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Abstract

Ion-electron two-stream instabilities in high intensity heavy ion fusion beams, described self-

consistently by the nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies per-

turbative particle simulation method. Large-scale parallel particle simulations are carried out using

the recently developed Beam Equilibrium, Stability, and Transport (BEST) code. For a parameter

regime characteristic of heavy ion fusion drivers, simulation results show that the most unstable

mode of the ion-electron two-stream instability has a dipole-mode structure, and the linear growth

rate decreases with increasing axial momentum spread of the beam particles due to Landau damp-

ing by an axial momentum spread of the beam ions in the longitudinal direction.
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I. INTRODUCTION

In typical linear induction accelerators for heavy ion fusion drivers, the beam current is

much higher than that in contemporary accelerators and storage rings. In order to obtain

enough fusion energy gain, the peak current for each beam is required to be order of 103 A

or larger. Even though the kinetic energy is expected to be in the range of several GeV,

the reduction of space-charge effects due to the self-magnetic fields is small because of the

large ion mass. For a given focusing lattice, most designs of heavy ion fusion drivers operate

near the space-charge limit. Large space-charge forces inevitably induce a strong interaction

among the beam particles, and in some regimes can result in collective instabilities [1–3]. It

has been recognized recently, both in theoretical studies and in experimental observations

[2,4-15], that the relative streaming motion of the high-intensity beam particles through a

background charge species provides the free energy to drive the classical two-stream instabil-

ity, appropriately modified to include the effects of dc space charge, relativistic kinematics,

presence of a conducting wall, etc. A background population of electrons can result by sec-

ondary emission when energetic beam ions strike the chamber wall, or through ionization of

background neutral gas by the beam ions. A well-documented example is the electron-proton

(e-p) instability observed in the Proton Storage Ring experiment [11-12], although a similar

instability also exists for other ion species, including (for example) ion-electron interactions

in electron storage rings [13-15]. When electrons are present, two-stream interactions in

heavy ion fusion drivers are expected to be stronger than the two-stream instabilities ob-

served so far in proton machines (as well as electron machines) because of the much larger

beam intensity. In this paper, we study the ion-electron two-stream instability using a per-

turbative particle simulation method (δf method) for solving the Vlasov-Maxwell equations.

As a low-noise nonlinear particle simulation technique [16, 17], the δf method has been im-

plemented in the recently developed Beam Equilibrium, Stability, and Transport (BEST)

code [18], which has been applied to a wide range of important collective processes in intense

beams [18, 19]. In the present simulation study, we consider a Cs+ beam with rest mass

mb = 133 mp, where mp is the proton rest mass, and kinetic energy (γb − 1)mc2 = 2.5

GeV, as an example of a heavy ion beam. The paper is organized as follows. In Sec. II,

the theoretical model and the physics of the two-stream instability is briefly summarized,
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which is followed by a description of the nonlinear δf method in Sec. III. Typical simulation

results are presented in Sec. IV, and in Sec. V we summarize the conclusions and describe

future work.

II. THEORETICAL MODEL

The theoretical model employed here is based on the nonlinear Vlasov-Maxwell equations.

We consider a thin, continuous, high-intensity ion beam (j = b), with characteristic radius rb

propagating in the z-direction through background electrons (j = e), with each component

described by a distribution function fj(x,p, t) [2, 4]. The charge components (j = b, e)

propagate in the z-direction with characteristic axial momentum γjmjβjc, where Vj = βjc is

the average directed axial velocity, γj = (1−β2
j )

−1/2 is the relativistic mass factor, ej and mj

are the charge and rest mass, respectively, of a j’th species particle, and c is the speed of light

in vacuo. While the nonlinear δf formalism described in Sec. III is readily adapted to the

case of a periodic applied focusing field [20], for present purpose we make use of a smooth-

focusing model in which the applied focusing force is described by Ffoc
j = −γjmjω

2
βjx⊥,

where x⊥ = xêx + yêy is the transverse displacement from the beam axis, and ωβj = const

is the effective applied betatron frequency for transverse oscillations. Furthermore, in a

frame of reference moving with axial velocity βjc, the motion of a j’th species particle is

assumed to be nonrelativistic. The space-charge intensity is allowed to be arbitrarily large,

subject only to transverse confinement of the beam ions by the applied focusing force, and

the background electrons are confined in the transverse plane by the space-charge potential

φ(x, t) produced by the excess ion charge.

