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Abstract

This paper extends previous numerical studies of the stability properties of intense nonneu-

tral charged particle beams with large temperature anisotropy
�
T?b � Tkb

�
to allow for non-

axisymmetric perturbations with @=@� 6= 0. The most unstable modes are identi�ed, and their

eigenfrequencies, radial mode structure, and nonlinear dynamics are determined.
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I. INTRODUCTION

It's well known that in neutral plasmas with strongly anisotropic distributions (Tjjb=T?b �

1) a Harris-like collective instability may develop if there is suÆcient coupling between the

transverse and longitudinal degrees of freedom [1]. Such anisotropies develop naturally in

accelerators, where the longitudinal temperature of the accelerated beam of charged par-

ticles with charge q accelerated by a voltage V is reduced according to Tjjbf = T 2
jjbi=2qV (

for a nonrelativistic beam). In addition, the transverse temperature may increase due to

nonlinearities in the applied and self-�eld forces, nonstationary beam pro�les, and beam

mismatch.

Previous studies of this anisotropy-driven instability in intense beams [2{4] have shown

that moderately intense beams with normalized beam intensity sb = !2
pb=2

2
b!

2
f

>
� 0:5 are

linearly unstable to short-wavelength, axisymmetric (@=@� = 0) perturbations with k2zr
2
b

>
� 1,

provided the ratio of longitudinal to transverse temperatures is smaller than some threshold

value. Here, !2
pb = 4�bnbe2b=bmb is the relativistic plasma frequency-squared, and !f = const:

is the smooth-focusing frequency associated with the applied �eld. In this paper we extend

our previous simulation studies of this instability [4] to the case with @=@� 6= 0.

In many practical applications, the transverse distribution function may be close to ther-

mal equilibrium with temperature T?b, and the longitudinal distribution can be described

by a drifting Maxwellian distribution with temperature Tkb � T?b. This distribution is

stable with respect to transverse perturbations [5]. For an arbitrary equilibrium distribu-

tion function , the stability problem cannot be solved analytically, and numerical simulation

techniques must be employed. To investigate stability properties numerically, we use the non-

linear Æf method [6] described below, as implemented in the Beam Equilibrium, Stability

and Transport (BEST) code [4, 7].
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II. DESCRIPTION OF THE NONLINEAR Æf SIMULATION CODE

In the smooth-focusing approximation, the transverse focusing force is modeled by Ffoc =

�bmb!
2
fx?, where !f = const:, mb is the particle rest mass, b = (1��2

b )
1=2 is the relativistic

mass factor, Vb = �bc = const: is the axial velocity, and c is the speed of light. The solutions

to the nonlinear Vlasov-Maxwell equations are expressed as fb = f 0b + Æfb, � = �0+Æ�

and Az = A0
z + ÆAz, where (f 0b ; �

0; A0
z) are known equilibrium solutions (@=@t = 0). The

perturbed potentials satisfy the equations [4, 7]

r2Æ� = �4�eb

Z
d3pÆfb; (1)

r2ÆAz = �
4�

c
eb

Z
d3pvzÆfb; (2)

where eb is the particle charge, and Æfb(x;p; t) is given by the weighted Klimontovich repre-

sentation,

Æfb =
Nb

Nsb

NsbX
i=1

wbiÆ(x� xbi)Æ(p� pbi): (3)

Here, Nsb is total number of beam simulation particles, Nb is total number of actual beam

particles, and the weight function is de�ned by wb � Æfb=fb.

The nonlinear particle simulations are carried out by advancing the particle motion ac-

cording to [4, 7]

dxbi
dt

= (bmb)
�1pbi; (4)

dpbi
dt

= �bmb!
2
fx?bi

� eb

�
r��

vzbi
c
r?Az

�
; (5)

dwbi

dt
= �(1� wbi)

1

fb0

@fb0
@p

� Æ

 
dpbi
dt

!
; (6)

Æ

 
dpbi
dt

!
= �eb

�
rÆ��

vzbi
c
r?ÆAz

�
; (7)

and updating the �elds by solving the perturbed Maxwell's equations with appropriate

boundary conditions at the cylindrical, perfectly conducting wall at radius rw.

The Æf approach is fully equivalent to the original nonlinear Vlasov-Maxwell equations,

but the noise associated with representation of the background distribution f 0b in conven-

tional particle-in-cell (PIC) simulations is removed. The typical gain in accuracy in Æf
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simulations compared to PIC simulations with the same number of particles is �Æf=�pic = �wbi

[6, 7]. This allows much more accurate simulations of the nonlinear dynamics and instability

thresholds when j �wbij � 1. When the perturbation Æfb becomes comparable in magnitude

with the background distribution function f 0b , then the Æf method becomes less accurate

than a full PIC simulation. In the present paper, a hybrid combination of the Æf and

PIC simulation methods is used [4], where the number density is calculated according to

Ænb = [1��( �wbi)]ÆnÆf +�( �wbi)(npic�n0), where �(w) is a monotonic function of its argument

such that �(w ! 0)! 0 and �(w ! 1)! 1. Here, ÆnÆf =
R
d3pÆfb and npic =

R
d3pfb.

In addition, the Æf method can be used to study linear stability properties, provided all

nonlinear terms in the dynamical equations (5){(7) are neglected [6, 7]. This corresponds to

replacing the term 1�wbi with 1 in Eq. (6) for the weights, and moving particles along the

trajectories calculated in the unperturbed potentials (�0; A0
z).

