density
exceeds the background electron density, the space-charge force
on an electron, F¢ = eV ¢, provides transverse confinement of
the background electrons by the electrostatic space-charge po-
tential ¢(z, t). However, for completeness, the present analysis
also incorporates the effects of an applied transverse focusing
force on the electrons modeled by Ff . = —mew%ex L, Where
M, is the electron rest mass, and wg. = const. is the effective
betatron frequency for transverse electron motion in the applied
focusing field. It is further assumed that the ion motion in
the beam frame is nonrelativistic, and that the transverse
momentum components of a beam ion, p, and p,, and the
characteristic spread in axial momentum, 6p, = p, — YpmpOpC,
are small in comparison with the directed axial momentum
Yoy Byc.

In order to investigate effects of the plasma conductivity on
the electron-ion two-stream instability, we assume that a plasma
column with radius r, coexists with the ion beam. The plasma
column consists of the background electrons and also of neu-
trals. The plasma conductivity ¢ in general is a very complicated
tensor of the plasma density, wave oscillation-frequency and
neutral species including the collisional frequency. The electron
motions in the background plasma are subjected to the external
focusing force and also to the force generated by the self-fields
from the ion-beam and electron column. In this regard, electrons
cannot move freely, thereby developing tensor conductivity in
general. A detail investigation of the conductivity is beyond the
scope of present study. In order to make the subsequent cal-
culation analytically tractable, we assume that the conductivity
tensor is expressed as

g 0 0
o(r)= 0 o5 O 2)
0 0 o)

for the radial coordinate » less than the beam radius r,, and
o = 0, otherwise. The tensor element o | and o) are assumed to
be constant values, although they can be a complicated function
of system parameters.

Under the equilibrium assumption that the distribution func-
tion for the beam ions and background electrons are axisym-
metric and spatially uniform in the axial direction, we recognize
that the total transverse energies and axial momentum of the
beam ions and background electrons are approximate constants
of the motion in the equilibrium fields [16] For present purposes,
the equilibrium distribution functions for the beam ions and the
background electrons are taken to be [16]

Ty

FY(Hip,p.) = S(Hip — T16)Go(p2)

2y
Ne
FEO(HJ_sapz) = omm 6(HJ_5 - TJ_e)Ge(pz)- 3)

e

Here, ny, and n. are the on axis ion and electron number densi-
ties, respectively, 1'11, and 1’| , are positive constants, and H | 1,
and H | . are the single-particle Hamiltonians defined by

1 1
Hyp, = 2’mebp2¢ + §’mebw,123b7"2 +Zye [Yo(r) = Vo]
1 1
H,. = %pi + Emewfzier2 — € [¢0<T> - ¢0m] (4)

where Zye is the ion charge, —e is the electron charge, Wo(r) is
defined by Uy (r) = ¢o(r) — BpAs(r), po(r) is the equilibrium
electrostatic potential, and A,(r) is the axial component of the
equilibrium magnetic potential. In (4), 7 = (2 + 32)'/? is the
radial distance from the beam axis, and the axial momentum
distributions are normalized according to

/Gb(pz)dpzzlz /Ge(pz)dpz. )

The equilibrium self-field potentials ¥o(r) and ¢, (r) occur-
ring in (4) are calculated self-consistently from [16]

10 0 Z

;8TT8T‘IJO(T) =~ dme [’Vg ng(r) - ng(r)}

10 0

g bo(r) = — dme [Zyn(r) — ng(r)] ©

and the equilibrium ion and electron density profiles, n{ (r) and
n?(r), are defined by

e

nd(r) = / d*p FO(H Ly, p.),
no(r) = / d*p FO(H ., p.). (7)

The constants Wy, and @,,, in (4) are the on axis (r = 0)
values of the self-field potentials, WU (r) and ¢,(r), and Z, is
the ionization state of the ions, which is included here to extend
the analysis to beam ions with a higher charge state than 7}, = 1.
Finally, in (4) and (6), it has been assumed that the equilibrium
axial current, JO(r) = ZbengVZ%, is carried by the beam ions,
with V0 = B.c = 0.

