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Abstract

In intense charged particle beams with large energy
anisotropy, free energy is available to drive transverse
electromagnetic Weibel-type instabilities. Such slow-wave
transverse electromagnetic instabilities can be described
by the so-called Darwin model, which neglects the fast-
wave portion of the displacement current. The Weibel
instability may also lead to an increase in the longitudinal
velocity spread, which would make the focusing of the
beam difficult and impose a limit on the minimum spot
size achievable in heavy ion fusion experiments. This
paper reports the results of recent numerical studies of the
Weibel instability using the Beam Eigenmode And Spectra
(bEASt) code for space-charge-dominated, low-emittance
beams with large tune depression. To study the nonlinear
stage of the instability, the Darwin model is being devel-
oped and incorporated into the Beam Equilibrium Stability
and Transport(BEST) code.

INSTABILITY MECHANISM

To illustrate the physical mechanism for the electromag-
netic Weibel-type instability [1–5] we consider a charged
particle beam confined inside a circular conducting pipe
of radius rw by an external linear force F = −mbω

2
fx⊥

in the smooth-focusing approximation. For simplicity,
the analysis is carried out in the beam frame (Vb = 0).
The beam is confined in the transverse direction provided
ω̂2

pb/2ω
2
f < 1. Here, ω̂2

pb = 4πe2bn̂b/mb is the on-axis
(r = 0) plasma frequency-squared, and ωf is the average
oscillation frequency of a beam particle with mass mb

and charge eb in the applied focusing field. It follows
from the numerical analysis that the fastest growing modes
correspond to rigid rotations of the beams slices with
δJθ ∼ r for ω̂2

pb/2ω
2
f → 1. The growth rate is an increas-

ing function of kzrb and approaches a maximum value
for k2

zr
2
b � 1. Therefore, in leading order, the perturbed

magnetic field is given approximately by δB � ikzδAθer

for k2
zr

2
b � 1. From Maxwell’s equations it follows that

δAθ(x, t) = Âθ
r

rb
ei(kzz−ωt). (1)

The longitudinal equation of motion for a beam particle
becomes

z̈ = − eb

mb

vθ

c
δBr = −ikz

eb

mb
Âθ

r(t)vθ(t)
crb

ei(kzz0−ωt).

(2)
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In the smooth-focusing approximation, the unperturbed
motion is in a cylindrically-symmetric potential U(r), and
therefore the angular momentum is conserved r(t)vθ(t) =
const. Integrating Eq. (2) with respect to time t, we obtain

z(t) = i
kz

ω2

eb

mb
Âθ

r(t)vθ(t)
crb

ei(kzz0−ωt) =
vθ

ω2

ebδBr

mbc
.

(3)
The average axial displacement is given by
〈z〉 ∼ 〈vθ〉 = 0, and therefore the density perturba-
tion δnb = −n̄b∂〈z〉/∂z = 0 is zero. For the current
perturbations we obtain,

∂δJθ

∂t
+

∂

∂z

(
ebn̄b

∂〈vθz〉
∂t

)
= 0,

δJθ = −ebn̄b
∂〈vθz〉
∂z

= −e2bn̄b

mbc

〈v2
θ〉
ω2

∂δBr

∂z
. (4)

Substituting Eq. (4) into Maxwell’s equation
∂δBr/∂z = 4πδJθ/c, we obtain the dispersion relation

1 = − ω̄2
pb

ω2

〈v2
θ〉
c2

, (5)

where ω̄2
pb = 4πe2b n̄b/mb is the average beam plasma

frequency-squared. Noting that T⊥b = mb〈v2
θ + v2

r〉/2 =
mb〈v2

θ〉 we can express the growth rate as

γ = ω̄pb

√
T⊥b

mbc2
=

ω̄pb√
2
vth
⊥b

c
≈ 0.71

vth
⊥b

c
, (6)

where vth
⊥b =

√
2T⊥b/mb is the transverse thermal

velocity.

