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Abstract. To achieve high focal spot intensities in heavy-ion fusion, the ion
beam must be compressed longitudinally by factors of 10–100 before it is focused
onto the target. The longitudinal compression is achieved by imposing an initial
velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal
drift compression of intense charged-particle beams is solved analytically for the
two important cases corresponding to a cold beam, and a pressure-dominated
beam, using a one-dimensional warm-fluid model describing the longitudinal
beam dynamics.

New Journal of Physics 6 (2004) 141 PII: S1367-2630(04)83064-7
1367-2630/04/010141+37$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:estartsev@pppl.gov
http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Theoretical model 4
3. General solution 8
4. General solution of the initial value problem 9

4.1. Pressure-dominated beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2. Cold beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Examples with different initial density profiles 18
5.1. Parabolic density profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1. Cold beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2. Pressure-dominated beam. . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2. Linear density profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1. Cold beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2. Pressure-dominated beam. . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3. Flat-top density profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.1. Cold beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2. Pressure-dominated beam. . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4. Continuous density profile (no sharp edge boundary) . . . . . . . . . . . . . . 31
5.4.1. Cold beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.2. Pressure-dominated beam. . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Beam shaping 33
7. Conclusions 34
Acknowledgments 35
AppendixA. Abel transform 35
References 35

1. Introduction

High-energy ion accelerators, transport systems and storage rings [1]–[5] have a wide range of
applications ranging from basic research in high energy and nuclear physics, to applications such
as heavy-ion fusion, spallation neutron sources, and nuclear-waste transmutation. Of particular
importance at the high beam currents and charge densities of interest for heavy-ion fusion
are the effects of the intense self-fields produced by the beam space charge and current on
determining detailed equilibrium, stability, and transport properties. In general, a complete
description of collective processes in intense charged-particle beams is provided by the nonlinear
Vlasov–Maxwell equations [1] for the self-consistent evolution of the beam distribution function,
fb(x, p, t), and the self-generated electric and magnetic fields, E(x, t) and B(x, t). While
considerable progress has been made in analytical and numerical simulation studies of intense
beam propagation [6]–[71], the effects of finite geometry and intense self-fields often make it
difficult to obtain detailed predictions of beam equilibrium, stability, and transport properties
based on the Vlasov–Maxwell equations. To overcome this complexity, considerable theoretical
progress has also been made in the development and application of one-dimensional Vlasov–
Maxwell models [72]–[79] to describe the longitudinal beam dynamics for a long coasting
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Figure 1. Schematic of the two stages of drift compression described in section
1, the beam-shaping stage and the drift-compression stage.

beam, with applications ranging from plasma echo excitations, to the investigation of coherent
soliton structures, both compressional and rarefactive (hole-like). Such one-dimensional Vlasov
descriptions rely on using a geometric-factor (g-factor) model [79]–[85] to incorporate the
average effects of the transverse beam geometry and the surrounding wall structure. Despite the
many successful applications of such one-dimensionalVlasov models to describe the longitudinal
dynamics of long costing beams, even a one-dimensional Vlasov description is often too
complicated to be analysed in detail, except in some simple limiting cases. The next level of
description of the nonlinear beam dynamics is provided by the macroscopic fluid equations,
which correspond to the first three momentum moments of the Vlasov equation, with some
particular closure scheme which relates the higher moments to the first three [86]–[90]. The
usual closure assumption for collisionless plasma is provided by the adiabatic equation of state
(ds/dt = 0, where s is the entropy per unit volume), which expresses the thermal pressure as a
function of the density. In one dimension, this is given by pλ−3 = const [86]–[88], where λ is
the line density of beam particles and p is the line pressure. Such a one-dimensional fluid model,
combined with the adiabatic equation of state and a g-factor model for the average electric field,
fits in the class of one-dimensional fluid problems which can be solved exactly [91] using the
formalism described in section 2.

In currently envisioned configurations for heavy ion fusion, multiple, high-current, heavy
ion beams are focused to a small spot size onto the target capsule. To achieve a high-intensity
beam focused onto the target, the beams are first accelerated and then compressed longitudinally.
One of the possible ways to compress the beam longitudinally is to use a drift compression
scheme illustrated in figure 1 [92]–[101]. The scheme consists of two parts. In the first stage, an
initial tilt in the longitudinal velocity profile −Vf (x) is imposed on the long charge bunch with
some particular line density profile �f(x). After the time Tshape, the beam line density evolves
to a profile �in(x), with the velocity profile −Vin(x). At this time, an additional velocity tilt
Vin(x) − Vcomp(x) is imposed on the beam, and the beam is left with line density �in(x) and
velocity tilt −Vcomp(x). We refer to this stage as the beam-shaping stage. This stage requires
beam manipulation (imposing the velocity tilt) and is done when the charge bunch is very long.
At this stage, the longitudinal pressure and electric field are negligible, and the beam dynamics
is governed by free convection. During this stage the beam may or may not be compressed. The
purpose of this stage is to shape the beam line density profile into a certain intermediate line
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density profile �in(x) with velocity profile −Vcomp(x), such that during the next stage, which
we refer to as the drift-compression stage, after further axial drift during the time interval Tcomp

(see figure 1), the beam is compressed longitudinally until the space-charge force or the internal
thermal pressure stops the longitudinal compression of the charge bunch [92]–[101]. At the
point of maximum compression, the velocity tilt profile is completely removed and the beam is
left with the desired line density �0(x). The final focus magnets then focus the beam onto the
target, and the beam heats and compresses the target fuel. Stated this way, the longitudinal drift
compression problem in the beam frame is equivalent to the time-reversed problem of the beam
expanding into vacuum with zero initial velocity profile, and the specified initial line density
profile �0(x) which is desired at the time of maximum compression before final focusing. In
this paper we employ a one-dimensional warm-fluid model with adiabatic equation of state to
study this problem analytically for arbitrary final (maximally compressed) line density profiles
�0(x).

We consider here the two separate cases corresponding to a cold beam and a pressure-
dominated beam. In the case of a cold beam, the internal thermal pressure is negligible, and
the dynamics of the drift compression is governed by the self-generated electric field. In the
case of a pressure-dominated beam, the self-generated electric field is negligible, and the beam
compresses under the influence of the thermal pressure and the initial velocity tilt −Vcomp(x). One
of the compression scenarios considered for heavy ion fusion is neutralized drift compression,
where the beam propagates through a charge-neutralizing background plasma as it compresses
longitudinally. In such a scenario, the beam is compressed only against the internal pressure. For
simplicity, the present analysis is carried out in the beam frame where the particle motions are
nonrelativistic. The final results can be then Lorentz transformed back to the laboratory frame,
moving with axial velocity −Vb = −βbc relative to the average motion of the particles in the
beam frame.

This paper is organized as follows. In section 2, we briefly describe the one-dimensional
warm-fluid model equations and the formalism used for solving them analytically. In sections 3
and 4, the general solution for the expansion problem (the inverse to the drift-compression
stage problem) is obtained analytically for the two cases corresponding to a cold beam, and a
pressure-dominated beam. In section 5 the general solution to drift compression stage obtained
in sections 3 and 4 is illustrated by several examples. In section 6 we briefly discuss the beam-
shaping stage.

2. Theoretical model

In the present analysis, we employ a one-dimensional warm-fluid model [86]–[88], [93] to
describe the longitudinal nonlinear beam dynamics with average electric field given by the g-
factor model with ebEz = −e2

bg∂λ/∂x [79]–[85]. For example, for a space-charge-dominated
beam with flat-top density profile in the transverse plane, g � 2 ln(rw/rb) [2, 84, 85]. Here,
λ(x, t) is the line density, eb is the charge of a beam particle, rw is the conducting wall radius, and
rb is the beam radius. Generally, the beam radius, and therefore the g-factor, are functions of the
line density and the external transverse focusing, and can change during the beam compression. In
most of the drift compression scenarios it is preferable to maintain the beam radius (and therefore
the g-factor) constant during the beam compression by adjusting the external transverse focusing
[92]–[94]. Therefore, in the present analysis, we assume that the g-factor is a constant.
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The macroscopic fluid equations for the line density λ(x, t), the average longitudinal beam
velocity v(x, t), and the longitudinal line pressure p(x, t) are given by [86]–[88], [93]

∂λ

∂t
+

∂

∂x
(λv) = 0, (1)

∂v

∂t
+ v

∂

∂x
v = −e2

bg

mb

∂λ

∂x
− 1

mbλ

∂p

∂x
= −∂w

∂x
, (2)

where p = (p0/λ
3
0)λ

3 for a triple-adiabatic equation of state. Here we have introduced the
effective potential w defined by

w = c2
g

λ

λ0
+

c2
p

2

λ2

λ2
0

, (3)

where c2
g = e2

bgλ0/mb and c2
p = 3p0/mbλ0 are constants with dimensions of (speed)2, mb is the

mass of a beam particle, and λ0 and p0 are constants with the dimensions of line density and line
pressure, respectively.

