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Abstract

The longitudinal dynamics of drift compression and pulse shaping for a space-charge-dominated

heavy ion fusion beam is studied. A non-periodic quadrupole lattice is designed for a beam under-

going drift compression, and an adiabatically-matched solution is found for the transverse envelope

equations in the non-periodic lattice.
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I. INTRODUCTION

In the currently envisioned configurations for heavy ion fusion, it is necessary to longi-

tudinally compress the beam bunches by a large factor after the acceleration phase [1]. In

this paper, we first study the longitudinal dynamics of drift compression and pulse shaping

using a one-dimensional warm-fluid model. A parabolic self-similar drift compression solu-

tion is given, and it is demonstrated that an arbitrary pulse shape can be shaped into a

parabolic one by imposing an appropriate velocity distribution. Because the space-charge

force increases as the beam is compressed, a larger focusing force is needed to confine the

beam in the transverse direction. It is necessary to have a non-periodic quadrupole lattice

along the beam path. In this paper, we also describe the design of such a focusing lattice,

in which we search for adiabatically-matched solutions of the transverse envelope equations.

The following set of beam parameters typical of heavy ion fusion are used in the present

study. We consider a Cs+ beam with rest mass m = 133 mp, where mp is the proton rest

mass, kinetic energy (γ − 1)mc2 = 2.5 GeV, and initial beam length zb0 = 9.5m. Our goal

is to compress the beam by a factor of 16, i.e. , to zbf = zb0/16 = 0.6m.

II. LONGITUDINAL DYNAMICS

We use a one-dimensional warm-fluid model to describe the longitudinal dynamics of drift

compression. For the longitudinal electric field, the conventional g-factor model is adopted

with eEz = − (ge2/γ2) ∂λ/∂z and g = 2 ln (rw/rb). Here, e is the charge, λ(t, z) is the

line density, rw is the wall radius, and rb is the average beam radius. We also allow for an

externally applied focusing force Fz = −κzz. In the beam frame, the warm-fluid equations

for the line density λ(t, z), longitudinal velocity vz(t, z), and longitudinal pressure pz(t, z)

are given by

∂λ

∂t
+

∂

∂z
(λvz) = 0 , (1)

∂vz

∂t
+ vz

∂vz

∂z
+

e2g

mγ5

∂λ

∂z
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mγ3
+

r2
b

mγ3λ

∂pz

∂z
= 0 , (2)

∂pz

∂t
+ vz

∂pz

∂z
+ 3pz

∂vz

∂z
= 0 . (3)

We treat g and rb as constants for present purposes. Among all the self-similar solutions [2]

admitted by the nonlinear hyperbolic PDE system (1) , (2) and (3), the parabolic self-similar
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solution is the most suitable for the purpose of drift compression, and it has the form of

λ(t, z) = λb(t)

(
1 − z2

z2
b (t)

)
, vz(t, z) = −vzb(t)

z

zb(t)
, (4)

pz(t, z) = pzb(t)

(
1 − z2

z2
b (t)

)2

,
dzb(t)

dt
= −vzb(t). (5)

Following the derivation in [2], we obtain the familiar longitudinal envelope equation

d2zb

ds2
+

κz

mγ3β2c2
zb −Kl

1

z2
b

− ε2
l

1

z3
b

= 0, (6)

where s = βct is the normalized time variable, Kl ≡ 3Nbe
2g/2mγ5β2c2 is the effective

longitudinal self-field perveance, and εl ≡ (4r2
bW/mγ3β2c2)

1/2
is the longitudinal emittance.