In the electrostatic and magnetostatic approximations, we represent the self-electric and

self-magnetic fields as Es = −∇φ(x, t) and Bs = ∇ × Az(x, t)êz. The nonlinear Vlasov-

Maxwell equations can be approximated by [2, 4]{
∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥

+ej(∇φ − vz

c
∇⊥Az] · ∂

∂p

}
fj(x,p, t) = 0,

(1)
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and

∇2φ = −4π
∑

j

ej

∫
d3pfj(x,p, t),

∇2Az = −4π

c

∑
j

ej

∫
d3pvzfj(x,p, t).

(2)

Applying the theoretical model outlined above to the ion-electron two-stream instability,

Davidson, et. al. [1, 2, 4–6] have identified an important class of surface modes driven

unstable by ion-electron interactions. A kinetic dispersion relation has been derived for

beams with a Kapchinskij-Vladimirskij (KV) distribution in the transverse direction and a

Lorentzian distribution in axial momentum in the longitudinal direction [4–6]. A careful ex-

amination of the dispersion relation shows that the strongest instability occurs for azimuthal

mode number l = 1, corresponding to a simple dipole displacement of the beam ions and

electrons. The dispersion relation for the l = 1 dipole-mode is given by [2, 4–6]

[(ω − kzVb + i|kz|vT ‖b)
2 − ω2

b ][(ω + i|kz|vT ‖e)
2 − ω2

e ] = ω4
f , (3)

where

ω4
f ≡ 1

4
f

(
1 − r2

b

r2
w

2
)

γbmb

me
ω̂4

pb , (4)

ω2
e ≡ 1

2

γbmb

me
ω̂2

pb

(
1 − f

r2
b

r2
w

)
, (5)

ω2
b ≡ ω2

βb +
1

2
ω̂2

pb

(
f − 1

γ2
b

r2
b

r2
w

)
. (6)

Here, ω is the complex oscillation frequency, charge state Zb = 1 is assumed, me is the

electron mass, ω̂2
pb = 4πn̂be

2
b/γbmb is the ion plasma frequency-squared on axis, vT ‖b and

vT ‖e are the characteristic longitudinal thermal velocity of the beam ions and electrons,

f ≡ n̂e/n̂b is the fractional charge neutralization, and kz is the axial wavenumber. In the

cold limit (vT ‖b = 0 = vT ‖e), and in the absence of background electrons (f = 0), Eq. (3)

gives stable collective oscillations of the ion beam with frequency ω−kzVb = ±ωb. For f 6= 0,

however, the ion and electron modes are coupled by the ω4
f term on the right-hand side of

Eq. (3), leading to one unstable mode with Imω > 0 for a certain range of longitudinal

wavenumber kz. The instability is two-stream in nature, and results from the directed ion

motion with axial velocity Vb through the background electrons (assumed stationary with

Ve = 0). Examination of Eq. (3) [2, 4–6] shows that the unstable mode has frequency and
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wavenumber closely tuned to ω0 = ωe and kz0 = (ωe + ωb)/Vb. For heavy ion fusion beams

(mb � me), because ω2
b � ω2

e in the regimes of practical interest, it follows that the phase

velocity in the longitudinal direction of the unstable mode is downshifted only slightly from

the directed beam velocity Vb, and therefore can be strongly affected by Landau damping

effects associated with a longitudinal momentum spread of the beam ions. This fact can

be easily demonstrated by analyzing the dispersion relation (3) with finite vT ‖b [2, 6]. The

l = 1 dipole-mode instability predicted by Eq. ( 3) has features similar to the resistive-hose

instability [22] in the collisionless limit. For azimuthal mode number l = 0, the two-stream

dispersion relations analogous to Eq. ( 3) have also been derived by Uhm and Davidson [23]

for the so-called sausage and hollowing instabilities in the collisionless regime.