For application in sections 3–6, in the remainder of this section we summarize a well-
established theoretical technique developed in fluid mechanics [91] that can be used to solve the
nonlinear fluid equations (1) and (2). By introducing the velocity potential φ, where v = ∂φ/∂x,
we can rewrite equation (2) as

∂φ

∂t
+

v2

2
+ w = 0. (4)

The full differential of φ then becomes

dφ = ∂φ

∂x
dx +

∂φ

∂t
dt = v dx −

(
v2

2
+ w

)
dt. (5)

Next, following Landau and Lifshitz [91], we introduce the Legendre transform

dφ = d(xv) − x dv − d

[
t

(
v2

2
+ w

)]
+ t d

(
v2

2
+ w

)
. (6)

Introducing χ = φ − xv − t(w + v2/2), equation (6) can be expressed as

dχ = −x dv + t d

(
v2

2
+ w

)
= t dw + (vt − x) dv. (7)

It follows from equation (7) that χ can be considered as a function of the new independent
variables (v, w), and that

t = ∂χ

∂w
, x − vt = −∂χ

∂v
. (8)

Therefore, if the function χ is known as a function of its arguments (v, w), then equation (8)
gives (v, w) as implicit functions of (x, t).
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To obtain the equation for χ we rewrite (1) as

∂(λ, x)

∂(t, x)
+ v

∂(t, λ)

∂(t, x)
+ λ

∂(t, v)

∂(t, x)
= 0, (9)

where

∂(a, b)

∂(x, y)
≡ ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (10)

Assuming that v is not a definite function of w [v �= v(w)], we multiply (9) by ∂(t, x)/∂(w, v)

and use the multiplication property for determinants. This gives

∂(λ, x)

∂(w, v)
+ v

∂(t, λ)

∂(w, v)
+ λ

∂(t, v)

∂(w, v)
= 0. (11)

The case when v is a definite function of w in some region of the (x, t) plane corresponds to a
simple wave and will be considered later. Because λ = λ(w), (11) reduces to

dλ

dw

∂x

∂v
− v

dλ

dw

∂t

∂v
+ λ

∂t

∂w
= 0. (12)

Substituting (8) into (12), we obtain the equation for χ [91]

1

λ

dλ

dw

(
∂χ

∂w
− ∂2χ

∂v2

)
+

∂2χ

∂w2
= 0. (13)

Note that (13) is a linear partial differential equation for the function χ(v, w). By introducing
the effective sound speed defined by c2 = λ dw/dλ, we can rewrite equation (13) as

∂χ

∂w
− ∂2χ

∂v2
+ c2 ∂2χ

∂w2
= 0, (14)

where c2 is to be regarded as a function of w. Equation (14) together with (8) can be used to obtain
the solution to the system of equations (1) and (2) everywhere in the (x, t) plane except in the
regions corresponding to simple wave solutions where v = v(c) [91]. In this case, the Jacobian
� = ∂(v, w)/∂(x, t) vanishes identically. In deriving (11), we divided (9) by this Jacobian, and
the solution for which � = 0 is not recovered. Thus, a simple wave solution cannot be recovered
from the general equation (13).

If v is a function of λ only, as in a simple wave, we can rewrite (1) and (2) as [91]

∂λ

∂t
+

d(λv)

dλ

∂λ

∂x
= 0, (15)

∂v

∂t
+

(
v +

dw

dv

)
∂v

∂x
= 0. (16)

Since

∂λ/∂t

∂λ/∂x
= −

(
∂x

∂t

)
λ

,
∂v/∂t

∂v/∂x
= −

(
∂x

∂t

)
v

,
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we obtain from equations (15) and (16)(
∂x

∂t

)
λ

= v + λ
dv

dλ
, (17)

(
∂x

∂t

)
v

= v +
dw

dv
. (18)

However, because v = v(λ), it follows that (∂x/∂t)λ = (∂x/∂t)v, so that λ dv/dλ = dw/dv =
(dw/dλ)(dλ/dv) = (c2/λ) dλ/dv, and therefore

v = ±
∫

c

λ
dλ. (19)

Next, we combine equations (17), (18) and (19) to give (∂x/∂t)v = (∂x/∂t)λ = v + λ(dv/dλ) =
v ± c(v). Integrating with respect to t then gives [91]

x = t[v ± c(v)] + f(v), (20)

where f(v) is an arbitrary function of the velocity v determined from the initial conditions, and
c(v) is given by (19).

Equations (19) and (20) give the general solution for the simple wave. The two signs in (19)
and (20) correspond to the direction of wave propagation: (+) is for a wave propagating in the
positive x direction, and (−) is for a wave propagating in the negative x direction.

It is also convenient to solve (1) and (2) using the method of characteristics [91].
Multiplying (1) by c/λ, and then adding and subtracting from (2), and making use of the relation
∂w/∂x = (dw/dλ)(∂λ/∂x) = (c2/λ)(∂λ/∂x), we obtain

∂v

∂t
± c

λ

∂λ

∂t
+ (v ± c)

(
∂v

∂x
± c

λ

∂λ

∂x

)
= 0. (21)

We now introduce the new unknown functions

J+ = v +
∫

c

λ
dλ, J− = v −

∫
c

λ
dλ, (22)

which are called Riemann invariants. In terms of J+ and J−, the equations of motion take the
simple form [91][

∂

∂t
+ (v + c)

∂

∂x

]
J+ = 0,

[
∂

∂t
+ (v − c)

∂

∂x

]
J− = 0. (23)

The differential operators acting on J+ and J− are the operators for differentiation along the
curves C+ and C− (called characteristics) in the (x, t) plane given by the equations

C+ :
dx

dt
= v + c, C− :

dx

dt
= v − c. (24)

The values of v and c at every point of the (x, t) plane are given by the values of the Riemann
invariants J+ and J− which are transported to this point along the C+ and C− characteristics from
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the region where the values of J+ and J− (and therefore v and c) are known. Equations (22)
and (24) are very convenient for numerical solution of the equations of motion and also for the
general analysis of the flow.

The totality of the available space–time generally consists of the regions where either a
simple wave solution (equation (20)) or a general solution (solution to equation (14) together
with (8)) is applicable. The boundary between the simple wave solution and the general solution,
like any boundary between two analytically different solutions, is a characteristic [91]. In
solving particular problems (see section 5), the value of the function χ(v, w) on this boundary
characteristic must be determined. The matching condition at the boundary between the simple
wave solution and the general solution is obtained by substituting (8) for x and t into the equation
for the simple wave (equation (20)). This gives

∂χ

∂v
± c

∂χ

∂w
+ f(v) = 0. (25)

Moreover, in the simple wave solution (and therefore on the boundary characteristic), we obtain
dw/dv = (dw/dλ)(dλ/dv) = (c2/λ)(dλ/dv) = ±c. Substituting into (25) then gives

∂χ

∂v
+

dw

dv

∂χ

∂w
+ f(v) = dχ

dv
+ f(v) = 0. (26)

Equation (26) can be integrated to give [91]

χ = −
∫

f(v) dv, (27)

which determines the required boundary value of χ.

3. General solution

Here we consider two separate cases. For the case of a cold beam (p0 = 0 and c2
p = 0) it

follows that w = c2
g(λ/λ0) (equation (3)), and c2(w) = λ dw/dλ = w. In the opposite limit

corresponding to a pressure-dominated beam, where we can neglect the electric field compared
to the thermal pressure, it follows that w = (c2

p/2)(λ/λ0)
2, and c2(w) = λ dw/dλ = 2w.

Introducing in place of w the variable c = √
nw, where n = 1, 2, we can rewrite (14) as

∂2χn=1

∂c2
+

1

c

∂χn=1

∂c
− 4

∂2χn=1

∂v2
= 0, for n = 1, (28)

∂2χn=2

∂c2
− ∂2χn=2

∂v2
= 0, for n = 2. (29)

Equation (29) is an ordinary wave equation whose general solution is

χn=2(v, c) = f1(c + v) + f2(c − v), (30)

where f1 and f2 are arbitrary functions. To find the general solution to (28) we first Fourier
transform with respect to the v dependence. This gives

∂2χn=1
k

∂c2
+

1

c

∂χn=1
k

∂c
− 4k2χn=1

k = 0. (31)
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Equation (31) is Bessel’s equation of order zero which has two Hankel functions, H
(1)
0 (2kc)

and H
(2)
0 (2kc) = [H(1)

0 (2kc)]∗, as independent solutions. Here (∗) represents complex conjugate.
Using the integral representation of the Hankel function [102],

H
(1)
0 (x) = −2i

∫ ∞

1

eixt

√
t2 − 1

dt, (32)

the general solution to (28) can be expressed as

χn=1(v, c) =
∫ ∞

−∞
dk

∫ ∞

1
dtA(k)

ei(2ct−v)k

√
t2 − 1

+
∫ ∞

−∞
dk

∫ ∞

1
dt B(k)

ei(2ct+v)k

√
t2 − 1

, (33)

where A(k) and B(k) are arbitrary functions. Finally, we can rewrite (33) as

χn=1(v, c) =
∫ ∞

1

dt√
t2 − 1

[f1(tc − v/2) + f2(tc + v/2)], (34)

where f1 and f2 are arbitrary functions such that the integrals in (34) converge. Equation (34)
provides the general solution to (28).