In order to simplify subsequent analysis, we assume that the
ion beam and background electrons have overlapping density
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profiles. Substituting (3) into (7), and making use of (4), (5) and
(6), we obtain the step-function density profiles

0
= . <
0(r) = ne(r) {nb const., 0<7r <7y, @)

be B 07 Ty < T S Tw

where f = n./Zym, = const. is the fractional charge neu-
tralization by the background electrons. In (8), the equilibrium
beam radius 7} is defined by

T

2 =
YoMyl

TJ_e

rg =2 5
M2

)

where the (depressed) betatron frequencies, v, and v, in (8) for
the beam ions and background electrons are defined by [16]

2
w 1
2 2 b
Ve :"J/ib_Tp <?—f>~,
b

2 2 ‘*’ﬁb Yoy
Ve :wﬂe (1 - f)

(10)

The constant f = mn./Zyn, in (8) and (10) represents the
fractional charge neutralization provided by the background
electrons. The quantity wgb occurring in (10) is the on-axis
relativistic beam plasma frequency-squared defined by
wgb = dmny, ZEe? [ypymy. As expected, the (depressed) betatron
frequencies in (10) for the ions and electrons inside the beam
are constants (independent of radial coordinate r) for the
step-function density profiles in (8).

III. DISPERSION RELATION OF ELECTRON-ION INSTABILITY
FOR ARBITRARY VALUE OF PLASMA CONDUCTIVITY

The dispersion relation of the electron-ion two-stream insta-
bility is obtained in this section for an arbitrary value of the
plasma conductivity. We now make use of linearized Vlasov-
Maxwell equations [1] to develop a theoretical model of the
two-stream instability for perturbations about the equilibrium
described by (3). In the subsequent analysis, we adopt a normal
mode approach in which all perturbed quantities are assumed to
vary with 6§, z, and ¢ according to

5£(T7 07 2, t) = fl(’f‘) exp [L(e +kz — Wt)] (11

for garden hose (kink-mode) perturbations. Here, w and & are
the complex eigenfrequency and axial wavenumber of the per-
turbation, with Imw > 0 corresponding to temporal growth.
We also consider axial wavelengths that are long and frequen-
cies that are low compared with quantities that characterize the
beam radius, i.e.,

[kry| < 1, |wrp] < c. (12)

Furthermore, the present stability analysis assumes elec-
trostatic perturbations with sufficiently high frequency
that |w/k — Bye|] > wvrp. and |w/k| > wre,, where
Vs = (2sz/’y§mb)1/2 and vp.., = (2Tez/mc)1/2 are
the characteristic axial thermal speeds of the beam ions and
the background electrons, respectively. Indeed, for present
purposes, we assume Gy(p.) = 8(p. — ywmpOpc) and
G.(p.) = 6(p.), which correspond to beam ions and back-
ground electrons that are ‘cold’ in the axial direction.
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The perturbed electric and magnetic fields, Eq(x), and
B1(x), can be expressed in terms of perturbed magnetic and
electric potentials A1 (x) and ¢1(x)

Bl(X) =V x Al(X)

E(z) =i (%) Ai(x) — Vi (x). (13)
Introducing the Lorentz gauge
VoA =i (2) 1) = 0 (14)

into the Maxwell equations, and using (12), the perturbed po-
tentials in (13) satisfy

VA = - () 2w

Vii(x) = — 4mpi(x) (15)

where p;(x) and J;(x) are the perturbed charge and current
densities, which must be determined self-consistently, and the
subscript L denotes transverse components. The perturbed cur-
rent density J,(x) contributed by the background plasma is
given by

J,(x) = o(r)E(x) = 0 [L (%) A(x) — v¢1<x)] (16)

where o(r) is the conductivity tensor of the background plasma
defined in (2).