III. NONLINEAR δf METHOD

To simulate the ion-electron two-stream instability in a heavy ion beam, it is necessary

to use a fully 3D, kinetic, low-noise simulation method. This is because the instability

has a 3D mode structure which depends on (x, y, z), and kinetic effects dominate the

stabilization process and the nonlinear saturation of the instability. Due to the large mass

ratio between the ions and the electrons ( me/mb = 1/(1836 × 133) = 4.1 × 10−6, for

cesium), and the fact that the growth rate of the instability is much smaller than the real

frequency of the eigenmode, it takes a relatively long time to simulate the instability. The

low-noise δf method [16–18] used here is therefore highly desirable. In the δf method, the

total distribution function is divided into two parts, fj = fj0 + δfj, where fj0 is a known

equilibrium solution (∂/∂t = 0) to the nonlinear Vlasov-Maxwell equations (1) and (2), and

the numerical simulation is carried out to determine the detailed nonlinear evolution of the

perturbed distribution function δfj. This is accomplished by advancing the weight function

defined by wj ≡ δfj/fj , together with the particles’ positions and momenta. The equations

of motion for the particles, obtained from the characteristics of the nonlinear Vlasov equation

(1), are given by

dx⊥ji

dt
= (γjmj)

−1p⊥ji,

dzji

dt
= vzji = βjc + γ−3

j m−1
j (pzji − γjmjβjc),

dpji

dt
= −γjmjω

2
βjx⊥ji − ej

(
∇φ− vzji

c
∇⊥Az

)
.

(7)
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Here the subscript “ji” labels the i’th simulation particle of the j’th species. The dynamical

equations for wji is given by [16, 18]

dwji

dt
= −(1 − wji)

1

fj0

∂fj0

∂p
· δ
(

dpji

dt

)
,

δ

(
dpji

dt

)
≡ −ej

(
∇δφ− vzji

c
∇⊥δAz

)
,

(8)

where δφ = φ−φ0 and δAz = Az −Az0. Here, the equilibrium solutions (φ0, Az0, fj0 ) solve

the steady-state Vlasov-Maxwell equations (1) and (2). A wide variety of axisymmetric

equilibrium solutions to Eqs. (1) and (2) have been investigated in the literature [1, 2]. The

perturbed distribution δfj is obtained through the weighted Klimontovich representation

[1],

δfj =
Nj

Nsj

Nsj∑
i=1

wjiδ(x− xji)δ(p− pji), (9)

where Nj is the total number of actual j’th species particles, and Nsj is the total number of

simulation particles for the j’th species. Maxwell’s equations are also expressed in terms of

the perturbed fields and the perturbed charge and current densities according to

∇2δφ = −4π
∑

j

ejδnj, ∇2δAz = −4π

c

∑
j

δjzj , (10)

where

δnj =
Nj

Nsj

Nsj∑
i=1

wjiS(x − xji),

δjzj =
ejNj

Nsj

Nsj∑
i=1

vzjiwjiS(x − xji).

(11)

Here, S(x − xji) is a shape function distributing particles on the grids in configuration

space. The nonlinear particle simulations are carried out by iteratively advancing the par-

ticle motions, including the weights they carry, according to Eqs. (7) and (8), and updating

the fields by solving the perturbed Maxwell’s equations (10) with appropriate boundary

conditions at the cylindrical, perfectly conducting wall (r = rw). Even though it is a per-

turbative approach, the δf method is fully nonlinear and simulates completely the original

nonlinear Vlasov-Maxwell equations. Compared with conventional particle-in-cell simula-

tions, the noise level in δf simulations is significantly reduced. The dominant numerical

noise mechanisms in particle simulations, such as numerical collisions, are statistical. The
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δf method reduces the noise level of the simulations because the statistical noise, which

is of order O(N
−1/2
s ) for the total distribution function in the conventional particle-in-cell

(PIC) method, is only associated with the perturbed distribution function in the δf method.