From Eq. (6), the beam path length required for drift compression can be expressed as [3]

sf = −
∫ zbf

zb0

dzb√
z′2

b0 − 2Kl(
1
zb
− 1

zb0
) − ε2

l (
1
z2
b
− 1

z2
b0

)
. (7)

In the drift compression scheme considered in this paper, the longitudinal emittance is taken

to be εl = 7.7 × 10−6 m, and Kl = 1.3 × 10−4 m, corresponding to an average final current

〈If 〉 = 2500A, zbf = 0.6m, and g = 2.0. Assuming z′
b0 = −0.025, we obtain sf = 376m by

evaluating the integral in Eq. (7), and z′
bf = −0.0145 from the first integral of Eq. (6). The

axial beam size zb(s), obtained numerically from the longitudinal envelope equation (6),

is plotted together with the velocity tilt z′
b(s) in Fig. 1. The parabolic self-similar drift
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FIG. 1: Longitudinal drift compression of a heavy ion fusion beam.

compression solution described here requires the initial beam pulse shape to be parabolic.

However, the beam pulse shape is generally not parabolic after the acceleration phase in

practical accelerator applications. It is necessary to shape the beam pulse into a parabolic
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form in the upstream before imposing a velocity tilt. The pulse shaping problem can be

posed as finding the initial velocity distribution V (z) ≡ vz(t = 0, z) such that a given initial

pulse shape Λ(z) ≡ λ(t = 0, z) evolves into a given final pulse shape ΛT (z) ≡ λ(t = T, z)

at time t = T . For the heavy ion fusion beams currently considered, the pressure effects,

external axial focusing, and the axial space-charge effects can be neglected in the upstream

region. In this case, the fluid equations can be solved by integrating along characteristics or

using Lagrangian coordinates. Following the derivation in [2], the solution for λ(t, z) is

λ(t, z) =
Λ(ξ)

1 + V ′(ξ)t
, (8)

where ξ is Lagrangian coordinates defined by z = ξ +V (ξ)t . For the pulse shaping problem,

the final line density profile ΛT (z) ≡ λ(t = T, z) is specified. We therefore obtain

ΛT (U)dU = Λ(ξ)dξ , (9)

where U(ξ) ≡ ξ + V (ξ)T , and V (ξ) is determined by solving Eq. (9) for U(ξ) for the given

functional forms of ΛT (z) and Λ(z), and with the appropriate boundary conditions. As an

example, we consider the case where Λ(z) = 1− zm (0 ≤ z ≤ 1 ) and ΛT (z) = (1− zn)m(n+

1)/n(m + 1 ) (0 ≤ z ≤ 1 ). Here, m, n 6= −1, and the coefficient m(n + 1)/n(m + 1) in the

expression for ΛT (z) assures the conservation of the total number of particles. Equation (9)

can integrated to give [
U(ξ) − U(ξ)n+1

n + 1

]
m(n + 1)

n(m + 1)
= ξ − ξm+1

m + 1
. (10)

The parabolic self-similar drift compression solution corresponds to n = 2. For large value of

m � 1, Λ(z) has a flat-top shape with a fast fall-off near the ends of the pulse. The solution

of Eq. (10) then gives the initial velocity distribution V (z) necessary to shape a flat-top

bunched beam into a parabolic shape, which can be self-similarly compressed after imposing

a linear velocity tilt. In Fig. 2, ΛT (z) = (15/11)(1 − z2) and Λ(z) = 1 − z10, corresponding

to n = 2 and m = 10, are plotted versus z, together with V (z).
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FIG. 2: Initial pulse shape Λ(z) = 1−z10 and final pulse shape ΛT (z) = (15/11)(1−z2) are plotted

in (a). The initial velocity profile V (z) is given by Eq. (10) and is plotted in (b).

III. TRANSVERSE DYNAMICS

For a long charge bunch, the transverse dynamics in a quadrupole lattice is described

approximately by the transverse envelope equations

d2a

ds2
+ κqa − 2K(s)

a + b
− ε2

x

a3
= 0, (11)

d2b

ds2
− κqb− 2K(s)

a + b
− ε2

y

b3
= 0, (12)

where K(s) ≡ 2Nbe
2/mγ3β2c2zb(s) is the effective perveance. Because K(s) is an increasing

function of s, it is necessary to increase the strength of the quadrupole lattice coefficient

