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In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally
compress the beam bunches by a large factor after the acceleration phase. Because the space-charge
force increases as the beam is compressed, the beam size in the transverse direction will increase in a
periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is
needed to confine the beam in the transverse direction, and a nonperiodic quadrupole lattice along the
beam path is necessary. In this paper, we describe the design of such a focusing lattice using the
transverse envelope equations. A drift compression and final focus lattice should focus the entire beam
pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices
of the beam may have different perveance and emittance. Four time-dependent magnets are introduced
in the upstream of drift compression to focus the entire pulse onto the same focal spot. Drift
compression and final focusing schemes are developed for a typical heavy ion fusion driver and for
the integrated beam experiment being designed by the Heavy Ion Fusion Virtual National Laboratory.
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I. INTRODUCTION

In the currently envisioned configurations for heavy ion
fusion (HIF), it is necessary to longitudinally compress
the beam bunches by a large factor after the acceleration
phase and before the beam particles are focused onto the
fusion target. In order to obtain enough fusion energy
gain, the peak current for each beam is required to be of
the order of 103 A, and the bunch length to be as short as
0.5 m. However, to deliver the beam particles at the
required energy, it is technically challenging to accelerate
short bunches at high current. Because of the finite rise
time of the accelerating waveform, it is more tractable to
accelerate and transport beam bunches longer than 10 m.
In addition, short bunches have higher current (density)
and therefore stronger space-charge effects which can
increase the beam emittance and induce halo particle
production.

The objective of drift compression [1–12] is to com-
press a long charge bunch after acceleration by imposing a
negative longitudinal velocity tilt over the length of the
beam in the beam frame. As a result, the bunch length is
reduced as the beam drifts downstream, until the space-
charge force in the longitudinal direction becomes strong
enough to remove the initial velocity tilt. Different lon-
gitudinal compression schemes have been studied. In
Haber’s study [2] and de Hoon et al.’s recent study [7,8],
for example, the line density is uniform in the middle of
the pulse but falls off at the ends, whereas in other recent
1098-4402=04=7(10)=104201(7)$22.50 
studies [6,9–12], the line density is parabolic over the
length of the pulse. Recently, a warm-fluid model has
been developed to study the longitudinal dynamics of the
drift compression [9,10]. It was shown that a self-similar
solution with parabolic density profile can be used for
drift compression, and a pulse shaping technique has also
been demonstrated so that any initial pulse shape can be
shaped into a parabolic one which can then be self-
similarly compressed. Because the space-charge force
increases as the beam is compressed, the beam size in
the transverse direction will increase in a periodic quad-
rupole lattice. If an active control of the beam size is
desired, a larger focusing force is needed to confine the
beam in the transverse direction, and a nonperiodic
quadrupole lattice along the beam path is necessary. In
this paper, we describe the design of such a focusing
lattice along with the final focusing magnets which will
focus the beam onto the target. Because the beam pa-
rameters are evolving and the lattice is nonperiodic, the
concept of a ‘‘matched’’ beam is not well defined.
However, if the nonperiodicity is relatively weak, we
can still find ‘‘adiabatically matched’’ solutions.
Another important issue is that the drift compression
and final focus lattice should work for the entire pulse,
which may have different perveance and emittance for
different slices. In particular, different slices should be
focused onto the same focal spot at the target. This is very
difficult with a fixed lattice. One solution is to use a time-
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dependent lattice which provides different focusing
strength for different slices of the beam pulse [13]. We
demonstrate that the entire pulse can be drift compressed
and focused onto the same spot on the target by using four
time-varying quadrupole magnets at the very beginning
of the drift compression.

Two sets of beam parameters will be used in the
present study, while the general methods are applicable
to other parameter regimes and application areas. The
first set of beam parameters is for a typical heavy ion
fusion driver, where we consider a Cs� beam with rest
mass m � 132:9 a:u:, kinetic energy ��� 1�mc2 �
2:43 GeV, and initial beam half length zb0 � 5:85 m.
Our goal is to compress the beam by a factor of 21:8,
i.e., zbf � zb0=21:8 � 0:268 m. The initial peak current is
I0 � 103:4 A. The second set of beam parameters is for
the integrated beam experiment (IBX) currently being
designed by the Heavy Ion Fusion Virtual National
Laboratory. In the IBX, a K� beam with rest mass m �
39:1 a:u: is accelerated to 6 MeV kinetic energy. The
initial beam half length is zb0 � 0:68 m before the drift
compression, and the initial peak current is I0 � 0:563 A.
The final beam half length is zbf � 0:068 m after the
drift compression.