In the regions pertaining to the simple wave solution, (19) gives the general relation
between velocity and the density or sound speed in the wave. In the two cases considered
here, λ/λ0 = (c/cg)

2 for a cold beam (n = 2), and λ/λ0 = c/cp for a pressure-dominated beam
(n = 1). For these two cases, we find

v = ±c + a, n = 1, (35)

v = ±2c + a, n = 2, (36)

where a is a constant. Equations (35) and (36) together with (20) give a simple wave solution
for the two cases considered in this section. From (22), the corresponding Riemann invariants
can be expressed as

Jn=1
+ = v + c, Jn=1

− = v − c (n = 1), (37)

Jn=2
+ = v + 2c, Jn=2

− = v − 2c (n = 2). (38)

4. General solution of the initial value problem

In this section we make use of (30) and (34) to solve the initial value problem for the case
of beam expansion into vacuum. The initial conditions for this problem are zero flow velocity
at every point, v0(x, 0) = 0, and prescribed density profile λ(x, 0) = λ0(x), which expresses
the initial line density as a function of x. At some later time t = tf , the density and velocity
profiles will be given by the functions λ(x, tf ) and v(x, tf ) which are the solutions to (1) and
(2). Since the equations of motion (equations (1) and (2)) are time-reversible, the flow described
by λ̄(x, t) = λ(x, tf − t) and v̄(x, t) = −v(x, tf − t) are also solutions to these equations with
initial conditions v̄(x, 0) = −v(x, tf ) and λ̄(x, 0) = λ(x, tf ). At time t = tf , this flow has zero
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III
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I
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x 0
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t

x
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Figure 2. The area in the (x, t) plane occupied by the four regions of flow.
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Figure 3. The area in the (v, c) plane occupied by the four regions of flow.

velocity profile (v̄ = 0) and the density profile is given by the initial profile for the expansion
problem, i.e., λ̄(x, tf ) = λ0(x).

To solve the initial value problem we assume that the density profile λ0(x), or equivalently the
sound velocity profile c0(x), decreases monotonically to zero at the beam boundary x = ±x0, is
an even function of x, and is an invertible function for x > 0 everywhere where the density
is non-zero. Therefore, we assume that at t = 0 the inverted profile x0(c) is known. The
condition that c0(x) decreases monotonically to zero at the beam boundary means that no
rarefaction wave is launched from the boundary into the beam as it expands. We will treat
the case with discontinuities in c0(x) at the beam boundary in one of the examples in section 5.
Since we are interested in the time-reversed problem of beam compression, we assume that
multi-valued flow does not form as the beam expands. This is equivalent to considering only
initial density profiles with first derivative decreasing continuously from the beam centre to
the beam edge. This guarantees that the portions of the beam with smaller density accelerate
faster than the portions with larger density, and as a result, the flow is never multi-valued.
We will treat the case with multi-valued flow in one of the examples in section 5. The region
of flow in the (x, t) plane and its boundaries are illustrated in figure 2. It is obvious that
the flow is symmetric under reflection, x → −x, and therefore we need only to solve the
equations in the region x > 0. In general, there are four regions of flow (see figures 2 and 3).
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Each is separated from the others by two characteristics, the C− characteristic P on which
v = nc, and the C+ characteristic Q on which v + nc = nc0. The boundary conditions are
given by

v(0, t) = 0, c(x, 0) = c0(x), v(x, 0) = 0, for |x| < x0, c[xb(t), t] = 0, (39)

where x0 = xb(t = 0) is the initial beam half-width, and xb(t) is the coordinate of the beam
edge.

As is evident from figure 2, the flow at every point in region I is brought to this point by
the characteristics originating from the x-axis at t = 0. Hence, the flow in this region is fully
determined by the boundary conditions c(x, 0) = c0(x) and v(x, 0) = 0. The flow at every point
in region II, which is separated from region I by the C+ characteristic Q originating from the
origin in the (x, t) plane, is brought to this point by the characteristics originating from the
x = 0 line where v(0, t) = 0, and from region I. Therefore, the boundary condition for region
II is given by v(0, t) = 0 and by the flow on the separating characteristic Q. The flow at every
point in region III, which is adjacent to the beam edge and separated from region I by the C−
characteristic P originating from the beam edge at t = 0 in the (x, t) plane, is brought to this point
by the characteristics originating from the beam edge where c[xb(t), t] = 0, and from region I.
Therefore, the boundary condition for region III is given by c[xb(t), t] = 0 and by the flow on the
separating characteristic P. The flow at every point in region IV, which is separated from region
II by the P characteristic and from region III by the Q characteristic, is brought to this point by
the characteristics originating from region II and region III. Therefore the boundary condition
for region IV is given by the flow on the separating characteristics P and Q.

The function χ(v, c) and equation (8) provide the map of the flow region in the (x, t)

plane illustrated in figure 2, to the (v, c) plane (figure 3). The region is a triangle (0 < c < c0)

limited from above by the C+ characteristic Q which is a straight line in the (v, c) plane since
on this characteristic J+ = v + nc = nc0 = const (n = 1, 2). This mapping is not one-to-one.
In fact, regions I and II and regions III and IV in the (x, t) plane map into the same regions
in the (v, c) plane, which means that in the (v, c) plane there will be four functions, χI,
χII, χIII and χIV, defined inside the area depicted in figure 3, which map the depicted (v, c)

region back into regions I, II, III and IV in the (x, t) plane, respectively, by means of equa-
tion (8).

Since at t = 0, v(x, 0) = 0 and c(x, 0) = c0(x), by making use of equation (8) we
obtain the boundary conditions for χI(v, c) in the (v, c) plane in region I, which can be ex-
pressed as

t = 0 =
(

∂χI

∂w

)
v=0

= 0, or equivalently,

(
∂χI

∂c

)
v=0

= 0, (40)

x0(c) = −
(

∂χI

∂v

)
v=0

. (41)

Since v(0, t) = 0 at x = 0, the boundary condition for χII(v, c) is(
∂χII

∂v

)
v=0

= 0. (42)
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The second boundary condition for χII(v, c) reflects continuity of the mapping in equation (8),(
∂χII

∂v

)
v+nc=nc0

=
(

∂χI

∂v

)
v+nc=nc0

, (43)

(
∂χII

∂c

)
v+nc=nc0

=
(

∂χI

∂c

)
v+nc=nc0

. (44)

By making use of c[xb(t), t] = 0, the definition c2 = λ dw/dλ = nw and equation (8), we obtain
the boundary condition for χIII(v, c),(

∂χIII

∂c

)
c=0

= 0. (45)

The second boundary condition for χIII(v, c) reflects continuity of the mapping in equation (8),(
∂χIII

∂v

)
v=nc

=
(

∂χI

∂v

)
v=nc

, (46)

(
∂χIII

∂c

)
v=nc

=
(

∂χI

∂c

)
v=nc

. (47)

Finally, the boundary conditions for χIV(v, c) reflects continuity of the mapping in equation (8),(
∂χIV

∂v

)
v+nc=nc0

=
(

∂χIII

∂v

)
v+nc=nc0

, (48)

(
∂χIV

∂c

)
v+nc=nc0

=
(

∂χIII

∂c

)
v+nc=nc0

, (49)

and (
∂χIV

∂v

)
v=nc

=
(

∂χII

∂v

)
v=nc

, (50)

(
∂χIV

∂c

)
v=nc

=
(

∂χII

∂c

)
v=nc

. (51)

Next, we consider separately the two cases corresponding to a cold beam, and a pressure-
dominated beam.

4.1. Pressure-dominated beam

The general solution for the case of a pressure-dominated beam is given by (30). To satisfy the
boundary condition in (40), we are required to choose

χI = f(c − v) − f(c + v). (52)
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Substituting (52) into (41), we obtain f ′(c) = x0(c)/2, and therefore

f(c) = 1

2

∫ c

c0

x0(c̄) dc̄. (53)

Here, we have chosen the integration constant so that f(c0) = 0. Substituting (53) into (52) then
gives

χI = 1

2

∫ c−v

c+v

x0(c̄) dc̄. (54)

In region II, to satisfy the boundary conditions in (42), we are required to choose

χII = g(c − v) + g(c + v). (55)

To satisfy the boundary conditions in (43) and (44) we choose g(c) = f(c). Hence, the solution
in region II is given by

χII = 1

2

(∫ c−v

c0

x0(c̄) dc̄ +
∫ c+v

c0

x0(c̄) dc̄

)
. (56)

It is readily shown that the solution in region III which satisfies all the boundary conditions in
(45)–(47) is given by

χIII = −1

2

(∫ v−c

c0

x0(c̄) dc̄ +
∫ c+v

c0

x0(c̄) dc̄

)
, (57)

and the solution in region IV which satisfies all of the boundary conditions in equations (48)–(51)
is given by

χIV = 1

2

∫ c+v

v−c

x0(c̄) dc̄. (58)

Finally, using equation (8) and the definition c2 = λ dw/dλ = 2w, we obtain the solutions in
region I,

x − vt = 1

2
[x0(c − v) + x0(c + v)], t = 1

2c
[x0(c − v) − x0(c + v)], (59)

in region II,

x − vt = 1

2
[x0(c − v) − x0(c + v)], t = 1

2c
[x0(c − v) + x0(c + v)]. (60)

in region III,

x − vt = 1

2
[x0(v − c) + x0(c + v)], t = 1

2c
[x0(v − c) − x0(c + v)], (61)

and in region IV,

x − vt = 1

2
[x0(v − c) − x0(c + v)], t = 1

2c
[x0(v − c) + x0(c + v)]. (62)
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X

x0
x (t)b

III

II I

v (x,t) (|x|<x  )+ 0

v (x,t) (|x|<x  ) _ 0

v (x,t) (|x|>x  )+ 0

v (x,t) (|x|>x  )_ 0

v (x,0)+

v (x,0)  _

vX

Figure 4. Schematic in (x, vx) phase space of the flow for a pressure-dominated
beam.