κq(s) along the beam path to reduce the expansion of the beam radius. Since the quadrupole

lattice is not periodic, the concept of a matched beam is not well defined. However, if the

the non-periodicity is small, that is, if the quadrupole lattice changes slowly along the beam

path, we can seek an adiabatically-matched solution which, by definition, is locally matched

everywhere. On the other hand, for the problem of drift compression, we describe the design

of a non-periodic lattice which provides the required control of beam radius when the beam

5



280 300 320 340 360
-2

-1

0

1

2

3

200 220 240 260 280
-2

-1

0

1

2

3

100 120 140 160 180
-2

-1

0

1

2

3

0 20 40 60 80
-2

-1

0

1

2

3
a s a( )/ ( )0b s b( )/ ( )0

a( ) .0 7 2= cm b( ) .0 5 8= cm

s(m)

sq( )/ ˆκ κ

FIG. 3: Adiabatically-matched envelope solutions in a non-periodic lattice for a heavy ion fusion

beam under drift compression.

is compressed, and equally importantly, minimizes the possibility of global mismatch. It is

intuitive that a lattice, which keeps both the vacuum phase advance and depressed phase

advance constant, is less likely to induce beam mismatch. Lee, et al [4], have derived the

expressions for the vacuum phase advance σv and depressed phase advance σ for a periodic

step-function (FODO) lattice given by

2(1 − cos σv) = (1 − 2η

3
)η2

(
B ′

[Bρ]

)2

L4, (13)

σ2 = 2(1 − cos σv) − K

(
2L

〈a〉
)2

. (14)

Here, η is the filling factor, L is the lattice period, B ′ is field gradient of the magnets, and

〈a〉 is the average beam radius. Assuming η � 1, we obtain

η2(
B ′

[Bρ]
)2L4 = const., K(

2L

〈a〉)
2 = const., (15)

for constant vacuum phase advance and constant depressed phase advance. For the drift

compression scheme considered here, Kf/K0 = 16. If we allow 〈a〉 to increase by a factor
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of 2, i.e., 〈a〉f / 〈a〉0 = 2, we obtain Lf/L0 = 1/2, and (ηB ′)f/(ηB ′)0 = 4. We determine

K(s) from the solution of the longitudinal envelope equation. The value of 〈a〉 is determined

from the solutions to Eqs. (11) and (12). For the lattice design, we need to specify η, B ′,

and L. If we choose Li = L0 exp [− (si/sf ) ln 2] , and B ′
i = const., then from Eq. (15),

ηi = η0 exp [(si/sf ) ln 2] , where si =
∑i−1

j=0 Lj . We also choose self-consistently the following

system parameters: σv = 72 ◦, B ′
i = 31.70T /m, L0 = 6.72m, and η0 = 0.036. The focusing

strength of each magnet is κ̂ = 0.38m−2 . Let N denote the total number of quadrupole

magnet sets. From sf =
∑N−1

j=0 Lj , we obtain N = 40. The lattice design is illustrated in

Fig. 2 together with the solutions to Eqs. (11) and (12). After determining the non-periodic

lattice layout, we search iteratively for the adiabatically-matched solutions to Eqs. (11) and

(12). An adiabatically-matched solution is plotted in Fig. 2. It is adiabatically-matched

because the envelope is locally matched and contains no oscillations other than the local

envelope oscillations. On the global scale, the beam radius increases monotonically. From

the numerical solution shown in Fig. 2, the average beam size increases by a factor of 2,

which agrees with the design assumption. Currently, well-behaved adiabatically-matched

solutions are obtained by using an intuitive trial-and-error approach [3]. A recently derived

equation for the average beam envelope in non-periodic lattices will provide a systematic

understanding of the adiabatically-matched solutions [5].

IV. CONCLUSIONS

In this paper, we have studied the longitudinal dynamics of drift compression and pulse

shaping for a space-charge-dominated heavy ion fusion beam using a one-dimensional warm-

fluid model. A non-periodic quadrupole lattice configuration has been designed for a beam

undergoing drift compression with fixed vacuum phase advance and depressed phase advance.

An adiabatically-matched solution was found for the transverse envelope equations in the

non-periodic lattice.
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