DESCRIPTION OF BEAM EIGENMODE
AND SPECTRA (BEAST) CODE

For an arbitrary equilibrium distribution one cannot
solve the stability problem analytically and must employ
numerical techniques. To investigate the stability proper-
ties numerically, we make use of the linear eighenmode
method, which searches for the roots of the matrix disper-
sion relation, as implemented in the Beam Eigenmode and
Spectra (bEASt) code. We briefly outline here the deriva-
tion of the matrix dispersion relation for the Weibel-like
instability [5] in intense particle beams for electromagnetic
perturbations of the form

δAθ(x, t) = δ̂A(r)ei(kzz−ωt) (7)

about the thermal equilibrium distribution with tempera-
ture anisotropy (T⊥b > T‖b) described in the beam frame



(Vb = 0 and γb = 1) by the self-consistent axisymmetric
Vlasov equilibrium

f0
b (r, p) =

n̂b

(2πmb)3/2T⊥bT
1/2
||b

exp
(
−H⊥
T⊥b

− p2
z

2mbT‖b

)
.

(8)
Here, H⊥ = p2

⊥/2mb +(1/2)mbω
2
f (x2 + y2)+ ebφ

0(r) is
the single-particle Hamiltonian for transverse particle mo-
tion, and ωf = const. is the transverse focusing frequency.
Perturbations are expanded in terms of the complete
set of vacuum eigenfunctions δ̂A(r) =

∑
n
αnAn(r),

where An(r) = AnJ1(λnr/rw) and J1(λn) = 0. Using
the method of characteristics, analysis of the linearized
Vlasov-Maxwell equations leads to an infinite dimension
matrix dispersion equation [5]∑

αnDn,m(ω) = 0, (9)

where the elements of the dispersion matrix are defined by

Dn,n′(ω) =
J2

2 (λn)
2

(λ2
n+k2

zr
2
w−r2w

ω2

c2
)δn,n′ +χn,n′(ω).

(10)
Here, χn,n′ is the beam-induced susceptibility. The
beam-induced susceptibility for low-frequency modes
ω � ωf is given by [5]

χn,n′(ω) =
ω̂2

pb

c2
× (11){

1 − T||
T⊥

[
1 +

ω

kzvth
||
Z

(
ω

kzvth
||

)]}
Qn,n′ ,

where

Qn,n′ =
∫

dPθP
2
θ

m2
bωr

dH⊥
T 2
⊥b

exp
[
−H⊥
T⊥b

]
(In)∗In′ . (12)

Here, Pθ is the canonical angular momentum, ω̂ 2
pb =

4πe2b n̂b/mb is the on-axis plasma frequency-squared, and
vth
||b =

√
2T||b/mb. The orbit integral In is defined by

In(H⊥, Pθ) =
∫ Tr

0

dτ

Tr
J1

[
λnr(τ)
r(τ)

]
, (13)

where r(τ) is the transverse orbit in the equilibrium field
configuration.

The Beam Eigenmode and Spectra (bEASt) code solves
Eq. (9) in several steps. First, the particle orbit r(τ) in the
equilibrium field configuration is calculated for one com-
plete oscillation period Tr, and the frequency ωr(H⊥, Pθ)
is obtained. Next, the orbit integrals in Eq. (13) are calcu-
lated and used in the integrations needed to obtain the ma-
trix elementsQn,n′ [Eq. (12)]. Finally, the matrix elements
Qn,n′ are used in Eqs. (11) and (10) during the search for
the complex eigenfrequency ω producing the dispersion
matrix Dn,n′(ω) with zero eigenvalue [Eq. (9)]. The typ-
ical number of particle trajectories used in the calculations
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Figure 1: Plot of normalized growth rate
(Imω)/(ω̂pbv

th
⊥b/c) versus kzrb for normalized skin

depth c/rbω̂pb = 100 and several values of the normalized
depressed tune ν̄/ν0 = 0.09, 0.4, 0.72 and T||b/T⊥b = 0.

is 300, with 16 time steps during one oscillation period
Tr, which is significantly less than the number of particles
and times steps used in PIC simulations. For moderately
intense beams with ν̄/ν0 > 0.4, the rank of the dispersion
matrix N = 6 is sufficient for convergence of the results.
Here ν̄/ν0 = vthb

⊥ /rbωf is the normalized depressed tune.