This paper is organized as follows. In Sec. II, we briefly
review the self-similar parabolic longitudinal drift com-
pression scheme developed using a set of one-
dimensional warm-fluid equations [9,10]. In Sec. III, a
nonperiodic lattice for drift compression is designed
along with the final focus magnets. Four time-dependent
magnets at the upstream of drift compression are used so
that the entire pulse can be focused onto the same focal
point. In both Secs. II and III, we will use the set of beam
parameters for a typical heavy ion fusion driver to dem-
onstrate the basic approach and methods. The same ap-
proach is then applied to the IBX drift compression
design in Sec. IV.
II. LONGITUDINAL DYNAMICS

In Refs. [9,10], a one-dimensional warm-fluid model
was developed to describe the longitudinal dynamics of
drift compression. For the longitudinal electric field, the
conventional g-factor model is used with eEz �
��ge2=�2�@�=@z and g � 2 ln�rw=rb�. Here, e is the
charge, ��t; z� is the line density, rw is the wall radius,
and rb is the beam radius. In the space-charge-dominated
regime, the g-factor model adopted here is consistent with
the result recently derived by Davidson and Startsev [14].
We also allow for an externally applied focusing force
Fz � ��zz. In the beam frame, the warm-fluid equations
for the line density ��t; z�; longitudinal velocity vz�t; z�,
and longitudinal pressure pz�t; z� are given by [9,10]

@�
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��vz� � 0; (1)
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We treat g and rb as constants for present purposes.
Among all the self-similar solutions [9] admitted by the
nonlinear hyperbolic partial differential equation system
(1)–(3), the parabolic self-similar solution is the most
suitable for the purpose of drift compression. This solu-
tion has the form of
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Following the derivation in [9], we obtain the familiar
longitudinal envelope equation

d2zb
ds2
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1

z3b
� 0; (6)

where s � �ct is the normalized time variable, Kz �
3Nbe

2g=2m�5�2c2 is the effective longitudinal self-field
perveance, and "l � �4r2bW=m�

3�2c2Nb�1=2 is the longi-
tudinal emittance. Here, W � z2bpzb � const. In the drift
compression scheme considered in this section for a typi-
cal heavy ion fusion driver, the longitudinal emittance is
taken to be "l � 1:0� 10�5 m, and Kz � 2:88� 10�5 m,
corresponding to an initial peak current I0 � 103:4 A,
final half bunch length zbf � 0:268 m, and g � 0:81. Of
course, it is desirable to minimize the initial velocity tilt
and the beam path length for the drift compression.
However, smaller velocity tilt implies longer path length,
which is obvious from the first integral of Eq. (6). In
practice, it is necessary to study the trade-off between
the velocity tilt and the beam path length. A detailed
study of this subject can be found in Ref. [9]. After
carefully balancing these competing factors, we choose
to impose an initial longitudinal focusing force for s <
150 m so that the beam acquires a velocity tilt z0b �
�0:0143 at s � 150 m. The axial beam half length
zb�s�; obtained numerically from the longitudinal enve-
lope equation (6), is plotted together with the velocity tilt
z0b�s� in Fig. 1. The total beam path length is sf � 502 m.
III. TRANSVERSE DYNAMICS

For each slice in a bunched beam, the transverse dy-
namics in a quadrupole lattice is described approximately
by the transverse envelope equation:
104201-2



FIG. 1. Longitudinal drift compression of a heavy ion fusion beam.
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where K�s; z� � 2e2�b�s�	1� z2=z2b�s�
=m�
3�2c2zb�s� is

the effective perveance. Here z is the longitudinal coor-
dinate for different slices, and it enters the equations only
parametrically. Because K�s; z� is an increasing function
of s, it is necessary to increase the strength of the quad-
rupole lattice coefficient �q�s� along the beam path to
actively control the expansion of the beam radius. Since
the beam parameters are evolving and the quadrupole
lattice is not periodic, the concept of a matched beam is
not well defined. However, if the nonperiodicity is small,
that is, if the quadrupole lattice changes slowly along the
beam path, we can seek an adiabatically matched beam
which, by definition, is locally matched everywhere.