Equations (59) and (60) give the implicit solution for describing the expansion of a pressure-
dominated beam. We can also obtain the formulae for the asymptotic solution as t → ∞ or
c → 0. Indeed, for t → ∞ or c → 0 the flow is almost entirely in region IV. Using equation
(62), we obtain

t = 1

c

∂χIV

∂c
= x0(v)

c
+

x′′(v)c
2

+ O(c3), x − vt = −∂χIV

∂v
= −x′

0(v)c + O(c3). (63)

Finally, in the leading approximation, we can rewrite (63) as

λ(x, t)

λ0
= 1

c0t
x0

(x

t

)
, v(x, t) = x

t
, for t → ∞. (64)

Evidently, the density profile given by (64) is correctly normalized.
The same solution can be also obtained from a kinetic description. It has been shown in [88]

that equations (1) and (2) (together with the adiabatic pressure relation p = p0(λ/λ0)
3) are the

two key moments of the kinetic Vlasov equation for a waterbag distribution function (f = const
in an enclosed area of phase space). Indeed if we denote the upper curve in figure 4 as v+(x, t)

and the lower curve as v−(x, t), then by multiplying the Vlasov equation for f(x, vx, t)

∂f

∂t
+ vx

∂f

∂x
= 0, (65)

by 1 and by vx, integrating over vx, and keeping in mind that f = const inside the region limited
from above by v+(x, t) and from below by v−(x, t), we obtain

∂

∂t
[v+(x, t) − v−(x, t)] +

1

2

∂

∂x
[v+(x, t)2 − v−(x, t)2] = 0, (66)

1

2

∂

∂t
[v+(x, t)2 − v−(x, t)2] +

1

3

∂

∂x
[v+(x, t)3 − v−(x, t)3] = 0. (67)
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Introducing the line density and flow velocity defined by

λ(x, t) = λ0

[v+(0, 0) − v−(0, 0)]
[v+(x, t) − v−(x, t)], (68)

v(x, t) = 1
2 [v+(x, t) + v−(x, t)], (69)

where λ0 is the density at x = 0 at t = 0, we can rewrite the equations (66) and (67) in the
familiar form

∂

∂t
λ(x, t) +

∂

∂x
[λ(x, t)v(x, t)] = 0, (70)

∂

∂t
[λ(x, t)v(x, t)] +

∂

∂x
[λ(x, t)v(x, t)2] +

1

12

[v+(0, 0) − v−(0, 0)]2

λ2
0

∂

∂x
λ(x, t)3 = 0. (71)

Comparing with (2), we obtain c2 = λ dw/dλ = ([v+(0, 0) − v−(0, 0)]2/4λ2
0)λ

2, or c(x, t) =
([v+(0, 0) − v−(0, 0)]/2λ0)λ(x, t) = (1/2)[v+(x, t) − v−(x, t)]. Therefore, v+(x, t) = c(x, t) +
v(x, t) and v−(x, t) = v(x, t) − c(x, t). If the initial profiles are given by v(x, 0) = 0 and
c(x, 0) = c0(x), then v+(x, 0) = c0(x) and v−(x, 0) = −c0(x). Since (65) represents the free-
streaming motion of the particles in phase space along straightline trajectories, we readily obtain
the expressions for v−(x, t) and v+(x, t),

v+(x, t) = c0[x − v+(x, t)t], (72)

v−(x, t) = ±c0[x − v−(x, t)t]. (73)

Here, the ‘−’ sign in (73) holds for |x| < x0 (x0 is the coordinate of the beam edge at t = 0)
and corresponds to regions I and II in figure 2, and the ‘+’ sign holds for xb(t) > |x| > x0 and
corresponds to regions III and IV in figure 2 (see figure 4). Equations (72) and (73) can be
rewritten as equations for c(x, t) and v(x, t),

c(x, t) = 1
2{c0[x − (v + c)t] ± c0[x − (v − c)t]}, (74)

v(x, t) = 1
2{c0[x − (v + c)t] ∓ c0[x − (v − c)t]}. (75)

By adding and subtracting (74) and (75), and inverting the resulting equations, we obtain

± x0(v + c) = x − (v + c)t, (76)

x0(c − v) = x − (v − c)t, (77)

for regions I and II, and

± x0(v + c) = x − (v + c)t, (78)

x0(v − c) = x − (v − c)t, (79)

for regions III and IV, respectively. The ‘+’ sign in (76)–(79) corresponds to region I (equations
(76) and (77)) and region III (equations (78) and (79)), and the ‘−’ sign corresponds to region II
(equations (76) and (77)) and region IV (equations (78) and (79)) (see figures 2 and 4). The ±
signs appear here because we have assumed an even initial profile c0(−x) = c0(x).

Finally, by adding and subtracting, equations (76)–(79) take the form shown in equations
(59)–(62).
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4.2. Cold beam

Here we use the general solution in (34) to solve the same initial value problem as discussed in
the previous section, applied now to the case of a cold beam. To satisfy the boundary condition
in (40) we are required to choose

χI(v, c) =
∫ ∞

1

dt√
t2 − 1

[f(tc + v/2) − f(tc − v/2)]. (80)

Substituting (80) into (41), we obtain

x0(c) = −
(

∂χI

∂v

)
v=0

= −
∫ ∞

c

dz√
z2 − c2

df(z)

dz
. (81)

Equation (81) can be inverted by using the integral Abel transform in appendix A. This gives

f(z) = 2

π

∫ c0

z

qx0(q) dq√
q2 − z2

	(z < c0), (82)

where c0 = c0(x = 0), 	(z < a) is the Heaviside step-function, and z > 0. Note from (80) that
in regions I and II, where v < 2c, the argument of f in (80) is positive, and we can use the form
of f defined in (82). For v > 2c (regions III and IV), the argument of the function under the
integral in the first term in the general solution in (34) can become negative. Next, we show that
the solution of the form in (80) with f(z) continued to the regions where z < 0 as f(z) = f(−z),
or f(z) = f(|z|), will satisfy the boundary conditions in (45)–(47). Indeed, by expanding f in a
Taylor series in (80) for c → 0, we obtain

I− =
∫ (c0+v/2)/c

1

dt√
t2 − 1

f(tc − v/2) =
[
f(−v/2) +

c2

4
f ′′(−v/2)

]
ln

(c0

c

)
− q(v) + O(c2),

(83)
and therefore

χIII = f(v/2) ln
(c0

c

)
− f(−v/2) ln

(c0

c

)
+ p(v) + O

[
c2 ln

(c0

c

)]
, (84)

where q(v) and p(v) = q(v) − q(−v) are functions of v alone. Differentiating with respect to c,
and taking the limit c → 0 in (84), we obtain(

∂χIII

∂c

)
c→0

= [f(−v/2) − f(v/2)]

c
+ O

[
c ln

(c0

c

)]
= 0, (85)

provided f = f(|z|). It readily follows that the continuity conditions in (46)–(47) are also
satisfied. Therefore, the solutions in regions I and III are given by

χI,III(v, c) =
∫ ∞

1

dt√
t2 − 1

[f(tc + v/2) − f(tc − v/2)], (86)

where

f(z) = 2

π

∫ c0

|z|

qx0(q) dq√
q2 − z2

	(|z| < c0). (87)
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To obtain the solutions in regions II and IV, we note that the function

χII,IV(v, c) = −
∫ ∞

1

dt√
t2 − 1

[f(tc + v/2) + f(tc − v/2)] (88)

satisfies the condition in (42). Also, if we choose f as in (87), the second term (and its first
derivatives) in both equations (80) and (88) is zero on the dividing characteristic 2c + v = 2c0,
and therefore all of the continuity conditions in (48)–(51) are also satisfied. Equations (86)–(88)
together with (8) give the formal solution of the expansion problem for the case of a cold beam.
Finally, substituting (87) into (86) and (88), changing the order of integration, and performing
the integrations, we obtain

χI(v, c) = −2c

π

∫ 1+v/2c

1−v/2c

dq
√

qx0(cq)K

[
(v/2c)2 − (q − 1)2

4q

]
, (89)

χII(v, c) = − 2c

π

∫ 1+v/2c

1−v/2c

dq
√

qx0(cq)K

[
(v/2c)2 − (q − 1)2

4q

]

− 8c

π

∫ c0/c

1+v/2c

dq qx0(cq)√
(q + 1)2 − (v/2c)2

K

[
(q − 1)2 − (v/2c)2

(q + 1)2 − (v/2c)2

]
, (90)

χIII(v, c) = − 2c

π

∫ 1+v/2c

v/2c−1
dq

√
qx0(cq)K

[
(v/2c)2 − (q − 1)2

4q

]

− 4c

π

∫ v/2c−1

0

dq qx0(cq)√
(v/2c)2 − (q − 1)2

K

[
4q

(v/2c)2 − (q − 1)2

]
, (91)

χIV(v, c) = − 2c

π

∫ 1+v/2c

v/2c−1
dq

√
qx0(cq)K

[
(v/2c)2 − (q − 1)2

4q

]

− 4c

π

∫ v/2c−1

0

dq qx0(cq)√
(v/2c)2 − (q − 1)2

K

[
4q

(v/2c)2 − (q − 1)2

]

− 8c

π

∫ c0/c

1+v/2c

dq qx0(cq)√
(q + 1)2 − (v/2c)2

K

[
(q − 1)2 − (v/2c)2

(q + 1)2 − (v/2c)2

]
. (92)

Here, K is the complete elliptic integral of the first kind [102]. In section 5, we illustrate the
application of these solutions with several examples.