The Æf method has been implemented in the three-dimensional particle-in-cell code

(BEST) in cylindrical geometry with a perfectly conducting wall at radius rw. Maxwell's

equations (1) and (2) are solved using fast Fourier transform techniques (FFT) in the longi-

tudinal and azimuthal directions. The particle positions and weights are advanced using a

second-order predictor-corrector algorithm. The code is parallelized using Message Passing

Interface (MPI) with domain decomposition in the direction of beam propagation [4, 7].

III. SIMULATION RESULTS

In this section we present the simulation results for a continuous, anisotropic beam in a

constant focusing �eld. The self-consistent equilibrium distribution function (@=@t = 0) is

taken to be

f 0b = bnb
(2�bmb)3=2bT?bT

1=2

kb

exp
�
� (pz�bmb�bc)

2

23
b
mbTjjb

�
� exp

�
�

p2?=2bmb+bmb!
2

f r
2=2+eb('0��bAz0)

T?b

�
; (8)

where bnb is the beam density at r = 0, and T?b and Tjjb are the transverse and longitudinal

temperatures. The equilibrium self-�eld potentials ('0; Az0) are determined numerically
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from Maxwell's equations [7]. It is also assumed that the beam is located inside a grounded,

perfectly conducting cylindrical wall at radius rw = 3rb; where rb = [hr2i]1=2 is the rms

beam radius. Random initial perturbations are introduced to the particle weights, and the

beam is propagated from t = 0 to t = 500!�1
f : The initial temperature ratio is taken to

be Tjjb=T?b = 0:01, and the simulations are performed in the beam frame with �b = 0 and

b = 1. Typical numerical results are illustrated in Figs. 1-5, where the simulations have

been carried out over wide range of normalized beam intensities sb = !2
pb=2

2
b!

2
f ranging

from sb = 0:1 to sb = 0:95.

m=2

m=1

m=3

kz rw

f

0 6 12 18 24

m=0

(
)

(a)

m=2

m=1

m=3

(I
m

 ω
)

ω
f

k z r w

0 6 12 18 24

m=0

(b)

FIG. 1: Plots of normalized (a) real frequency (Re!)=!f and (b) growth rate (Im!)=!f versus

kzrw for sb = 0:95:
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FIG. 2: Plots of normalized (a) real frequency (Re!)max=!f and (b) growth rate (Im!)max=!f at

maximum growth versus normalized beam intensity sb.

Using the linearized version of the 3D BEST code, Figs. 1-3 show results of the Æf

simulations for perturbations with a spatial dependence proportional to exp(ikzz + im�),

where kz is the axial wavenumber, and m is the azimuthal mode number. Figure 1 show
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plots of the real and imaginary parts of the complex oscillation frequency ! versus normalized

axial wavenumber kzrw, for sb = 0:95 and azimuthal mode numbers m = 0; 1; 2; 3. Note

that the instability has a �nite bandwidth with maximum growth rate at kzrw ' 9. The

dependence of the maximum growth rate (Im!)max=!f and the normalized real frequency

(Re!)max=!f at maximum growth on beam intensity sb is shown in Figs. 2. The maximum

growth rate (Im!)max=!f is an increasing function of beam intensity sb. The dipole mode

m = 1 has the largest growth rate. All modes are found to be stable in the region sb � 0:4.

The radial dependence of the eigenfunctions for the perturbed electrostatic potential using

R
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FIG. 3: Radial mode structure of the unstable m = 0; 1; 2; 3 eigenfunctions for kzrw = 9 and

sb = 0:95.

the linearized BEST code is illustrated in Fig. 3 for kzrw = 9 and sb = 0:95.

f

FIG. 4: Time history of normalized density perturbation Ænmax=bnb for sb = 0:8 at �xed z and

r = 0:3rb.

Figures 4 and 5 show typical simulation results using the nonlinear version of the 3D

BEST code for the case of normalized beam intensity sb = 0:8. In Fig. 4, the initial
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perturbation has a dominant initial excitation with m = 1 and kzrw = 9, and the time

history of the perturbed density Ænb =
R
d3pÆfb is plotted versus !f t at �xed axial position

z and radius r = 0:3rb. After the initial linear growth phase, note from Fig. 4 that the

instability saturates at a moderately large level with jÆnmax
b =bnbj ' 0:1:
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FIG. 5: Plot of average longitudinal momentum distribution Fb(pz) at time t = 0 (thin line) and

t = 200!�1f (thick line), for normalized beam intensity sb = 0:8.

Finally, shown in Fig. 5 is a plot of the average longitudinal momentum distribution

Fb(pz; t) =
R
d2p?d

3xfb versus pz for a dominant initial excitation with m = 1 and kzrw = 9

(the case shown in Fig. 4). In Fig. 5 the average distribution Fb(pz; t) at time t = 200!�1
f

(thick curve) is compared with the initial distribution (thin curve). The formation of tails

in axial momentum space in Fig. 5 and the consequent saturation of the instability are

attributed to quasilinear stabilization.

IV. CONCLUSIONS

The BEST code [7], which implements the nonlinear Æf scheme, has been used to in-

vestigate the stability properties of intense charged particle beams with large temperature

anisotropy (Tjjb=T?b � 1) for perturbations with @=@� 6= 0. The simulation results clearly

show that intense beams with sb � 0:4 are linearly unstable to short-wavelength pertur-

bations with kzrw � 3, provided the ratio of longitudinal and transverse temperatures is

suÆciently small. In the nonlinear saturation stage, the total distribution function is still far
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from equipartitioned, and free energy is available to drive an instability of the hydrodynamic

type.
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