If the same number of simulation particles is used in the two approaches, then the noise

level in the δf method is reduced by a factor of f/δf relative to the PIC method. The δf

method can also be used to study linear stability properties, provided the factor (1 − wji)

in Eq. (8) is approximated by unity, and the forcing terms in Eq. (7) are replaced by the

unperturbed force. Implementation of the 3D multispecies nonlinear δf simulation method

described above is embodied in the BEST code [18]. For those fast particle motions which

require much larger sampling frequency 1/∆t than the frequency of the mode being studied,

the code uses an adiabatic field pusher to advance the particles many time steps without

solving for the perturbed fields. The upper limit for ∆t, the time step to advance the par-

ticles’ phase space position, is normally determined by the Courant condition. On the IBM

SP-2 supercomputer, the BEST code advances 4.0×1011 particles×time-steps in the present

study.

IV. SIMULATION RESULTS

In the present simulations of the two-stream instability, instead of using the theoretically-

convenient KV distribution [2], we assume that the background equilibrium distribution

(∂/∂t = 0) is the more realistic bi-Maxwellian distribution with temperature Tj⊥ = const.

in the x − y plane, and temperature Tj‖ = const. in the z-direction. That is,

fj0(r,p) =
n̂j

(2πmj)3/2γ
5/2
j Tj⊥T

1/2
j‖

(12)

× exp

{
−(pz − γjmjβjc)

2

2γ3
j mjTj‖

}

× exp

{
−p2

⊥/2γjmj + γjmjω
2
βjr

2/2 + ej(φ0 − βjAz0)

Tj⊥

}
,

where n̂j is the density on axis (r = 0) of the j’th species. Here, Ve = 0 and γe = 1

for stationary background electrons, and φ0 and Az0 are equilibrium self-field potentials,
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FIG. 1: Plots of the normalized equilibrium beam ion and background electron density profiles.

determined self-consistently from the nonlinear Maxwell equations

1

r

∂

∂r
r
∂φ0(r)

∂r
= −4π

∑
j

ej

∫
d3pfj0(r,p), (13)

1

r

∂

∂r
r
∂Az0(r)

∂r
= −4π

c

∑
j

ej

∫
d3pvzfj0(r,p).

In the simulations, we take γb = 1.02, me/mb = 1/(1836 × 133) = 4.1 × 10−6, Ve = 0,

and ωβe = 0 (corresponding to axially stationary electrons). Unlike the KV distribution,

which is unstable due to the highly inverted distribution in phase space, a single-species

charged particle beam with bi-Maxwellian distribution has been proven to be linearly and

nonlinearly stable [2, 21] for transverse perturbations with kz = 0. The beam intensity is

taken to be near the upper limit, corresponding to sb ≡ ω̂2
pb/2γ

2
b ω2

βb → 1. The fractional

charge neutralization f ≡ n̂e/n̂b is taken to be 10%, where n̂e and n̂b are the electron and

beam ion densities on axis (r = 0). Plotted in Fig. 1 are the normalized equilibrium density

profiles for the cesium ions and electrons, n0
j (r)/n̂j = (1/n̂j)

∫
d3pfj0(r,p, t) (j = b, e), which

are readily obtained once the equilibrium potentials φ0 and Az0 are solved numerically from

Eqs. (12) and (13). The transverse temperatures of the electrons and ions in Fig. 1 are chosen

to be Tb⊥/γbmbV
2
b = 1.1×10−6 and Te⊥/γbmbV

2
b = 2.6×10−6, such that the ion and electron

density profiles overlap radially. The overlapping of the electron density profile with that of

the ions is expected to maximize the two-stream interaction and therefore the growth rate.