The axial component J,. () of the perturbed current density
contributed by the background plasma is expressed as

Dty =i (2o [4a0 - (Z) 0] am

C

from (2) and (16) for the radial coordinate r satisfying r» < 7y
and J,,.(r) = 0 otherwise. The axial component A, (r) of the
perturbed magnetic potential satisfies

d1ld 47riwa|| ke
rarraa) + T2 [0 - )]
47
== ()50
= —47TZ1,€/31,7L1,1(7") (18)
for r < 7y and
d1ld
%;%TAzl(T) = 0 (19)

for r, < r < ry. Equations (18) and (19) are obtained from
(15) and (17). The perturbed current density .J,.(r) in (18) is
contributed by the ion beam. The background electrons may not
directly contribute into the perturbed current density, although
they may participate in generation of the perturbed current den-
sity J,,. of the background plasma. The perturbed ion-beam den-
sity np1(7) in (18) will be determined self-consistently.

The perturbed charge density p,(z) contributed by the
background plasma is related to the perturbed current density
J,(x) by the continuity equation —iwp, + V - J, = 0. For
the low-frequency long-wavelength perturbations satisfying
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(12), the perturbed charge density p,(x) contributed by the
background plasma can be expressed as

1 1
pp(x)=-Vi-01lAL+-Vi-0.Vid  (20)

from (16) and continuity equation. Making use of Lorentz gauge
in (14), we can show that the term proportional to A, in the
right-hand side (RHS) of (20) is negligibly small in comparison
with the term proportional to ¢ because of the low-frequency
perturbations. The corrections associated with this term is order
of (wry/c)?. Therefore, the perturbed electric potential ¢y (r) in
(15) satisfies

td 1 (14
rdr "

dmio L \ d
7))

i
_Ti? <1+ ”Z}‘”) d1(r) = —dme [Zynp (r)—ner ()] 21)
for r < 7, and

1d [ d 1

forry, < r < r1y.

The perturbed densities 741 (1) and n¢1 (r) in (21) of the beam
ions and background electrons can be obtained from the lin-
earized Vlasov equations for 6 F, and 6 F.. For example, the per-
turbed ion beam density n;(r) is calculated from

np1(r) = /d3p5Fb.

In (23), 0 F} is the perturbed ion beam distribution function cal-
culated by the method of the characteristics [1] which can be
expressed as [16]

(23)

0
6y (x,p,t) = ZbeGb(pz)aTJ_beO(HJ_b)

t

/

X / dt' PL v sp(x 1) (24)
Yoy

where use has been made of (12). Here, x’(¢') and p’(¢') are the

particle trajectories in the equilibrium field configuration that

pass through the phase space point (x, p) at time ¢’ = t.

We note from (24) that the time integral requires informa-
tion on the particle orbits in the equilibrium fields. A determi-
nation of the particle orbit in the equilibrium fields, generated
by the self-field potentials Uy(x) and ¢o(x) in (6), is difficult
for general equilibrium profiles. Moreover, (24) contains an in-
tegral over the unperturbed orbits of the (yet unknown) eigen-
function 61, which makes (18) and (21) generally intractable
analytically. This difficulty is fundamental, reflecting the fact
that individual particle orbits span the beam cross-section, com-
municating information about the perturbation from one value
of 7 to another. However, the particle motion in the equilibrium
field configuration generated by the step-function density pro-
file in (8) can be determined exactly and are given by [16]

:[;’(T) —_PL cos @ sinv;T 4 rcos cos v;T
Yimvs
, pL ) . )
y' (1) = ———sin psin v;T 4+ rsinf cosv;T (25)
ViV

where v; is the (depressed) betatron frequency defined in (10),
and 7 = t' — ¢ is the displaced time variable. The boundary
condition of the particle orbit are 2’/(7 = 0) = 2 = r cos 6 and
y' (1 = 0) = y = rsinf. The transverse momentum p is de-
fined by p1 = (p2+p2)'/2. The beam ions and the background
electrons execute the simple harmonic orbits described by (25)
over the beam cross-section.

In addition, the eigenfunctions (the perturbed potentials) of
the garden-hose perturbations in the step-function density pro-
file are linearly proportional to 7, forming the exact solution in
the beam interior (0 < 7 < r4) and generating dominant sur-
face perturbations [16]. In this regard, the perturbed electric po-
tential ¢ () and the axial component A (r) of the perturbed
magnetic potential are expressed as

T, 0<r<m
o
pr(r)=Ce{ =% py<r<ry, (26)
1-1%
b
and
T, 0<r<m
o
Az (r) = C —& n<rSTy @7)
respectively.