We can also obtain the formulas for the asymptotic solution as t → ∞ or c → 0. Indeed,
for t → ∞ or c → 0, the flow is almost entirely in regions II and IV. Using equations (83) and
(88), we obtain

χII,IV(v, c) = −I−(v, c) − I−(−v, c) = −
[
f(v/2) +

c2

4
f ′′(v/2)

]
ln

(
c2

0

c2

)
+ m(v) + O(c2),

(93)
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where m(v) = q(v) + q(−v) is a function of v alone, and therefore

t = 1

2c

∂χII,IV

∂c
= f(v/2)

c2
− f ′′(v/2)

4
ln

(
c2

0

c2

)
+ O(1),

x − vt = −∂χII,IV

∂v
= f ′(v/2)

2
ln

(
c2

0

c2

)
+ O(1). (94)

Finally, in the leading approximation, we can rewrite (94) as

λ(x, t)

λ0
= x0

c0t
g

(
x

2tc0

)
, v(x, t) = x

t
, for t → ∞, (95)

where f(z) = c0x0g(z/c0) and

g(z) = 2

π

∫ λ̄−1
0 (z2)

0

√
λ̄0(x̄) − z2 dx̄. (96)

Here λ̄0(x̄) = λ0(x/x0)/λ0 is the scaled initial line density profile. One can readily verify that
the density profile given by (95) is correctly normalized, and that g(−z) = g(z).

5. Examples with different initial density profiles

In this section, we apply the formalism developed in sections 2–4 to several examples with
different initial density profiles.

5.1. Parabolic density profile

As a first example, we consider here the case of an initial parabolic density profile for
λ(x, 0) = λ0(x) with

λ0(x)

λ0
=

[
1 −

(
x

x0

)2
]

	(|x| < x0). (97)

5.1.1. Cold beam. For a cold beam, c2 = λ dw/dλ = c2
g(λ/λ0). Substituting (97) into (96) and

integrating, we obtain

f(z) = c0x0

2

[
1 −

(
z

c0

)2
]

	(z < c0). (98)

Next we substitute (98) into the integral

I−(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc − v/2) = c0x0

(a + b)2

∫ b

1

dt√
t2 − 1

(b − t)(a + t)

= c0x0

(a + b)2

[√
b2 − 1(b − 2a) + [(2ab − 1) ln(b +

√
b2 − 1)

]
, (99)
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and define

I+(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc + v/2) = I−(b, a), (100)

where we have introduced the new variables

b = 2c0 + v

2c
, a = 2c0 − v

2c
. (101)

In terms of the new variables, it follows that

χI,III(a, b) = I+(a, b) − I−(a, b)

= c0x0

(a + b)2

[
(a − 2b)

√
a2 − 1 − (b − 2a)

√
b2 − 1 + (2ab − 1) ln

a +
√

a2 − 1

b +
√

b2 − 1

]
,

(102)

χII,IV(a, b) = − I+(a, b) − I−(a, b)

= − c0x0

(a + b)2

[
(a − 2b)

√
a2 − 1 + (b − 2a)

√
b2 − 1 + (2ab − 1) ln

a +
√

a2 − 1

b − √
b2 − 1

]
.

(103)

By introducing the scaled variables x̄ = x/x0, t̄ = tc0/x0 and χ̄ = χ/x0c0, we can rewrite
equation (8) as

t̄ = −(a + b)2

8

[
a

∂

∂a
+ b

∂

∂b

]
χ̄, (104)

x̄ = −(a2 − b2)

4

[
a

∂

∂a
+ b

∂

∂b

]
χ̄ − (a + b)

4

[
∂

∂b
− ∂

∂a

]
χ̄. (105)

Finally, substituting equations (102) and (103) into (104) and (105), and using equations (101),
we obtain after some lengthy algebra the solution in regions I and III,

t̄ = (1 − v̄)

4c̄2

√
(1 + v̄)2 − c̄2 − (1 + v̄)

4c̄2

√
(1 − v̄)2 − c̄2 +

1

4
ln

1 + v̄ +
√

(1 + v̄)2 − c̄2

1 − v̄ +
√

(1 − v̄)2 − c̄2
, (106)

x̄ = (c̄2 + v̄ − v̄2)
√

(1 + v̄)2 − c̄2 + (c̄2 − v̄ − v̄2)
√

(1 − v̄)2 − c̄2

2c̄2 , (107)

and in regions II and IV,

t̄ = (1 + v̄)

4c̄2

√
(1 − v̄)2 − c̄2 +

(1 − v̄)

4c̄2

√
(1 + v̄)2 − c̄2 +

1

4
ln

1 + v̄ +
√

(1 + v̄)2 − c̄2

1 − v̄ −
√

(1 − v̄)2 − c̄2
, (108)

x̄ = (c̄2 + v̄ − v̄2)
√

(1 + v̄)2 − c̄2 − (c̄2 − v̄ − v̄2)
√

(1 − v̄)2 − c̄2

2c̄2 . (109)
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Figure 5. Plots of (a) the normalized density λ(x, t)/λ0, and (b) the normalized
flow velocity v/2c0, at c0t/x0 = 1 as functions of x for a cold beam. The initial
density profile (dotted line) is given by equation (97).

Here we have introduced the definitions v̄ = v/2c0 and c̄ = c/c0. Equations (106)–(109) can be
easily inverted. The result is

v

c0
= 2

x

x0

(
2f

1 + f 2

)2 (
1 − f 2

1 + f 2

)
, (110)

c

c0
= 2f

1 + f 2

√
1 −

[
x

x0

]2 (
2f

1 + f 2

)4

, (111)

(
v

1 − f 2

)2

+

(
c

f

)2

=
(

2c0

1 + f 2

)2

, (112)

λ

λ0
=

(
2f

1 + f 2

)2
[

1 −
(

x

x0

)2 (
2f

1 + f 2

)4
]

, (113)

where 0 < f � 1 is the solution of the transcendental equation

t̄ = 1 − f 4

8f 2
− 1

2
ln f. (114)

The solutions in (110)–(114) describe the familiar self-similar solution [92]–[94] for a parabolic
density profile and is plotted in figure 5. Using (95) and (98), we obtain the asymptotic solution
as t → ∞

λ(x, t)

λ0
= c̄2 = x0

2c0t

[
1 −

(
x

2tc0

)2
]

, v(x, t) = x

t
, for t → ∞. (115)

The exact solution given by (113) and the asymptotic solution given by (115) are compared in
figure 6 (curve b) for c0t/x0 = 50.
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Figure 6. Plots of the normalized density λ(x, t)/λ0 as a function of x for a cold
beam at c0t/x0 = 50. The solid lines are the exact solutions. The dotted lines are
the approximate solutions given by equation (95). The initial profiles are given
by (a) equation (125), (b) equation (97), and (c) equation (143).

5.1.2. Pressure-dominated beam. For a pressure-dominated beam, c2 = λ dw/dλ = c2
p(λ/λ0)

2

and therefore the initial profile for x0(c) is given by x0(c)/x0 = √
1 − c/c0. Using equation (97)

and equations (74) and (75) we obtain the implicit solution in regions I and II,

c̄ + v̄ = 1 − [x̄ − (v̄ + c̄)t̄]2, (116)

c̄ − v̄ = 1 − [x̄ − (v̄ − c̄)t̄]2, (117)

and in regions III and IV,

c̄ + v̄ = 1 − [x̄ − (v̄ + c̄)t̄]2, (118)

v̄ − c̄ = 1 − [x̄ − (v̄ − c̄)t̄]2. (119)