We describe the design of a nonperiodic lattice which
provides the required control of the beam radius when the
beam is compressed, and equally important, minimizes
the possibility of global mismatch. The designed drift
compression and final focus lattice should apply for all
of the slices in the bunched beam. In particular, each slice
of the beam needs to be focused onto the same spot at the
target. A fixed lattice designed for one slice of the beam
(e.g., the central slice at z � 0) will not focus other slices
onto the same spot. Actually, most of the other slices
cannot be focused at all due to their different perveance
and emittance. We show that the goal can be achieved by
designing a drift compression and final focus lattice for
the central slice �z � 0�, and then replacing four quadru-
pole magnets at the beginning of the drift compression by
four time-dependent magnets whose strength varies
104201-3
around the design value for the central slice. The time-
dependent magnets essentially provide a slightly different
focusing lattice for different slices.

First, we design the drift compression and final focus
lattice for the central slice z � 0.We assume that a lattice,
which keeps both the vacuum phase advance and de-
pressed phase advance constant, may have advantages
with respect to the transverse dynamics. Lee [4] derived
the expressions for the vacuum phase advance %v and
depressed phase advance % given by
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�
1�

2&
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�
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�
2
L4; (9)

%2 � 2�1� cos%v� � K
�
2L
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�
2
: (10)

Here, & is the filling factor, L is the half lattice period, B0

is field gradient of the magnets, and hai is the average
beam radius. Assuming & 1; we obtain
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2
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�
2
� const; (11)

for constant vacuum phase advance and constant de-
pressed phase advance. For the drift compression scheme
considered here for a typical heavy ion fusion driver,
Kf=K0 � 21:8. If we allow hai to increase by a factor of
2:33, i.e., haif=hai0 � 2:33, we obtain Lf=L0 � 1=2, and
�&B0�f=�&B

0�0 � 4. We determine K�s� from the solution
of the longitudinal envelope equation. The value of hai is
determined from the solutions to Eqs. (7) and (8). For the
lattice design, we need to specify &, B0, and L. If we
choose Li � L0 exp	��ln2�si=sf
, and B0

i � const, then
from Eq. (11), &i � &0 exp	�ln4�si=sf
, where si �Pi�1
j�0 Lj. We choose the exponential form for the non-

periodic lattice parameters to uniformly distribute the
required variation of the lattice parameters according to
their amplitudes. Other variation schemes may be effec-
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tive too, as long as they are smooth enough. We also
choose self-consistently the following system parame-
ters: vacuum phase advance %v � 72�, magnetic field
gradient B0

i � 31:70 T=m, initial half lattice period L0 �
6:72 m, and initial filling factor &0 � 0:0725. The focus-
ing strength of each magnet is �̂ � 0:38 m�2. Let N
denote the total number of quadrupole magnet sets.
From sf �

PN�1
j�0 Lj, we obtain N � 53. The lattice de-

sign is illustrated in Fig. 2 together with the solutions to
Eqs. (7) and (8). After determining the nonperiodic lat-
tice layout, we search iteratively for the adiabatically
matched solutions to Eqs. (7) and (8). The solutions
plotted in Fig. 2 are adiabatically matched because the
envelope is locally matched and contains no oscillations
other than the local envelope oscillations. On the global
scale, the beam radius increases monotonically. From the
numerical solution shown in Fig. 2, the average beam size
increases by a factor of 2, which agrees with the design
assumption.