We now substitute the particle orbits in (25) and the eigen-
functions in (26) and (27) into (24) and obtain the perturbed
distribution function § F}, by calculating along the particle tra-
jectories. The perturbed ion-beam density ny1 (7) is eventually
calculated from (23). After carrying out a tedious but straight-
forward calculation, we obtain [16]

dm Zyerin (r) = xi [91() — Bodas ()] —B(r — 74)

Ty

(28)

where the ion susceptibility 1, is defined by

2
wpb

(W = kBpe)? — v’

The plasma frequency-squared wgb of the beam ions is defined
in (10). Similarly, the perturbed electron density n.; is calcu-
lated and given by [16]

Xb(w — kfBye) = (29)

1
drenet(r) = —xe(w)Pr (rb)r—bé(r — 1) (30)
where the electron susceptibility . is defined by
Ufwzb
Xe(w) = T—VZ (31

where 7 is defined by n = yp,my/Zyme and f = n./Zyny is
the fractional charge neutralization. Note that the perturbed ion
and electron densities in (28) and (30) vanish except at r = ry,
exhibiting surface perturbations.

Substituting (28) into (18), the axial component of the per-
turbed magnetic potential inside ion beam is determined from

47riwa||
dr rdr c?

= —xp [1(rp) — BpAz1(rp)]

Aaa(r) = u)

8(r —rp)
Tb

(32)
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for » < r,. We can also substitute (28) and (30) into (21) and
find that the perturbed electric potential ¢;(r) inside the ion
beam can be obtained from

4o |

%dii[ (HMZ,M)%%(”}‘%(” - >¢1<T>

= — [xs01(r) — Boxo A1 (rs) + Xe 1 (13)] (S(Tr—_b”’)

(33)

for r < ry. Equations (32) and (33) are the coupled eigenvalue
equations inside the beam.

The perturbed electric potential ¢; in (26) is continuous at
r = r,. However, its radial derivative is discontinuous at r = 7.
The remaining boundary condition relating ¢; and ¢, is ob-
tained by multiplying the eigenvalue equation (33) by r, inte-
grating across the surface of the ion beam from r = r(1 — ¢)
to r = rp(1 + ¢), and taking the limit ¢ — 0. Here ¢; is the
potential inside beam and ¢, is the potential outside the beam.
We then obtain

0 Tio 0
o], () 3],
= —[xs9(r) — BoxpAz1(re) + xedr(rs)] -

Equation (34) relates the discontinuity in the perturbed radial
electric field at » = 7}, to the perturbed charge density at the
surface of the ion beam. Substituting (26) into (34), the condi-
tion for a nontrivial solution (C. # 0) can be expressed as

(34)

4drio
< w = +2gf> ¢1 (Tb) =Xb [¢1 (Tb) _/BbAzl (rb)] +XF’,¢1 (Tb)
(35
where the geometrical factor g defined by

Ty 1

gy ( Tﬂ)) = 1 :_25
is order unity unless the wall radius approaches very close to
the beam radius. We remind the reader that the RHS of (35)
represents the perturbed surface charge that generates the radial
electric field inside the beam. The electric potential ¢, in the
left-hand side of (35) is the potential strength caused by this
surface charge. Note that the geometrical factor gy increases to
infinity, as the conducting wall approaches the beam radius. The
surface charge is, therefore, neutralized by an approaching con-
ducting wall, eliminating the perturbed electric potential. We
also note from (35) that the surface charge is also neutralized
by the high conductivity plasma of |47io, /w| > 1. The con-
ducting current again neutralizes the surface charge, deceasing
the electric field inside the beam.