Solving equations (116)–(119) for c̄(x̄, t̄) and v̄(x̄, t̄), we obtain

c̄ = 1

4t̄
2

[√
1 + 4t̄

2 + 4x̄t̄ +
√

1 + 4t̄
2 − 4x̄t̄ − 2

]
, (120)

v̄ = x̄

t̄
+

1

4t̄
2

[√
1 + 4t̄

2 − 4x̄t̄ −
√

1 + 4t̄
2 + 4x̄t̄

]
, (121)

for regions I and II (0 < x̄ < 1, 0 < t̄), and

c̄ = 1

2t̄
2

√
1 + 4t̄

2 − 4x̄t̄, (122)

v̄ = x̄

t̄
− 1

2t̄
2 , (123)
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Figure 7. Plots of the normalized density λ(x, t)/λ0 for c0t/x0 = 0.5 in (a) and
for c0t/x0 = 2 in (c), and the flow velocity v/c0 for c0t/x0 = 0.5 in (b) and for
c0t/x0 = 2 in (d), as functions of x for a pressure-dominated beam. The initial
density profile (dotted line) is given by equation (97).
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Figure 8. Plots of the normalized density λ(x, t)/λ0 as a function of x for a
pressure-dominated beam at c0t/x0 = 10. The solid lines are the exact solutions.
The dotted lines are the approximate solutions given by equation (64). The initial
profiles are given by (a) equation (125), (b) equation (97), and (c) equation (143).

for regions III and IV (1 < x̄, 1/2 < t̄). The solutions (equations (120)–(123)) are illustrated in
figure 7. Using (64) we obtain the asymptotic solution as t → ∞

λ(x, t)

λ0
= c̄ = x0

c0t

√
1 − x

c0t
, v(x, t) = x

t
, for t → ∞. (124)

The exact solution given by (122) and asymptotic solution given by (124) are compared in figure 8
(curve b) for c0t/x0 = 10.
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5.2. Linear density profile

The next example we consider corresponds to the initial linear density profile

λ0(x)

λ0
=

(
1 −

∣∣∣∣ x

x0

∣∣∣∣
)

	(|x| < x0). (125)

5.2.1. Cold beam. Here we repeat the intermediate steps of the previous example. For a cold
beam, c2 = λ dw/dλ = c2

g(λ/λ0). Substituting (125) into (96) and integrating, we obtain

f(z) = 4c0x0

3π

[
1 −

(
z

c0

)2
]3/2

	(z < c0). (126)

Next we substitute (126) into the integral

I−(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc − v/2) = 32

3π

c0x0

(a + b)3

∫ b

1

dt√
t2 − 1

[(b − t)(a + t)]3/2, (127)

and define

I+(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc + v/2) = I−(b, a), (128)

where a and b are introduced in (101). By introducing the new integration variable α defined by

sin(α) =
√

(t − 1)(b + 1)

(t + 1)(b − 1)
, (129)

the integral in (127) can be expressed as

I−(a, b)

x0c0
= 64

3π

√
b − 1

b + 1

[(b − 1)(a + 1)]3/2

(a + b)3

∫ π/2

0
dα

cos4(α)[1 − k2p2 sin2(α)]3/2

[1 − k2 sin2(α)]4 , (130)

where k2 = (b − 1)/(b + 1) and p2 = (a − 1)/(a + 1). The integral in (130) can be expressed
in terms of elliptic integrals. Finally, using the definitions χI,III = I−(b, a) − I−(a, b) and
χII,IV = −I−(a, b) − I−(b, a), and using (101), (104), and (105), we obtain after some lengthy
algebra the solution in regions I and III,

t̄ = 8

π

v̄c̄√
(1 + c̄)2 − v̄2

[
�

(
1 + v̄ − c̄

1 + v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

+ �

(
1 − v̄ − c̄

1 − v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)
− K

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) ]
= 2v̄, (131)

x̄ = 4

π

(1 + 2v̄2 − c̄2)c̄√
(1 + c̄)2 − v̄2

[
�

(
1 + v̄ − c̄

1 + v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

+ �

(
1 − v̄ − c̄

1 − v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)
− K

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) ]
= 1 + 2v̄2 − c̄2,

(132)
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Figure 9. Plots of the normalized density λ(x, t)/λ0 for c0t/x0 = 0.5 in (a) and
for c0t/x0 = 2 in (c), and the flow velocity v/c0 for c0t/x0 = 0.5 in (b) and for
c0t/x0 = 2 in (d), as functions of x for a pressure-dominated beam. The initial
density profile (dotted line) is given by equation (97).

and in regions II and IV,

t̄ = 4

3π

1

c̄2
√

(1 + c̄)2 − v̄2

[
6c̄3v̄

{
�

(
1 + v̄ − c̄

1 + v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

− �

(
1 − v̄ − c̄

1 − v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) }
+ 2c̄(2c̄2 + v̄2 − 3c̄v̄2 + c̄ − 1)K

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

− ((1 + c̄)2 − v̄2)(2c̄2 + v̄2 − 1)E

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) ]
, (133)

x̄ = 2

3π

1

c̄2
√

(1 + c̄)2 − v̄2

[
6c̄3(1 − c̄2 + 2v̄2)

{
�

(
1 + v̄ − c̄

1 + v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

− �

(
1 − v̄ − c̄

1 − v̄ + c̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) }

− 2c̄v̄(4 − 4v̄2 + c̄(2 + c̄ − 3c̄2 + 6v̄2))K

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

)

+ v̄((1 + c̄)2 − v̄2)(4 + c̄2 − 4v̄2)E

(
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

) ]
, (134)

where v̄ = v/2c0, c̄ = c/c0, x̄ = x/x0 and t̄ = tc0/x0. Here, K, E and � are the complete elliptic
integrals of the first, second, and third kind, respectively [102]. The solution to the expansion
problem for the linear density profile (125) is given by (131)–(134) and is illustrated in figure 9.
Using equations (131) and (132), we can rewrite the solution in regions I and III as

v = c2
0

x0
t, (135)

λ

λ0
= 1 +

c2
0

2x2
0

t2 −
∣∣∣∣ x

x0

∣∣∣∣ . (136)
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This simple flow with uniform acceleration in regions I and III exists only until t = tcr = 2x0/c0.
At this time the characteristic Q overtakes the edge of the beam, and the flow for t > tcr is
entirely in regions II and IV and is given by (133) and (134). Using (95) and (126) we obtain the
asymptotic solution as t → ∞

λ(x, t)

λ0
= c̄2 = 4x0

3πc0t

[
1 −

(
x

2tc0

)2
]3/2

, v(x, t) = x

t
, for t → ∞. (137)

The exact solution given by (133) and (134) and the asymptotic solution given by (137) are
compared in figure 6 (curve a) for c0t/x0 = 50.

5.2.2. Pressure-dominated beam. For a pressure-dominated beam, c2 = λ dw/dλ = c2
p(λ/λ0)

2.
Hence, for the linear density profile in (125), the initial profile for x0(c) is

x0(c)

x0
=

[
1 −

(
c

c0

)]
	(c < c0), (138)

where x0 is the initial beam half-length, and c0 is the speed of sound at x = 0. Substituting (138)
into (59)–(62), we obtain the solution in region I,

c̄ = 1 − x̄

1 − t̄
2 , v̄ = t̄

1 − x̄

1 − t̄
2 , for 0 < t̄ < 1, t̄ < x̄ < 1, (139)

in region II,

c̄ = 1

1 + t̄
, v̄ = x̄

1 + t̄
, for 0 < t̄, 0 < x < min(t̄, 1), (140)

and in region IV,

c̄ = t̄ − x̄

t̄
2 − 1

, v̄ = x̄t̄ − 1

t̄
2 − 1

, for 1 < t̄, 1 < x < t̄. (141)

Region III has disappeared. Indeed, using (61) we obtain x̄ = 1 and t̄ = 1, so that the entire region
consists of just one point. The corresponding solutions (equations (139)–(141)) are illustrated in
figure 10. Using equations (64) and (138) we obtain the asymptotic solution as t → ∞

λ(x, t)

λ0
= c̄ = x0

c0t

(
1 − x

c0t

)
, v(x, t) = x

t
, for t → ∞. (142)

The exact solution given by (141) and the asymptotic solution given by (142) are compared in
figure 8 (line a) for c0t/x0 = 10.

5.3. Flat-top density profile

As discussed in section 2, the general flow consists of regions where either a simple wave
solution (equation (20)) or a general solution (solution of (14) together with (8)) is applicable.
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Figure 10. Plots of the normalized density λ(x, t)/λ0 for c0t/x0 = 0.5 in (a) and
for c0t/x0 = 2 in (c), and the flow velocity v/c0 for c0t/x0 = 0.5 in (b) and for
c0t/x0 = 2 in (d), as functions of x for a pressure-dominated beam. The initial
density profile (dotted line) is given by equation (125).
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Figure 11. The area in the (x, t) plane occupied by the three regions of flow.