NUMERICAL RESULTS

Typical numerical results obtained using the bEASt
code for the case where rw = 3rb, are shown in Fig-
ures 1-5. In Figures 1-3, T ||b/T⊥b = 0. Figure 1 shows
the normalized growth rate (Imω)/(ω̂pbv

th
⊥b/c) plotted

versus kzrb for normalized skin depth c/rbω̂pb = 100
and several values of the normalized depressed tune
ν̄/ν0 = 0.09, 0.4, 0.72. The growth rate is an increasing
function of kzrb and approaches a maximum value for
k2

zr
2
b � 1, as indicated in the Introduction. The nor-

malized maximum growth rate (Imω)max/(ω2
frw/c),

plotted versus the normalized depressed tune ν̄/ν0, is
shown in Fig. 2. Note, that the maximum growth rate
(Imω)max = 0.15ω2

frw/c is achieved for moderately
intense beams with ν̄/ν0 ≈ 0.73. Figure 3 shows the
normalized eigenfunctions δÂθ(r) for the most unstable
mode versus r/rw, corresponding to several values of
the normalized depressed tune ν̄/ν0 = 0.09, 0.4, 0.72.
Here, kzrb = 20 and c/rbω̂pb = 100. Also shown are
plots of the normalized density profile nb(r)/nb(0) for
ν̄/ν0 = 0.09, 0.4, 0.72. Evidently, as the beam intensity
increases (ν̄/ν0 → 0) the eigenfunctions become localized
near the beam edge and N increases sharply, indicating
the need for a different expansion basis. Also note, that
for ν̄/ν0 → 0 the eigenfunction inside the beam becomes
linear with δÂθ(r) ∼ r [Eq. (1)], which corresponds to
rigid rotations of the beams slices with δJθ ∼ r. An
important characteristic of the instability is the longitudi-
nal threshold temperature T th

||b for the onset of instability
normalized to the ratio of the transverse temperature to the
normalized skin depth-squared T⊥br

2
b ω̂

2
pb/c

2. This quan-
tity is plotted in Fig. 4 versus the normalized skin depth
c/rbω̂pb for ν̄/ν0 = 0.09, 0.4, 0.72. Note from Fig. 4 that
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Figure 2: Plot of normalized maximum growth rate
(Imω)max/(ω2

frw/c) versus the average depressed tune
ν̄/ν0 for T||b/T⊥b = 0.
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Figure 3: Plots of the normalized eigenfunctions δ Âθ(r)
for the most unstable mode versus r/rw , correspond-
ing ν̄/ν0 = 0.09, 0.4, 0.72. Here, T||b/T⊥b = 0,
kzrb = 20 and c/rbω̂pb = 100. Also shown are plots
of the normalized density profile nb(r)/nb(0) for ν̄/ν0 =
0.09, 0.4, 0.72.

the normalized threshold temperature is a weak function of
the normalized skin depth for c/rbω̂pb ≥ 3, and is plotted
in Fig. 5 as a function of the normalized tune depression
ν̄/ν0 for the representative skin depth c/rbω̂pb = 100.

CONCLUSIONS

We have generalized the classical Weibel-type instabil-
ity to the case of an intense charged particle beam with
anisotropic temperature (T||b/T⊥b < 1) including the
important effects of finite transverse geometry and beam
space-charge. The bEASt code, which solves the matrix
dispersion relation for electromagnetic perturbations in
intense particle beams, has been used to investigate the
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Figure 4: The normalized longitudinal threshold tempera-
ture (T th

||b/T⊥b)c2/r2b ω̂
2
pb for the onset of instability is plot-

ted versus the normalized skin depth c/rbω̂pb for ν̄/ν0 =
0.09, 0.4, 0.72.
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Figure 5: The normalized longitudinal threshold tempera-
ture (T th

||b/T⊥b)c2/r2b ω̂
2
pb for the onset of instability is plot-

ted versus the normalized tune depression ν̄/ν0 for normal-
ized skin depth c/rbω̂pb = 100.

stability properties of intense charged particle beams with
large temperature anisotropy (T ||b/T⊥b � 1) over a wide
range of normalized tune depression, 0.1 < ν̄/ν0 < 1.
It is found that even a small longitudinal temperature,
T th
||b/T⊥b ≈ 0.25r2b ω̂

2
pb/c

2 ∼ (vth
⊥b/c)

2 � 1, is large
enough to stabilize the Weibel instability. The presence of
this threshold is due to the finite transverse geometry of the
charged particle beam. In future investigations, we plan to
carry out detailed kinetic simulations of the Weibel insta-
bility employing a version of the BEST code modified to
include transverse electromagnetic effects by incorporating
a Darwin model that neglects the transverse displacement
current [6]. This will permit detailed investigations of the
both the linear and nonlinear phases of the instability.
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