The perturbed magnetic potential in (27) is not an exact so-
lution of the eigenvalue equation (32) because of the magnetic
decay term proportional to o11. However, (27) is a good solu-
tion by the variational approximation [19]. In order to find an
approximate dispersion relation which includes the influence of
the magnetic decay, we multiply (32) by rA.;(r) and integrate
over r from r = 0 to r = 7. It was shown in a previous study
[19] that if a trial function A; is substituted in the integrals, this
procedure gives a dispersion relation that is accurate to second
order in the error in A;. Thus, the procedure can be described
as a variational approximation, although it does not give a lower

(36)
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bound, because the differential operator is non-Hermitian. The
result is

297 A.1(1p) — 2iwTy [Az1(7“b) — (%) <Z>1(7”b)]

= Boxo [h1(r0) — BoAz1(mp)]  (37)
where the magnetic decay time 74 is defined by
1 7TUH7”§
Td = 5 2 (38)

which is essentially a decay time for the perturbed current.
We obtain the dispersion relation by eliminating ¢ (r;) and
A,1(rp) from (35) and (37). The resultant dispersion relation is

4o .
(ng + " L Xb — Xe> (29f + ﬂbe - QWTd)
= —Boxs(Bpxp — 2iT4kc)

which is one of the main results in this paper and can be used
to investigate stability properties of the electron-ion two-stream
instability in an intense ion beam over a broad range of system
parameters, including the plasma conductivity (470 /w), the
magnetic decay time 74 and fractional charge neutralization f.

(39)

IV. THE RESISTIVE-HOSE AND ELECTON-ION TWO-STREAM
INSTABILITIES

If the ion beam propagates through a tenuous background
electron cloud, the electron density is considerably less than the
ion density and, therefore, the transverse and longitudinal con-
ductivities may be negligibly small (47o, /w — Oand 74 — 0).
In this limit, the dispersion relation in (39) is simplified to

Xb
(29f - —2> (297 — Xe) = XbXe (40)
Yo
which is equivalently expressed as
w?y )
2 nfws,
2q; — s 20 — P
91 (w—kBpc)? — v [ 9T 1/2]
4
w
= e . @D

[(w = kBpe)? = 1] (w2 = v2)

e

In obtaining (41), use has been made of the ion and electron
susceptibilities in (29) and (31). Stability properties of the elec-
tron-ion two-stream instability described by the dispersion re-
lation in (41) has been extensively investigated in the previous
studies [16]. Particularly, influence of the fractional charge neu-
tralization caused by the electron cloud along the ion beam prop-
agation has been well documented. We, therefore, strongly urge
the reader to review [16].

It is instructive to investigate hose instability in limiting cases
by making use of the dispersion relation in (39). Let us assume
that the ion beam propagates through relatively high-density
neutrals. The beginning portion of the ion beam may ionize neu-
trals creating a high-density plasma and the later portion of the
beam may propagate through this high-density plasma channel.
Although the plasma electrons may be highly collisional with
neutrals, their density can be considerably higher than the ion
density. The electron plasma frequency is much higher than the
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ion plasma frequency. The typical oscillation frequency w is on
the order of the ion plasma frequency. Therefore, the ion beam
may propagate a high-conductivity plasma channel character-
ized by 4wo ) > |w|. Due to the high density of electrons, the
fractional charge neutralization f in (10) is unity and therefore,
the depressed betatron frequency v, of beam ions is obtained
from vf = w?,b + ﬂgwgb /2. In this limit, the dispersion relation
in (39) is simplified to

2 52
W B

2
5 42)
Q2 — l/l?

WwTq = g5 +
which is a typical dispersion relation of the resistive hose
instability obtained in the previous studies [19]. Here,
2 = w — kByc) is the Doppler-shifted frequency. In obtaining
(42), use has been made of the ion susceptibility in (29). We
recommend the readers to review the previous literatures [19]
for detailed stability properties of the resistive hose instability.
As mentioned earlier, the high transverse conductivity neutral-
izes the surface charge, eliminating the electric potential ¢4 (r)
in the eigenvalue equation (32), which can then be solved by
only one eigenfunction A.;(r). Therefore, the resistive hose
instability is fully described by the axial component of the
perturbed magnetic potential.