In the space-charge limit (sb = 1), if there is no electron population, the beam would have a

flat-top density profile. However, the presence of electrons offsets some of the space-charge

force and produces the bell-shape beam density profile in Fig. 1.In the simulations, after
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FIG. 2: Time history of pertubed desnity δnb/n̂b at a fixed spatial location. After an initial

transition period, the l = 1 dipole-mode perturbation grows exponentially.

small-amplitude perturbations are excited at t = 0, the system is evolved self-consistently

for thousands of wave periods. Plotted in Fig. 2 is the time history of the beam density

perturbation at one spatial location in a simulation using the linearized version of the BEST

code. Evidently, after an initial transition period, the perturbation grows exponentially,

which is the expected behavior of an instability during the linear growth phase. In Fig. 3,

the x−y projection of the perturbed potential δφ at a fixed longitudinal position are plotted

at t = 0 and t = 12.8/ωβb. Clearly, δφ grows to a moderate amplitude by t = 12.8/ωβb,

and the l = 1 dipole mode is the dominant unstable mode, for which the growth rate is

measured to be Imω = 0.58ωβb. The real eigenfrequency of the mode is Re ω = 361ωβb, and

the normalized wavelength at maximum growth is kzVb/ωβb = 361.3.

In the simulation results for the two-stream instability presented above, we have assumed

initially cold beam ions in the longitudinal direction (∆pb‖/pb‖ = 0) to maximize the growth

rate of the instability. Here, pb‖ = γbmbVb. In general, when the longitudinal momentum

spread of the beam ions is finite, Landau damping by parallel ion kinetic effects provides

a mechanism that reduces the growth rate. Shown in Fig. 4 is a plot of the maximum

linear growth rate (Imω)max versus the normalized initial axial momentum spread ∆pb‖/pb‖

obtained in the numerical simulations. As evident from Fig. 4 , the growth rate decreases

dramatically as ∆pb‖/pb‖ is increased. When ∆pb‖/pb‖ is high enough, about 0.235% for the

case in Fig. 4, the mode is completely stabilized by longitudinal Landau damping effects by

the beam ions. This result agrees with theoretical predications. Because the phase velocity

of the unstable mode in the longitudinal direction is far removed from the electron velocity
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FIG. 3: The x-y projection (at fixed value of z) of the perturbed electrostatic potential δφ(x, y, t)

for the ion-electron two-stream instability growing from a small initial perturbation, shown at (a)

t = 0, and (b) ωβbt = 12.8.
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FIG. 4: The maximum linear growth rate (Im ω)max of the ion-electron two-stream instability

decreases as the longitudinal momentum spread of the beam ions increases.

distribution | ω/kz |� Ve + vTe‖, we do not expect the longitudinal electron temperature to

significantly affect the growth rate of the instability.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have studied the linear growth phase of the ion-electron two-stream

instability in a high intensity heavy ion fusion beam using a perturbative particle simulation

method (δf method) for solving the Vlasov-Maxwell equations. As a low-noise nonlinear

particle simulation technique, the δf method is an ideal tool for simulating the two-stream

instability which requires the capability of self-consistently evolving small perturbed field

quantities for millions of time steps. Large-scale parallel particle simulations have been
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carried out using the recently developed BEST code.The simulation results show that the

most unstable mode of the two-stream instability has a dipole structure, and that the linear

growth rate decreases with increasing axial momentum spread of the beam particles due to

Landau damping by the beam ions in the longitudinal direction. Further studies are neces-

sary to better understand the linear and nonlinear properties of the two-stream instability

for heavy ion fusion parameters. In the linear regime, the dependence of the instability

threshold on momentum spread and fractional charge neutralization, and the additional

damping mechanism due to transverse tune spread are important questions that need to be

investigated. Nonlinearly, it is essential to understand the nonlinear saturation level, and

the possible subsequent nonlinear evolution of the system. Results in these areas will be

reported in future publications.
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