Up to now we have considered flows with no simple wave regions. This is guaranteed provided
the initial density profile is smooth everywhere except at the beam edge where the sound speed
is zero, c0(x0) = 0. Here, we consider an example with an initial flat-top density profile, and a
corresponding discontinuity in density at the beam edge, i.e.,

λ0(x)

λ0
= 	(|x| < x0). (143)

This problem is equivalent to the one-dimensional expansion of a uniform-density gas into
vacuum in a vessel in which the end walls are instantly removed. The (x, t) plane is shown in
figure 11. The flow consists of three regions. In region I the gas is at rest, and the information that
the walls have been removed, which is carried by the C− characteristic P into the gas, does not
reach this region. Region II is the region occupied by a simple rarefaction wave which is centred at
t = 0 and x = x0 in the (x, t) plane, and is described by the simple wave solution in (20). Region
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III is the region of interference of this wave and and its reflection from the origin (or another
rarefaction wave coming from the other end of the gas region). This region is described by the
general solution in (14) together with (8). Regions II and III are separated by the C+ characteristic
Q. On this characteristic the boundary condition in (27) holds. To determine the function f(v)

in (20) and (27), we note that for t = 0, x = x0 and therefore f(v) = x0 = const. Also note that
the characteristics C+ bring the value of the Riemann invariant J+ = v + nc = nc0 = const to all
points of region II. Therefore, the solution in region II is given by

c = n

n + 1
c0 − 1

n + 1

x − x0

t
, (144)

v = n

n + 1
c0 +

n

n + 1

x − x0

t
, (145)

where n = 1, 2, and the boundary condition for χ on the separating characteristic Q where
v + nc = nc0 is given by

χ|v+nc=nc0 = −x0v. (146)

The second boundary condition (equation (42)) is given by(
∂χ

∂v

)
v=0

= 0. (147)

5.3.1. Cold beam. The function χ satisfying the boundary condition in (147) is given by

χ(v, c) = −
∫ ∞

1

dt√
t2 − 1

[f(tc + v/2) + f(tc − v/2)]. (148)

Using (146) and (148), we obtain the integral equation for the function f ,

x0v =
∫ ∞

1

dt√
t2 − 1

{f [(c0 − v/2)t − v/2] + f [(c0 − v/2)t + v/2]}. (149)

By setting v = 0 in (149) we note that the function f has the form f(t) = g(t)	(t < c0).
Substituting this expression for f(t) into (149), and changing the integration variable to
x = t(1 − v/2c0) − v/2c0, we obtain the integral equation for the function g,∫ 1

1−v/c0

dx g(c0x)√
(x + 1)(x − [1 − v/c0])

= vx0. (150)

Changing the integration variables in (150) according to y = √
x + 1, and introducing the new

function p(y) ≡ g[c0(2y2 − 1)], we obtain an integral equation of the Abel type,∫ 1

a

dy p(y)√
y2 − a2

= c0x0

(
1 − a2

)
	(a < 1), (151)
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where a = √
1 − v/2c0. Equation (151) is easily solved using the Abel transform described in

appendix A. We obtain

p(y) = c0x0
4

π
y
√

1 − y2. (152)

Finally, since g(x) = p(
√

1/2 + x/2c0), we obtain

f(x) = c0x0
2

π

√
1 −

(
x

c0

)2

	(x < c0). (153)

Next we substitute (153) into the integral

I−(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc − v/2) = 4

π

c0x0

(a + b)

∫ b

1

dt√
t2 − 1

[(b − t)(a + t)]1/2, (154)

and define

I+(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc + v/2) = I−(b, a), (155)

where a and b are introduced in (101). By introducing the new integration variable α defined by

sin(α) =
√

(t − 1)(b + 1)

(t + 1)(b − 1)
, (156)

the integral in (154) can be rewritten as

I−(a, b)

x0c0
= 8

π

√
b − 1

b + 1

[(b − 1)(a + 1)]1/2

(a + b)

∫ π/2

0
dα

cos2(α)[1 − k2p2 sin2(α)]1/2

[1 − k2 sin2(α)]2 , (157)

where k2 = (b − 1)/(b + 1) and p2 = (a − 1)/(a + 1). The integral in (157) can be expressed
in terms of elliptic integrals. Finally, using the definition χ = −I−(b, a) − I−(a, b), and
making use of (101), (104) and (105), we obtain after some lengthy algebra the solution in
region III,

t̄ = 2

πc̄2
√

(1 + c̄)2 − v̄2

{
[(1 + c̄)2) − v̄2]E

[
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

]
− 2c̄K

[
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

]}
, (158)

x̄ = 4

πc̄2
√

(1 + c̄)2 − v̄2

{
v̄[(1 + c̄)2) − v̄2]E

[
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

]
− v̄c̄(2 + c̄)K

[
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

]

+ �

[
1 − c̄ − v̄

1 + c̄ − v̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

]
− �

[
1 − c̄ + v̄

1 + c̄ + v̄
,
(1 − c̄)2 − v̄2

(1 + c̄)2 − v̄2

] }
, (159)
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Figure 12. Plots of the normalized density λ(x, t)/λ0 for c0t/x0 = 0.5 in (a) and
for c0t/x0 = 3 in (c), and the flow velocity v/2c0 for c0t/x0 = 0.5 in (b) and for
c0t/x0 = 3 in (d), as functions of x for a cold beam. The initial density profile
(dotted line) is given by equation (143).

where v̄ = v/2c0, c̄ = c/c0, x̄ = x/x0 and t̄ = tc0/x0. Here, K, E and � are the complete elliptic
integrals of the first, second, and third kinds, respectively [102]. The solution in region II is given
by equations (144) and (145) with n = 2, i.e.,

c̄ = 1

3

(
2 − x̄ − 1

t̄

)
, (160)

v̄ = 1

3

(
1 +

x̄ − 1

t̄

)
. (161)

Using equations (160) and (161) we can determine the trajectory of the beam edge and
the characteristics Q and P. At the beam edge, c = 0, and therefore from (160) we obtain
xb(t) = x0 + 2c0t. On the characteristic P, v = 0, and from (161) we obtain xP(t) = x0 − c0t. On
the characteristic Q, dx/dt = v + c = 4c0/3 + (x − x0)/3t. Integrating this equation, we obtain

xQ(t) = x0 + c0t

(
2 − 3

(c0t/x0)2/3

)
. (162)

The solutions given by (158)–(161) are illustrated in figure 12. Using equations (95) and (153)
we obtain the asymptotic solution in region III [0 < x < xQ(t)] as t → ∞

λ(x, t)

λ0
= c̄2 = 2x0

πc0t

√
1 −

(
x

2tc0

)2

, v(x, t) = x

t
, for t → ∞. (163)

The asymptotic solution in region II [xQ(t) < x < xb(t)] is still given by (160) and (161). The
exact solution given by (158)–(161) and the asymptotic solution given by (163) and (160) are
compared in figure 6 (curve c) for c0t/x0 = 50.
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Figure 13. Plots of the normalized density λ(x, t)/λ0 for c0t/x0 = 0.5 in (a) and
for c0t/x0 = 2 in (c), and the flow velocity v/c0 for c0t/x0 = 0.5 in (b) and for
c0t/x0 = 2 in (d), as functions of x for a pressure-dominated beam. The initial
density profile (dotted line) is given by equation (143).

5.3.2. Pressure-dominated beam. The function χ satisfying the boundary condition in (147) is
given by

χ(v, c) = f(c − v) + f(c + v). (164)

Using the boundary condition on the characteristic Q, it follows that χ = −x0v for v + c = c0,
and we obtain

− vx0 = f(c0 − 2v) + f(c0). (165)

Substituting v = 0 into (165), we find that f(c0) = 0 and therefore f(c0 − 2v) = −vx0, or
f(x) = (x0/2)(x − c0). Using (164), we obtain

χ(v, c) = x0(c − c0), (166)

and using (8), we obtain t = x0/c and x − vt = 0. Therefore, the solution in region III is
given by

c̄ = 1

t̄
, v̄ = x̄

t̄
, for 1 < t̄, 0 < x̄ < t̄ − 1. (167)

The solution in region II is given by equations (144) and (145) with n = 1, i.e.,

c̄ = 1

2

(
1 − x̄ − 1

t̄

)
, v̄ = 1

2

(
1 +

x̄ − 1

t̄

)
, |t̄ − 1| < x̄ < 1 + t̄. (168)

In region I, the gas is undisturbed: c̄ = 1 and v̄ = 0, for 0 < x̄ < 1 − t̄ and t̄ < 1. The
characteristic Q is given by the equation x̄Q(t) = t̄ − 1, and the beam edge is given by
x̄b(t) = 1 + t̄. The solutions given by (167) and (168) are illustrated in figure 13. Since χ in (166)
is a linear function of c and is independent of v, the asymptotic (t → ∞) solution coincides with
the exact solution in (167).
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5.4. Continuous density profile (no sharp edge boundary)

Up to this point we have considered flows which do not become multi-valued (in the absence of
dissipation) and therefore are time-reversible [89, 90]. For such flows, the compression problem
is equivalent to the time-reversed expansion problem. In this section, we consider an example of
fluid flow which becomes multi-valued. For simplicity, we consider here a beam without sharp
edges in which λ0(x) decreases to zero monotonically as x → ±∞. In particular, we consider
the initial density profile given by

λ0(x)

λ0
= 1

cosh2 (x/x0)
. (169)

Expanding flows with initially smooth profiles extending to x → ±∞ such as in (169) are
entirely in regions I and II. Indeed regions I and II are separated from regions III and IV by the
C− characteristic P with v − nc = −nc0 = 0 (n = 1, 2). However, for profiles such as (169),
c0(x) > 0 for all |x| < ∞, and therefore the entire region |x| < ∞ maps into regions I and II in
the (v, c) plane (see figure 3). As a result, the solution for the flow is given by equations (59)
and (60) for pressure-dominated beams, and by (86) and (88), with f(z) defined in (82) for cold
beams.