A finite size beam pulse is often required to propagate to a
target in practical applications. Although the beam head may be
at the target, the tail of the beam pulse may deviate from the
proposed path due to perturbations that are initiated at the beam
head and propagate through the beam pulse, growing during the
propagation. In the coordinate 7 defined by

z

Bre

represents the distance (in unit of Jyc) from the beam head to
position z. Then, the perturbed quantities in the beam are as-
sumed to vary according to exp[i(6 — 2z/8yc — wT)]. If each
beam segment in the beam pulse is taken to oscillate at a fixed
real axial wave number {2/ ¢, then w in (42) represent oscilla-
tion and growth (or damping) of the perturbation as one moves
backward from the head of the beam. Equation (42) determines
the dependence of w on 2 (assuming real). It is obvious from
(42) that the complex frequency w is purely imaginary for real
values of (2. Moreover, instability (Imw > 0) occurs only over
a bounded range of £2? satisfying

war By
29¢

The growth rate Imw approaches (unphysically) infinity as {22
approaches the betatron frequency squared from below, i.e.,
2% — 1,2, This occurs for the flattop density profile in (8) for
the choice of distribution function in (3), because all particles
in the beam are in resonance with the wave at this frequency.
Keep in mind from (10) and (25) that all beam particles in a
flattop density profile execute transverse oscillations at the
betatron frequency v, = const. defined in (10). Therefore,
choosing {2 = 1, would cause a very strong growth of the
perturbation that propagates from beam head to tail. For (more
physical) rounded beam profiles, however, the growth rate
for the resistive hose instability is finite [22] for any value of

(43)

T=1

vy < Q<2 (44)

{2 because the beam particles in these profiles oscillate with
different betatron frequencies determined by their position.

Influence of the plasma conductivity on the ion beam propa-
gation can be investigated by numerically analyzing (39) in gen-
eral. There are so many ways to investigate properties of the
ion beam propagation through a plasma channel. We, therefore,
urge the readers to investigate (39), customizing the physical pa-
rameters for their specified needs. However, we may investigate
properties of the resistive hose instability of ion beam propa-
gation in the remainder of this section as an example. Stability
properties of a finite beam pulse where the head perturbation
propagates toward tail as shown in (42) are investigated here.
After carrying out a straightforward algebraic manipulation, we
obtain

2
iwry = g5 + —ﬂb;b + K — il (45)

from (39) where the functions K and L are defined by

Bixi (295 —xb—Xe)
K= 2 " 5 (46)
(295 — xp — xe)? + (F£2+)
and
Buxo [2”{0& + keta(295 — xb — Xe)]

= 47)

(205 — xb — x)? + (422-)?

respectively. The growth rate w; = Imw and real oscillation
frequency w, = Rew are defined by w = w, + twj;, obtained
from the dispersion relation in (45), and given by

— K — 3%y,
wi = lmw = —w (48)
and
wr = Rew = —L (49)

respectively. Note from (46) and (47) that the functions K and
L approach zero, recovering (42), as the transverse conductivity
o increases to infinity, i.e., 0, — 00, as expected.

Equation (45) is a highly nonlinear equation of the complex
frequency w for given real values of (2. Thus, we introduce
the normalized physical parameter 47 | /w as a real transverse
conductivity parameter for convenience of the subsequent anal-
ysis, where (45) becomes a simple equation of the parameter
4mo, /w. The ion betatron frequency v, depends strongly to
the ion focusing force (wgp) provided outside as shown in (10).
We, therefore, assume wib / I/f = 1 as an example for pre-
sentation purpose. The ion kinetic energy determines the ion
beam velocity, which can be large or small depending on ex-
perimental conditions. We assume wﬁb [3,? / 21/3 = 0.05, saying
that 32 = 0.1. Assuming that the conducting tube wall is far
away from the propagating ion beam, the geometrical factor g5
can be given by gy = 1. The electron betatron frequency (v.)
can be any number depending on the system configuration. The
electron susceptibility . in (31) is a function of the electron fo-
cusing force (wg. ), the ion electron mass ratio (m; /m. ), and the
electron density, etc. Thus, The electron susceptibility . can be
very large or very small depending on the experimental condi-
tions, although the electron betatron frequency is much larger
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Fig. 1. Plots of the normalized growth rate w; 74 versus the normalized axial
wavenumber squared Q2 /2 obtained numerically from (46)—(49) for several
different values of the transverse conductivity parameter 470 | /w.

than the frequency w. For purpose of the present presentation,
we simply assume y. = 10. Note from (38) that the magnetic
decay time (74) can be any value, which can be large or small
depending on the plasma conductivity. However, it is assumed
that the magnetic decay time is given to be v,74 = 1 for pre-
sentation purpose. The resistive hose instability of the ion beam
propagation occurs at the high transverse conductivity in usual.
We, therefore, concentrate on high values of 470 | /w which are
much larger than unity for practical applications.