The final focus magnets, consisting of four quadrupole
magnets with different strength, will make the envelope
converge in both directions at the exit from the final
focusing magnet (i.e., both a0 and b0 are negative). Right
after the final focusing magnet, the beam enters a neu-
tralization chamber where the space-charge force is neu-
tralized and the beam is focused onto a focal point at

zfol � �
a

@a=@s

��������s�sff� �
b

@b=@s

��������s�sff ; (12)

where zfol is the distance between the focal point and the
FIG. 2. Envelope dynamics for the central slice with z � 0.
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exit of the last final focus magnet, and sff is the distance
from the beginning of the drift compression to the exit of
the last final focus magnet. It is necessary that a=�@a=@s�
and b=�@b=@s� have the same value at s � sff such that
a focal point exists. The transverse spot size measured
by the envelope amplitudes at the focal point afol and bfol
is determined by the emittance and incident angle at
s � sff ,

afol �
"x
@a=@s

��������s�sff ; bfol �
"y
@b=@s

��������s�sff : (13)

For the central slice z � 0; we obtain

zfol � 5 m; afol � bfol � 1:2 mm: (14)

The required gradient strength for the four final focusing
magnets is obtained by a four-dimensional root-
searching algorithm.

For other slices �z � 0�; our objective is to manipulate
the beam and the magnets so that the beam pulse can be
focused onto the same focal point with the same or
smaller spot size,

zfol � 5 m; afol � bfol & 1:2 mm: (15)

To begin with, we notice that, in a fixed lattice, the
following scaling holds

K ! ,2K; a! ,a; b! ,b; (16)

if the emittance is negligible or scales as "! ,2". For
the line density profile

��s; z� � �b�s�	1� z
2=z2b�s�
;

the solution to the transverse envelope equations for all of
the slices can be scaled down from that of the central slice
according to

a�s; z�
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0
BBB@
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provided the emittance is negligibly small or scales with
the perveance according to �"x; "y� / 1� z2=z2b�s�.
However, the emittance in general is small but not negli-
gible, and does not scale with the perveance. This implies
that requirement (15) cannot be satisfied. In fact, during
adiabatic drift compression or pulse shaping for an ini-
tially isothermal beam, the emittance scales with the
beam size, i.e., "x / aand "y / b. In this paper, we as-
sume that the initial emittance scales with the beam size,
and that for each longitudinal slice the normalized emit-
tance is conserved during the drift compression and final
focus. Therefore, the scaling in Eq. (17) and the require-
ment in Eq. (15) are not satisfied.

One solution to this difficulty is to vary the strength of
four magnets in the very beginning of the drift compres-
sion for different z such that the desired scaling holds at
104201-4
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the end of the last magnet �s � sff�,

a�s � sff ; z�
b�s � sff ; z�

@a�s � sff ; z�=@s
@b�s � sff ; z�=@s

0
BBB@

1
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��������������������������������������
1� z2=z2b�s � sff�

q a�s � sff ; 0�
b�s � sff ; 0�

@a�s � sff ; 0�=@s
@b�s � sff ; 0�=@s

0
BBB@

1
CCCA: (18)
Combined with Eqs. (12) and (13), Eq. (18) will guaran-
tee satisfaction of the requirement in Eq. (15). It is a
viable solution because the emittance and therefore the
departure from the desired scaling is small. Numerically,
the necessary variation of the strength of the magnets is
found by a four-dimensional root-searching algorithm.
Shown in Fig. 3 are the dynamics of a�s; z� and b�s; z� for
z=zb�s� � 0:96;when the strength of the 3rd, 5th, 7th, and
9th magnets is modified to satisfy Eq. (18). The initial
conditions are taken to be those in Eq. (17). As evident for
the figure, small perturbations in the strength of the
magnets introduce a small envelope mismatch in such a
way that Eq. (18) is satisfied at s � sff . We note that a
similar scaling does not exist for 0< s < sff . Plotted in
Fig. 4 is the gradient strength of the 3rd, 5th, 7th, and 9th
magnets as functions of z which are able to focus the
entire beam onto the same focal point with the same
spot size. As mentioned before, for the case shown in
Figs. 3 and 4 we have assumed "x � "y /

��������������������������
1� z2=z2b�s�

q
,

which is not a necessary condition for this method to
work. In principle, we can use this method to correct any
FIG. 3. Envelope dynamics for the slice near the front end of
the beam pulse with z=zb�s� � 0:96.
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deviation from Eq. (18) due to any possible mechanism,
such as momentum spread and magnet imperfections.