5.4.1. Cold beam. For a cold beam, c2 = λ dw/dλ = c2
g(λ/λ0), and therefore c/c0 =

1/ cosh(x/x0). Substituting (169) into (96) and integrating, we obtain

f(z) = x0c0

(
1 − |z|

c0

)
	(z < c0). (170)

Substituting (170) into the integral for I−(a, b) and integrating, we obtain

I−(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc − v/2) = −2x0c0

a + b
[
√

b2 − 1 − b ln(b +
√

b2 − 1)], (171)

and

I+(a, b) =
∫ ∞

1

dt√
t2 − 1

f(tc + v/2) = I−(b, a), (172)

where a and b are introduced in (101). Using the definitions χI = I−(b, a) − I−(a, b) and
χII = −I−(b, a) − I−(a, b), and making use of (101), (104) and (105), we obtain the solution in
region I,

t̄ =
√

(1 + v̄)2 − c̄2 −
√

(1 − v̄)2 − c̄2

2c̄2 , (173)

x̄ = v̄

√
(1 + v̄)2 − c̄2 −

√
(1 − v̄)2 − c̄2

c̄2 +
1

2
ln

[
1 + v̄ +

√
(1 + v̄)2 − c̄2

1 − v̄ −
√

(1 − v̄)2 − c̄2

]
, (174)
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Figure 14. Plots of the normalized density λ(x, t)/λ0 in (a) and flow velocity
v/2c0 in (b) at c0t/x0 = 1.5 as functions of x for a cold beam. The initial density
profile (thick solid line) is given by equation (169).

and in region II,

t̄ =
√

(1 + v̄)2 − c̄2 +
√

(1 − v̄)2 − c̄2

2c̄2 , (175)

x̄ = v̄

√
(1 + v̄)2 − c̄2 +

√
(1 − v̄)2 − c̄2

c̄2 +
1

2
ln

[
1 + v̄ +

√
(1 + v̄)2 − c̄2

1 − v̄ +
√

(1 − v̄)2 − c̄2

]
. (176)

Equations (173)–(176) can be partially inverted to give

v̄2 = t̄
2
λ̄2(t̄

2
λ̄2 + λ̄ − 1)

(t̄
2
λ̄2 − 1)

, (177)

where

λ̄ = 1

cosh2(x̄ − 2v̄t̄)
− v̄2

sinh2(x̄ − 2v̄t̄)
, (178)

and λ̄ = λ/λ0 = c̄2. The solutions given by (177) and (178) are illustrated in figure 14. As
evident from (177), (∂v̄/∂λ̄)t > 0 in some regions, which means that the regions with higher
density accelerated faster than the regions with lower density, and eventually multi-valued flow
is formed (see figure 14). This is unlike the previous examples where (∂v̄/∂λ̄)t < 0 for all t, and
there was no multi-valued flow.

5.4.2. Pressure-dominated beam. For a pressure-dominated beam, c2 = λ dw/dλ = c2
p(λ/λ0)

2.
Using (169) and (74) and (75), we obtain the implicit solution in regions I and II,

c̄(x, t) = 1

2

{
1

cosh2 [x̄ − (v̄ + c̄)t̄]
+

1

cosh2 [x̄ − (v̄ − c̄)t̄]

}
, (179)
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Figure 15. Plots of the normalized density λ(x, t)/λ0 in (a) and flow velocity
v/c0 in (b) at c0t/x0 = 1.3 as functions of x for a pressure-dominated beam. The
initial density profile (thick solid line) is given by equation (169).

v̄(x, t) = 1

2

{
1

cosh2 [x̄ − (v̄ + c̄)t̄]
− 1

cosh2 [x̄ − (v̄ − c̄)t̄]

}
. (180)

The solutions given by (179) and (180) are illustrated in figure 15.

6. Beam shaping

In this section we consider the beam-shaping problem referred to in section 1. That is, given
an initial line density profile �in(x) at time t = 0 and final line density profile �f(x) at time
t = Tshape, what are the initial and finial velocity profiles, Vin(x) and Vf (x) respectively. The
beam-shaping stage is necessary to prepare the beam density profile for the final drift compression
discussed in previous sections. Here, as in previous sections, we analyse the time-reversed
problem. Therefore, the initial density profile �in(x) for the time-reversed problem is given
by (95) and (96) for a cold beam, or by (64) for a pressure-dominated beam, and the final
density profile �f(x) illustrated schematically in figure 1. During the beam shaping stage, the
longitudinal pressure and electric field are negligible and the beam dynamics is governed by free
convection described by(

∂

∂t
+ v

∂

∂x

)
v = 0, (181)

∂x

∂v
− v

∂t

∂v
+ λ

∂t

∂λ
= 0. (182)

Here, (182) follows from multiplying (12) by dw/dλ, and is equivalent to (1). Equation (181)
implies that the function v is constant along the characteristic given by dx/dt = v, which therefore
corresponds to straight lines given by

x = vt + f(v) or v(x, t) = V [x − v(x, t)t], (183)
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where v(x, 0) = V(x) and V [f(v)] = v. Equation (183) gives a general solution to (181) for
the velocity profile v(x, t). Substituting (183) into (182), we obtain t = −f ′(v) + q(v)/λ, where
q(v) is an arbitrary function of v. Using the initial condition that at t = 0, λ = λ0(v), we obtain
the solution to (182), λ = λ0(v)/[1 + t/f ′(v)]. Note that 1/f ′(v) ≡ V ′[f(v)] = V ′(x − vt), and
λ0(v) = λ0[V(x − vt)] ≡ �(x − vt), where �(x) is the initial density profile as a function of x.
Therefore, the solution to (181) and (182) is given by [93]

v(x, t) = V [x − v(x, t)t], (184)

λ(x, t) = �[x − v(x, t)t]

1 + tV ′[x − v(x, t)t]
. (185)

Setting t = Tshape and introducing now the function Uin(x) = x + TshapeVin(x), we can rewrite
(184) asVf (x) = v(x, Tshape) = Vin[x−Vf (x)Tshape] = {Uin[x−Vf (x)Tshape] − [x − Vf (x)Tshape]}/
Tshape, or equivalently, x = Uin[x − Vf (x)Tshape]. Finally, using the definition of the function
Uin(x), we can rewrite (184) and (185) in a compact and manifestly time-reversible form giving
the final formal solution to the beam shaping problem, i.e.,

Vf (x) = x − Uf(x)

Tshape

, Vin(x) = Uin(x) − x

Tshape

, (186)

∫ Uin(x)

0
�f(ū) dū =

∫ x

0
�in(x̄) dx̄ or

∫ x

0
�f(x̄) dx̄ =

∫ Uf (x)

0
�in(ū) dū. (187)

Here, Uf(x) = U−1
in (x) is the inverse of the function Uin(x) such that Uf [Uin(x)] ≡ x, and we

have assumed that �f(−x) = �f(x) and �in(−x) = �in(x). Examples applying results in (186)
and (187) can be found in [93].

7. Conclusions

To summarize, we have studied the longitudinal drift compression of an intense charged-particle
beam using a one-dimensional warm-fluid model. We have reformulated the drift-compression
problem as the time-reversed expansion problem of the beam with arbitrary line density profile
and zero velocity profile. We have obtained exact analytical solutions to the expansion problem
for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using
a general formalism which reduces the system of warm-fluid equations to a linear second-order
partial differential equation. We obtained simple approximate analytical formulas connecting the
initial and final line density profile and flow velocity profile for these two cases. The asymptotic
velocity profiles are linear in both cases, and correspond to free expansion as t → ∞. The scaled
density profile for a pressure-dominated beam far from the compression point was shown to be
the functional inverse of the compressed density profile in (64). For a cold beam, the profiles
are connected by the Abel transform (equations (95) and (96)). The general solution has been
illustrated for parabolic, linear, and flat-top initial (compressed) line density profiles. For the case
of a parabolic density profile, we have recovered the familiar self-similar solution [92]–[94]. We
have also illustrated the formation of multi-valued flow with the exactly solvable example in
(169), and identified the conditions for smooth, single-valued compression.
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Appendix A. Abel transform

Here we use the following definition of the Abel transform

f(z) = A[g(z)] = 2
∫ ∞

z

g(x)x dx√
x2 − z2

. (A.1)

The inverse Abel transform is given by

g(x) = A−1[f(x)] = − 1

π

∫ ∞

x

df(z)

dz

dz√
z2 − x2

. (A.2)

The fact that (A.2) is indeed the inverse of the Abel transform in (A.1) can be checked by direct
substitution of (A.2) into (A.1). Changing the order of integration leads to

f(z) = − 1

π

∫ ∞

z

2x dx√
x2 − z2

∫ ∞

x

df(t)

dt

dt√
t2 − x2

= − 1

π

∫ ∞

z

dt
df(t)

dt

∫ t

z

2x dx√
t2 − x2

√
x2 − z2

.

(A.3)

Making the change of variables, sin(q) = √
x2 − z2/

√
t2 − z2, the final integral in (A.3) is

evaluated to be ∫ t

z

2x dx√
t2 − x2

√
x2 − z2

= π, (A.4)

and (A.3) becomes

f(z) = −
∫ ∞

z

dt
df(t)

dt
= f(z) − f(∞). (A.5)

Therefore, for functions f(z) such that f(∞) = 0, (A.5) is an identity.
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