Introducing all these physical parameters into (46)—(49) and
carrying out numerical calculations, we obtain the normalized
growth rate w; 74 and the real oscillation frequency w, 74 which
are normalized by the magnetic decay time defined in (38).
Shown in Fig. 1 are plots of the normalized growth rate w;7q
versus the normalized axial wavenumber squared 2%/v2 ob-
tained numerically from (46)—(49) for several different values
of the transverse conductivity parameter 470 | /w. Note that the
growth rate for 470 | /w = oo in Fig. 1 is also identical to the
result from (42), thereby increasing to infinity as the param-
eter ?/v approaches unity as mentioned earlier. Remember
that the perturbation grows only when w;74 > 0. The growth
rate and the region where instability occurs in the parameter
space of ?/v deceases considerably as the transverse con-
ductivity decreases from infinity. When the beam pulse segment
moves sideway, the self magnetic field accompanying the seg-
ment stays where it was in the infinite transverse conductivity
channel due to the mechanism of magnetic field frozen in an in-
finite conducting material. Therefore, the magnetic field pulls
back the side stepped beam segment, overshooting it and im-
posing the perturbation growth. In this case, the beam pulse
acts like a rigid body. However, some of the magnetic field
lines may slip through the plasma channel following the side
stepped beam segments in the case of the finite transverse con-
ductivity. Therefore, the restoring force due to the remaining
magnetic field may decreases and the perturbation growth may
also reduce. This is why the growth rate deceases as the trans-
verse conductivity decreases. Fig. 2 present plots of the nor-
malized real oscillation frequency w, 74 versus the normalized
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Fig. 2. Plots of the normalized real oscillation frequency w,7, versus the
normalized axial wavenumber squared 22/ obtained numerically from
(46)—(49) for several different values of the transverse conductivity parameter
dro | Jw.

axial wavenumber squared Q7 /1 obtained numerically from
(46)—(49) for several different values of the transverse conduc-
tivity parameter 470 /w. The real oscillation frequency w,74
is zero as expected for 470 /w = oco. Otherwise, the real os-
cillation frequency is nonzero for a finite value of the transverse
conductivity.

V. CONCLUSION

We have developed an instability theory of a propagating
ion beam through a plasma medium assuming that the trans-
verse conductivity of the background plasma can change from
zero to infinity. Basic assumptions and equilibrium properties of
an intense ion beam propagating through a background plasma
were presented in Section II, assuming that the beam ions are
in monochromatic. The background plasma provides a conduc-
tivity tensor, which has transverse and longitudinal elements.
Stability analysis was carried out in Section III in terms of the
transverse conductivity o . Coupled eigenvalue equations (32)
and (33) were obtained for the flat-top density profiles of beam
ions and plasma electrons. The dispersion relation [see (39)]
of the transverse instability in an intense ion beam propagating
through a background plasma was derived in Section III, which
is one of the main results in this paper and can be used to in-
vestigate stability properties of the electron-ion two-stream in-
stability in an intense ion beam over a broad range of system
parameters, including the plasma conductivity (470 /w), the
magnetic decay time 74 and fractional charge neutralization f.
Finally, it was shown in Section IV that the obtained disper-
sion relation recovers the previous one of the electron-ion two-
stream instability in the limit of 0; — 0. On the other hand,
the dispersion relation of the resistive-hose instability is recov-
ered when o0, — oo. Influence of the finite transverse con-
ductivity on the resistive hose stability properties were briefly
investigated in Section IV for a finite pulse size of the ion beam
propagating through a plasma channel. As expected, growth rate
of the resistive hose instability in an ion beam decreases consid-
erably as the transverse conductivity decreases from infinity.
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