IV. DRIFT COMPRESSION FOR THE IBX

The objective of the integrated beam experiment pro-
posed by the Heavy Ion Fusion Virtual National
Laboratory [15] is to investigate heavy ion fusion beam
physics in an integrated manner using a scaled-down
system. In particular, it is proposed to use IBX to study
the drift compression physics, which is a necessary com-
ponent in a heavy ion fusion driver. The ion beam used in
IBX is a K� beam with 6 MeV kinetic energy. The initial
beam half length is zb0 � 0:68 m, and the initial peak
current is I0 � 0:563 A. The final beam half length is
zbf � 0:068 m after drift compression.

For the longitudinal dynamics, after balancing the
needs of reducing the beam path length and minimizing
the initial velocity tilt, we have chosen the initial velocity
tilt to be z0b0 � �0:0621. The numerical solution of the
longitudinal envelope equation (6) is plotted in Fig. 5. In
this design, the beam path length is sf � 11:68 m. The
initial velocity tilt chosen here is considerably larger than
that for the heavy ion fusion driver discussed in Sec. II. To
minimize the cost of the IBX, it is required to design a
drift compression scheme with beam path length in the
range of 10 m or so.

For the transverse lattice, we choose to use a constant
FODO lattice to reduce the cost and complexity. This is a
reasonable design because the longitudinal compression
ratio is 10, and according to Eq. (11), the beam size will
increase by a modest factor of 3.16, i.e., haif=hai0 � 3:16.
FIG. 4. Strength of the 3rd, 5th, 7th, and 9th magnets as
functions of z.
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FIG. 5. Longitudinal drift compression of an IBX beam pulse.
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Other system parameters are vacuum phase advance
%v � 30�, magnetic field gradient B0

i � 20 T=m, half
lattice period L � 0:39 m, and filling factor & � 0:375.
The numerical solutions of the transverse envelope equa-
tions are plotted in Fig. 6 for the central slice (z � 0),
from which it is obvious that the average beam size
increases by a factor close to 3.16, agreeing with the
design assumption. We note that the long-bunch approxi-
mation is valid almost everywhere except at the very end
of the drift compression, where the longitudinal size is
comparable to the transverse size, and the g-factor model
may need correction in this small region. Also plotted in
Fig. 6 is the beam envelope during the final focus. Here,
we have designed a two-magnet final focusing system to
FIG. 6. Envelope dynamics for the central slice with z � 0.
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minimize the cost. The final focal point and focal size are
determined from Eqs. (12) and (13). For the central slice,
these parameters are

zfol � 1:61 m; afol � bfol � 2:95 mm: (19)

For other slices �z � 0�, we apply the same method dis-
cussed in Sec. III to design a lattice with four time-
varying magnets in the upstream of the drift compression
to focus the entire beam pulse onto the same focal point
with the same or smaller spot size. As an example, the
numerical solutions for the beam envelopes are shown in
Fig. 7 for a slice near the beam front end with z=zb�s� �
0:96, where the gradient strength of the 3rd, 4th, 5th, and
FIG. 7. Envelope dynamics for the slice near the front end of
the beam pulse with z=zb�s� � 0:96.
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FIG. 8. Strength of the 3rd, 4th, 5th, and 6th magnets as
functions of z.
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6th magnets is modified in such a way that Eq. (18) is
satisfied. Plotted in Fig. 8 is the gradient strength of the
3rd, 4th, 5th, and 6th magnets as functions of z=zb�s�
which are able to focus the entire beam onto the same
focal point with the same spot size.

V. CONCLUSION AND FUTURE WORK

We have studied the transverse dynamics of heavy ion
beams during the drift compression and final focus
phases. To accommodate the significant increase of space
charge during the drift compression, a nonperiodic lattice
is designed so that it is possible to actively control the
transverse size of the beam. Different slices of the beam
may have different perveance and emittance, which
makes it impossible to design a fixed drift compression
and final focus lattice for the entire beam. Four time-
dependent magnets are introduced in the upstream of the
drift compression to focus the entire beam pulse onto the
same focal spot. The nonperiodic, time-dependent lattice
design in the present paper, combined with the longitu-
dinal drift compression scheme developed in Refs. [9,10],
provide the elements of a leading-order drift compression
scheme. The next-step investigation will be focused on
second-order effects, such as emittance growth during
drift compression, and the coupling between longitudinal
and transverse dynamics. Large-scale particle simulation
studies will help us to identify important higher-order
104201-7
effects and develop modifications to the leading-order
design. New results in these areas will be reported in
the future.
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